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Abstract

Construction of a confidence set for a maximum point of a function is an impor-

tant statistical problem. Wan et al. (2015) provided an exact 1− α confidence

set for a maximum point of a univariate polynomial function in a given inter-

val. In this paper, we give an efficient computational method for computing the

confidence set of Wan et al. (2015). We demonstrate with two examples that

the new method is substantially more efficient than the proposals by Wan et al.

(2015). Matlab programs have been written which make the implementation of

the new method straightforward.

Keywords: Confidence set, Numerical quadrature, P-value, Statistical

inference, Parametric regression, Semi-parametric regression

1. Introduction

Determination of the maximum point of a function is an important problem

due to its wide applications; see e.g. Wan et al. (2015, 2016) and the references

therein. Consider the function

l(x, θ0,θ) = θ0 + θ1x+ · · ·+ θpx
p = θ0 + f(x,θ), (1)
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where θ = (θ1, · · · , θp)T and f(x,θ) = θ1x + · · · + θpx
p contains all the infor-5

mation on the maximum points of l(x, θ0,θ). The interest is in the maximum

points of l(x, θ0,θ) in a given interval of x ∈ [a, b]. It is clear that the maximum

points of l(x, θ0,θ) do not depend on θ0 and hence are the same as those of

f(x,θ). If the value of θ is known, then this is a simple calculus problem. The

difficulty lies in that the value of θ is unknown and only an estimator θ̂ of θ10

with a certain distribution, specified in (2) and (3) below, is available. Hence

the maximum points of l(x, θ0,θ) can only be estimated based on θ̂. We assume

that the estimator θ̂ of θ has the normal distribution

θ̂ ∼ N(θ, σ2Σ), (2)

where Σ is a known positive definite covariance matrix, and σ̂2 is an avail-

able estimator of the unknown error variance σ2 with distribution σ̂2 ∼ σ2χ2
v/v15

independent of θ̂, where v is the degrees of freedom (df) of the chi-square dis-

tribution. In the special case that σ2 is a known constant, then σ̂2 = σ2 for

v =∞ and we can assume without loss of generality that

θ̂ ∼ N(θ,Σ). (3)

The distributional assumption (2) follows naturally from the standard pth order

univariate polynomial regression model: y = θ0+f(x,θ)+e, where e is the usual20

random error with distribution N(0, σ2). Based on n observations (yi, xi), i =

1, · · · , n, Σ results from deleting the first row and the first column of (XTX)−1,

where X is the usual n×(p+1) design matrix. The distributional assumption (3)

holds asymptotically for many parametric and semi-parametric models (cf. Wan

et al., 2015). A maximum point of f(x,θ) in a covariate interval of x ∈ [a, b]25

may represent the dose in the range [a,b] that maximizes the response, or the

amount of fertilizer that produces the hightest yield, etc.

Let k be a global maximum point of f(x,θ) in x ∈ [a, b]. Wan et al. (2015),

denoted as WLHB henceforth, provides an exact 1−α level confidence set for k

by inverting a family of exact 1−α level acceptance sets for testing H0 : k = k030

for each k0 ∈ [a, b]. This method computes one critical constant c(k0) for each
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k0 ∈ [a, b], using numerical quadrature and search for p = 2 and using statistical

simulation for p ≥ 3.

In this paper, we first show that the acceptance probability used in the com-

putation of a critical point can be computed using p− 1 dimensional numerical35

quadrature. Hence, when p = 4 for example, the acceptance probability can

be computed using 3-dimensional numerical quadrature, which is usually much

faster than statistical simulation to achieve the same computational accuracy.

As polynomial regression models of order higher than 4 are rarely used in appli-

cations (cf. Liu et al., 2014), the computation method developed in this paper40

for computing the exact confidence set in WLHB is of considerable practical

relevance.

We further show that, for testing H0 : k = k0, we only need to compute the

p-value of the test, which requires the computation of one acceptance probability

only. This requires substantially less computation time than the computation45

of the critical constant c(k0), which involves repeated computation of the ac-

ceptance probability for several candidate values of c(k0), whose corresponding

acceptance probability is equal to 1− α.

The paper is organized as follows. Section 2 gives a brief review of the

WLHB confidence set. Section 3 considers how the acceptance probability can50

be computed efficiently at least for p ≤ 4 using numerical quadrature. Section

4 then shows how to determine whether a k0 ∈ [a, b] belongs to the confidence

set by computing just one acceptance probability. Section 5 illustrates the new

computational method with two examples to demonstrate the substantial saving

of computation time and the improved accuracy over the computation methods55

given in WLHB. Finally, section 6 contains discussions and conclusions.

2. WLHB method

Assume that k is a maximum point of f(x;θ) in x ∈ [a, b]. Let Y be the

random observation based on which the estimate θ̂ is computed. Wan et al.

(2015) uses the following 1− α level acceptance set for testing H0 : k = k0 for60
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each k0 ∈ [a, b]:

A(k0) = {Y : f(k0; θ̂)− f(x; θ̂) ≥ −c(k0)v̂(k0, x), ∀x ∈ [a, b]\k0},

where

v̂(k0, x) = (σ̂/σ)
√
var(f(k0; θ̂)− f(x; θ̂))

= σ̂|k0 − x|
√
g(k0, x, p)TΣg(k0, x, p)

with

g(k0, x, p) =
(k0 − x, k2

0 − x2, · · · , kp0 − xp)T
k0 − x

,

and c(k0) is the critical value chosen so that the acceptance probability is equal

to 1− α, that is,

inf
H0
P{Y ∈ A(k0)}

= inf
H0
P{Y : f(k0, θ̂)− f(x0, θ̂) ≥ −c(k0)v̂(k0, x), ∀x ∈ [a, b]\k0}

= inf
H0
P{Y : sup

x∈[a,b]\k0
− (k0 − x)
|k0 − x|

g(k0, x, p)T (θ̂ − θ)
σ̂
√
g(k0, x, p)TΣg(k0, x, p)

≤ c(k0)} = 1− α.

(4)

The 1− α level confidence set of Wan et al. (2015, 2016) is then given by

CE(Y) = {k ∈ [a, b] : Y ∈ A(k)}.

The key of the WLHB method for the construction of CE(Y) is the computation

of the critical constant c(k0) for each k0 ∈ [a, b]. A simulation-based method

to obtain c(k0) is given for a general p ≥ 2, and for the special case p = 2, a

numerical method is provided involving one-dimensional numerical quadrature.65

3. Computation of the acceptance probability

Throughout this section, we assume σ is unknown. Let P denote the unique

positive definite square-root matrix of Σ and so P2 = Σ. Then we have N :=
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P−1(θ̂ − θ)/σ ∼ N(0, Ip). Furthermore, since σ̂/σ and θ̂ are independent ran-

dom variables and σ̂/σ ∼
√
χ2
ν/ν, we have that T = P−1(θ̂ − θ)/σ̂ = N/(σ̂/σ)70

is a standard p-dimensional t random vector with ν degrees of freedom, and the

Euclidean norm of T has the distribution ||T|| ∼
√
pFp,ν , where Fp,ν denotes

an F distributed random variable with p and ν degrees of freedom. Define the

polar coordinates (RT , ψT1 , · · · , ψTp−1)T of the vector T = (T0, T1, · · · , Tp−1)T

by75 



T0 = RT cosψT1

T1 = RT sinψT1 cosψT2

T2 = RT sinψT1 sinψT2 cosψT3

· · · · · · · · ·
Tp−2 = RT sinψT1 sinψT2 · · · sinψTp−2 cosψTp−1

Tp−1 = RT sinψT1 sinψT2 · · · sinψTp−2 sinψTp−1 ,

where 



0 ≤ ψT1 ≤ π
· · · · · ·
0 ≤ ψTp−2 ≤ π
0 ≤ ψTp−1 < 2π

RT ≥ 0 .

The Jacobian of the transformation is

|J | = Rp−1
T sinp−2ψT1sin

p−3ψT2 · · · sinψTp−2 .

It is well known (cf. Liu et al., 2014, 2012) that ‖T‖ = RT and (ψT1 , · · · , ψTp−1)T

are independent, and the joint density function of (ψT1 , . . . , ψTp−1)T is

h(ψT1 , · · · , ψTp−1) =
1
2
π−p/2Γ (p/2) sinp−2ψT1sin

p−3ψT2 · · · sinψTp−2 ,

where Γ(·) denotes the gamma function.80
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Now the acceptance probability in (4) can be expressed as

inf
H0
P{Y : sup

x∈[a,b]\k0
− (k0 − x)
|k0 − x|

[Pg(k0, x, p)]TP−1(θ̂ − θ)/σ̂√
[Pg(k0, x, p)]T [Pg(k0, x, p)]

≤ c(k0)}

= P{Y : sup
x∈[a,b]\k0

− (k0 − x)
|k0 − x|

[Pg(k0, x, p)]TT
‖Pg(k0, x, p)‖

≤ c(k0)}

= P{− inf
x∈[a,k0)

[Pg(k0, x, p)]TT
‖Pg(k0, x, p)‖

≤ c(k0) and sup
x∈(k0,b]

[Pg(k0, x, p)]TT
‖Pg(k0, x, p)‖

≤ c(k0)}

= P{‖T‖Sk0 ≤ c(k0)}

= P{‖T‖ ≤ c(k0)/Sk0}, (5)

where T = P−1(θ̂ − θ)/σ̂ and Sk0 = max(Qk0 , Rk0) with

Qk0 = − inf
x∈[a,k0)

[Pg(k0, x, p)]Tu
‖Pg(k0, x, p)‖

, Rk0 = sup
x∈(k0,b]

[Pg(k0, x, p)]Tu
‖Pg(k0, x, p)‖

and u = T/‖T‖. Note thatQk0 andRk0 depend on T only through (ψT1 , · · · , ψTp−1)T .

Since ‖T‖ and (ψT1 , · · · , ψTp−1)T are independent and ||T|| ∼
√
pFp,ν , the ex-

pression in (5) can be written as
∫ π

ψT1=0

· · ·
∫ π

ψTp−2=0

∫ 2π

ψTp−1=0

h(ψT1 , · · · , ψTp−2 , ψTp−1)

×Fp,ν(c2k0/(pS
2
k0(ψT1 , · · · , ψTp−2 , ψTp−1)))dψT1 · · · dψTp−2dψTp−1 , (6)

where Fp,ν(·) denotes the cumulative distribution function of an F random85

variable.

For a given (ψT1 , · · · , ψTp−1), the method given in WLHB can be used to

accurately and quickly compute Qk0 , Rk0 and so Sk0 . The function Fp,v(·) can

be computed efficiently by using the Matlab built-in function fcdf . Hence the

integral in expression (6) can be computed quickly at least for small values of90

p. For example, expression (6) involves one dimensional integration for p = 2

and three dimensional integration for p = 4.

WLHB provided an alternative expression for the acceptance probability

when p = 2, which also involves one-dimensional integration. As the derivation

of that expression uses the geometry of the acceptance region, the method is95

difficult to be generalized. On the other hand, the expression (6) is derived
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using only algebra. From the expression (6), one can compute the acceptance

probability for each given value of c(k0). A numerical searching method, such

as the bisection method, can then be used to find the critical constant c(k0) so

that the acceptance probability is equal to 1 − α. This is used in Wan et al.100

(2015) for p = 2 only to find c(k0), which is then used to determine whether

each k0 belongs to the confidence set CE(Y ). Note, however, that in the process

of finding c(k0), the acceptance probability in (6) needs to be computed several

times for different candidate values of c(k0).

In the next section, it is shown that the acceptance probability in (6) needs105

to be computed only once for one particular value of c(k0) in order to determine

whether k0 belongs to the confidence set CE(Y ).

4. P-value Method

From the definition of the acceptance set A(k0) and the confidence set

CE(Y) in Section 2, a given point k0 ∈ [a, b] belongs to CE(Y) if and only

if

P{ sup
x∈[a,b]\k0

− (k0 − x)
|k0 − x|

[Pg(k0, x, p)]TT√
g(k0, x, p)TΣg(k0, x, p)

≤ c∗} ≤ 1− α, (7)

where

c∗ = sup
x∈[a,b]\k0

− (k0 − x)
|k0 − x|

g(k0, x, p)T θ̂/σ̂√
g(k0, x, p)TΣg(k0, x, p)

with θ̂ and σ̂ being the estimates of θ and σ based on the observed data. For

the given θ̂ and σ̂, c∗ can be computed accurately and quickly by using the110

method given in WLHB. Hence we need to compute the acceptance probability

in (7) only once and compare it with 1− α in order to determine whether k0 is

in CE(Y). This is much faster than the computation of c(k0), which requires

the computation of several acceptance probabilities.

In essence, this method uses the p-value of the test based on the acceptance115

set A(k0) for testing H0 : k = k0 to determine whether H0 is accepted or

rejected. We therefore call this the p-value method.
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5. Examples

In this section two data examples, one from WLHB and the other from Liu

et al. (2014), are used to demonstrate that the p-value method is substantially120

more efficient than the WLHB method. All the computations were done on

an ordinary windows laptop (Windows edition: Windows VistaTM Home Basic,

Processor: Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz, Installed memory:

2534 MB, System type: 32-bit Operating System).

WLHB showed that c0 =
√
pF (1− α; p, v) is a conservative critical value125

which can be used to quickly compute the conservative confidence set C0(Y).

Moreover, the exact 1−α level confidence set CE(Y) can be computed efficiently

by checking only the points k0 in C0(Y) to see whether they belong to CE(Y).

This is used in our programs for the computation of the two examples.

The first example involves a fourth order polynomial regression model of the130

transformed perinatal mortality rate (PMR), Y = log(−log(PMR)), and the

birth weight (BW) (x); see WLHB (Example 1) for more details. Based on the

data, we have θ̂ = (4.18, 1.80, 0.42, −0.04)T ,

Σ =




175.673 −116.729 31.771 −3.039

∗ 78.591 −21.628 2.087

∗ ∗ 6.010 −0.585

∗ ∗ ∗ 0.057



,

σ̂ = 0.0567 and v = 30. It is of interest to identify the BW level in the observed

range [a, b] = [0.85, 4.25] that maximizes the response Y (i.e., minimizes the135

PMR). We compare the methods from WLHB with the proposed method in

this paper by constructing a 1 − α = 95% level confidence set for this optimal

BW level. We replace the interval [a, b] by the grid of points that are d = 0.01

distance apart, and check each k0 in the grid to see whether it belongs to the

confidence set.140

We first construct the conservative confidence set C0(Y) by using c0 =
√

4F (0.95; 4, 30) = 3.280, which is given by C0(Y) = [3.72, 4.25] and takes

0.4194 seconds to compute. Next, we check whether each grid point k0 in C0(Y)
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belongs to the exact confidence set CE(Y). The WLHB method computes each

c(k0) based on n = 100, 000 simulations; this takes about 22.0123 seconds for145

each k0, and the accuracy of the acceptance probability is about 1− α± 0.002

(Wan et al., 2015, pp. 564); The exact confidence set is CE(Y) = [3.75, 4.21],

taking 3015.6904 seconds all together. The new method computes one accep-

tance probability for each grid point k0 in C0(Y), using 3-dimensional numerical

quadrature. Setting the accuracy of numerical quadrature at 1−α± 0.001, the150

computation of one acceptance probability takes about 0.8570 seconds. The

exact confidence set is CE = [3.76, 4.20], taking 117.8277 seconds all together.

It is clear from this example that the computation time of the new method is

only about 3.91% of that used by the WLHB method, while the new method

achieves a better accuracy than the WLHB method.155

The second example involves a third order polynomial regression model for

modelling the mean dose response; see Liu et al. (2014, Example 2) for more

details. Based on the data, we have θ̂ = (0.0953,−5.186 × 10−4, 7.5 × 10−7)T

and

Σ =




8.6247× 10−5 −6.3460× 10−7 1.0699× 10−9

∗ 5.0830× 10−9 −8.8834× 10−12

∗ ∗ 1.5787× 10−14


 .

It is of interest to identify the dose level in the observed range [a, b] = [0, 400]160

that maximizes the mean response. We use the methods of WLHB and this

paper to construct a 1 − α = 95% level confidence set for this optimal dose

level. We replace the interval [a, b] by the grid of points that are d = 1 distance

apart, and check each k0 in the grid whether it belongs to the confidence set.

The conservative confidence set C0(Y) with c0 =
√

3F (0.95; 3, 38) = 2.9249165

is C0(Y) = [109, 166], taking 0.2736 seconds. Next, we check whether each

grid point k0 in C0(Y) belongs to the exact confidence set CE(Y). The WLHB

method computes each c(k0) based on n = 100, 000 simulations; this takes about

54.6896 seconds for each k0, and the accuracy of the acceptance probability is

about 1−α±0.002; The exact confidence set is CE(Y) = [111, 156], taking 3172170
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seconds all together. The new method computes one acceptance probability for

each grid point k0 in C0(Y), using one 2-dimensional numerical quadrature.

Setting the accuracy of numerical quadrature at 1−α± 0.001, the computation

of one acceptance probability takes about 0.0975 seconds. The exact confidence

set is CE = [112, 155], taking 7.48 seconds all together. It is clear from this175

example that the computation time of the new method is only about 0.23%

of that used by the WLHB method, while the new method achieves a better

accuracy than the WLHB method.

For quadratic polynomial regression, WLHB already used 1-dimensional

quadrature to compute the acceptance probability, employing the Matlab built-180

in function fzero to search for the critical constant c(k0) for each given k0. As

fzero combines efficiently the bisection, secant and inverse quadratic interpola-

tion methods, it often takes no more than four computations of the acceptance

probabilities to find the c(k0). Also, the computation of one acceptance proba-

bility, involving one 1-dimensional numerical quadrature, often takes a fraction185

of a second, e.g. 0.001 second, and the total computation time of CE(Y) is just

a few seconds, e.g. about 18 second for the example given in WLBH, when the

computational error tolerance is set at 10−4. Hence the computational saving

of the new method of this paper over the WLBH method is not of practical

importance for quadratic polynomial regression.190

From the examples above and several other data sets we have tried, the

p-value method requires substantially less time to compute the confidence set

CE(Y) than the WLHB method for cubic and quartic polynomial regressions

at least.

6. Conclusions195

In this article, the new p-value method is given for computing the confidence

set CE(Y) of WLHB.

The p-value method hinges on the efficient computation of an acceptance

probability, and this is accomplished by using numerical quadrature for at least
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p ≤ 4, involving no more than a 3-dimensional integral, which is much faster200

than using statistical simulation to achieve a better accuracy. It is computa-

tionally efficient also because it needs to compute one acceptance probability

only, while finding the critical constant c(k0) requires the computation of several

acceptance probabilities, when judging whether k0 belongs to CE(Y).

As the polynomial regression of order higher than four is rarely used in appli-205

cations, the new method is sufficient for most real problems. Matlab programs

for implementing the new method for p ≤ 4 have been written and are available

from the authors, which make the new method easily applicable.
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