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Novel incretin analogues increase cell survival 

 

Abstract 

 

Currently, there is no viable treatment available for Parkinson’s disease (PD) that stops or 

reverses disease progression. Interestingly, studies testing the GLP-1 mimetic Exendin-4 

have shown neuroprotective/neurorestorative properties in pre-clinical tests and in a pilot 

clinical study of PD. Incretin analogues were originally developed to treat type 2 diabetes 

and several are currently on the market. In this study, we tested novel incretin analogues 

on the dopaminergic SH-SY5Y neuroblastoma cells against a toxic mitochondrial 

complex I inhibitor, Rotenone. Here, we investigate for the first time the effects of six 

different incretin receptor agonists - Liraglutide, D-Ser2-Oxyntomodulin, a GLP-1/GIP 

Dual receptor agonist, dAla(2)-GIP-GluPal, Val(8)GLP-1-GluPal and exendin-4. Post-

treatment with doses of 1, 10 or 100nM of incretin analogues for 12hrs increased the 

survival of SH-SY5Y cells treated with 1µM Rotenone for 12hrs. Furthermore, we 

studied the post-treatment effect of 100nM incretin analogues against 1µM Rotenone 

stress on apoptosis, mitochondrial stress, and autophagy markers. We found significant 

protective effects of the analogues against Rotenone stress on cell survival and on 

mitochondrial and autophagy-associated markers. The novel GLP-1/GIP Dual receptor 

agonist was superior and effective at a tenfold lower concentration compared to the other 

analogues. Using the Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, we 

further show that the neuroprotective effects are partially PI3K-independent. Our data 

suggest that the neuroprotective properties exhibited by incretin analogues against 

Rotenone stress involve enhanced autophagy, increased Akt-mediated cell survival and 

amelioration of mitochondrial dysfunction. These mechanisms can explain the 

neuroprotective effects of incretin analogues reported in clinical trials. 

 

Keywords: Parkinson’s disease, incretins, autophagy, growth factors, oxidative stress, 

rotenone 
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1. Introduction 

 

Parkinson’s disease (PD) is the second common multifactorial and clinically 

heterogenous neurodegenerative movement disorder, distinguished by the loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc). The aetiology of the 

disease is still unclear, but the three key mechanisms involved in this disease are alpha-

synuclein aggregation, mitochondrial dysfunction and oxidative stress (Schapira & Jenner 

2011, Alberio et al. 2012). The critical symptoms of the disease are tremor at rest, 

bradykinesia and rigidity followed by late-stage symptoms of gait dysfunction and 

postural instability (Obeso et al. 2010). Despite good progress since the clinical 

identification of PD, no viable treatment exists yet that could halt or reverse disease 

progression (Shulman et al. 2011). Research in the last decade has highlighted abnormal 

glucose metabolism as a risk factor for PD and potential of anti-diabetic drugs in treating 

neurodegenerative disorders (Hu et al. 2007, Holscher 2012, Aviles-Olmos et al. 2013, 

Bassil et al. 2014, Holscher 2014b, Sharma et al. 2014). Exendin-4 (Byetta) is a GLP-1 

receptor agonist. One study showed that Exendin-4 promotes adult neurogenesis in vitro 

and in vivo, improves dopamine imbalance and increases dopaminergic neurons in the SN 

(Bertilsson et al. 2008). Another study demonstrated that GLP-1 receptor stimulation 

reverses established nigral lesions in 6-hydroxydopamine (6-OHDA) and 

lipopolysaccaride (LPS) models of PD (Harkavyi et al. 2008). Further studies also show 

that Exendin-4 protects dopaminergic neurons (Kim et al. 2009, Li et al. 2009). 

Importantly, a pilot study in Parkinson’s patients showed good neuroprotective effects 

with exendin-4 (Aviles-Olmos et al. 2013, 2014). A larger phase II trial is currently 

ongoing. 

Incretins are hormones that activate insulin secretion after meal ingestion in a glucose-

dependent manner. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-

like peptide-1 (GLP-1) are key members of this family (Campbell & Drucker 2013). 

Incretins cross the blood brain barrier and activate neurogenesis, synaptogenesis and 

growth factor signalling in neurons. A range of novel GLP-1 and GIP agonists resistant to 



Novel incretin analogues increase cell survival 

 

protease cleavage have been developed, which exhibit extended half-life and superior 

receptor activation properties (Holscher 2012, Holscher 2014a). Liraglutide (Victoza®) is 

a GLP-1 mimetic, a modified analogue of human GLP-1 (Cho et al. 2014, Manandhar & 

Ahn 2015). We have previously reported very promising effect of Liraglutide on SH-

SY5Y cells against methyl glyoxal oxidative stress (Sharma et al. 2014). Liraglutide also 

showed good effects in animal models of Alzheimer’s disease (AD) (McClean et al. 

2011, McClean & Holscher 2014) and in a pilot clinical trial in Alzheimer’s disease (AD) 

(Gejl et la., 2016). A phase II clinical trial in patients with AD is ongoing (Holscher 

2014b). Liraglutide and other GLP-1 mimetics showed good protective effects in the 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD (Liu et al., 

2015b). Val(8)GLP-1-GluPal is a new GLP-1 analogue that has longer biological half-life 

(Lennox et al. 2013). Our recent research has demonstrated neuroprotective effects of 

Val(8)GLP-1-GluPal in the MPTP PD mouse model (Zhang et al. 2015). Oxyntomodulin 

is a GLP-1 and glucagon receptor dual agonist (Pocai 2012). Our research showed that 

the protease-resistant analogue D-Ser2-Oxyntomodulin showed protective effects from 

MPTP-induced motor impairment, improved dopamine synthesis and protected synapses 

(Liu et al. 2015b). In addition to this, newer dual agonists have been developed that 

activates both GLP-1 and GIP receptors (Finan et al. 2013). A recent study exhibited the 

protective role of GLP-1/GIP Dual agonists in the MPTP PD model where the drug 

reduced/reversed most of the PTP-induced motor impairments, increased the number of 

tyrosine hydroxylase (TH) positive neurons, activated the cytoprotective kinase Akt, and 

interestingly, enhanced the levels of the neuroprotective brain derived neurotropic factor 

(BDNF) (Ji et al. 2015). A second study found that this dual agonist reduced chronic 

inflammation in the brain and protected against the loss of synapses (Cao et al. 2016). 

The sister incretin GIP also shows promising protective effects. dAla2-GIP-GluPal is a 

stable, long-acting potent GIP analogue (Martin et al. 2013). Our research demonstrated 

that dAla-2GIP-GluPal treatment improved the locomotor and exploratory activity of 

MPTP mice, restored TH positive dopaminergic neurons, reduced the chronic 

inflammation response and decreased Bax/Bcl-2 ratio (Li et al. 2016). 

In this study, we investigated the protective effects of different incretin analogues - 

Liraglutide, D-Ser2-Oxyntomodulin, a GLP-1/GIP Dual agonist with a C16 fatty acid 
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attached, dAla(2)-GIP-GluPal, Val(8)GLP-1-GluPal and Exendin-4 on apoptosis, 

mitochondrial stress, and autophagy induced by Rotenone.  

 

2. Materials and Methods 

 

2.1. Materials 

Cell proliferation kit II (2,3- Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-

carboxanilide (XTT)),  Cytotoxicity Detection KitPLUS (Lactate dehydrogenase (LDH)) 

and cell proliferation ELISA 5-bromo-2-2deoxyuridine (BrdU) (colorimetric) kit were 

purchased from Roche Diagnostics Limited (West Sussex, UK). The Mitochondrial 

Marker Antibody Sampler Kit, Pro-Survival Bcl-2 Family Antibody Sampler Kit, Pro-

Apoptosis Bcl-2 Family Antibody Sampler Kit, Autophagy Antibody Sampler Kit, 

Loading Control Antibody Sampler Kit and phospho-Akt (Ser473) (D9E), Akt (pan) 

(C67E7) and anti-rabbit IgG, HRP-linked secondary antibody were purchased from Cell 

signaling technology (New England Biolabs (UK) Ltd, Hertfordshire, UK). Cell lysis 

buffer was obtained from Cell signaling technology, Quick start protein assay reagent 

from BIO-RAD Laboratories Ltd (Hertfordshire, UK), Amersham ECL Prime western 

blotting detection reagent from GE, Healthcare Life Sciences (Buckinghamshire, UK). 

XCell4 SureLock™ Midi-Cell Electrophoresis System, iBlot® 2 Gel Transfer Device, 

iBlot® 2 Transfer Stacks, PVDF, regular size (Novex™), pre-cast polyacrylamide 

NuPAGE® Novex® 4-12% Bis-Tris Midi Gels and Restore™ Western Blot Stripping 

Buffer were purchased from Life technologies. Other materials for western blotting and 

cell culture were obtained from Invitrogen. No ethical approval was required for this 

work. 

2.2. Peptides  

Incretins were purchased from Chinapeptides and GL Biochem (Shanghai) Ltd. The 

purity of each peptide was analysed by reversed-phase HPLC and characterised using 

matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass 

spectrometry, with a purity > 99%. Peptides were reconstituted in ultrapure water (Milli-

Q) to a concentration of 1mg/ml  and aliquots prepared and stored at -20°C.  

 

https://www.lifetechnologies.com/order/catalog/product/IB24001?ICID=search-product
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Peptides tested and AA sequences: 

Exendin-4 

HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

 

Liraglutide 

HAEGTFTSDVSSYLEGQAA[Lys-yE-C16 acyl]EFIAWLVRGRG 

 

Val-8-GLP-1-GluPal (Lennox et al. 2013) 

HVEGTFTSDVSSYLEGQAA[Lys-yE-C16 acyl]EFIAWLVRGRG 

 

dAla-2GIP-GluPal (Faivre & Holscher 2013)  

YdAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDW[Lys-yE-C16 acyl]HNITQ 

 

GLP-1/GIP dual agonist (Cao et al., 2016) 

YXEGTFTSDYSIYLDKQAAXEFVNWLLAGGPSSGAPPPSK-NH2 

X = aminoisobutyric acid; K = Lys-C16 acyl 

 

D-Ser2-oxyntomodulin (Liu et al. 2015a) 

H(d-S)QGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA 

 

2.3. Cell culture 

The human neuroblastoma cell line SH-SY5Y is a thrice cloned subline of the 

neuroblastoma cell line SK-N-SH, established in 1970 from a metastatic bone tumour. 

The SH-SY5Y cells were purchased from LGC standards (Middlesex, UK) (ATCC No. 

CRL-2266), and maintained in Dulbecco’s minimum essential medium, DMEM+F12 

(1:1) GlutaMax supplemented with 10% heat-inactivated foetal bovine serum (FBS) and 

100Units/ml of Penicillin and 100µg/ml of Streptomycin at 37°C in a humidified 

incubator with 95% air and 5% CO2. The cells were sub-cultured at 80% confluency and 

seeded at 1:8 ratio. Live cells were counted for next passage and seeded desired number 

of cells for the assays by using Countess™ Automated Cell Counter (Invitrogen, UK). 
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Countess is based on the usual trypan blue dye exclusion principle where dead cells are 

permeable to dye and stains blue while viable cells do not take up the impermeable dye. 

Media of the cells was changed every 3-4 days.  

 

2.4. Measurement of cell viability, cytotoxicity and proliferation 

Cell viability, cytotoxicity, and proliferation were estimated using Cell proliferation kit II 

(XTT), Cytotoxicity Detection KitPLUS kit (LDH) and Cell Proliferation ELISA, BrdU 

(colorimetric) kit, respectively. The assays were formatted in Thermo Scientific™ 

Nunc™ MicroWell™ 96-well plates. SH-SY5Y cells were seeded at a density of 10,000 

cells/well for 24h. Thereafter, the cells were serum starved for 12h in serum free medium 

(SFM) and were stressed with different concentration of Rotenone (0.1, 1 and 10µM) for 

12h followed by post-treatment with different concentrations (1, 10, 100nM) of incretin 

analogues for 12h. Supernatant was removed (for LDH assay) and 5ml of XTT labelling 

reagent and 0.1ml of electron-coupling reagent diluted 1:1 with SFM was added per 

microplate followed by incubation at 37°C for 4h. XTT assay involves cleavage of the 

yellow tetrazolium salt XTT to form an orange coloured formazan dye by metabolically 

active cells (mitochondrial dehydrogenase activity). So, the cell viability is 

spectrophotometrically quantified based on the formation of this soluble formazan 

product, which is directly proportional to the number of living cells in the sample. The 

plate was gently shaken for 5min on Microtitre plate shaker (Stuart, Staffordshire, UK) 

and absorbance measured at 492nm and 690nm (reference wavelength) in a Infinite 200 

PRO microplate reader (Tecan, Reading, UK).  

Using Cell Proliferation ELISA, BrdU (colorimetric) kit, the cell proliferation was 

evaluated in actively proliferating SH-SY5Y cells based on the incorporation of 

pyrimidine analogue BrdU instead of thymidine during DNA synthesis. After 12hrs of 

post-treatment, BrdU labeling reagent was added and the plate was incubated at 37°C for 

4hr. BrdU incorporation was measured as per the manufacturer’s assay procedure and the 

plate was read at 450nm wavelength (reference wavelength 690nm) using Infinite 200 

PRO microplate reader.  

Cytotoxicity Detection KitPLUS (LDH) kit is a colorimetric assay that quantitatively 
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measures the LDH activity, directly proportional to the cytotoxicity. LDH is a stable 

cytosolic enzyme that is released upon cell lysis, which results in the formation of a red 

formazan product and the amount of colour formed is proportional to the number of lysed 

cells. The assay was conducted according to the manufacturer’s instructions and 

absorbance measured at 492nm and 690nm (reference wavelength). 

2.5. Western blotting 

106 cells were grown in 100mm plates and after serum starvation for 12hrs, cells were 

stressed with 1µM Rotenone for 12hrs and post-treated with 100nM incretin analogues 

for further 12hrs. Cells were then washed with cold 1X PBS buffer followed by addition 

of 1X cell lysis buffer containing protease inhibitor. After two freeze thaw cycles, the 

lysate was collected and total protein was extracted by centrifugation at 13,000rpm for 

20min. Quick start Bradford protein assay reagent was used to estimate the protein 

concentration. This assay is based on the principle of Bradford method, which involves 

Commasie Brilliant Blue G-250 dye that binds to the proteins and gets converted to stable 

unprotonated blue form. The Bovine Serum Albumin standards included set of 7 

concentrations of BSA (2, 1.5, 1, 0.75, 0.5, 0.25, 0.125mg/ml), used to prepare standard 

curve. 5µl of the diluted sample was added into a clear bottom 96-well plate in 

quadruplicate along with 20µl of double distilled water and 150µl of the Quick start 

protein assay reagent and the plate read after 5min at 595nm wavelength in a Infinite 200 

PRO microplate reader (Tecan, Reading, UK). Cell lysate containing 3µg of protein was 

separated on 4-12% gradient Bis-Tris gel with Novex pre-stained marker and 

electrophoresed in running buffer at 180mV for 70min followed by transfer to 

polyvinylidene difluoride (PVDF) membrane using iBlot® 2 Gel Transfer Device. 

Following protein transfer, the membrane was washed in 1X TBS-T (tris-buffered saline 

with 0.05% Tween-20, pH 8) and blocked in 5% skimmed milk for 1hr at 25°C. The 

membrane was then incubated with anti-pAkt (Ser473) (1:1000) and other primary 

antibodies at 4°C overnight and after three washes (5min each) in TBS-T further 

incubated with 1:2000 horseradish peroxidase-conjugated anti-rabbit IgG. All the primary 

antibodies used were generated in rabbit unless specified. The protein bands were 

visualized by Amersham ECL Prime western blotting detection reagent according to the 
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manufacturer’s instructions. ChemiDoc MP Imaging System with Image Lab software 

(BIO-RAD) was used to image chemiluminescent bands and perform the analysis of each 

band intensity. Image LabTM software controls image capture and optimiszation and 

produces reports. Beta-actin was used as loading control and relative peak intensity of 

each marker band analysed on Mac Numbers after normalizing with loading control. To 

reprobe, the membranes were incubated with Restore stripping buffer (Thermo Scientific, 

UK) with some agitation for 15min at RT followed by 3 washes in TBS-T for 5min each. 

The membranes were checked with chemiluminescent detection preceding incubation in 

another primary antibody of interest.  

2.6. Statistical analysis 

Statistical analysis was performed using Prism 6 for Mac OS X (GraphPad software Inc., 

La Jolla, CA, USA) with the 95% level of probability and the results were presented as 

mean ± SEM. Data were analysed by one-way ANOVA, followed by Bonferroni’s 

multiple comparison post-hoc test. 

 

3. Results 

 

3.1  1µM Rotenone stress for 12hrs increases LDH levels and decreases cell viability 

The stress duration of 12hrs with rotenone was selected in initial tests as to be most 

effective. In order to standardise the Rotenone dose, cells were stressed with different 

concentrations of Rotenone (0.1, 1, 10µM) for 12hrs and cell viability was determined 

after 12hrs of DMEM (Glutamax) medium post-treatment in order to keep the assay 

format identical to the drug analogue testing experiments to be performed later. In the 

XTT assay, we found that there was a dose-dependent decrease in the cell viability (% 

control) at 0.1, 1 and 10µM rotenone concentration with 28.7% (p<0.0001), 32.5% 

(p<0.0001) and 36.5% (p<0.0001) percentage decrease, respectively. The percentage 

increase in LDH levels (% control) was 40% (p<0.05), 88.2% (p<0.0001) and 24.7% with 

0.1, 1 and 10µM rotenone exposure. The LDH levels were significantly (p<0.05) higher 

at 1µM rotenone when compared to the 0.1µM rotenone stressed cells. The percentage 



Novel incretin analogues increase cell survival 

 

increase in cell proliferation levels (% control) were 26.4% (p<0.01), 27.7% (p<0.01) and 

5.6% with 0.1, 1 and 10µM rotenone stress. For the further studies, we chose 1µM 

concentration of rotenone stress as it induced highly significant effect at LDH levels 

(88.2% increase) and cell viability (32.5% decrease), both shown by LDH and XTT 

assays, respectively (Fig. 1). 

 

3.2. Post-treatment with Incretin analogues increases cell survival and reduces 

cytotoxicity 

To determine the protective effect of incretin analogues: Liraglutide (Lira), d-Ser2-

Oxyntomodulin (Oxm), GLP-1/GIP Dual agonist (Dual), D-Ala2-GIP-GluPal, 

Val(8)GLP-1-GluPal and Exendin-4 in the SH-SY5Y human neuroblastoma cells against 

Rotenone toxicity, XTT and LDH assays were performed. All six analogues were tested 

at three different concentrations (1, 10 and 100nM) against 1µM Rotenone pre-stress. All 

assays were formatted for 12hrs pre-stress followed by 12hrs post-treatment. Control 

cells were grown for 12hrs in DMEM (Glutamax) medium (without stress) followed by 

further 12hrs in medium only (no drug). 

 

3.2.1. Post-treatment with 1nM incretin analogues  

There is 36% decrease in the cell viability at 1µM Rotenone when compared to the 

control cells (p<0.0001). 1nM Lira, Oxm and Val(8)GLP-1-GluPal post-treatment 

increases the cell viability significantly (p<0.01). However, 1nM Dual enhances the cell 

viability most (p<0.0001) under these experimental conditions (p<0.0001) (Fig 1c). Lira 

(p<0.0001), Val(8)GLP-1-GluPal (p<0.05) and Exendin-4 (p<0.0001) exhibit significant 

decrease in the LDH levels. Lira seems to perform better in lowering the cytotoxicity as 

compared to Oxm (p<0.01) and D-Ala2-GIP-GluPal (p<0.01). Exendin-4 ameliorates 

LDH levels when compared to Oxm and D-Ala2-GIP-GluPal (p<0.001) (Fig 1d).  
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3.2.2. Post-treatment with 10nM incretin analogues 

1µM Rotenone exposure results in 33.3% decrease in the cell viability when compared to 

the control cells (p<0.0001) (Fig 2a). 10nM Lira, Oxm, Dual and Val(8)GLP-1-GluPal 

exhibits highly significant increase in the cell viability. D-Ala2-GIP-GluPal and Exendin-

4 did not show significant increase in the cell viability at this concentration (Fig 2a), 

which is in line with the 1nM concentration (Fig 1d). Lira, Oxm and Val(8)GLP-1-GluPal 

performs better than Exendin-4 (p<0.05) in improving cell viability at 10nM dosage. Lira 

(p<0.01), Val(8)GLP-1-GluPal (p<0.001) and Exendin-4 (p<0.0001) significantly 

reduces the LDH levels (Fig 2b). 10nM Exendin-4 demonstrates more potential in 

reducing the cytotoxicity when compared to Oxm (p<0.01) and D-Ala2-GIP-GluPal 

(p<0.05).  

 

3.2.3. Post-treatment with 100nM incretin analogues 

Cell viability decreases by 31% on exposure to 1µM Rotenone stress for 12hrs, when 

compared to the control conditions (p<0.0001). 100nM Lira, Oxm, Dual and D-Ala2-GIP-

GluPal demonstrates dose dependent behaviour in increasing the cell viability (Fig 2c) 

(when compared to Fig 1d and 2a, 1nM and 10nM dose, respectively). Although D-Ala2-

GIP-GluPal do not show significant effects at 1 and 10nM doses but did induce a highly 

significant increase in the cell viability at 100nM dosage. Val(8)GLP-1-GluPal and 

Exendin-4 do not show significant increase in the cell viability. It appears that 

Val(8)GLP-1-GluPal works better at lower doses (Fig 1d, 2a) when compared to 100nM 

dosage. Lira, Oxm and Dual increases cell survival at all three concentrations. Exendin-4 

did not increase the cell viability at any of these concentrations. In the LDH assay, 

100nM Lira (p<0.01), Oxm (p<0.001), Val(8)GLP-1-GluPal (p<0.0001) and Exendin-4 

(p<0.0001) decreases the cytotoxicity. Oxm (p<0.05), Val(8)GLP-1-GluPal (p<0.001) 

and Exendin-4 (p<0.001) decreases LDH levels much more as compared to the D-Ala2-

GIP-GluPal (Fig 2d). At 100nM dose, Val(8)GLP-1-GluPal (p<0.001) and Exendin-4 

(p<0.001) performs better than the Dual agonist with respect to lowering the cytotoxicity. 

Exendin-4 decreases the LDH levels significantly at all three concentrations. 
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3.3. Post-treatment with incretin analogues activates cell survival mechanisms 

12hrs post-treatment with 100nM incretin analogues against 1µM Rotenone pre-stress on 

survival marker proteins. There is a significant increase in pAkt (Ser473)/panAkt 

expression in the incretin post-treated groups compared to the control. Lira (L) showed an 

increase of 146% (p<0.05) and 16.5% increase in pAkt (Ser473)/panAkt expression when 

compared to the control cells and rotenone stressed cells, respectively. Oxm (O) shows 

and increase of 132.7% (p<0.05) compared to control cells. Dual Agonist (D), 

Val(8)GLP-1-GluPal (V) and Exendin-4 (E) post-treatment results in almost 3-fold 

increase (p<0.001) in the pAkt (Ser473)/panAkt ratio when compared to control cells. D-

Ala(2)-GIP-GluPal (A) post-treatment demonstrates a highly significant 3.5-fold increase 

(p<0.0001) when compared to the control cells and a significant (p<0.05) 63% increase 

as compared to the Rotenone stressed cells (Fig. 3a).  

To further elucidate the downstream Akt survival mechanism, we quantified protein 

levels of the phosphorylated forms of Bcl-2 and BAD, phospho-Bcl-2 (Ser70) and 

phospho-BAD (Ser112), respectively. Bcl-2, B-cell lymphoma 2 is the key anti-apoptotic 

marker and its phosphorylation at several sites including Ser70 is required in response to 

the apoptotic stimuli to protect the cell from dying. We found a significant increase in 

phospho-Bcl-2 (Ser70) expression in the incretin post-treated cells as compared to the 

control cells (Fig. 3b).  Lira (L) post-treatment shows an impressive 6-fold increase 

(p<0.0001) in the phospho-Bcl-2(Ser70) expression levels when compared to the control 

and a 29% increase as compared to the untreated Rotenone stressed cells. Oxm (O) 

(p<0.001) as well as D-Ala2-GIP-GluPal (A) (p<0.0001) shows a highly significant 

approximately 5-fold increase in phospho-Bcl-2 (Ser70) expression when compared to 

the control cells. Dual (D) results in a 5.8-fold (p<0.0001) and a 24.8% increase in 

phospho-Bcl-2 (Ser70) expression when compared to the control and Rotenone stressed 

cells, respectively. Val(8)GLP-1-GluPal (V) and Exendin-4 (E) post-treatment results in 

almost 4.8-fold (p<0.001) and 4.4-fold increase (p<0.01), respectively, in the phospho-

Bcl-2 (Ser70) expression when compared to the control cells (Fig. 3b).  
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Furthermore, we observed an increase in phospho-BAD (Ser112) expression in the 

stressed cells post-treated with incretin analogues (Fig 3c). BAD is a pro-apoptotic 

member of the Bcl-2 family but it becomes inactive when phosphorylated by different 

survival factors, thus phosphorylation of BAD at site Ser112 promotes cell survival. Lira 

(L) and Oxm (O) post-treatment results in an increase of 20% in the phospho-BAD 

(Ser112) expression when compared to the untreated Rotenone stressed cells. Dual (D) 

shows a significant (p<0.01) 1.8-fold increase in the phospho-BAD (Ser112) expression 

compared to the control. D-Ala2-GIP-GluPal (A) as well as Val(8)GLP-1-GluPal (V) 

post-treatment exhibits a highly significant 2-fold increase (p<0.001) in the phospho-

BAD (Ser112) expression compared to the control and a significant 51% increase 

(p<0.05) when compared to the untreated Rotenone stressed cells. Exenatide (E) post-

treatment results in almost 1.8-fold (p<0.01) increase in the phospho-BAD (Ser112) 

expression compared to the control cells (Fig. 3c). 

 

3.4. Influence of Incretin analogues on Rotenone - induced mitochondrial damage in 

the neuroblastoma cells. 

Mitochondrial protein PDHA1, also known as C54G1, is an alpha subunit of pyruvate 

dehydrogenase. Pyruvate dehydrogenase (C54G1) monoclonal antibody detects 

endogenous levels of total pyruvate dehydrogenase α1 subunit. In the current 

experimental setting, we found significant (p<0.0001) increase of 71% in the expression 

of pyruvate dehydrogenase in the stressed state. Lira (L), Oxm (O), Dual (D), D-Ala2-

GIP-GluPal (A), Val(8)GLP-1-GluPal (V), and Exenatide (E) post-treatment exhibits an 

increase of 61.5% (p<0.0001), 76.2% (p<0.0001), 68.5% (p<0.0001), 53.2% (p<0.0001), 

57% (p<0.0001), 45.3% (p<0.001) respectively, in pyruvate dehydrogenase expression 

when compared to the control condition (Fig 4a). Oxm (O) shows an increase of 3% in 

the expression of pyruvate dehydrogenase when compared to the stressed state (Fig 4a). 

 

3.5. Incretin post-treatment enhances autophagy, a plausible mechanism to protect 
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SH-SY5Y cells from Rotenone - induced mitochondrial oxidative dysfunction. 

We observed a 26.5% (p<0.05) increase in Atg7 expression in the rotenone stressed cells 

compared to the control (Fig 4b). Lira (L), Oxm (O), Dual (D), D-Ala2-GIP-GluPal (A), 

Val(8)GLP-1-GluPal (V), and Exendin-4 (E) post-treatment shows an increase of 29.3% 

(p<0.01), 30% (p<0.01), 13.5%, 35.7% (p<0.001), 23.8% (p<0.05), and 19.2%, 

respectively in the Atg7 expression when compared to the control condition.  

In addition, we observed a 47.7% increase in the Atg3 expression in the rotenone stressed 

cells compared to the control. Lira (L) and Oxm (O) treatment results in 39.5% and 

22.5% increase in Atg3 expression, respectively, when compared to the control. 

Autophagosomal marker protein LC3 (light chain 3) is another principal autophagy-

associated marker (Johansen & Lamark 2011). We found a 43.4% increase in the 

LC3A/B expression in the rotenone stressed cells compared to the control. Lira (L) post-

treatment induced a 34.5% increase in LC3A/B expression when compared to the control. 

These results indicate the role of incretin analogues in activation of autophagy as a 

possible protective mechanism. Lira (L) post-treatment exhibited an increase in all the 

autophagy-associated markers studied. D-Ala2-GIP-GluPal (A) treatment increased Atg7 

expression by 35.7% (p<0.001), compared to control. 

 

3.6. Incretin analogues ameliorate the inhibitory effect of PI3K inhibitor pre-

exposure on autophagy and cell survival. 

To confirm whether the Akt activation by incretin analogues is mediated via PI3K and to 

study the mechanism underlying the protection exhibited by these incretin analogues, we 

exposed the SH-SY5Y cells to 50μM LY294002, PI3K inhibitor for 1hr followed by 1hr 

of incretin treatment. Afterwards cells were harvested and cell lysate prepared for western 

blot analysis. We examined Atg3 levels and found that in the presence of inhibitor, there 

is a significant 31.5% decrease (p<0.01) in the expression levels of Atg3, when compared 

to the control. Post-treatment with Lira (L), Oxm (O), Dual (D), D-Ala2-GIP-GluPal (A) 

and Val(8)GLP-1-GluPal (V) shows an increase of 1.8-fold (p<0.0001), 1.9-fold 
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(p<0.0001), 1.8-fold (p<0.0001), 1.6-fold (p<0.001) and 1.3-fold, respectively in the 

Atg3 expression when compared to the stressed condition (Fig 5a). Exendin-4 (E) post-

treatment did not ameliorate the Atg3 decrease in the stressed state. In addition, we 

examined the pBcl-2 levels and found that LY294002 exposure decreased the pBcl-2 

levels by 27% (Fig 5b). Interestingly, post-treatment with incretin analogues improved 

the pBcl-2 expression levels. Lira (L), Oxm (O), Dual (D), D-Ala2-GIP-GluPal (A) and 

Val(8)GLP-1-GluPal (V) treatment resulted in an 1.7-fold (p<0.05), 2-fold (p<0.01), 1.9-

fold (p<0.01), 1.8-fold (p<0.01) and 1.9-fold (p<0.01) increase in pBcl-2 levels, 

respectively, when compared to the stressed condition (Fig 5b). Although Exendin-4 (E) 

post-treatment upregulated the pBcl-2 level compared to control, it did not induce a 

significant rise as the other incretin analogues did.  

 

 

4. Discussion 

 

The results obtained in this study demonstrate plausible underlying mechanisms that 

forms the basis for enhanced cell survival exhibited by the incretin post-treatment of 

Rotenone-stressed SH-SY5Y cells. Interestingly, we found that cell proliferation as well 

as levels of key signalling markers increased with the Rotenone exposure. The BrdU 

assay was conducted on multiple experiments to confirm the unexpected findings of 

increased proliferation in stressed state. However, there are studies that indicate that at 

very low doses, Rotenone exhibits proliferative property. A few in vivo studies suggest 

that the experimental conditions control the selectivity of the rotenone insult (Hoglinger 

et al. 2003, Zhu et al. 2004, Meurers et al. 2009). The cell type as well as the duration and 

nature of the initial stress stimulus govern whether the cellular stress will trigger survival 

or death signalling (Fulda et al. 2010). In the current experimental setting, we observed 

enhanced proliferation at all three doses of Rotenone tested. Moreover, low level toxins 

could enhance cell proliferation as a protective reaction of the cell. In a recent study, Kim 

et al. found that reactive oxygen species (ROS) generation (from rotenone as one of the 
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sources) upregulated the microRNA-210 expression resulting in increased proliferation of 

adipose-derived stem cells (Kim et al. 2013). 

One of the mechanisms by which Akt gets activated is phosphorylation within the 

carboxy terminus at Ser473. Akt primarily promotes cell survival by inhibiting apoptosis 

involving phosphorylation and inactivation of targets like Bad (pro-apoptotic Bcl-2 

family member) and forkhead transcription factors (Brunet et al. 1999, Yamaguchi & 

Wang 2001). Therefore, we evaluated the levels of phospho-Akt (Ser473), pro-survival 

phospho-Bcl-2 (Ser70), pro-apoptotic phospho-BAD (Ser112) and phospho-Fox01 

(Ser256). When under the stress, initially internal cellular pathways try to compensate for 

the abnormal condition but the cell starts dying when unable to cope with the prolonged 

stress. Having said that, the increase in pAkt (Ser473)/panAkt observed in the Rotenone 

stressed cells could be one of the ways the cells respond under stress. GLP-1/GIP Dual 

agonist post-treatment resulted in almost 3-fold increase (p<0.001) in the pAkt 

(Ser473)/panAkt expression when compared to control cells. This is in line with a recent 

study where dual GLP-1 and GIP receptor agonist increased the Akt expression in the 

MPTP mouse model of PD (Ji et al. 2015). Interestingly, we found significant increase in 

pAkt levels when treated with D-Ala2-GIP-GluPal as compared to the Rotenone stressed 

untreated cells. In a previous study, we found a significant increase (p<0.01) in the 

expression of pAkt (Ser473) in the Liraglutide pre-treated SH-SY5Y cells, stressed with 

methyl glyoxal (Sharma et al. 2014). One study testing Liraglutide showed that it protects 

cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt 

pathway (Wu et al. 2014). Research on Exendin-4 treatment revealed elevated 

phosphorylation of the pro-survival kinase Akt (Robinson et al. 2015) and its potential 

involvement in protecting pancreatic beta cells from human islet amyloid polypeptide-

induced cell damage (Fan et al. 2010). We too observed an increase in the pAkt 

(Ser473)/panAkt expression in the Exendin-4 post-treated cells (Fig 3a), which is in 

agreement with other studies. 

As mitochondrial dysfunction forms key hallmark of PD and rotenone blocks complex I 

of the electron transport chain (ETC) in the inner mitochondrial membrane resulting in 

oxidative stress (Lin & Beal 2006), we looked at the post-treatment effect of incretin 

http://europepmc.org/abstract/med/25140997/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A71193
http://europepmc.org/abstract/med/25140997/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A42758
http://europepmc.org/abstract/med/25140997/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=Epac-1&sort=score
http://europepmc.org/abstract/med/25140997/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=Akt&sort=score
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analogues on the expression levels of mitochondrial proteins. Moreover, drugs that 

improve on mitochondrial damage might be useful as a PD treatment (Luo et al. 2015). 

Complex I is one of the main sites where premature electron leakage occurs leading to the 

superoxide (O2

.−) production (West et al. 2011). Zhou et al. demonstrated that Exendin-4 

pretreatment upregulates the levels of superoxide dismutase and preserves the 

mitochondrial membrane potential (Zhou et al. 2014a). Recent research has shown that 

GLP-1R stimulation ameliorates the detrimental cellular changes induced by oxidative 

stress. GLP-1 and Exendin-4 dose-dependently protect SH-SY5Y cells from hydrogen 

peroxide-induced stress (Li et al. 2009, Li et al. 2010, Salcedo et al. 2012). Fan et al. 

investigated the effect of Exendin-4 treatment on mitochondrial function and found 

enhanced mitochondrial biogenesis (Fan et al. 2010). A recent proteomic study revealed 

potential protective roles of GLP-1 at the mitochondrial level (Ciregia et al. 2015). Our 

results support the finding that Liraglutide attenuates the effects of mitochondrial 

membrane damage in pancreatic β cells (Ogata et al. 2014). Dihydrolipoamide 

acetyltransferase and lipoamide dehydrogenase along with Pyruvate dehydrogenase 

forms the pyruvate dehydrogenase (PDH) complex. The PDH complex is a nuclear-

encoded mitochondrial multi-enzyme complex that converts pyruvate to acetyl-CoA and 

CO2, the primary link between glycolysis and the tricarboxylic acid (TCA) cycle 

(Karlberg & Andersson 2003) (Fig 6). PDHA1 plays a key role in the function of the 

PDH complex (Strumilo 2005). Further research results support the hypothesis that 

incretin-derived cAMP activates mTOR by mobilising intracellular Ca2+ stores that further 

upregulate mitochondrial dehydrogenases and result in enhanced ATP production (Kwon 

et al. 2004).  

Autophagy and apoptosis are the two basic processes contributing to the maintenance of 

cellular homeostasis (Ghavami et al. 2014). Recent studies have found a key role for 

autophagy in neurodegenerative disorders, and it has been observed that autophagy is 

deregulated in PD brains (Cheung & Ip 2009). Autophagy eliminates damaged organelles 

and protein aggregates. Therefore, therapeutic strategies to modulate the autophagy could 

be of great potential (Nixon 2013, Ghavami et al. 2014). To evaluate the role of incretin 

analogues in modulating the expression of autophagy-related genes (Atg) and other 

autophagy-associated markers, we analysed key biomarkers. Beclin-1 plays a central role 
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in autophagy and it remains inactive when bound to the Bcl-2 but phosphorylation of Bcl-

2 disrupts this interaction and releases Beclin-1, thereby initiating autophagy (Kang et al. 

2011). There are several core Atg forms that function in two ubiquitin-like conjugation 

systems essential for autophagosome formation. Firstly, we examined Atg7, the ubiquitin 

E1-like enzyme that activates Atg12 and mediates the formation of the autophagosome 

(Mizushima et al. 2011, Murrow & Debnath 2015). Atg3, the E2-like enzyme is required 

in the second ubiquitin-like conjugation system essential for autophagosome formation 

(Murrow & Debnath 2015). There are two schools of thought that describe (1) increase or 

(2) decrease in the autophagy under the effect of GLP-1 analogues. Our findings of 

increased Atg 7  supports the first school of thought. One report on the use of incretin 

therapy in beta cell-specific autophagy-deficient mice developed by Atg7 deletion (Atg7Δβ 

cell) revealed that glucose-stimulated cAMP production was impaired in the autophagy-

deficient islets exposed to Exendin-4 (Kim et al. 2016). Another study on Liraglutide 

found that increase in autophagy plays a role in reducing the lipid accumulation in 

hepatic steatotic L‑ 02 cells (Zhou et al. 2014b). Both Exendin-4 and Liraglutide reduce 

hepatocyte steatosis and improve survival by promoting macro-autophagy (Sharma et al. 

2011). Another study found found that Liraglutide prevents high glucose level induced 

insulinoma (INS-1) cell apoptosis by increasing autophagy (Chen et al. 2013). On the 

contrary, Zhao and co-workers examined the renoprotective effect of Liraglutide in the 

HK-2 cells and kidneys of diabetic rats and disclosed that Liraglutide inhibits autophagy 

(Zhao et al. 2015). It is crucial to maintain a proper level of autophagy in order to 

minimise levels of abnormal protein aggregates. Autophagy modulation is a potential 

therapeutic target and novel therapeutic agents that could improve autophagic activity or 

maintain mitochondrial homeostasis may reduce neuronal loss and slow down disease 

progression  (Lynch-Day et al. 2012, Rubinsztein et al. 2012). 

We confirmed the involvement of PI3K - mediated Akt activation by use of the PI3k 

inhibitor LY294002 and further show the possible pathways that lead to increased cell 

survival, autophagy and improved mitochondrial function. In addition, we present novel 

results comparing different incretin analogues. At the lowest dose of 1nM, the novel 

GLP-1/GIP dual agonist increased the cell viability most efficiently among all six 

analogues tested. Finan et al. demonstrated enhanced anti-hyperglycemic and 
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insulinotropic efficacy of GLP-1/GIP dual agonists relative to the currently best in class 

GLP-1 agonist liraglutide. The effective dose of the dual agonist was far lower compared 

to liraglutide, a finding that we confirmed in this in vitro study (Finan et al. 2013). 

Furthermore, at a dose of 100nM, Liraglutide, D-Ser2-Oxyntomodulin, a GLP-1/GIP 

Dual agonist and dAla(2)-GIP-GluPal improved cell survival significantly. In the BrdU 

assay, we found that 100nM Liraglutide enhanced cell proliferation the most among all 

the analogues. However, as this is an in vitro study, there are clear limitations, in 

particular, the pharmacodynamics in vivo will vary due to the different survival times of 

each analogue in the blood stream. Exendin-4 has a short survival time whereas the 

lipidated analogues such as liraglutide have a much longer survival time in the blood 

(Finan et al., 2013). 

Incretin mimetics have shown neuroprotective effects in a range of animal models of 

disease, such as PD, AD, stroke and ALS (Holscher, 2014a). Importantly, GLP-1 

analogues are currently in clinical trials, and have shown first good results in pilot study 

of PD with exendin-4 (Aviles-Olmos et al. 2013, 2014), and also in a pilot study of AD, 

showing robust protection in 
18

FDG-PET brain imaging by liraglutide (Gejl et al., 2016). 

Based on this success, phase II clinical trials in AD and PD are ongoing. Our findings 

presented in this paper shed light on some of the biochemical pathways and processes 

that may underlie the neuroprotective effects of the incretin hormones. 
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Figure Legends 

 

Figure 1. Incretins enhance cell viability of rotenone stressed SH-SY5Y cells. 12hrs 

of post-treatment with 100nM incretin analogues against Rotenone stress (0.1, 1, 10µM) 

for 12hrs increases (a) cell survival, (b) decreases lactate dehydrogenase (LDH) levels of 

SH-SY5Y cells. From the initial experiments 1μM concentration of rotenone was decided 

for further studies. The effect of post-treatment with 1nM incretin analogues against 1μM 

rotenone stress was examined on the (c) cell viability (d) cytotoxicity of SH-SY5Y cells. 

Data are presented as mean ± SEM and as a percentage of control. Statistical analysis was 

done by one-way ANOVA followed by Bonferroni’s Multiple Comparison test (*p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: non-significant), n = 5.  

 

Figure 2. Post-treatment with 10nM and 100nM Incretin analogues enhances cell 

survival and decreases cytotoxicity. The effect of post-treatment with 10nM incretin 

analogues against 1μM rotenone stress for 12hrs was examined on the (a) cell viability 

(b) cytotoxicity of SH-SY5Y cells. Thereafter, the effect of post-treatment with 100nM 

incretin analogues against 1μM rotenone stress was studied on the (c) cell survival (d) 

LDH levels. Data are presented as mean ± SEM and as a percentage of control. Statistical 

analysis was done by one-way ANOVA followed by Bonferroni’s Multiple Comparison 

test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: non-significant), n = 5.  

 

Figure 3. Incretin analogues activate cell survival mechanism. Western blot analysis 

of the cells challenged with 1μM rotenone stress for 12hrs followed by a 12hr post-

treatment with 100nM incretin analogues. There was an increase in the expression of (a) 

pAkt (Ser473)/panAkt, (b) pBcl-2 (Ser70), (c) phospho-BAD when compared to the 

control. Beta-actin was used as an internal loading control. Results are expressed as mean 

± SEM of three independent experiments as a percentage of control. Statistical analysis 

was by one-way ANOVA followed by Bonferroni’s Multiple Comparison test (*p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001, ns: non-significant). 

 

Figure 4. Incretin analogues protect against mitochondrial damage and autophagy 



Novel incretin analogues increase cell survival 

 

impairment induced by rotenone stress. Western blot analysis of the cells exposed to 

1μM rotenone stress for 12hrs followed by post-treatment with 100nM incretin analogues 

for 12hrs. There was an increase in the expression of (a) PDH (pyruvate dehydrogenase), 

and (b) an increase in the expression of autophagy associated marker protein Atg7. the 

Beta-actin was used as an internal loading control. Results are expressed as mean ± SEM 

of three independent experiments as a percentage of control. Statistical analysis by one-

way ANOVA followed by Bonferroni’s Multiple Comparison test (**p < 0.01, ***p < 

0.001, ****p < 0.0001). 

 

Figure 5. Incretin analogues ameliorate the inhibitory effect of LY294002 on 

autophagy and cell survival. SH-SY5Y cells were exposed to 50μM LY294002, PI3K 

inhibitor for 1hr and post-treated with 100nM incretin analogues for 1hr. Western blot 

analysis shows that there was a significant decrease in the expression of (a) Atg3 in the 

untreated state that was ameliorated by the post-treatment with incretin analogues, (b) 

pBcl-2 expression was enhanced by incretin analogues. GAPDH was used as an internal 

loading control. Results are expressed as mean ± SEM of three independent experiments 

as a percentage of control. Statistical analysis was by one-way ANOVA followed by 

Bonferroni’s Multiple Comparison test (*p < 0.05, **p < 0.01,***p < 0.001, ****p < 

0.0001, ns: non-significant). 

 

Figure 6. Potential mechanism underlying the neuroprotection exhibited by Incretin 

analogues against Rotenone stress. The diagrammatic representation of the effect of 

post-treatment with Incretin analogues against Rotenone stress summarises different 

events involved in the cellular signalling. The protective effect of incretin analogues in 

the SH-SY5Y human neuroblastoma cells against the Rotenone toxicity is mediated by 

PI3K/Akt pathway. When Incretin analogue binds to the GPCR GLP-1 or GIP receptor, it 

activates PI3K resulting in phosphorylation of Akt at site Ser473. Akt activation results in 

1. Increase in autophagy by releasing Beclin-1 from Bcl-2, 2. Increase in survival by 

inhibition of apoptosis - phosphorylation of Bcl-2 that prevents cytochrome c release 

from inner mitochondrial space (IMS), 3. Phosphorylation and inactivation of pro-

apoptotic Bad and transcription factor Foxo1. Post-treatment with incretin analogues 



Novel incretin analogues increase cell survival 

 

ameliorate mitochondrial dysfunctioning by 1. an increased expression of (cytochrome c 

oxidase) Cox IV and (superoxide dismutase) SOD1, 2. Increase in (heat shock protein 60) 

HSP60 and Prohibitins (PHB1), 3. Increased Pyruvate dehydrogenase (PDH) expression. 

Abbrev.: GLP-1R = glucose-dependent insulinotropic peptide receptor; GIPR = glucose-

dependent insulinotropic peptide receptor; PI3K = phosphoinositide 3 kinase; OMM = 

outer mitochondrial membrane; IMM = inner mitochondrial membrane; IMS = inter 

membrane space; Bcl-2 = B-cell lymphoma 2; Bad = Bcl-2-associated death promoter; 

SOD1 = superoxide dismutase; PDH = pyruvate dehydrogenase; Atg7 = Autophagy-

related protein 7; Atg3 = Autophagy-related protein 3.
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