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Study of ion/surface interactions on brucite reveals that the periodic electrostatic embedded cluster 

method is a viable alternative to periodic DFT for describing the adsorption of ionic species on a 

layered, not purely ionic solid. 
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Abstract 

Density functional theory at the GGA level is employed within the periodic electrostatic embedded 

cluster method (PEECM) to model the brucite (0001) surface. Three representative studies are then 

used to demonstrate the reliability of the PEECM for the description of the interactions of various 

ionic species with the layered Mg(OH)2 structure, and its performance is compared with periodic DFT, 

an approach known to be challenging for the adsorption of charged species. The adsorption energies 

of a series of s block cations, including Sr
2+

 and Cs
+
 which are known to coexist with brucite in 

nuclear waste storage ponds, are well described by the embedded cluster model provided basis sets of 

triple-zeta quality are employed for the adsorbates. The substitution energies of Ca
2+

 and Sr
2+

 into 

brucite obtained with the PEECM are very similar to periodic DFT results, and comparison of the 

approaches indicates that two brucite layers in the quantum mechanical part of the PEECM are 

sufficient to describe the substitution. Finally, detailed comparison of the periodic and PEECM DFT 

approaches to the energetic and geometric properties of differently coordinated Sr[(OH)2(H2O)4] 

complexes on brucite shows excellent agreement in adsorption energies, Sr–O distances and bond 

critical point electron densities (obtained via the Quantum Theory of Atoms-in-Molecules), 

demonstrating that the PEECM can be a useful alternative to periodic DFT in these situations. 
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1. Introduction: 

Modelling ionic sorption mechanisms on surfaces is key to understanding a wide range of 

physical phenomena in catalytic chemistry
1–5

, biochemistry
6,7

, energy storage
8,9

 and environmental 

chemistry, where modelling has been used to study the migration of ion contaminants in soils and 

sediments,
10–16

 and the treatment of polluted water with adsorbent materials
17–19

. Computational 

studies can provide insight into ion/surface interactions at the molecular level by predicting preferred 

reaction sites,
2,4,5,14,17

 calculating the most stable structures during the interactions
1,9,14,19

 and allowing 

comparison of the interaction energies of competing species
15,18,20

. 

However, choosing a suitable surface representation for the investigation of a particular 

adsorption mechanism is not always straightforward, and the choice can heavily influence the 

outcome of the results. By far the most common approach to model surfaces is periodic density 

functional theory (DFT)
21

, which operates with conventional unit cells and employs periodic 

boundary conditions. However, modelling charged systems using periodic boundary conditions is 

extremely difficult
9,22,23

 and is often avoided by including counter ions in the simulation box.
9,20

 

Furthermore, large super cells are often required to study isolated interaction sites,
24–26

 which 

significantly increases the computational cost. 

One alternative to modelling a surface with periodic DFT is to use isolated molecular clusters to 

represent the adsorption site of the surface. This approach has been used mainly for 2D materials, 

such as graphene,
18

 where the far-field effects of the substrate on the adsorption reaction can be 

neglected, i.e. the interaction is very localised. 

For adsorption on ionic crystals, embedded cluster methods are commonly used as an alternative 

to periodic DFT.
24,27,28

 These approaches have the advantage of being able to study isolated adsorption 

sites and can deal with charged systems with levels of theory beyond the generalised gradient 

approximation (GGA) methods typical of periodic DFT calculations. This last feature is especially 

useful for systems such as metal-oxides and oxygen defects of metal oxides, where hybrid functionals 

are necessary for the accurate description of the electronic structure.
22,27,29,30

 One such technique is the 

periodic electrostatic embedded cluster method (PEECM)
27,31

 which features a quantum mechanically 

treated region (the QM cluster) embedded in an infinite periodic array of point charges (PCs). This 
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approach provides an accurate description of the long range electrostatic interactions between the 

ionic crystal and the adsorption site by calculating the corresponding electrostatic potential via the 

periodic fast multipole method.
32

 A region intermediate between the QM cluster and the PCs is often 

necessary to prevent artificial over-polarisation of the former due to the neighbouring positive charges 

in the latter.
31

 The most common type of intermediate region represents the positive ions with 

softening effective core potentials and the negative ions with formal charges.
24,27,29

 

The first generation of British civil nuclear power reactors used a Mg-Al alloy, called Magnox, as 

a fuel cladding.
33

 Much of this cladding (along with spent uranium oxide fuel) is currently stored in 

legacy ponds and silos, most notably in Sellafield, and has corroded to form heterogeneous sludges 

consisting mainly of brucite (Mg(OH)2), along with other Mg-based minerals and uranium-oxides.
34

 

The aqueous phase in the ponds contains a range of soluble radioisotopes, from which the biggest 

contributors to radioactivity are 
137

Cs and 
90

Sr.
35

 Since there is only limited access to real samples and 

monitoring the conditions in-situ is difficult (due to the radiation hazards), computational modelling 

can play an important role in understanding the behaviour of the radioactive ions in the ponds and the 

environment, thus informing improvements in the waste treatment processes. There are several 

examples in the literature in which simulations have helped to improve our knowledge of 

radionuclide-related transport mechanisms in minerals
36

 by determining the strength and type of their 

interaction with transport media, such as molecular dynamics studies of the interaction of solvated 

uranyl ions with common soil components around nuclear waste depositaries,
11,13,14,37,38

 and 

computational investigations of ionic transport mechanisms in the filtration media used during the 

decommissioning process such as sand and zeolite type ion exchangers
39,40

. 

Brucite contains layers of Mg(OH)2, where the hydroxyl groups are orthogonal to the hexagonal 

basal plane (space group D
3
3d, P3m1). The bulk structure of this material is well understood from 

previous experimental
41,42

 and computational studies.
43–50

 The interlayer distance is rather large due to 

the weak interlayer forces. Although some experimental results suggest a degree of hydrogen-bonding 

between the layers,
51,52

 the majority of previous studies predict only weak dispersion type forces,
45,49,53

 

indicating that it is easy to cleave the structure. Theoretical studies agree that employing GGA or 

hybrid functionals for the crystal structure optimisation gives bulk geometrical parameters in good 

agreement with experiment
45–47,49

 but slightly underestimates the interaction energies between the 
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Mg(OH)2 layers.
46,47

 Applying dispersion corrections with a hybrid functional gives a slightly better 

estimation for the strength of the interlayer attraction
48

 but predicts the interlayer distance to be 

shorter than the experimental value. 

Based on the Wulff construction method,
54

 transmission electron microscopy and X-ray 

diffraction studies,
55

 it is known that the brucite crystal forms in a hexagonal prismatic structure with 

(0001) and (11̅00) surfaces. The most stable and abundant face is the (0001) in which the hydroxide 

ions surround the magnesium ion in an octahedral coordination, resulting in a hexagonal ordered Mg
2+

 

with the OH groups facing outwards. 

We have previously identified computationally the most stable hydrate
56

 and hydroxide
57,58

 

complexes of Sr
2+

 in aqueous solution and here move on to develop an efficient model for studying 

the adsorption of Sr
2+

 complexes on the hydrated (0001) brucite surface, using the PEECM, which has 

previously been employed to study ionic materials.
24,27

 Electronic structure calculations
44

 as well as 

Mulliken bond population analysis
46

 predict largely ionic character for the Mg-O bond but more 

covalent character for the O-H bond. This feature of the material allows us to employ embedded 

methods as for an ordinary metal oxide, as we define the QM cluster without cutting covalent bonds at 

the boundaries. Although there are a small number of examples for similar embedded calculations,
59,60

 

to the best of our knowledge, this is the first time a surface of a not purely ionic material has been 

modelled with the PEECM. 

Our paper is structured as follows. Sections 2.1 and 2.2 provide a detailed description of our 

computational surface models using the PEECM, and also our periodic DFT studies which we report 

for comparative purposes. Section 3.1 then presents a study of single ion adsorption using the 

developed embedded surface model in which we compare the adsorption energies of different s block 

ions and test the effect of using different basis sets on the relative adsorption energies. In sections 3.2 

and 3.3 we show through two model cases that the embedded cluster model gives similar results for 

neutral systems as does periodic DFT and, by studying the effect of cell size with periodic DFT, we 

derive conclusions about the required size of the QM cluster. 
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Computational details: 

2.1 PEECM model 

All calculations were performed with version 6.6 of the TURBOMOLE program
61

 using 

resolution-of-the-identity density functional theory
62

. Results were visualised with the MOLDRAW 

chemical graphical software.
63

 The TPSS exchange-correlation functional, which employs the meta-

generalised gradient approximation (meta-GGA),
64

 was used as it has been shown to describe Sr
2+

 

complexes well in the past
56

 and previous theoretical studies on brucite have shown that GGA 

functionals efficiently describe bulk properties.
45–47

 The brucite surface was considered as a slab 

containing 1 or 2 layers of Mg(OH)2 and modelled using the PEECM. In this approach, a finite sized 

cluster of brucite was treated quantum chemically and embedded in a 2D infinite array of point 

charges (PCs) (aperiodic in the z direction). The cluster was formed from a stoichiometric 6 by 6 Mg 

atom unit cell (Mg36(OH)72) per layer of brucite, for which we use the following notation from now 

on: “nxn_m”, where n is the number of Mg atoms in the x and y direction and m is the number of 

brucite layers explicitly included in the cluster. The following surface representations were 

considered: a single layer (6x6_1) in which a Mg36(OH)72 sized cluster was embedded, a double layer 

containing only point charges in the second layer (6x6_1+PC) and a double layer in which the second 

layer has the same sized explicit cluster of brucite as the first (6x6_2, 2xMg36(OH)72). Due to the large 

size of the QM cluster, the def2-SVP basis sets of polarised double-ζ quality
65,66

 were used for all QM 

atoms. Partial geometry optimisations, in which the boundary atoms of the cluster were held fixed and 

the inner atoms allowed to fully relax (see Figure 1),
67

 were carried out in the gas phase, with the m4 

integration grid and the default convergence criteria: SCF energy: 10
-6

 a.u., structural energy: 10
-6

 a.u. 

and energy gradient: 10
-3

 a.u. 
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Figure 1: Illustration of the top and side view of the single layer PEECM model (6x6_1). The 

point charges are represented as balls around the QM cluster, the fixed boundary atoms as 

wires and the inner part of the cluster as balls and sticks. Bonds between the inside cluster 

and the boundary atoms are not shown for clarity. (Mg=green, O=red, H=grey) 

 

Experimental cell parameters, obtained via neutron diffraction measurements by Catti et al.,
41

 

were used to define both the initial geometry for the QM cluster and the positions of the PCs in the 

infinite two dimensional array: the a and b lattice parameters of the hexagonal unit cell were 3.15 Å, 

and the interlayer distance c was 4.77 Å. 

To best of our knowledge, the PEECM approach has been previously used only for purely ionic 

materials often with conventional unit cell structures such as TiO2
24

 or CeO2
27

. For these metal oxides 

effective core potentials (ECPs) were used on the neighbouring cations around the QM cluster to 

soften the effect of polarisation from the positive charges, as discussed in the Introduction, while 

formal charges were used on the corresponding anions. By contrast to these examples, brucite has a 

layered structure, in which the covalently bonded OH group carries a -1 charge. In this case, the use of 

an ECP region is complicated, in that we do not wish to apportion formal charges to the O and H 

atoms in the covalently bound OH units. Therefore, to avoid the artificial polarisation effect of 

neighbouring PCs on the QM cluster, we decided to employ natural charges in the PC region,
68

 

derived iteratively from natural population analysis (NPA).
69

 Formal charges were used as an initial 

guess for the embedding array in a single point calculation, from which a new set of NPA charges 
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inside the QM cluster was determined. The values obtained from the centre of the QM cluster were 

used as charges in the PC region for the following calculation and this step was repeated until no 

further variation occurred. The following natural charges were obtained through this process: Mg = 

+1.78, O = –1.33 and H = +0.44. Applying these charges in the partial optimisation resulted in good 

geometrical agreement with experimental data (see supplementary material (SM) section 1.1), 

especially regarding the key features of the surface, such as the perpendicular position of the OH 

groups to the (0001) plane and the planarity of the Mg sites. 

For every s block ion investigated in section 3.1 (Na
+
, Rb

+
, Cs

+
 and Mg

2+
, Sr

2+
, Ba

2+
), the def2-

SVP basis set
65,66,70

 was used during the geometry optimisation along with the associated effective 

core potentials
71

 for Rb, Cs, Sr and Ba. The electron density distribution calculations reported in 

section 3.1 were performed by generating wavefunction (.wfn) files from the output of the 

optimisation in TURBOMOLE using the molden2aim program
72

 which served as an input for the 

Multiwfn code
73

. The electron density images were plotted with the VMD
74

 visualisation code, using 

an isosurface value of ±0.0025 a.u.  

The Quantum Theory of Atoms-in-Molecules (QTAIM) calculations described in section 3.3 

were performed with the professional version 13.11.04 of AIMAll
75

 using the default parameters of 

the program. The required .wfn files were generated as described above. 

2.2 Periodic DFT model 

We chose the CRYSTAL14 code
76,77

 to model the brucite (0001) surface with periodic DFT, 

since this program allows us to use atom-centred basis sets, as used in TURBOMOLE. The TPSS 

meta-GGA exchange correlation functional, which was used for the development of the PEECM 

model, is not available in this code. Since TPSS was developed by Perdew and co-workers based on 

the same philosophy as PBE exchange-correlation functional
78

, we decided to use the latter in 

CRYSTAL14. PBE is one of the most commonly employed GGA functionals in solid state chemistry, 

and the GGA level of theory gave good agreement with the experimental parameters of brucite in 

previous studies.
45–47,49

 Following on from the work of Ungliengo et al.
48

, we compared the 

geometrical parameters obtained with PBE to the Grimme type dispersion corrected PBE-D 



9 
 

functional
79,80

. Since PBE-D resulted in an interlayer distance 0.15 Å less than the experimental values, 

we decided to continue with PBE [see SM, Table (iii)]. 

Polarised triple-ζ basis sets, derived specifically for solid state calculations by Peintinger et al.
81

 

were used for the surface atoms (Mg_pob_TZVP_2012, O_pob_TZVP_2012, H_pob_TZVP_2012) 

along with the Ca atom in the substitution study presented in section 3.2 (Ca_pob_TZVP_2102). In 

the case of Sr, the Sr_HAYWSC-311(d11f)G basis set
82

 was used for geometry optimisations, whilst 

single point energies were calculated using doubly polarised triple-ζ basis sets for the valence 

electrons with the ECP28MWB multi-electron fit quasi-pseudopotential on the electrons of the core 

1s-3d orbitals.
71

 

Creating starting geometries for the brucite surface in CRYSTAL14 involves several intermediate 

steps.
83

 The results of these calculations are given in the SM section 1.2. A full optimisation was 

performed on the primitive cell of bulk brucite, using a shrinking factor of 8 along with the energy 

criteria of 10
-7

 a.u. both for the SCF energy convergence and for the geometry optimisation. These 

parameters gave good agreement of geometrical properties with the experimental values as well as 

previous computational studies (a,b=3.177Å and c=4.751Å). We fixed the optimised lattice 

parameters of the bulk system to create a primitive cell for the (0001) surface and calculated the 

surface energy along with the Mulliken charges and populations for slabs incorporating different 

numbers of layers. (One layer of Mg(OH)2 contains 5 atomic layers as shown in Figure 2). Since, as 

was discussed in the Introduction, there are only weak dispersion forces between the layers in brucite, 

including a 2
nd

 layer in the unit cell has only a small effect on the surface energy (~10
-6

 J/m
2
), 

although three layers were required to recover the exact Mulliken charges of the bulk in the middle of 

the slab. 

For the model studies in section 3.2 and 3.3, we created a series of Mg(OH)2 slabs with different 

supercell sizes (3x3, 5x5, 7x7 and 9x9) and with 1, 2 and 3 layers of brucite (Figure 2) and optimised 

the internal coordinates for each using a shrinking factor of 4 along with the convergence criteria: 

SCF energy: 10
-7

 a.u. and structural energy: 10
-7

 a.u.. We used the 0D ‘MOLECULE’ option of 

CRYSTAL14 for the single point energies of the isolated ions in section 3.2 and for the solvated 

Sr(OH)2 complex in section 3.3.
84
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For the model studies presented in sections 3.2 and 3.3, to make comparison between the two 

different methods possible, we used the PBE functional with the same computational parameters for 

the PEECM calculations as was detailed for periodic DFT. Although for the embedded cluster 

structures def2-SVP basis sets were used for the geometry optimisation, single point energies were 

obtained after geometry optimisation with the above defined CRYSTAL14 basis functions. 

 

 

Figure 2: a) Top view of the hexagonal unit cell in the brucite crystal structure (a, b are 

lattice parameters) b) Side view of the hexagonal unit cell, c is the interlayer distance. 1 

Mg(OH)2 layer contains 5 atomic layers. c) Illustration of the supercells employed 

(Mg=green, O=red, H=grey) 
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3 Results and discussion 

In this section, we present the results of three model studies in which we test the reliability of the 

embedded cluster model developed for the brucite (0001) surface. First, we examine the adsorption of 

charged systems, by investigating the interaction of a series of s block ions with brucite. Then, we 

move on to compare the embedded model calculations with a more widely established method 

(periodic DFT); we perform a substitution study for single ions into brucite and a second in which we 

look at the adsorption of differently coordinated [Sr(OH)2(H2O)4] complexes on the surface, 

comparing their relative stability. We also used the periodic DFT model to carry out cell size studies 

on the systems of interest and to (indirectly) verify the size of the quantum chemically treated cluster 

in the PEECM approach. 

Note that the adsorption and substitution energies presented in sections 3.1 and 3.2 are calculated 

without considering the effects of solvation on the adsorbed or substituted ions. This has been done 

because the purpose of these calculations is to provide as direct and straightforward a comparison of 

periodic DFT and PEECM as possible, without the extra variability and complication that will 

inevitably arise from the treatment of solvation. 

3.1 Single ion adsorption of Sr
2+

 and other s block elements on brucite 

We calculated adsorption energies for a series of ions: Na
+
, Rb

+
, Cs

+
 and Mg

2+
, Sr

2+
, Ba

2+
 from 

which Na
+
, Cs

+
, Sr

2+
 and Mg

2+
 are known to exist in the aqueous phase in Magnox storage ponds.

35
 As 

described in the Introduction, we have a special interest in 
90

Sr
2+

 and 
137

Cs
+
, as their adsorption 

behaviour is especially important in the waste treatment process. We included Rb
+
 and Ba

2+
 to make 

the series of the singly and doubly charged ions more complete, and to allow us to test if the 

adsorption energies follow the trend expected based on the ionic radii and charges, i.e. the dications 

should have a stronger interaction with the surface, and the interaction energy should decrease with 

decreasing ionic charge density. 

The following equation was used to calculate the adsorption energies presented in Table I: 

𝐸𝑎𝑑𝑠 = 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒 + 𝐸𝑀2+)               Eq. 1 
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𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is the SCF energy of the adsorbed ion with the surface, while 𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒 is the energy of the 

brucite surface model (6x6_1, 6x6_1+PC, or 6x6_2) and 𝐸𝑀2+ is the energy of the adsorbed ion. The 

counterpoise (CP) correction
85

 was included to compensate for the artificial energy contribution to the 

adsorption energy due to the difference in the basis set sizes applied for the components of Eq. 1 

(basis set superposition error, BSSE). CP corrected results are shown in brackets in Table I.



13 
 

TABLE I: Adsorption energies (Eads) of a series of s block ions and relative adsorption energies of different surface representations for a given ion, 

calculated by comparing the results to the adsorption energy of the 6x6_1 structures (ΔEads). Counterpoise corrected energy values are presented in 

brackets (BSSE). (The adsorption energies with ion-SVP and ion-TZVP mixed basis sets were not calculated for 6x6_1+PC.)  

Studied system Eads (kJ/mol) ΔEads (kJ/mol) 

ion layer 
def2-

SVP 
(BSSE) 

def2-

TZVP 
(BSSE) 

ion - 

TZVP 
(BSSE) 

ion -  

SVP 
(BSSE) def2-SVP def2-TZVP ion-TZVP ion - SVP 

Na
+
 

6x6_1 -131.0 (-118.2) -249.7 (-244.7) -290.6 (-277.2) -96.2 (-93.7) 0.0 0.0 0.0 0.0 

+PC -131.9 (-119.2) -248.8 (-244.6) - - - - -0.9 (-1.1) 0.9 (0.0) - - 

6x6_2 -123.6 (-107.8) -212.1 (-206.7) -284.0 (-267.4) -58.8 (-55.9) 7.4 (13.3) 37.6(38.0) 6.7 (9.8) 37.3 (37.8) 

Rb
+
 

6x6_1 -144.7 (-136.4) -112.7 (-108.7) -149.3 (-138.5) -110.1 (-106.8) 0.0 0.0 0.0 0.0 

+PC -144.7 (-136.6) -110.5 (-106.7) - - - - 0.1  (0.2) 2.2 (2.0) - - 

6x6_2 -135.1 (-124.6) -76.1 (-71.5) 141.5 (-127.2) -73.0 (-69.7) 9.6 (11.8) 36.6(37.2) 7.8 (11.4) 37.1 (37.1) 

Cs
+
 

6x6_1 -118.0 (-109.6) -94.5 (-91.3) -127.9 (-119.4) -85.0 (-82.0) 0.0 0.0 0.0 0.0 

+PC -117.5 (-109.3) -92.1 (-89.2) - - - - 0.5 (0.3) 2.4 (2.2) - - 

6x6_2 -108.9 (-98.5) -57.9 (-54.5) -119.1 (-108.5) -48.8 (-45.6) 9.1 (11.1) 36.6(36.9) 8.8 (10.9) 36.2 (36.4) 

Mg
2+

 

6x6_1 -1182.7 (-1161.4) -1319.6 (-1311.6) -1387.0 (-1363.0) -1123.7 (-1117.7) 0.0 0.0 0.0 0.0 

+PC -1184.2 (-1168.0) -1315.6 (-1308.3) - - - - -1.5 (-6.6) 4.0 (3.3) - - 

6x6_2 -1199.2 (-1178.1) -1272.5 (-1265.3) -1404.6 (-1379.9) -1077.6 (-1072.2) -16.5(-16.7) 47.1(46.3) -17.6 (-16.9) 46.1 (45.5) 

Sr
2+

 

6x6_1 -890.9 (-874.6) -835.4 (-828.5) -901.7 ( -882.1) -825.6 (-819.5) 0.0 0.0 0.0 0.0 

+PC -895.2 (-880.0) -834.6 (-828.1) - - - - -4.3 (-5.4) 0.8 (0.4) - - 

6x6_2 -898.5 (-881.2) -780.5 (-774.1) -908.8 (-888.4) -771.3 (-765.7) -7.6 (-6.6) 54.9(54.4) -7.2 (-6.3) 54.3 (53.8) 

Ba
2+

 6x6_1 -717.9 (-702.3) -730.1 (-721.7) -793.4 (-777.4) -653.3 (-647.8) 0.0 0.0 0.0 0.0 
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+PC -722.6 (-707.6) -729.4 (-723.7) - - - - -4.7 (-5.3) 0.7 (-2.0) - - 

6x6_2 -723.5 (-706.1) -674.1 (-665.9) -798.8 (-781.5) -598.6 (-591.5) -5.5(-4.4) 55.9(55.8) -5.4 (-4.1) 54.7 (56.3) 
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The doubly charged ions indeed have a stronger interaction with the surface, the adsorption 

energy of Mg
2+

, Sr
2+

 and Ba
2+

 being almost an order of magnitude stronger (~700-1200 kJ/mol) than 

the adsorption energy of Na
+
, Rb

+
 and Cs

+ 
(~100 kJ/mol). This difference is probably due to the 

greater polarisation effect of the dications, as is shown by the electron density difference plots of Sr
2+

 

and Cs
+
 in Figure 3. The blue regions represent electron accumulation while the red areas indicate 

electron depletion caused by ion adsorption. Sr
2+

 clearly polarises the oxygen atoms of the brucite 

cluster much more than Cs
+ 

does; most likely that is why the Sr
2+

 binds much more strongly to the 

surface. Besides showing the different behaviour of the ions, the electron density difference plots also 

reassure us that there is no artificial polarisation at the edges of the cluster, caused by false interaction 

between the charged systems and the point charge region. Furthermore, the image b and d in Figure 3 

suggest only a small contribution from the 2
nd

 layer oxygen atoms to the interaction even in the case 

of Sr
2+

. 

 

Figure 3: Electron density difference plots of adsorbed Cs
+
 (a, b) and Sr

2+
 ion (c, d) on 6x6_1 

(a,c) and on 6x6_2 (b,d). The isosurface value was chosen to be 0.0025 a.u. throughout. The 

red regions are indicative of electron depletion, while the blue regions to electron 

accumulation. Point charges are not shown. (Mg=pink, O=ochre, H=white, Sr=yellow, 

Cs=turquoise)
74

 

Examination of the energy trends for the ions of the same charge reveals that, in the case of the 

monocations, there is a deviation from the expected order of the adsorption; a weaker interaction is 

predicted for Na
+
 than Rb

+
. This discrepancy does not vary with the number of layers included in the 
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cluster, however, it is eliminated by the use of a higher quality basis set: as is shown in Figure 4, using 

triple-ζ basis sets (def2-TZVP) gives the expected energetic order.
86

 

As expected, correcting for the effect of BSSE on the adsorption energies (shown in brackets in 

Table I) generally decreases the strength of the interaction, and the magnitude of the counterpoise 

correction is smaller when higher quality basis sets are used; the energetic order between the ions is 

not altered. 

 

Figure 4: Adsorption energies for a series of ions adsorbed on the 6x6_1 and 6x6_2 model 

surfaces, using different quality basis sets (def2-SVP, def2-TZVP or mixed basis sets) 

 

To understand the effect of the surface representation on the adsorption energies, we looked at the 

adsorption of the same ions on three different surface models, a single layer, 6x6_1, a surface 

containing a point charge layer underneath the QM cluster, 6x6_1+PC, and a double layer with the 

same sized QM clusters in both, 6x6_2. The relative adsorption energies were calculated by 

comparing the energies of the different systems to the original single layer results (see Table I). 

Including an extra PC layer (6x6_1+PC) results in negligible difference in the adsorption energies. 

With def2-SVP basis sets, the ΔEads are c. 0.9 kJ/mol for Na
+
, Rb

+
 and Cs

+
, while they are slightly 

larger (1.5- 4.7 kJ/mol) for Mg
2+

, Sr
2+

 and Ba
2+

. To place these differences in context, they are no 
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more than ~0.7% of the original interaction energies in each case. These results suggest that the 

electrostatic contribution of the second layer to the ion/surface interaction is small. 

Including the atoms of the second layer in the quantum chemically treated cluster (6x6_2) 

increases the dication adsorption energies slightly (except for Mg
2+

 due to its different behaviour 

compared to Sr
2+

 and Ba
2+

,
87

 see SM Figure (i)) but the opposite is true for the monocations, for which 

the energies decrease by 7.4-9.7 kJ/mol, 6-8 % of the actual adsorption energies. These values are in 

line with our previous suggestion based on Figure 3, i.e. that there is only a small electron donation 

from the second layer oxygens in the case of Sr
2+

 and a negligible effect for Cs
+
. We conclude that the 

adsorption of singly charged ions slightly distorts the positions of the second layer atoms, but with 

minimal polarisation, therefore a quantum chemically treated second layer weakens the interactions 

overall. 

A problem emerges when we use higher quality basis sets for the 6x6_2 systems. The relative 

adsorption energies with the def2-TZVP basis sets are ~36 kJ/mol for the monocations and ~55 

kJ/mol for the diactions. The significant shifts in energies, which are more than the 30% of the actual 

adsorption energies for the singly charged ions, are very likely the consequence of an artificial 

interaction. Larger basis sets might cause charge density increase closer to or overlapping the PC 

region leading to a falsely enhanced interaction. (The point charges were originally calculated with 

NPA in an iterative process using SVP quality basis sets for the QM cluster). To probe this further, we 

explored a range of mixed basis set calculations. Ion-TZVP in Table I and Figure 4 indicates systems 

with the def2-SVP basis set on the surface atoms but def2-TZVP on the adsorbed ion - and vice versa 

for Ion-SVP. Based on these results, we find that the deviation from the expected order in adsorption 

energies is clearly a function of basis set quality on the adsorbed ion, while the shift in the relative 

adsorption energies is related only to the basis sets of the surface atoms. 

In summary, we conclude that our PEECM brucite model is capable of describing the energetics 

of ion/surface interactions, providing sufficiently high quality basis sets are applied on the ions. 

Considering the surface as a two layered slab only slightly affects the adsorption energies, which 

suggests only a small contribution from the second layer atoms in the interaction.   
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3.2 Substitution of Ca
2+

 and Sr
2+

 into brucite 

Our next study focussed on the energetics of substitution of heavier group II ions for Mg
2+

 in 

brucite, calculated with both the PEECM model and periodic DFT, using the same functional (PBE) 

and basis sets (section 2.2) with the two different codes. We optimised structures with one (6x6_1) 

and two (6x6_2) layers included in the QM cluster for the PEECM model, excluding the 6x6_1+PC 

surface representation which is not easily comparable with periodic DFT. We substituted each ion into 

the same position in the upper layer to avoid the possible effect of different relative positions related 

to the cluster boundaries. We considered four different supercell sizes with 1, 2 and 3 layers of brucite 

within the periodic DFT model. The following equation was used to calculate the substitution energy: 

𝐸𝑠𝑢𝑏 = (𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒−𝑀 + 𝐸𝑀𝑔2+) − (𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒−𝑀𝑔 + 𝐸𝑀2+)      Eq. 2 

𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒−𝑀 is the computed SCF energy of the optimised substituted structure, 𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒−𝑀𝑔  is the 

energy of the perfect brucite slab with the same surface representation as 𝐸𝑏𝑟𝑢𝑐𝑖𝑡𝑒−𝑀, while 𝐸𝑀𝑔2+ 

and 𝐸𝑀2+ are the single point energies of the isolated ions. 

The substitution energies are summarised in Table II. Both models yield the expected order based 

on the size of the ionic radii (72 pm (Mg
2+

) < 95 pm (Ca
2+

) < 118 pm (Sr
2+

)), i.e. the substitution of 

Ca
2+

 is less unfavoured than that for Sr
2+

. If we compare the energies obtained with the largest (9x9) 

cell size in the periodic DFT calculations to the results of the isolated PEECM model, the two 

methods give reasonably similar results. Although the difference between them is not constant for the 

two ions, it is always less than c. 6% of the substitution energies. Including a 2
nd

 layer of brucite in the 

surface model has only a slight effect on the substitution energy, which is interesting given that the 

substitution distorts the surface geometry much more than an adsorption reaction. The 2
nd

 layer results 

in only a 2-6 kJ/mol difference in energy for each ion, irrespective of the method used. 
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TABLE II: Substitution energies (Esub) calculated with periodic DFT and with the PEECM, 

including 1 or 2 explicit layers of brucite in the model. The energy differences between the 

two models are represented in percentages (Ediff) relative to the periodic DFT values 

Surface models Substitution energies 

Method layer 
Ca

2+
 Sr

2+
 

Esub(kJ/mol) Ediff(%) Esub(kJ/mol) Ediff(%) 

Periodic DFT 9x9_1 446.8 

 

571.5 

 PEECM 6x6_1 456.1 2.1 598.2 4.7 

Periodic DFT 9x9_2 441.0 

 

567.2 

 PEECM 6x6_2 453.4 2.8 601.9 6.1 

 

The substitution energies as a function of cell size for different number of layers are plotted 

in Figure 5 (and summarised in SM Table (x)). With the use of bigger cell sizes in the periodic 

DFT model the substitution energy converges, presumably towards the energy of a completely 

isolated interaction site. However, with cell sizes bigger than 3x3 the differences are small, 3-5 

kJ/mol for each case, i.e. the effect of the substituted ion on the crystal structure is so localised 

that the ions are close to being isolated even with a 5x5 supercell. Adding a 2
nd

 layer lowers the 

energy by 4-6 kJ/mol and including a 3
rd

 layer has an even much smaller effect on the energies.  

This study of Ca
2+

 and Sr
2+

 substitution within a periodic DFT model suggests that moving 

from two- to three-layer slabs has little effect on substitution energies. This provides indirect 

evidence that the 6x6_2 QM cluster in the PEECM model includes all the necessary interactions 

and there is no need to increase the cluster size or the number of brucite layers in the QM region. 
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Figure 5: Periodic DFT-calculated substitution energies as a function of cell size for systems 

containing 1, 2 or 3 brucite layers for Ca
2+

 and Sr
2+

. Energies calculated for isolated systems 

in the PEECM method are represented with horizontal lines. Images are the optimised 

structures of substituted Ca
2+

 (yellow) and Sr
2+

 (magenta) into a 5x5_2 brucite cell. 

(Mg=green, O=red, H=grey). Note that the gradient of the 7x7_3 system did not fully 

converge (the max gradient was 0.000501 while the convergence criterion is 0.000450), 

although the energy did. 

  



21 
 

3.3 Adsorption of Sr[(OH)2(H2O)4] on brucite 

Our ultimate aim is to understand the interactions between hydrated brucite surfaces and solvated, 

fission-generated strontium. This study will involve many differently coordinated complexes and will 

use their relative energies to identify the most stable among them. Here we describe a first step 

towards this aim, i.e. an investigation of adsorbed Sr(OH)2 complexes, surrounded by their first 

coordination shell. [Sr(OH)2(H2O)4] was chosen based on the most stable Sr
2+

 dihydroxide 

coordination with two solvation shells from our previous study
58

. We searched for the most stable 

structure of [Sr(OH)2(H2O)4] adsorbed on brucite by placing it above the surface, and by generating 

three more initial structures via random rotation of the original molecule. We optimised the 

geometries in CRYSTAL, representing the brucite surface by a single layer 5x5 supercell slab (Figure 

6). These optimised geometries were then used as starting structures in our TURBOMOLE 

simulations, where they were reoptimised with the PEECM model, placing each complex at the same 

initial position relative to the QM cluster.  

 

Figure 6: Middle: The ball and stick representation of the 5x5_1 supercell and the original 

Sr(OH)2 complex with its complete 1
st
 coordination shell. Side: 1,2,3,4 are the optimised 

structures of the adsorbed complexes with periodic DFT. (Mg=green, O=red, H=grey, 

Sr=magenta, O in the coordinated OH groups=blue) 

 

We used an equation analogous to Eq. 1 in section 3.1 to calculate the adsorption energies (Table 

III), replacing the single point energy of a single ion with that of the solvated complex. There is 

excellent agreement between the absolute adsorption energies obtained from the two methods: the 
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energy difference is between 1.6 and 3.6 % in each case with a single layer surface representation and 

0.2-4.0% for two-layered surface models. Structure 3 is predicted to be the most stable and the 

relative adsorption energies (ΔEads) are calculated by comparing the energies of the other structures to 

that of structure 3. The differences between the calculated relative energies are less than 2 kJ/mol 

using periodic DFT (5x5 cell size) and the PEECM model for the single layer surface representation, 

with the exception of structure 4, where the geometry of the optimised complexes differs between the 

two methods, therefore there is a more significant energy difference (8 kJ/mol). Increasing the cell 

size up to 7x7 and 9x9 in periodic DFT causes a less than 5 kJ/mol energy difference in the absolute 

adsorption energies. Although the values of the relative adsorption energy change more with bigger 

cell sizes compared with the excellent agreement showed for the 5x5 and 6x6 comparison, the 

energetic trend is not affected (the cell size study is shown in SM section 4). This suggests that the 

5x5 cell size is reasonable for periodic DFT and indirectly shows that the 6x6 cluster size used in the 

PEECM contains all the atoms in the QM region which play a part in the adsorption. 

BSSE was considered and the counterpoise corrected values are presented in brackets in Table III. 

BSSE significantly decreases the absolute adsorption energies (by c. 55-60 kJ/mol), but the relative 

energies are only slightly different from the uncorrected ones; this type of error largely cancels in the 

definition of the relative adsorption energy.
88

 

When we consider a two-layer model in the PEECM, via either an extra PC layer (6x6_1+PC) or 

a second 6x6 cluster under the first (6x6_2), the relative adsorption energies are found to be very 

similar to the single layer results (6x6_1). Comparing ΔEads for 6x6_2 and 5x5_2 surface models, 

there are differences in relative adsorption energies in 5x5_2 compared to 5x5_1 due to minor 

structural differences affecting only water molecules which are not directly coordinated to the Sr
2+

 ion, 

but there is no change in terms of either energetic trends or coordination numbers. 

Freezing layers beneath the surface in a slab structure is a common approach to mimic the 

behaviour of the bulk underneath the top layer(s).
28

 Although the biggest systems considered in this 

study contain only two-layered slabs, we calculated adsorption energies for surface representations in 

which the atomic positions in the second brucite layer are fixed (6x6_2_f and 5x5_2_f) to study their 

possible effects on the adsorption. Turning to the periodic DFT results first, the adsorption energies 

for 5x5_2_f are within ±2 kJ/mol of to the 5x5_2 results, i.e. fixing the atomic positions has no 
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significant effect on the structures. In the case of the 6x6_2_f PEECM model, Eads is ~12 kJ/mol 

higher than the adsorption energies of 6x6_2. Since comparing the optimised geometries did not 

reveal changes in the adsorbed structures, we surmise that this constant energy shift is probably due to 

the fact that, in addition to using constraints within the QM cluster, we used the experimental crystal 

parameters for the PEECM surface, while the crystal parameters were previously optimised for the 

bulk mineral structure in periodic DFT. But despite the less accurate crystal structure description in 

the embedded methods, ΔEads values are not affected by changes in the second layer, as shown in 

Table III: energies for 6x6_2_f are very close to the 6x6_1 and 6x6_2 results. 

Overall, this study suggests that including a relaxed or fixed 2
nd

 layer in the surface model has 

only minor effects on the relatively weak adsorptions of the hydrated complexes. While there are 

some small differences in relative adsorption energies, the energetic trends within structures 1-4 and 

the geometries of the coordinated Sr
2+

 complexes do not change. Results obtained from periodic DFT 

and PEECM predict similar structures and have the same energetic trends. 
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Eads (kJ/mol) 

structure 1 2 3 4 

coordination CN=8 CN=7-8 CN=6 CN=6-7 

Method layer E (BSSE) Ediff(%) E (BSSE) Ediff(%) E (BSSE) Ediff(%) E (BSSE) Ediff(%) 

Periodic DFT 5x5_1 -431.7   -402.3   -444.4   -416.1   

PEECM 6x6_1 -422.7 (-366.7) 2.1 -393.8 (-332.7) 2.1 -437.2 (-380.2) 1.6 -401.1 (-349.2) 3.6 

Periodic DFT 5x5_2 -428.4   -403.2   -438.6   -419.9   

PEECM 6x6_2 -424.6 (-371.2) 0.9 -391.8 (-332.4) 2.8 -439.6 (-384.3) 0.2 -403.3 (-353.0) 4.0 

Periodic DFT 5x5_2_f -430.1   -401.1   -435.9   -422.5   

PEECM 6x6_2_f -411.3 (-358.2) 4.4 -379.9 (-320.8) 5.3 -428.0 (-372.9) 1.8 -391.4 (-341.1) 7.4 

ΔEads (kJ/mol) 

Method layer E (BSSE) E (BSSE) E (BSSE) E (BSSE) 

Periodic DFT 5x5_1 12.7  42.1  0.0  28.2  

PEECM 6x6_1 14.5 (13.5) 43.4 (47.5) 0.0 (0.0) 36.1 (30.9) 

Periodic DFT 5x5_2 10.2  35.4  0.0  18.7  

PEECM +PC 14.2 (12.5) 49.0 (52.8) 0.0 (0.0) 34.0 (29.2) 

PEECM 6x6_2 14.9 (13.2) 47.8 (51.9) 0.0 (0.0) 36.2 (31.3) 

PEECM 6x6_2_f 16.7 (14.7) 48.1 (52.1) 0.0 (0.0) 36.6 (31.8) 

TABLE III: Absolute (Eads) and relative adsorption energies (ΔEads) of four Sr[(OH)2(H2O)4] complexes, calculated by comparing each system to the most 

stable structure. Counterpoise corrected energy values are presented in brackets (BSSE). 
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3.3.1 Assessment of local coordination via the QTAIM 

In order to probe further the comparison between the periodic DFT- and the PEECM-generated 

structures, we explored the coordination environment around the Sr
2+

 ion by examining the Sr – O 

distances and by calculating QTAIM bond critical point (BCP) electron densities for the Sr – O 

interactions (Table IV). The QTAIM is a well-known theory which uses the topology of the electron 

density to analyse atomic properties in molecules or complexes.
89,90

 Bond critical points are stationary 

points in the electron density distribution where the minimum along the path of maximum electron 

density between two nuclei is found at the interatomic surface. The electron density at the BCPs is 

often related to the strength of the interaction,
91,92

 with higher values indicating stronger bonds. 

The final structures obtained with the two different methods are found to be generally very 

similar by topological analysis. The coordination environment of the Sr is almost the same in 

complexes 1 and 3, although there is a slight difference in structure 2, in which the H2O(3) water 

molecule (see structure 2 in Figure 7) is predicted to be very weakly coordinated to the Sr in the 

PEECM (ρ = 0.0153 a.u.), while there is no similar interaction between the Sr and that water molecule 

in the periodic DFT model. Defining coordination to be the presence of a Sr-O BCP, we conclude that 

the overall coordination number (CN) in complex 2 is 8 with PEECM and 7 with periodic DFT. The 

difference in the geometry of structure 4 is more significant (Figure 7); due to the different orientation 

of the H2O(3) water molecule in the embedded model, it is weakly coordinated to the Sr (d = 2.941 Å, 

ρ = 0.0137 a.u.) and it also modifies the strength of the other coordinated ligands, e.g. OH(5) has a 

shorter Sr – O distance (2.865Å) and higher electron density at the BCP (0.0133 a.u.) in the PEECM 

geometry than in the final structure of periodic DFT (3.072 Å, 0.0083 a.u.). 
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TABLE IV: Sr – O distances (d) and electron densities at the bond critical points (ρ) for each coordinated OH group or H2O molecule calculated with 

QTAIM for the optimised structures in PEECM or periodic DFT. For structures and Sr-O labels see Figure 7. 
a
In structure 1, there is a fourth water 

coordinated to the Sr instead of a fifth OH group. 

 1 2 3 4 

 PEECM Periodic DFT PEECM Periodic DFT PEECM Periodic DFT PEECM Periodic DFT 

Sr – O  d (Å) 
ρ  

(a.u.) 
d (Å) 

ρ  

(a.u.) 
d (Å) 

ρ 

 (a.u.) 
d (Å) 

ρ  

(a.u.) 
d (Å) 

ρ 

(a.u.) 
d (Å) 

ρ  

(a.u.) 
d (Å) 

ρ  

(a.u.) 
d (Å) 

ρ  

(a.u.) 

Sr –OH(1) 2.710 0.0230 2.698 0.0234 2.630 0.0276 2.612 0.0285 2.680 0.0247 2.700 0.0236 2.685 0.0243 2.751 0.0210 

Sr –OH(2) 2.572 0.0314 2.566 0.0318 2.562 0.0315 2.582 0.0306 2.629 0.0275 2.623 0.0277 2.602 0.0296 2.579 0.0310 

Sr –OH(3) 2.564 0.0322 2.555 0.0327 2.760 0.0213 2.672 0.0252 2.595 0.0299 2.577 0.0309 2.567 0.0315 2.519 0.0355 

Sr –OH(4) 2.553 0.0278 2.597 0.0253 2.481 0.0378 2.512 0.0365 2.422 0.0407 2.438 0.0399 2.427 0.0406 2.422 0.0419 

Sr –OH(5)a 2.724 0.0217 2.783 0.0192 2.574 0.0294 2.579 0.0304 2.470 0.0375 2.495 0.0361 2.865 0.0133 3.072 0.0083 

Sr –H2O(1) 2.562 0.0311 2.583 0.0297 2.648 0.0274 2.642 0.0278 2.548 0.0336 2.574 0.0317 2.761 0.0205 2.853 0.0170 

Sr –H2O(2) 2.624 0.0284 2.644 0.0270 2.746 0.0202 2.793 0.0181 - - - - 2.644 0.0278 2.595 0.0309 

Sr –H2O(3) 2.672 0.0255 2.695 0.0244 2.871 0.0153 3.331 - - - - - 2.941 0.0137 3.166 - 

R2 0.818 0.853 0.973 0.982 0.995 0.996 0.974 0.981 

complex [Sr(OH)4(H2O)4]
2+ [Sr(OH)5(H2O)3]

3+ [Sr(OH)5(H2O)2]
3+ [Sr(OH)5(H2O)]3+ [Sr(OH)4(H2O)3]

2+ [Sr(OH)4(H2O)2]
2+ 

CN 8 8 7 6 8 7 
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Figure 7: The optimised geometries of structures 1-4 in PEECM or periodic DFT. The coordinated H2O molecules and OH groups are labelled according 

to Table IV. (Mg=green, O=red, H=grey, Sr=magenta, O in the coordinated OH ion=dark blue, O in the coordinated OH groups of the surface=light blue) 
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Previous studies predict a generally good correlation between BCP electron densities and related 

bond lengths
92–94

 and indeed, plotting the electron densities at the BCPs against the Sr – O distances 

(Figure 8) reveals a strong correlation between the two properties (calculated R
2
 values for the linear 

regression are summarised in Table IV) and also illustrate the similarity in coordination between 

analogous structures calculated with PEECM and periodic DFT. There are three types of Sr – O 

interactions, based on the type of the coordinating oxygen atom: O of the OH
-
 ions in the solvation 

shell, surface OH groups (referred as O(OH) and O(surface) in the following text) and H2O molecules 

in the solvation shell (O(H2O)). The ones expected to have the strongest interaction with the Sr
2+

 ion 

are the OH
-
 ions in the solvation shell. However, this is not always the case, in fact, in structure 1 the 

only OH
-
 ion directly coordinating to the Sr is slightly outstanding from the trend, resulting in an R

2
 

value of 0.818 (0.853) with PEECM (periodic DFT). The O(OH) in this case has a weaker interaction 

according to the QTAIM analysis than the Sr – O distance would suggest, but the reason for this 

behaviour is unknown. Furthermore, in structure 4, there is a very weakly coordinated O(OH) in the 

complex (OH(5)), as opposed to the other OH ion, OH(4), which has the strongest coordination to the 

Sr ion. In structure 3, which is predicted to be the most stable, the OH
-
 ions in the solvation shell have 

the strongest interaction, followed by the only coordinated water molecule and then the surface OH 

groups which exhibit the weakest interaction.  
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Figure 8: Electron densities at the Sr-O BCPs plotted against Sr – O distances for the four 

Sr[(OH)2(H2O)4] complexes optimised with PEECM or periodic DFT. Red squares are related 

to the Sr – O(OH) interactions in the solvation shell, crossed squares to the Sr – O(H2O) 

interactions in the solvation shell and black squares to the Sr – O(surface) interactions with the 

surface OH groups. 
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4. Conclusions 

The PEECM has been used for the first time to model a layered, not purely ionic surface (brucite 

(0001)) and the developed model has been tested in three studies related to our final goal, studying the 

adsorption of radioactive ions on hydrated brucite surfaces. 

The PEECM is capable of describing the adsorption of single s block ions onto brucite, although 

the basis set quality has to be carefully considered. At least triple-zeta quality is necessary to obtain 

the correct energetic ordering between the ions, but these larger basis functions must be avoided in the 

QM representation of the surface cluster, since they can cause artificial interactions between the 

boundary atoms and the point charge region. 

Through a comparison with periodic DFT, we have demonstrated that the PEECM sufficiently 

reflects the qualities of the brucite surface to be able to describe both the substitution of Ca
2+

 or Sr
2+

 

into brucite and the surface complexation of [Sr(OH)2(H2O)4]. Based on the cell size studies and the 

interaction energies obtained with multiple layers of brucite, the size of the quantum chemically 

treated cluster is found to be reasonable in all cases. The agreement between adsorption energies and 

the optimised geometries obtained with PEECM or periodic DFT is excellent in the case of the 

adsorption of [Sr(OH)2(H2O)4] complexes. 

These results give us confidence in using the embedded brucite (0001) model in future 

investigations of Sr
2+

 and Cs
+ 

complex ion adsorptions on hydrated surfaces. They demonstrate that 

the PEECM is capable of describing sorption mechanisms on brucite-like surfaces, and that the 

approach is a viable alternative to periodic DFT when ionic species are involved in surface 

interactions. Furthermore, we note that the PEECM calculations presented here were run largely on 

our local departmental compute server, with a modest number of cores per calculation, by contrast to 

the periodic DFT calculations, which required the massively parallel version of the CRYSTAL code 

and were run on the UK’s national supercomputing facility. 

We are currently extending our PEECM study to include many more water molecules in the QM 

region to probe effects of second shell water molecules on the adsorption, and the results of this will 

be presented in a forthcoming paper.  
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5. Supplementary materials 

Supplementary material is available (where cited in the text) containing information such as the 

validation of the surface models with PEECM and periodic DFT, basis set comparison for the 

adsorption of s block ions and  the cell size study for the Sr[(OH)2(H2O)4] complexes with periodic 

DFT. 
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