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Abstract

Both marginal and dependence features must be described when modelling the
extremes of a stationary time series. There are standard approaches to marginal
modelling, but long- and short-range dependence of extremes may both appear.
In applications, an assumption of long-range independence often seems reasonable,
but short-range dependence, i.e., the clustering of extremes, needs attention. The
extremal index 0 < θ ≤ 1 is a natural limiting measure of clustering, but for wide
classes of dependent processes, including all stationary Gaussian processes, it cannot
distinguish dependent processes from independent processes with θ = 1. Eastoe and
Tawn (2012) exploit methods from multivariate extremes to treat the subasymptotic
extremal dependence structure of stationary time series, covering both 0 < θ < 1
and θ = 1, through the introduction of a threshold-based extremal index. Inference
for their dependence models uses an inefficient stepwise procedure that has various
weaknesses and has no reliable assessment of uncertainty. We overcome these issues
using a Bayesian semiparametric approach. Simulations and the analysis of a UK
daily river flow time series show that the new approach provides improved efficiency
for estimating properties of functionals of clusters.
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1 Introduction

Extreme value theory provides an asymptotically justified framework for the statistical
modelling of rare events. In the univariate case with independent variables there is a
broadly-used framework involving modelling exceedances of a high threshold by a gener-
alised Pareto distribution (Coles, 2001). For extremes of stationary univariate time series,
standard procedures use marginal extreme value modelling but consideration of the de-
pendence structure between the variables is essential when assessing risk due to clusters
of extremes. Leadbetter et al. (1983) and Hsing et al. (1988) described the roles of long-
and short-range dependence on extremes of stationary time series. Typically an assump-
tion of independence at long range is reasonable, with Ledford and Tawn (2003) giving
diagnostic methods for testing this. In practice independent clusters are often identified
using the runs method (Smith and Weissman, 1994), which deems successive exceedances
to be in separate clusters if they are separated by at least m consecutive non-exceedances
of the threshold; Ferro and Segers (2003) provide automatic methods for the selection of
m.

Short-range dependence has the most important practical implications, since it leads
to local temporal clustering of extreme values. Leadbetter (1983) and O’Brien (1987)
provide different asymptotic characterisations of the clustering though the extremal index
0 < θ ≤ 1, the former with θ−1 being the limiting mean cluster size. The case θ = 1
corresponds to there being no more clustering than if the series were independent, and
decreasing θ corresponds to increased clustering.

Although the extremal index is a natural limiting measure for such clustering there is
a broad class of dependent processes with θ = 1, including all stationary Gaussian pro-
cesses. Thus the extremal index cannot distinguish the clustering properties of this class
of dependent processes from those of white noise. Furthermore, many other functionals
of clusters of extremes may be of interest (Segers, 2003), so for practical modelling of
the clusters of extreme values above a high threshold, the restriction to θ < 1 is a major
weakness.

Smith et al. (1997b), Ledford and Tawn (2003), Eastoe and Tawn (2012) and Win-
ter and Tawn (2016) draw on methodology for multivariate extremes to provide models
for univariate clustering, and thereby enable the properties of a wide range of cluster
functionals to be estimated. The focus of this paper is the improvement of inference tech-
niques for the most general model for these cases, namely the semiparametric conditional
extremes model of Heffernan and Tawn (2004). Our ideas can be applied to any cluster
functional, but we focus here primarily on the threshold-based extremal index introduced
by Ledford and Tawn (2003).

Given the strong connections between multivariate extreme value and clustering mod-
elling, here and in Section 3 we present the developments of the model in parallel for
the two situations. Examples of applications for multivariate cases include assessing the
risk of joint occurrence of extreme river flows or sea-levels at different locations (Keef

2



et al., 2009; Asadi et al., 2015), the concurrent high levels of different pollutants at the
same location (Heffernan and Tawn, 2004), and simultaneous stock market crashes (Poon
et al., 2003). For the time series case, applications include assessing heatwave risks (Reich
et al., 2014; Winter and Tawn, 2016), modelling of extreme rainfall events (Süveges and
Davison, 2012) and wind gusts (Fawcett and Walshaw, 2006).

For the stationary time series (Xt), Ledford and Tawn (2003) define the threshold-
based extremal index

θ(x,m) = Pr (X1 ≤ x, . . . , Xm ≤ x | X0 > x) , (1.1)

where x is large, which is the key measure of short-range clustering of extreme values,
with 1/θ(x,m) being the mean cluster size when clusters of exceedances of the threshold
x are defined via the runs method of Smith and Weissman (1994) with run length m.
Furthermore θ(x,m) converges to the extremal index θ as x→ xF and m→∞ appropri-
ately (O’Brien, 1987; Kratz and Rootzén, 1997). Many studies have focused on estimating
the limit θ (Ferro and Segers, 2003; Süveges, 2007; Robert, 2013), but in applications, all
these consider a finite level u as an approximation to the limit xF . This is equivalent to
assuming θ(x,m) to be constant above u, which is generally not the case in applications
(see Figure 1). Additionally Eastoe and Tawn (2012) find that θ(x,m) is fundamental to
modelling the distributions of both cluster maxima, i.e., peaks over threshold, and block
maxima, e.g., annual maxima. See Section 4 for more on the relevance of θ(x,m) for time
series extremes.

When considering asymptotically motivated models for the joint distribution of X−0 =
(X1, . . . , Xm) given that X0 > x for the estimation of θ(x,m), it is helpful to have a simple
characterisation of extremal dependence. The standard pairwise measure of extremal
dependence for (X0, Xj) is

χj = lim
x→xF

Pr (Xj > x | X0 > x) , j = 1, . . . ,m, (1.2)

with the cases χj > 0 and χj = 0 respectively termed asymptotic dependence and asymp-
totic independence at lag j. A plot of χj against j has been termed the extremogram
(Davis and Mikosh, 2009), by analogy with the correlogram of time series analysis. When
χj = 0 for all j ≥ 1, the extremogram fails to distinguish between different levels of
asymptotic independence, but the rate of convergence to zero of Pr(Xj > x | X0 > x)
determines the key characteristics of the tail of the joint distribution (Ledford and Tawn,
1996). Ledford and Tawn (2003) propose using such a measure at each time lag j when the
variables are asymptotically independent. An alternative is to combine both approaches
by studying a threshold-based version of χj,

χj(x) = Pr (Xj > x | X0 > x) , j = 1, . . . ,m, (1.3)

for a range of large values of x.

3



In Section 2, we review classical multivariate extreme models, which all entail χj(x) =
χj, x > u for some high threshold u, and often even χj > 0. Instead we consider the
conditional formulation of Heffernan and Tawn (2004) that has been subsequently studied
more theoretically by Heffernan and Resnick (2007), Das and Resnick (2011), and Mitra
and Resnick (2013). This class of models covers χj ≥ 0 and χj(x) changing with large x
(j = 1, . . . ,m) through modelling dependence within the asymptotic independence class.
This model gives estimates of θ(x,m) that can be constant or vary with x, x > u. This
additional flexibility comes at a price: inference is required for up to 2m parameters, and
for an arbitrary m-dimensional distribution G.

The asymptotic arguments for the Heffernan–Tawn model are given in Section 3, for
an (m + 1)-dimensional variable with Laplace marginal distributions. Suppose that the
monotone increasing transformation T = (T0, . . . , Tm) transforms X = (X0, . . . , Xm) to
Y = (Y0, . . . , Ym), with Yi = Ti(Xi) (i = 0, . . . ,m), so that Y has Laplace marginal
distributions. In applications the Heffernan–Tawn model corresponds to a multivariate
regression with

Y−0 | {Y0 = y} = αy + yβZ = αy + µyβ +ψyβZ∗ (1.4)

where here, and subsequently, the arithmetic is to be understood componentwise, with
α ∈ [−1, 1]m, β ∈ [−∞, 1]m, µ ∈ Rm, ψ ∈ Rm

+ , and Z an m-dimensional random
variable with Z ∼ G; Z∗ has zero mean and unit variance for all marginal variables, with
Z∗ = (Z−µ)/ψ. We require that (1.4) holds for all y > u, where u is a high threshold on
the Laplace marginal scale. The parameters (α,β,µ,ψ) determine the conditional mean
and variance through

E(Y−0 | Y0 = y) = αy + µyβ, var(Y−0 | Y0 = y) = ψ2y2β.

Thus (α,β,µ,ψ) can be estimated by multivariate regression. The complication for
inference is that the error distribution G is in general unknown and arbitrary, apart from
the first two moment properties mentioned above. One exception to this is when α = 1
and β = 0, in which case the Heffernan–Tawn model reduces to known asymptotically-
dependent models with G directly related to H, as detailed in Section 3.

Heffernan and Tawn (2004) and Eastoe and Tawn (2012) used a stepwise inference
procedure, estimating (α,β,µ,ψ) under a working assumption that Z∗ are independent
normal variables. After obtaining parameter estimates, they estimated G nonparamet-
rically using the empirical joint distribution of the observed standardised multivariate
residuals, i.e., values of Z for Y0 > u. There are weaknesses in this approach, which loses
efficiency in the estimation of (α,β,µ,ψ) and G and in subsequent inferences due to the
generally incorrect working assumption of normality. Moreover, as noted by Peng and Qi
(2004), the empirical estimation of G leads to poor estimation of the upper tail of the
conditional distribution of Y−0 | {Y0 = y}, so it would be preferable to have a better,
yet general, estimator of G. Furthermore, the uncertainty of the parameter estimation is
unaccounted-for in the estimation of G and of cluster functionals such as θ(x,m).
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Cheng et al. (2014) proposed a Bayesian approach to estimating the Heffernan–Tawn
model in a single stage, but their estimation procedure involves changing the structure
of the model and adding a noise term in (1.4), thereby allowing the likelihood term
to be split appropriately. They also need strong prior information extracted from the
stepwise inference method in order to get valid estimates for the model parameters, so
this procedure does not really tackle the loss of efficiency of the stepwise estimation
procedure.

We propose to overcome these weaknesses by using Bayesian semiparametric inference
to estimate the model parameters and the distribution G, simultaneously performing the
entire fitting procedure for the dependence model. This gives a new model for G, namely, a
mixture of Gaussian distributions, which provides estimates of the conditional distribution
of Y−0 | Y0 = y beyond the range of the current estimator and which in theory provides an
arbitrary good approximation for G (Marron and Wand, 1992). The Bayesian approach
also provides a coherent framework for fitting a parsimonious parametric model; joint
estimation of the model parameters enables the imposition of structure between them. For
example, in multivariate problems the context may suggest that different components of α
may be identical. In the context of time series extremes, for first-order Markov models, it
can be shown that α and β involve at most two unknown parameters (Papastathopoulos
et al., 2016). Furthermore, when the X−0 are known to be asymptotically dependent on
X0, this method provides a new approach to modelling.

We show the practical importance of the new approach by applying it to the daily
mean flow time series of the River Ray at Grendon Underwood in north-west London, with
observations from October 1962 to December 2008. We consider only flows from October
to March, as this period typically contains the largest flows and forms an approximately
stationary series. An empirical estimate of θ(x,m), with m = 4, is shown in Figure 1
with bootstrap-derived 95% confidence intervals. A major weakness with this estimate
is that it cannot be evaluated beyond the range of the data, so a model is needed to
evaluate θ(x,m) for larger x. We select our modelling threshold u to be the empirical
98% marginal quantile of the data. Using the methods in Eastoe and Tawn (2012) we
have an estimate of θ(x, 4) for all x > u using the stepwise estimation method. As seen
in Figure 1, this estimate converges to 1 as x → xF but we have no reliable method for
deriving confidence intervals. Figure 1 also shows posterior median estimates and 95%
credibility intervals obtained using our Bayesian semiparametric method. These show
broad agreement with both of the other estimates within the range of the data, but with
tighter uncertainty intervals and statistically significant differences in extrapolation of
θ(x, 4), indicating that the new method has the potential to offer marked improvement
for estimating θ(x,m) and other cluster functionals.

The paper is structured as follows. We first briefly present the standard approaches
to multivariate extremes in Section 2. We introduce the conditional model of interest in a
multivariate framework in Section 3, followed by a section about modelling of dependent
time series. Section 5 explains the Bayesian semiparametric inference procedure, which
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Figure 1 – Comparison of the empirical, stepwise and Bayesian semiparametric estimates of
θ(x, 4) described in Sections 3 and 5 respectively. Empirical estimate (solid black) and stepwise
(long dashed) and Bayesian (solid grey) semiparametric estimates with their respective 95%
confidence regions (dashed and shaded), estimated on winter flows (m3s−1) of the River Ray
from 1962 to 2008.

is used in Section 6 to illustrate the efficiency gains of this new inference method on
simulated data. In Section 7 we fit our model to the River Ray flow data and show its
ability to estimate functionals of time series clusters other than the threshold-based index.

2 Multivariate setup and classical models

Both multivariate and time series extremes involve estimating the probability of events
that may never yet have been observed. Suppose that X = (X0, . . . , Xm) is an (m +
1)-dimensional variable with joint distribution function FX and marginal distribution
functions F0, . . . , Fm. We need to estimate the probability Pr(X ∈ A), where A ⊂ Rm+1

is an extreme set, i.e., a set such that for all x ∈ A, at least one component of x =
(x0, . . . , xm) is extreme. To do this we must model FX(x) for all x ∈ B, where B is an
extreme set that contains A. Let Ai be the subset of A for which component i is largest
on a quantile scale, i.e.,

Ai = A ∩
{
x ∈ Rm+1 : Fi(xi) > Fj(xj), j ∈ {0, . . . ,m}\{i}

}
, i = 0, . . . ,m,
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and let vi = inf{xi : x ∈ Ai}, so that we can write

Pr(X ∈ A) =
m∑
i=0

Pr(X ∈ Ai | Xi > vi)Pr(Xi > vi). (2.1)

Thus estimates of marginal and dependence features are required for estimating the con-
ditional probabilities in the sum and marginal distributions determine the second terms
of the products in the sum.

Although our approach applies to any form of set A, to focus our arguments we restrict
ourselves to identical marginal distributions F with upper endpoint xF and we set

A = A0 = {X0 > x,X1 ≤ x, . . . , Xm ≤ x},

so v0 = x and we estimate only the conditional probability term in (2.1), i.e., θ(x,m), as
defined in (1.1).

Early approaches to modelling the conditional distribution appearing in (1.1) assumed
that X lies in the domain of attraction of a multivariate extreme value distribution (Coles
and Tawn, 1994; de Haan and de Ronde, 1998) and applied these asymptotic models above
a high threshold. Unlike in the univariate case, there is no finite parametrisation of the
dependence structure; it can only be restricted to functions of a distribution H on the m
unit simplex Sm with

∫
Sm
widH(w) = (m+ 1)−1 (i = 0, . . . ,m), where w = (w0, . . . , wm).

Both parametric and non-parametric inference for this class of models has been proposed.
Numerous parametric models are available (Kotz and Nadarajah, 2000, Ch. 3; Cooley
et al., 2010; Ballani and Schlather, 2011). Nonparametric estimation is also widely studied,
mostly based on empirical estimators (de Haan and de Ronde, 1998; Hall and Tadjvidi,
2000; Einmahl et al., 2001; Einmahl and Segers, 2009).

A major weakness of these early methods is that for these models either χj > 0
or (X0, Xj) is independent for all j = 1, . . . ,m, whereas there are distributions, such
as the multivariate Gaussian, with χj = 0 but (X0, Xj) dependent. If χj > 0 for any
j = 1, . . . ,m, these models give estimates of θ(x,m) → cm as x → xF , where cm < 1.
This class of models is not flexible enough to cover distributions that are dependent at
finite levels, but asymptotically independent for all pairs of variables.

3 Threshold-based model for conditional probabili-

ties

3.1 Heffernan–Tawn model

In order to provide a model characterising conditional probabilities, such as those which
describe the clustering behaviour, we need a model for multivariate extreme values, and in
particular we require a model for the joint distribution of X1, . . . , Xm given that X0 > x.
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In this section we suppose that the marginal distributions of X are not identical, and
that X0 ∼ F0 is in the domain of attraction of a generalised Pareto distribution, i.e.,
there exists a function σu > 0 such that as u→ xF0 , (X0− u)/σu, conditional on X0 > u,
converges to a generalised Pareto variable with unit scale parameter and shape parameter
ξ.

The joint distribution is modelled via the marginal distributions Fj and a copula for
the dependence structure. To study the conditional behaviour of extremes, the copula
formulation is most transparent when expressed with Laplace marginals. Let Tj denote
the transformation of the marginal distribution of Xj to the Laplace scale, i.e.,

Tj(Xj) =

{
log {2Fj (Xj)} , Xj < F−1

j (1/2),

− log [2 {1− Fj (Xj)}] , Xj > F−1
j (1/2);

j = 0, . . . ,m,

the specification of the Fj is discussed in Section 3.2. Assume there exist m-dimensional
functions a(x) = {a1(x), . . . , am(x)} and b(x) = {b1(x), . . . , bm(x)} > 0 for which

Pr

[
Tj (Xj)− aj {T0 (X0)}

bj {T0 (X0)}
≤ zj, j = 1, . . . ,m

∣∣∣∣X0 > u

]
→ G(z), u→ xF0 , (3.1)

where all marginal distributions of G are non-degenerate and z = (z1, . . . , zm) ∈ Rm.
Hereafter we write the standardised Xj, or residual, as

Zj =
Tj (Xj)− aj {T0 (X0)}

bj {T0 (X0)}
, X0 > u, j = 1, . . . ,m.

Under assumption (3.1), the rescaled conditioning variable (X0 − u) /σu is asymptotically
conditionally independent of the residual Z = (Z1, . . . , Zm) given X0 > u, as u → xF0 .
That is,

Pr {Z ≤ z, (X0 − u) /σu > x | X0 > u}
= Pr {Z ≤ z | (X0 − u) /σu > x}Pr {(X0 − u) /σu > x | X0 > u}
→ G(z)K(x), u→ xF0 , (3.2)

where K is the generalised Pareto distribution survivor function (4.1) with scale and shape
parameters (1, ξ) and G is the limit distribution of the residuals.

Equation (3.1) can be illustrated through the particular case when X is a centred
multivariate Gaussian distribution with correlation matrix elements ρij, i, j = 0, . . . ,m,
i 6= j. In this case we can derive aj(x) = sign(ρ0j)ρ

2
0jx and bj(x) = x1/2, and G(z) is

a centred multivariate Gaussian distribution with variances ρ2
0j(1 − ρ2

0j) and correlation
matrix elements

ρ′ij =
ρij − ρ0iρ0j√

(1− ρ2
0i)
(
1− ρ2

0j

) , i 6= j.
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Heffernan and Tawn (2004) and Keef et al. (2013) showed that under broad conditions,
the component functions of a(x) and b(x) can be modelled by

aj(x) = αjx, bj(x) = xβj , −1 ≤ αj ≤ 1, −∞ < βj ≤ 1, j = 1, . . . ,m.

In terms of the dependence structure, αj and βj reflect the flexibility of the model. It
turns out that (X0, Xj) are asymptotically dependent only if αj = 1, βj = 0, and then

χj = lim
x→xF0

Pr {Tj(Xj) > x | T0(X0) > x} =

∫ ∞
0

Gj(−z)e−zdz;

with Gj the jth marginal survivor function of G; if −1 < αj < 1, then (X0, Xj) are
asymptotically independent, with positive extremal dependence if αj > 0, negative ex-
tremal dependence if αj < 0, and with extremal near-independence if αj = 0 and βj = 0.

We set βj ≥ 0, as when βj < 0 all the conditional quantiles for Xj converge to the
same value as X0 increases, which is unlikely in most environmental contexts. If the
conditioning threshold u is high enough that the conditional probability on the left of
(3.1) is close to its limit, then the Heffernan–Tawn model can be stated as

Tj(Xj) = αjT0(x) + {T0(x)}βj Zj, X0 = x > u, j = 1, . . . ,m, (3.3)

where (Z1, . . . , Zm) ∼ G is independent of X0, and G can be any distribution with non-
degenerate margins.

3.2 Existing inference procedure

We now outline the approach to inference suggested by Heffernan and Tawn (2004).
Consider a vector (X0, . . . , Xm) whose marginal distributions F0, . . . , Fm each lie in the
domain of attraction of a generalised Pareto distribution. We estimate them using the
semiparametric estimator of Coles and Tawn (1994),

F̂j(x) =


F̃j(x), x < u,

1−
{

1− F̃j(u)
}(

1 + ξ̂j
x− u
σ̂u,j

)−1/ξ̂j

+

, x ≥ u,

where F̃j is the empirical marginal distribution function of Xj. Here σ̂u,j and ξ̂j are
maximum likelihood estimates based on all exceedances of u, ignoring any dependence;
their variances can be evaluated by a sandwich procedure (Fawcett and Walshaw, 2007)
or by a block bootstrap. The margins Fj are transformed to the Laplace scale through

the transformation T̂j (Xj).
Estimation of the probability of any extreme set of interest involves inference for

model (3.3) with the estimators of parameters of the dependence model assumed inde-
pendent of the parameter estimators of the marginal distribution. This assumption has
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been found not to be restrictive in other copula inference contexts (Genest et al., 1995).
Heffernan and Tawn (2004) proposed a stepwise inference procedure for estimating the
extremal dependence structure, based on the working assumption that the residual vari-
ables Z1, . . . , Zm are independent and Gaussian with means µ1, . . . , µm and variances
ψ2

1, . . . , ψ
2
m. This assumption allows likelihood inference based on the assumed marginal

densities,

Tj (Xj) | {T0(X0) = x} ∼ N
(
αjx+ xβjµj, x

2βjψ2
j

)
, x > u, j = 1, . . . ,m.

The first step of their procedure consists of a likelihood maximisation performed sep-
arately for each j, giving estimates of αj, βj and the nuisance parameters µj and ψj.
Additional constraints, arising from results of Keef et al. (2013), lead to the likelihood
function being zero for certain combinations of parameters (αj, βj). Thus the maximisa-
tion is over a subset of [−1, 1]× [0, 1] for these two parameters. These constraints ensure
that the conditional quantiles of Tj(Xj) | T0(x) are ordered in a decreasing sequence for
all large x under fitted models corresponding to positive asymptotic dependence, asymp-
totic independence and negative asymptotic dependence respectively. For details of these
constraints see Keef et al. (2013), who show that imposing these additional constraints im-
proves inference of the conditional extremes model. Given model (3.3) and the estimates

α̂j and β̂j, the second step of the estimation procedure involves multivariate residuals Z
for each data point, using the relation

Ẑj =
T̂j (Xj)− α̂jT̂0 (X0){

T̂0 (X0)
}β̂j , j = 1, . . . ,m, X0 > u,

and hence constructing the joint empirical distribution function Ĝ (z).
An estimator for Pr(A | X0 > x) for any extreme set A is obtained as follows: sample

R independent replicates X
(1)
0 , . . . , X

(R)
0 of X0 conditional on X0 > x from a generalised

Pareto distribution with threshold x; independently sample Z(1), . . . ,Z(R) from the joint
empirical distribution function Ĝ; compute

X
(r)
−0 = T̂

−1
[
α̂T̂0(X

(r)
0 ) +

{
T̂0(X

(r)
0 )
}β̂
Z(r)

]
, r = 1, . . . , R,

where vector arithmetic is to be understood componentwise and T̂
−1

= (T−1
1 , . . . , T−1

m ) is
a componentwise back-transformation to the original scale; then the estimator for Pr(A |
X0 > x) is

1

R

R∑
r=1

I
{(
X

(r)
0 ,X

(r)
−0

)
∈ A

}
,

where I is the indicator function.
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In the rest of the paper, we are interested in estimating the conditional probability
θ(x,m), corresponding to A = {X0 > x,X1 < x, . . . , Xm < x}, for which the Heffernan–
Tawn model provides a characterisation. Under the assumption that the limit (3.1) ap-
proximately holds for some subasymptotic u, Eastoe and Tawn (2012) obtain

θ(x,m) =

∫ ∞
x

G{z(x, y)}kx(y) dy, x > u, (3.4)

where kx(y) is the generalised Pareto density for threshold x, with scale parameter 1 +
ξ(x− u) and shape parameter ξ, and z(x, y) is an m-dimensional vector with elements

zj (x, y) =
Tj (x)− αjT0 (y)

{T0 (y)}βj
, j = 1, . . . ,m. (3.5)

A Monte Carlo approximation to the integral (3.4) gives the estimator

θ̂(x,m) =
1

R

R∑
r=1

Ĝ
{
z
(
x,X

(r)
0

)}
,

where z(x,X
(r)
0 ) is given by expression (3.5) with α and β replaced by estimates. Monte

Carlo variability can be reduced by using the same pseudo-random sequence when gener-
ating samples for different values of x. Eastoe and Tawn (2012) use a bootstrap method

to get confidence bounds for θ̂(x,m), but de Carvalho and Ramos (2012) found this to be
unreliable.

Four main weaknesses of this inference procedure justify developing a more compre-
hensive approach. First, the working assumption needed for the likelihood maximisation
is that the residuals have independent Gaussian distributions, and it is hard to quantify
how this affects inference. Second, ignoring the variability of α̂, β̂ estimated in the first
step leads to underestimation of the uncertainty in the estimate for the residual distribu-
tion G and hence also for θ(x,m). Third, the empirical estimation of G restricts estimates
of extremal conditional probabilities, as simulated Z values provide no extrapolation over
observed values of Z. Fourth, the inability to impose natural constraints on (α1, . . . , αm)
and (β1, . . . , βm) leads to inefficiency.

4 Modelling dependence in time

Consider a stationary time series {Xt} satisfying appropriate long-range dependence prop-
erties and with marginal distribution F . The threshold-based extremal index θ(x,m)
summarises the key extremal dependence in time series. In the block-maxima con-
text, the distribution of the block maximum Mn = max{X1, . . . , Xn} at a level x is
{F (x)}nθ(x,m) (O’Brien, 1987; Kratz and Rootzén, 1997). The associated independent
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series {X∗t }, having the same marginal distribution as {Xt} but independent observa-
tions, has M∗

n = max{X∗1 , . . . , X∗n} with distribution function {F (x)}n. So Pr(Mn < x) =
{Pr(M∗

n < x)}θ(x,m), with θ(x,m) accounting for the dependence.
The most popular approach to dealing with short-range dependent in such series is

the peaks over threshold (POT) approach formalised by Davison and Smith (1990). This
approach consists of selecting a high threshold u, identifying independent clusters of
exceedances of u, picking the maximum Y of each cluster, and then fitting to these
cluster maxima the generalised Pareto distribution

Pr(Y < x | Y > u) = 1−
(

1 + ξ
x− u
σu

)−1/ξ

+

, x > u. (4.1)

The limiting results are used as an approximation for data at subasymptotic levels with
limit distribution (4.1) taken as exact above a selected value of u.

Alternatives to the POT approach include modelling the series of all exceedances, for
example using a Markov chain (Smith et al., 1997a; Winter and Tawn, 2016), but they
depend heavily on the validity of the underlying modelling assumptions and so may be
inappropriate.

Eastoe and Tawn (2012) consider the threshold-based extremal index as part of a
model for the distribution of cluster maxima. Specifically they show that, for a given
high threshold u, the cluster maxima, defined by the runs method with run-length m,
have approximate distribution function

1− θ(x,m)

θ(u,m)

(
1 + ξ

x− u
σu

)−1/ξ

+

, x > u, (4.2)

where the parameters ξ and σu > 0 determine the marginal distribution of the original
series, and x+ = max(x, 0). Eastoe and Tawn (2012) show how using the information in
θ(x,m) can improve over the POT approach. Distribution (4.2) reduces to the generalised
Pareto model asymptotically as u→ xF , and more generally when θ(x,m) = θ(u,m) for
all x > u. When estimates of θ(x,m) vary appreciably above u, this equality condition
for θ(x,m) provides a diagnostic for situations where the POT method is inappropriate.

In our approach, when a Markov property can reasonably be assumed for a time
series, the αj and βj have a structure that we want to exploit. Papastathopoulos et al.
(2016) and Kulik and Soulier (2015) characterise the form of aj(x) and bj(x) under very
weak assumptions. If the conditions needed for the Heffernan–Tawn simplification —
a1(x) = α1x and b1(x) = xβ1 — hold, then for positively associated first order Markov
processes, Papastathopoulos et al. (2016) show that either (αj, βj) = (1, 0), or (0, βj)
or (αj, β) for some α ∈ [0, 1) and β = [0, 1). The first case corresponds to asymptotic
dependence at all time lags, and the other two to different forms of decaying dependence
under asymptotic independence. If {Xt} follows an asymptotically dependent Markov
process, then no parameters need be estimated, rather than 2m. If the process is well-
approximated by an asymptotically independent Markov process then either of the last
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two cases applies, and the number of parameters in the parametric component of the
model reduces from 2m to 1 or 2. In the case of a Gaussian AR(1) process (Xt) with
standard Gaussian margins

Xt+1 = ρXt + εt, εt
iid∼ N

(
0, 1− ρ2

)
, ρ ∈ (−1, 1),

Heffernan and Tawn (2004) get normalising parameters αj = sign(ρ)ρ2j and βj = 1/2,
j = 1, . . . ,m; the distribution G(z) is a centred multivariate Gaussian with variances
ρ2j(1− ρ2j) and correlation matrix elements

ρ′ij =
sign(ρi+j)ρj−i

√
1− ρ2i√

1− ρ2j
, i < j.

5 Bayesian Semiparametrics

5.1 Overview

Since the m-dimensional residual distribution G in the Heffernan–Tawn model (3.3) is
unknown, the approach described in Section 3.2 uses the joint empirical distribution
function, which cannot model the tails of the conditional distribution of Xj in (3.3).
Our proposed Bayesian approach instead takes G to be a mixture of a potentially infinite
number of multivariate Gaussian distributions through the use of a Dirichlet process. This
approach can model any G and capture its tails, and has the major benefit of allowing
joint estimation of α, β and G.

Below we introduce Dirichlet processes and describe an approach to approximate
Monte Carlo sampling from them. We then describe Bayesian semiparametric inference
and the specification of prior distributions, and discuss implementation issues. Through-
out we assume that we have n observations from the distribution of (X1, . . . , Xm) | X0 > u,
or equivalently from Z = (Z1, . . . , Zm) if α and β were known.

5.2 Dirichlet process mixtures for the residual distribution

Consider a bivariate problem, m = 1; with known α and β. If we are to estimate the
distribution function of X1 | X0 > u this is equivalent to estimating the distribution
function G of the univariate random variable Z1 ∼ G. If G is estimated nonparametrically,
its prior must be a distribution over a space of distributions. In this context, a widely
used prior is the Dirichlet process (Ferguson, 1973) mixture. A simple model structure
takes G to be a mixture of an unknown number of distributions Qk having parameters
λk, k = 1, 2, . . ., so that the Dirichlet process boils down to a distribution on the space
of mixture distributions P for {λk}. If λk | P ∼ P , then the distribution of P is the
Dirichlet process DP (γP0), where P0 is the centre distribution and γ > 0 the concentration
parameter (Hjort et al., 2010).
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The definition of a Dirichlet process states that for any p = 1, 2, . . ., and any finite
measurable partition {B1, . . . , Bp} of the space of the λk,

{P (B1), . . . , P (Bp)} ∼ Dirichlet{γP0(B1), . . . , γP0(Bp)}.

The interpretation of the Dirichlet process parameters stems from the properties

E{P (Bi)} = P0(Bi), var{P (Bi)} =
P0(Bi){1− P0(Bi)}

γ + 1
, i = 1, . . . , p,

so the DP(γP0) prior is closer to its mean P0 and less variable for large values of γ. A
constructive characterisation of the Dirichlet process is the stick-breaking representation
(Sethuraman, 1994)

P (·) =
∞∑
k=1

wkδλk
(·), (5.1)

where δλ denotes a distribution concentrated on λ, and λ1,λ2, . . . are independent, P0-
distributed, and independent of the random weights wk ≥ 0, which satisfy

∑∞
k=1 wk = 1.

The stick-breaking process takes its name from the computation of the weights: define
V1, V2, . . . as the breaks independently sampled from a Beta(1, γ) distribution. The weights
are then

w1 = V1, wk = Vk

k−1∏
i=1

(1− Vi), k = 2, 3, . . . . (5.2)

Ishwaran and Zarepour (2000) use formulation (5.1) to express the Dirichlet process in
terms of the random variables wk and λk. They also introduce index variables c1, . . . , cn
that describe the components of the mixture in which the observations z1, . . . , zn lie, giving
a stick-breaking representation in terms of the index variables ci rather than the random
variables λk.

A key step in deriving a posterior distribution is the truncation of the sum in the stick-
breaking representation, i.e., replacing the infinite sum in (5.1) by a sum up to N . This is
achieved by imposing VN = 1 in (5.2). The accuracy of the stick-breaking approximation
improves exponentially fast in terms of the L1 error (Ishwaran and James, 2001), as

‖MN −M∞‖1 ≤ 4

[
1− E

{(
N−1∑
k=1

wk

)n}]
≈ 4n exp

(
−N − 1

γ

)
,

where MN is the marginal density∫ n∏
i=1

{
N∑
k=1

wkQk (dZi | λi)

}
DP (dPN) .
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For example, the error is smaller than 10−29 when truncating the stick-breaking sum
representation at N = 150 as in our real data analysis (Section 7) for which γ ≤ 2 and
n = 154.

Taking into account the transformations discussed above, a simple model for G in-
volving the Dirichlet process prior is

Z | c,Λ ind∼ Qc = Q(·;λc),

c | PN
iid∼ PN =

N∑
k=1

wkδk(·),

(Λ,w) ∼ πΛ(·)πw(·),

(5.3)

where Λ is the matrix with rows λ1, . . . ,λN , and w = (w1, . . . , wN), with
∑N

k=1wk = 1
for some suitably large N . To lighten the notation we write Z1 | λc instead of Z1 | c,Λ in
what follows. Taking the Qk (k = 1, . . . , N) to be normal distributions with means µ1,k

and variances ψ2
1,k leads to Λ being a 2 × N matrix, with rows λk = (µ1,k, ψ

2
1,k). Model

(5.3) is made more flexible by adding a hyperprior for the concentration parameter γ.

5.3 Multivariate semiparametric setting

We now specify the features of our algorithm, finally yielding model (5.5). We must
add a further element to (5.3): covariates, i.e., the parametric part of the Heffernan–
Tawn model (3.3), to recognise that α and β are unknown. This is achieved using a
covariate-dependent Dirichlet process, and it can be formulated in terms of the truncated
stick-breaking representation as

P|x(·) =
N∑
k=1

wkδλk(x)(·), (5.4)

so that a single output of the stick-breaking procedure gives rise to a whole family of
distributions indexed by x. Our data are the n observations from m-dimensional variables
X−0, given X0 is large. We assume that, conditional on T (X0) > u, T (X−0) has a mixture
of multivariate normal distributions,

∑∞
k=1wkNm, where the mean vector Mk(x) and the

covariance matrix Ψk(x) of the kth normal component depend on the value x of T (X0).
For parsimony, the variance matrix Ψk(x) is taken to be diagonal with diagonal elements
{Ψ1,k(x), . . . ,Ψm,k(x)}, as the mixture structure is considered flexible enough to capture
the dependence between the elements of X−0.

As we use the truncated version of the stick-breaking representation (5.1), the condi-
tional distribution for the weights wi is a generalised Dirichlet distribution (Connor and
Mosimann, 1969), written as GDirichlet. This gives the final form of our semiparametric
model:
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T (Xj) | {T (X0) = x, αj, βj, Mj,c(x), Ψj,c(x)} ind∼ N {Mj,c(x),Ψj,c(x)} , j = 1, . . . ,m, x > u,

Mj,c(x) = αjx+ µj,cx
βj , Ψj,c(x) = x2βjψ2

j,c, (5.5)

c | w ∼
N∑
k=1

wkδk(·),

where the prior for (α,β,µk,ψk), with µk = (µ1,k, . . . , µm,k) and ψk = (ψ1,k, . . . , ψm,k),
takes the form

w | γ ∼ GDirichlet (1, γ, . . . , 1, γ) ,

γ ∼ Gamma (η1, η2) ,

αj
iid∼ U(0, 1), βj

iid∼ U(0, 1), j = 1, . . . ,m,

µj,k
ind∼ N

(
0, ψ2

(µ)

)
, ψ2

j,k
iid∼ Inv-Gamma (ν1,j, ν2,j) , j = 1, . . . ,m, k = 1, . . . , N,

with positive hyper-parameters (η1, η2, ψ
2
(µ), ν1, ν2). The Keef et al. (2013) conditions men-

tioned in Section 3.2 are built into the likelihood terms for αj and βj, so the Metropolis–
Hastings scheme systematically rejects proposals outside the support of the posterior.

5.4 Implementation issues

The semiparametric multivariate Bayesian model (5.5) has an added benefit of allowing
us to structure the parametric component of the model. Assuming X to be a first or-
der Markov process yields different structures discussed in Section 4. For example, the
different forms of decaying dependence in the class of asymptotic independence can be
modelled by setting the priors as α ∼ U(0, 1) and β ∼ U(0, 1), independently. The ap-
propriate structure can be determined using standard diagnostics, and if adopted in the
modelling will lead to substantially improved efficiency. Imposing continuous priors on
α and β induces a restriction to the class of asymptotically independent series, but both
parameters can be arbitrary close to the boundaries of their support, ensuring that the
behaviour of θ(x,m) and the extremal structure of dependence of the series are not af-
fected at the high levels of interest. A reversible jump procedure (Green, 1995) could be
added to the current algorithm in order to enable α and β to have prior masses on the
support boundaries to ensure positive posterior probability of asymptotic dependence, see
Coles and Pauli (2002) for an example of this type of construction.

The shape and scale for the prior variances of the components ψ2
j,k are taken to be

ν1 = ν2 = 2 to make the model prefer numerous components with smaller variances to a
few dispersed components. The posterior distribution for γ depends on the logarithm of
the last weight in the truncation (cf. Appendix A) and can be numerically unstable, so a
vague gamma prior truncated at small values is needed to ensure convergence. Conjugacy
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of the prior densities allows analytical calculation of the posterior distributions for all
parameters in model (5.5) except α and β, for which a Metropolis–Hastings step is needed.
We use a regional adaptive scheme in Roberts and Rosenthal (2009) to avoid the choice
of specific proposal variances. The posterior densities are mainly derived from Ishwaran
and James (2002), and are given in Appendix A.

As noticed by Porteus et al. (2006), the Gibbs sampler used for model (5.5) leads to
a clustering bias, because the weights do not satisfy the weak ordering E(w1) ≥ · · · ≥
E(wN−1). Papaspiliopoulos and Roberts (2008) suggested two different label switching
moves to improve the mixing of the algorithm. Components cannot be simply swapped,
as this would change the joint distribution of the weights. Label switching is not to be
understood in its exact sense within this framework: if a switch between two mixture com-
ponents is proposed and accepted, then only their means and variances are swapped and
the index variables ci of the data points belonging to these components are renumbered
accordingly. We use this approach and adapt it to our semiparametric framework.

The results presented in Sections 6 and 7 are promising, but two aspects would benefit
from improvement. Bayesian semiparametric inference provides a valuable approach to
uncertainty in the Heffernan–Tawn model, but the procedure is not fully Bayesian, since
the marginal distribution is fitted using maximum likelihood estimation. With further
work we could include the fit for the marginal distribution within the fit for the depen-
dence structure, but we would have to account for the temporal dependence between ob-
servations in order not to introduce bias. The second possibility for improvement pertains
to the sampling of αj and βj in (3.3): the special cases corresponding to the boundaries of
their support should correspond to Dirac masses, so reversible jump Markov chain Monte
Carlo sampling (Green, 1995) could be used.

6 Simulation study

6.1 Bivariate data

We start by showing how the Bayesian semiparametric approach to inference can improve
over the stepwise approach in a bivariate setting. The working assumption of Gaussianity
for the residual variable Z is key to the stepwise process, and if it fails badly then the
stepwise approach may perform poorly relative to the Bayesian semiparametric approach.
To illustrate this we take Z to have a bimodal density, either a mixture of Gaussian
densities, or a mixture of Laplace densities. As the former is a special case of the structure
of the mixture components in the dependent Dirichlet process, we may expect a clear
improvement in that case, but it is less clear what to expect in the latter case.

We generated data (X, Y ) directly from the Heffernan–Tawn model with parameters
(α, β) subject to X > u, for large u > 0, as follows:

1. Simulate X as u+ Exp(1);
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2. Independently simulate Z from the required mixture model;

3. Let Y = αX +XβZ.

We selected the mixture for the bimodal distribution of Z such that the simulated (X, Y )
data are split into two clear clusters for large X (see left panel of Figure 2 for an example).

We simulated 1000 data sets each with 400 points, roughly twice the number of ex-
ceedances available in our river flow application, and fitted the conditional model using the
stepwise and the Bayesian semiparametric approaches. We compare the methods through
the relative efficiency, measured as the ratio of the root mean squared error (RMSE) for
the Bayesian approach to the RMSE of the stepwise approach. The estimators we con-
sider in order to compute the efficiency are the mode, the mean, and the median of the
posterior distribution of α and β for the Bayesian approach and the maximum likelihood
estimators of α and β for the stepwise approach.

The benefits of the Bayesian semiparametric approach are clearly found, with similar
relative efficiencies whether Z is simulated with a Gaussian or Laplace mixture. The
relative efficiency is broadly 0.6 for α and in the range 0.5 − 0.65 for β depending on
which of the three summary measures of the posterior distribution is chosen. The posterior
number of components in the mixture is concentrated around 2 and 3, so the Bayesian
semiparametric approach seems to capture the distribution of Z well. Figure 2 shows the
joint sampling distribution of the estimators of (α, β) based on the two inference methods.
The contours are similar, but suggest that the Bayesian approach estimates the true (α, β)
more precisely.

Of key importance is the practical implication of this improvement, which is more
naturally measured in terms of improved performance for estimating the threshold-based
extremal index. Specifically we estimate θ(x, 1) = Pr(Y < x | X > x), which requires
accurate estimation of the distribution of Z as well as of α and β. The relative efficiency
for θ(x, 1) is computed, where the true value for θ(x, 1) is obtained from a huge simulation
from the true model. The relative efficiency varies over x, with values of 0.95 and 0.90
for the 99% and 99.9% quantiles, suggesting slight improvements within the range of the
data. The relative efficiency reduces to 0.69 at the 99.99% quantile, suggesting that the
real benefits in the Bayesian semiparametric approach arise when we extrapolate.

6.2 AR(1) process

We now compare the performances of the empirical, the stepwise and the Bayesian semi-
parametric inference procedures in estimating the threshold-based extremal index of a sta-
tionary time series. The data are generated from a first-order Markov process with Gaus-
sian copula and exponential margins. This is equivalent to having a standard Gaussian
AR(1) process and using the probability integral transform to obtain exponential marginal
distributions. In Gaussian margins this process has lag τ autocorrelation ρτ = ρτ , where
we consider the set of {−0.75,−0.5, . . . , 0.5, 0.75} for the true value of ρ. For each of
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Figure 2 – Results for simulation study based on the Heffernan–Tawn model with a bimodal
residual distribution with two Laplace components. Left panel: simulated data, with the two
components shown as squares and circles. Right panel: kernel density estimate based on 1000
estimates of (α, β) from the stepwise method (grey) and from the Bayesian semiparametric
method (black) using the posterior medians as the summary statistic. The same contour levels
are used for both density estimates. The true value is shown as a cross.

these values of ρ, the process is asymptotically independent, with extremal index θ = 1,
but it exhibits dependence at any subasymptotic threshold when ρ 6= 0. The true value
for θ(x,m) is evaluated by computing the ratio of multivariate normal integrals

θ(x,m) = Pr(X0 > x,X1 < x, . . . , Xm < x)/Pr(X0 > x). (6.1)

using the methods of Genz and Bretz (2009) and Genz et al. (2014). The use of exponential
margins ensures that the GPD marginal model is exact for all thresholds, so any bias in
the estimation of θ(x,m) can be attributed to inference for the dependence structure. A
similar approach was taken by Eastoe and Tawn (2012).

The three methods are applied to 1000 data sets of length 8000, approximately the
length of the winter flow data studied in Section 7. This procedure is repeated for each
value of ρ in the range {−0.75, . . . , 0.75}. The empirical method simply estimates each of
the probabilities in expression (6.1) empirically. Often called the runs estimate (Smith and
Weissman, 1994), this is not defined beyond the largest value of the sample, whereas the
other two methods do not suffer this weakness. In each case the marginal threshold u for
the modelling and inference is fixed at the 95% empirical quantile of each series. Unlike
the stepwise procedure, the Bayesian semiparametric approach enables us to constrain
{(αj, βj) : j = 1, . . . ,m}, and this allows us to exploit our knowledge of the Markovian
structure of the process to impose the constraints on the αj and βj discussed in Section 4,
thus reducing the number of parameters from 2m to 1 or 2.
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m=1 m=4

Level Empirical Stepwise Empirical Stepwise

98% 88 101 88 100

99% 68 92 71 98

99.99% – 59 – 57

Table 1 – Ratios (%) of RMSEs computed with estimates of θ(x,m); the numerator of these
efficiencies is always the RMSE estimate derived from the posterior median in the Bayesian
semiparametric approach, and the denominator is either the RMSE corresponding to the runs
estimate (Empirical) or to the stepwise estimate (Stepwise). Empty cells correspond to high
levels of x for which estimates of θ(x,m) cannot be evaluated.

We estimate θ(x,m) for a range of high quantiles x and for declustering run-lengths
m = 1 and 4. Table 1 shows the ratios of RMSEs of the posterior median of θ(x,m) from
the Bayesian semiparametric approach and the empirical and the stepwise estimators
in the particular case when ρ = 0.5. The Bayesian semiparametric estimator is always
superior to the empirical estimator, with the advantage improving as x increases. For the
stepwise approach the results are similar to those in Section 6.1: the two estimators are
similar at low levels but the Bayesian semiparametric estimator performs better at higher
levels. Figure 3 summarises the results for all values of ρ, showing a major improvement of
our method over the stepwise approach for negative autocorrelation and short run-length,
with increased gain at higher levels. In order to assess the effectiveness of imposing the
Markovian structure in the Bayesian semiparametric approach, we also fitted the 1000
simulated time series with unconstrained α and β in the case ρ = 0.5. The efficiency
of the unconstrained approach only declines relative to the constrained approach at high
quantiles. For example the 68% in the bottom right of Table 1 increases to 75%.

We expect the Bayesian approach to gain accuracy in terms of frequentist coverage of
θ(x,m), as it fits the data in one stage and thus provides a better measure of uncertainty.
To assess this we considered bootstrap confidence intervals for the stepwise method and
credible intervals for the Bayesian method, both of the type [Lα,∞). Here Lα is the
αth quantile of the distribution of the estimator, considering bootstrap estimates for the
former and posterior samples for the latter. Using the same 1000 simulated data sets as
earlier in this section, we computed the proportion of times that the true value of θ(x,m)
would fall in these confidence or credible intervals, for a range of α-confidence levels
from 5% to 95%, different run-lengths m, and several levels x for θ(x,m). The coverage
performance is summarised in Figure 4, which shows the difference between the calculated
and the nominal coverage α. Zero coverage error means perfect uncertainty assessment;
positive and negative errors mean one-sided over- and under-coverage respectively. The
stepwise approach over-estimates coverage for both levels of x and all α. At relatively low
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x = 98% (empty symbols) and x = 99.999% (filled symbols), with m = 1, for the stepwise
approach (circles) and the Bayesian semiparametric approach (diamonds).

x-levels of θ(x,m), the gain in coverage accuracy by the Bayesian approach is remarkable
in particular at mid-coverage levels, but it shows no marked improvement for larger x.
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7 Data analysis

River flooding can badly damage properties and have huge insurance costs. Large-scale
floods in the UK since the year 2000 have caused insurance losses of £5 billion, and more
than £400 million is spent each year on flood defences. Modelling the dependence of
extreme water-levels is key to accurate prediction of flood risk.

Our application uses daily flows of the River Ray at Grendon Underwood, north-west
of London, for the 47 winters from 1962 to 2008. We assume stationarity of the series
over the winter months. River flows in this catchment are typically short-range dependent:
after heavy rainfall the flow can reach high values before decreasing gradually as the river
returns to its baseflow regime. We thus expect the flow to be dependent at extreme levels
and at small lags, so a small run length m is required. For illustration we take m = 1, 7,
with the former being the more appropriate.

Standard graphical methods (Coles, 2001) were used to choose the 95% empirical
quantile as the marginal threshold. A sensitivity analysis on a range of thresholds gave
results similar to those below. The Heffernan–Tawn model was then fitted to the data
transformed to Laplace margins, with u as the 98% empirical quantile and m = 1, 7. A
higher threshold was selected for the dependence modelling to ensure the independence
of X0 and Z in approximation (3.3).

We first investigate the asymptotic structure of the data at different lags. We use
χj(x) = Pr(Xj > x | X0 > x), j = 1, . . . ,m, whose limit χj (cf. Section 1) either
measures the degree of association within the asymptotic dependence class when χj > 0
or indicates asymptotic independence when χj = 0. A Monte Carlo integration similar to
that used for estimating the posterior distribution of θ(x,m) is applied to get the posterior
distribution of χj(x) for selected values of x and j = 1, . . . , 7 depicted in Figure 5, where
the posterior densities are summarised using highest density regions (Hyndman, 1996).
Convergence of χj(x) to 0 at all lags is supported by the model. As expected we observe a
monotone decay in extremal dependence over time lag. The flexibility of the conditional
model is well illustrated here, as the procedure establishes positive dependence at any
finite level but anticipates asymptotic independence of successive daily flows.

From the estimates of χj(x) we expect θ = 1 but θ(x,m) < 1 for x < xF . We
computed estimates of θ(x,m) for several values of x based on the posterior distribution
fitted with the Bayesian semiparametric approach and compared them with the stepwise
approach and the empirical estimates. We give block bootstrap confidence intervals for
the stepwise and empirical estimates, with a block length ensuring that winters are not
split between blocks. Figure 1 shows estimates of θ(x, 4) obtained with the three methods,
with m = 4 to show an intermediate estimate, as θ(x, 7) ≤ θ(x, 4) ≤ θ(x, 1). The three
methods broadly agree at historical levels, with wider confidence intervals for the runs
estimate. For higher x, the stepwise estimate predicts stronger dependence than does the
Bayesian estimate.
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Figure 5 – Posterior summaries for χj(x), j = 1, . . . , 7, with x the 95% (grey), 99% (blue), and
99.99% (red) marginal quantiles of the River Ray data. The different shades of colour indicate
the 95%, 80%, and 50% highest density regions of the posterior densities. The black segments
indicate the posterior medians.

Table 2 shows that the three methods agree closely for m = 1, with the posterior dis-
tribution giving slightly tighter credible intervals than the two other methods. For m = 7,
the Bayesian approach seems to improve a little on the stepwise estimates when compared
to the empirical estimates at low levels, partly because of the Markov constraints on the
αj and βj, which also reduce the uncertainty. In terms of convergence of θ(x,m) to the
extremal index θ, we observe that at very high levels and for both values of m, the esti-
mates of θ(x,m) tend to the same values, which indicates coherence in the approach. This
also illustrates the lesser concern of the choice of the run-length when we are interested
in tail probabilities, typically when estimating cluster maxima distributions.

The Bayesian semiparametric approach appears to offer a more coherent basis for
the extrapolation to the required levels and uncertainty quantification for design pur-
poses than does the stepwise method. Although we assessed the performance of Bayesian
semiparametric estimates of θ(x,m), but other conditional probabilities could also be
estimated using this approach.
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m = 1 m = 7

Level Empirical Stepwise Bayesian Empirical Stepwise Bayesian

95% 62(58,68) 62(61,70) 62(57,66) 35(33,41) 36(33,42) 33(27,38)

99% 90(83,95) 87(83,91) 88(83,91) 80(70,88) 69(66,79) 76(71,80)

99.9% – 96(93,99) 97(94,99) – 90(86,96) 98(96,99)

99.99% – 99(96,100) 100(98,100) – 98(93,100) 100(99,100)

Table 2 – Estimation of the threshold-based extremal index θ(x,m) (%) for four different levels
of x and m = 1, 7 on the Ray River winter flow data, with 95% confidence intervals (CI) given as
subscripts. Empirical: runs estimator (block bootstrap CI); Stepwise: Heffernan–Tawn method
(block bootstrap CI); Bayesian: posterior median from the Bayesian semiparametric approach
(quantiles of the posterior distribution).
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A Posterior densities for the semiparametric model

Posterior density for µk: The posterior density for µk = (µ1,k, . . . , µm,k) is multivari-
ate Gaussian with independent margins, i.e.,

µj,k |Xj,X0, ψ
2
j,k, αj, βj

ind∼ N
(
M(µj,k), S

2
(µj,k)

)
, j = 1, . . . ,m, k = 1, . . . , N,

with posterior mean and variance

M(µj,k) = S2
(µj,k)

(
1

ψ2
j,k

∑
i∈Ck

Xj,i − αjX0,i

X
βj
0,i

)
, S2

(µj,k) =

(
nk
ψ2
j,k

+
1

ψ2
(µ),j

)−1

,

where Xj = (Xj,1, . . . , Xj,n) are the observations at the jth lag, Ck = {i : ci = k},
and nk = |Ck| is the number of observations in component k; the ψ2

(µ),j are the variance
parameters of the prior for the components’ means.

Posterior density for ψ2
k: The multivariate posterior density for the components’

variances can be split into independent parts,

ψ2
j,k |Xj,X0, µj,k, αj, βj

ind∼ Inv-Gamma (N1,j,k, N2,j,k) , j = 1, . . . ,m, k = 1, . . . , N,

with parameters

N1,j,k =
nk
2

+ ν1,j, N2,j,k =
1

2

∑
i∈Ck

(
Xj,i − αjX0,i − µj,kX

βj
0,i

)2

X
2βj
0,i

+ ν2,j.

Posterior density for c: The posterior density is such that

ci |X,µ,ψ2,α,β,w
ind∼

N∑
k=1

Wk,iδk, i = 1, . . . , n,

where here for convenience X, µ and ψ2 are the matrices with rows (X0, . . . ,Xm),
(µ1, . . . ,µN), and (ψ2

1, . . . ,ψ
2
N) respectively; the stick-breaking weights are defined as

Wk,i =
wk

W i

m∏
j=1

 1

X
βj
0,iψj,k

exp

−1

2

(
Xj,i − αjX0,i − µj,kX

βj
0,i

)2

X
2βj
0,i ψ

2
j,k


 ,

with W i =
∑N

k=1 Wk,i (i = 1, . . . , n) constants that make the weights sum to 1.
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Posterior density for w: The posterior density for w is generalised Dirichlet,

w | c, γ ∼ GDirichlet(a1, b1, . . . , aN−1, bN−1),

where

ak = 1 + nk, bk = γ +
N∑

j=k+1

nj, k = 1, . . . , N − 1.

Posterior density for γ: The posterior density for the concentration parameter γ is

Gamma

(
N + η1 − 1,

η2

1− η2 logwN

)
1[ε,∞),

with ε > 0, typically ε = 0.5, and 1 is the indicator function.
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