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ABSTRACT This paper investigates the gasoline price adjustment to changes in the 

input cost price for a panel of 48 U.S. states using a monthly data set covering the 

period 1994-11. We build for the first time a non-linear threshold Panel Vector-

Error-Correction Model (PVECM) and propose efficient Markov Chain Monte Carlo 

(MCMC) Bayesian techniques. Our findings indicate that states with high margin 

experience a slower adjustment and a more asymmetric response to input price cost 

shocks. Our results are robust to potential breaks in the threshold parameter, which is 

important as market conditions change over time and are very sensitive to 

production/consumption constraints. Lastly, we attribute fluctuations in the gasoline 

prices to input cost shocks arguing that the peak responses occurring one month after 

the shock are short-lived.   
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I.  INTRODUCTION 

Consumers often tend to believe that oil companies adjust the retail gasoline prices 

more quickly to cost increases than to cost decreases, creating an asymmetric 

adjustment path towards the long-run equilibrium, known as the “rockets and 

feathers” hypothesis. This perceived asymmetry in retail price adjustment to changes 

in crude oil prices is commonly attributed to “gouging” engaged in by vertically 

integrated firms in an effort to increase retail profits, which in turn is made possible 

by their market power (Borenstein, et al, 1997, Deltas, 2008).  

Within the last years there has been a plethora of studies on the existence of 

price asymmetry in the gasoline market with controversial results. Existing literature 

differs by country, sample period, data frequency and econometric methodology. The 

majority of these studies apply cointegration techniques and especially Engle-Granger 

methodology by utilizing an asymmetric error-correction model (ECM) in order to 

uncover the existence of price asymmetries. Since the empirical literature on this topic 

is quite broad, Table 1 summarizes the main empirical findings of the investigation of 

asymmetric adjustments in terms of methodologies, dataset and study periods used. 

< Insert Table 1 about here > 

 

Bumbass et al (2015) examine the long-run relationship between the spot oil price and 

retail and wholesale gasoline prices. They use a simple Threshold Autoregressive 

Model (TAR) in order to account for the existence of price asymmetry both in the 

long and the short run. They argue that both retail and wholesale gasoline prices 

respond symmetrically to an oil price shock in the long run, indicating little market 

power by gas stations and wholesalers. Moreover, Kristoufek and Lunackova (2015), 

reinvestigate the “rockets and feathers” hypothesis by employing error correction 

methodology (ECM). They find that the prices return to their equilibrium value much 

more slowly than would be typical for the ECM suggesting the validity of the “Joseph 

effect”.   

Polemis (2012) by using the error-correction model in the Greek gasoline 

market reports that retail gasoline prices respond asymmetrically to cost increases and 

decreases both in the long and the short-run. However, within the wholesale segment, 

there is a symmetric response of the spot prices of gasoline in adjusting a to the short-
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run responses of the exchange rate. Polemis and Fotis (2011) contains an application 

of Generalized Method of Moments (GMM) panel data Error Correction Model 

(ECM) to study the transmission between crude oil prices and retail gasoline prices in 

eleven European countries from 2000 to 2011.  

      Bermingham and O’ Brien (2010) empirically test whether Irish and 

United Kingdom (UK) petrol and diesel markets are characterised by asymmetric 

pricing behaviour. The econometric assessment uses threshold autoregressive models 

and a dataset of monthly refined oil and retail prices covering the period 1997 to mid-

2009. Their study concluded that for both the Irish and UK liquid fuel markets at 

national levels, there is no evidence to support the hypothesis that retail prices rise 

faster than they fall in response to changes in oil prices (price asymmetry).   

Douglas (2010) finds little evidence of asymmetry in the transmission process 

from crude oil shocks to retail gasoline price in the United States. The author states 

that the minor evidence of asymmetry found is due to the presence of outliers in the 

data set. Clerides (2010) uses data from 2000 to 2010 for several European Union 

countries to investigate the response of retail gasoline and diesel prices to changes in 

the world oil price. The empirical findings indicate significant variation in the 

adjustment mechanism across countries. Fluctuations in the international price of oil 

are transported to local prices with some delay but evidence of asymmetric adjustment 

is fairly weak. Statistically significant evidence of asymmetric responses is only found 

in a small number of countries, while in some countries there is even (weak) evidence 

of asymmetry in the reverse direction: prices drop faster than they rise.  

Faber (2009) explores 3600 gas stations in the Netherlands from 2006 to 2008 

and concludes that gasoline price asymmetry is not a feature of the market as a whole. 

The author estimates that there are significant differences between gas stations: 38% 

of gas stations price asymmetrically and the remainder does not follow the same 

pattern. Deltas (2008) reports that U.S. states with high average retail-wholesale 

margins experienced a slower adjustment and a more asymmetric response in retail 

prices. Kuper and Poghosyan (2008) examine gasoline price asymmetry in the United 

States from 1986 to 2005.  The authors divide the period under scrutiny into two sub 

periods. The analysis of period from 1986 to 1999 indicates that wholesale segment 

adjusts the production level of crude oil to control the long run oil prices. However, 
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after 1999, the ability of wholesale producers to control the long-run price of oil has 

decreased since gasoline price symmetry holds only where the deviation from the long 

run exceeds 6%. Lastly, Galeotti et al. (2003) studied trends in Germany, France, UK, 

Italy and Spain from January 1985 to June 2000 and concluded that “rockets and 

feathers” appear to dominate the price adjustment mechanism of gasoline markets in 

many European countries.  

Based on the above, three main empirical finings emerge. First, many previous 

empirical panel data asymmetric adjustment models have been constructed under the 

assumption of treating regression functions as identical across all observations in their 

sample and not allowing them to fall into a discrete number of classes. However, this 

premise is not credible since there are good theoretical reasons and there is strong 

empirical evidence suggesting that individual observations can be divided into classes 

based on the value of an unobserved variable (Hansen, 1999, Hansen, 2000, Caner 

and Hansen, 2004). We address these limitations by estimating a threshold parameter 

in a data driven approach that “endogenously” sorts the data into different regimes. 

The threshold variable that we use to sort observations into the different regimes is the 

level of profit margin as a proxy for market power (Deltas, 2008). The partitioning 

into a discrete number of classes (or bins) is economically meaningful since it allows 

the cross sections elements of the panel (states) to be sorted according to their level of 

competition in the gasoline market segments (wholesale and retail) placing them into 

competitive (low margin states) and non-competitive (high margin states) regimes. In 

this way, our analysis accounts for the existence of price asymmetry between different 

micro-economic levels (i.e. states) and links the level of market power with the price 

adjustment mechanism.     

 Secondly, many of the empirical studies focus on the investigation of gasoline 

price asymmetry expressed in a linear form (Yang and Ye, 2008, Tappata, 2009, 

Polemis, 2012, Lewis and Noel, 2011, Clerides, 2010, Faber, 2009, Honarvar, 2009, 

Hosken et al, 2008). It is noteworthy that nonlinear models have been quite recently 

used in order to address the price relationships in oil, gasoline and related markets 

(see for example Wlazlowski, et al 2012; Greenwood-Nimmo and Shin, 2013). 

However, estimation of the model dynamics will be intensely jeopardized when a 
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nonlinear long run relationship is misspecified as linear (Blake et al, 1998, Shin et al, 

2013, Greenwood-Nimmo and Shin, 2013).  

Lastly, the majority of the existing studies (e.g. Polemis, 2012, Lewis and Noel, 

2011, Clerides, 2010, Faber, 2009, Honarvar, 2009, Valadkhani, 2009, Balmaceda 

and Soruco, 2008, Bachmeir and Griffin, 2003, Bettendorf, et al, 2003, Galeotti, et al, 

2003) have estimated Error Correction Models (ECMs) by employing the two-step 

cointegrating approach developed by Engle and Granger (1987). However, it is well 

documented in the literature that single step fully dynamic autoregressive distributed 

lag (ARDL) estimation is more efficient and yields improved performance compared 

to single equation ECMs (Banerjee et al., 1993, 1998; Pesaran and Shin, 1998; 

Pesaran et al., 2001, Greenwood-Nimmo and Shin, 2013). In order to account for this 

limitation, we use a Vector Error Correction Modelling (VECM) framework which is 

even more efficient and well suited to the joint analysis of short-run and long run 

asymmetric responses of gasoline prices to its input cost disturbances (Greenwood-

Nimmo and Shin, 2013).  

Our analysis implies that states with high profit margin experience a slower 

adjustment and a more asymmetric response compared to low profit ones. Moreover, 

the magnitude of the estimated short-run coefficients is in the most cases larger in the 

retail than in the wholesale level. However, the adjustment towards the equilibrium 

level is more gradual in the wholesale segment whereas both the wholesalers and 

retailers tend to react more to price increases than price decreases. In contrast to other 

studies (e.g Greenwood-Nimmo and Shin, 2013), we find significant evidence that the 

wholesale and retail price of gasoline before taxes and duties adjusts more rapidly in 

an upward than a downward direction.  

The motivation of this paper is to contribute to the empirical literature on retail 

and wholesale gasoline price asymmetry nexus by, for the first time in the gasoline 

price asymmetry controversy, using a threshold PVECM and MCMC techniques in 

order to perform Bayesian inference. Using the relevant methodological framework, 

we have found strong evidence suggesting the validity of the “rockets and feathers” 

hypothesis. The oligopolistic structure of the local gasoline market triggers the price 

asymmetric adjustment path. This finding raises serious doubts about the existence of 

a rent seeking oligopolistic behavior by retailers. The difference in the existence of 

asymmetric pass-through suggests that empirical studies that ignore the role of a non 
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linear model may miss an important element of the nature of price adjustment in the 

retail gasoline industry thus providing the wrong signal to government officials and 

policymakers. Lastly, estimating the degree of competition in the gasoline industry is 

crucial for regulatory and competition authorities. Regulators would like to know 

whether current regulation is conducive to competition. Likewise, competition 

authorities might gauge the current competitive situation in the gasoline industry and 

thus implement the appropriate policies to prevent anti-competitive behaviour by the 

market players (i.e. petrol stations, refineries, oil companies).     

The rest of the paper is as follows. Section 2 describes the data and the 

structure of the gasoline market in the US. Section 3 introduces the empirical 

methodology. Section 4 presents the main hypotheses or conjectures that the empirical 

analysis tests. Section 5 discusses the econometric techniques, while Section 6 

compares our findings to previous work. Finally Section 7 concludes the paper and 

provides some policy implications.   

 

II.  DATA DESCRIPTION AND ANALYSIS 

 

Our empirical analysis is based on a panel dataset of 9888 monthly observations 

spanning the period from January 1994 to February 2011. We have to stress, however, 

that more recent data are not available since the retail and wholesale gasoline prices 

do not go beyond February 2011.  The sample includes 48 US states except for Maine 

and Connecticut where no data was available. The use of monthly data takes away 

much price variation and  higher frequency data would be more suitable for analyzing 

our research questions (Remer 2015) but  our main data source (Energy Information 

Administration -EIA) publishes only monthly and annually time series.   

Retail and wholesale (rack) motor gasoline prices before taxes and duties are 

obtained from the EIA of the U.S. Department of Energy. Spot prices of conventional 

gasoline (measured in dollars per gallon) traded in New York Harbor are taken also 

from the EIA. The reason for choosing New York Harbor instead of other hubs such 

as the U.S Gulf Coast is that the former constitutes the most significant logistic hub 

for refined gasoline both arriving by pipeline from the Gulf Coast and from abroad by 

tanker (Trench, 2001). Besides we have used other spot indicators such as The Gulf 

and the West Coast spot prices with similar empirical results. The cash price of bulk 
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unleaded gasoline delivered to New York Harbor represents a good proxy for the 

input cost since it is estimated that on average, 96% of the wholesale price is 

represented by the cost of gasoline at the hub (Douglas and Herrera, 2010). Crude oil 

price measured in dollars per barrel accounts for the Cushing, OK WTI Spot Price 

FOB, also extracted from EIA. Lastly, as suggested by Deltas (2008), we calculate the 

difference between the retail and wholesale price known as the profit margin, in order 

to capture the presence of market power.  

 

< Insert Table 2 about here > 

 

Table 2 presents the descriptive statistics of our dataset. Over the sample period, 

retail prices averaged 1.4 dollars per gallon (not including taxes) while wholesale 

prices were approximately 16 cents lower (1.25). It is worth mentioning that retail and 

wholesale gasoline prices follow a similar pattern. Specifically, gasoline prices have 

been rising slightly over the examined period, with a drift of 0.10 cents per month. 

Regarding the short run price fluctuations, it is important to note that the standard 

deviation of retail prices is smaller than that of wholesale prices (0.144 and 0.146 

respectively) suggesting the existence of a “dampening” effect in the gasoline market 

(Deltas, 2008).  

Figure 1 depicts the relatively close co movement between the spot gasoline price 

and the level of wholesale and retail (pump) prices. Moreover, it is evident that 

gasoline prices were characterized by high volatility within the examined period. 

More specifically, the average retail gasoline prices (before taxes) in the US have 

shown an upward trend during the period from February 2002 until July 2008, 

reaching the highest level at 3.588 USD/gallon.  

This trend is fully reversed within the next period (August 2008-March 2009) 

in which retail prices have dropped significantly by 55% approximately. It is 

noteworthy that the wholesale (rack) prices of gasoline follow a similar pattern with 

smaller fluctuations. Examining the distribution of the size of the adjustment, we see 

that they were quite small in the period from January 1994 to February 2005 whereas 

became more volatile from 2005 onwards. The price of spot gasoline has followed a 

similar pattern. More specifically, within the same period, the spot price of gasoline 
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has fluctuated 205 times; 119(58%) adjustments were upward and 86 (42%) 

adjustments were downward. 

<Insert Figure 1 about here> 

 

ΙΙΙ.   ECONOMETRIC MODEL 

Our model extends the study of Greenwood-Nimmo and Shin (2013) to a panel data 

framework. Specifically, the model is as follows. Suppose we have an asymmetric 

long-run relationship of the form: 

 
it i it it it

y u ,  i 1,...,n,t 1,...,T           x α x α                           (1) 

where i  represents fixed effects, itx  is a 1k   vector of regressors, 

 t

it ijj 1
max ,0


 x x ,  t

it ijj 1
min ,0


 x x  are partial sum processes representing 

positive and negative changes respectively. We have the following conditional Panel 

Vector-Error-Correction Model (PVECM): 

 
 

p 1

it i ,t 1 i ,t 1 i ,t 1 j i ,t jj 1

q 1

j i ,t j j i ,t j itj 0

y y y

           e

   

   

    

 

         

    




δ x δ x

π x π x
                             (2) 

This is a minimal extension of the model in Greenwood-Nimmo and Shin (2013) and 

Shin, Yu, and Greenwood-Nimmo (2014). In the above asymmetric PVECM, changes 

in the input prices (crude oil and spot prices) are split into positive and negative 

changes, respectively. In other words, as suggested by Galeotti, et al (2003), short-run 

asymmetry is captured by similarly decomposing price changes into 

Δ 01  


ttt xxx  and Δ 01  


ttt xxx for x=CR, SPG. Hence ΔCRP = ΔCR if 

ΔCR>0 and 0 otherwise. ΔSPGP = ΔSPG if ΔSPG>0 and 0 otherwise. The opposite 

holds for ΔCRN, and ΔSPGN. Finally ECMP and ECMN denote the one-period 

lagged deviation from the long-run equilibrium and account for asymmetry in the 

adjustment process. Similarly ECMP = εt>0 and 0 otherwise and ECMN = εt<0 and 0 

otherwise.  

The specification in Eq. 2 is the most general form, admitting both long-run 

and short-run asymmetries. The null hypotheses of long-run symmetry can be 
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evaluated using a standard Wald test. Short-run symmetry restrictions can take either 

of the two following equations:  

 
j j

, j 0,...,q 1    π π ,                            (3) 

q 1 q 1

j jj 0 j 0

  

 
 π π                                                                         (4) 

These expressions can be tested using standard Wald tests (Greenwood-Nimmo and 

Shin (2013). For a more general specification, we assume that: (i) long-run and short-

run coefficients can be state-specific; (ii) there is an unknown threshold which defines 

the nonlinear relationship, and (iii) error terms can be cross-sectionally correlated. 

The extended model can be represented by the following short-run nonlinear ECM:  

 
   
    

p 1

it i i ,t 1 i i ,t 1 i i ,t 1 i ,j i ,t jj 1

q 1

i,j i ,t j i ,j i ,t j itj 0

y y y

          ,

   

   

    

 

           

       




δ x δ x

π x π x
                     (5) 

where: 

 
 

   

t

ijj 1
t

it it ijit j 1

max ,0

m m max ,0







 
 
     
 
 
 




x

xx  ,  
 
   

t

ijj 1
t

ij it itit j 1

min ,0

min ,0 m m







 
 
     
 
 
 




x

xx  ,  (6) 

are the modified partial sum processes, itm  represents the separating variable, the 

profit margin in our case, and  is the threshold value. In the model of Greenwood-

Nimmo and Shin (2013) the regressors are simply    t

it ijj 1
max ,0


  x x  and 

   t

it ijj 1
min ,0


  x x  so that partial sum processes have a known threshold of 

zero. In this study, the same regressors are included but, additionally, we investigate 

whether negative and positive price changes depend on exceeding a certain, unknown, 

profit margin λ. In other words, we enter the markup dummy variable if it exceeds an 

unknown λ representing the threshold value. As explained before, these procedures 

are based on non-standard asymptotic theory and specifically account for the 

estimation of an unknown threshold parameter in a data driven approach that 

“endogenously” sorts the data into different regimes, if such regimes exist.  
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Moreover,  
,   

 = 
0,   otherwise.






ij

it j

t


 
    

Suppose: 

 K

i i i i i ,j i ,j i ,j
, , ,( , j 1, ,p 1),( , , j 0, ,q 1)             

 
β δ δ π π   ,  

for 1, ,i n  . For the coefficients 
i

β  we assume: 

  
iid

i K
~ , ,i 1, ,nβ β Ω   .                                                 (7) 

For the error terms we assume:  

  
iid

i i1 iT T
, , ~ ,    ε 0 Σ  ,  

independently of all regressors and other stochastic elements of the model. Given the 

considerable amount of heterogeneity that we have allowed for, the assumption of a 

general covariance matrix, 
ij
,i, j 1, ,n    Σ   is, perhaps, excessive but we retain it 

for generality. The model can be written as a nonlinear VAR with regressors: 

 
   

    

p 1

it i ,j i ,t j i i ,t 1 i i ,t 1 i i ,t 1j 1

q 1

i,j i ,t j i ,j i ,t j itj 0

w w y

              

    

   

    

 

        

       




δ x δ x

π x π x
                            (8) 

from which we obtain:  

    p 1

it i ,j i ,t j it i it it i itj 1
w w




           z ξ x β ,                                 (9)  

 where 
i i i i ,j i ,j i ,j

, ,( , j 1, ,p 1),( , , j 0, ,q 1)           
 

ξ δ δ π π   , viz. all elements 

of 
i

β  except 
i

 .    

In a Bayesian treatment of the problem, we have to address the following issues: 

(i) The determination of lag orders p  and q  . 
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(ii) The determination of an informative prior for β  which, however, is not as high-

dimensional as unrestricted coefficients would be in a general Bayesian VAR. 

(iii) The determination of a prior for Σ  and Ω . 

(iv) The determination of a prior for the threshold parameter   and a computational 

strategy to implement Markov Chain Monte Carlo (MCMC) for full Bayesian 

inference.   

Problem (i) is relatively easy as we can implement model comparison via 

marginal likelihood and Bayes factors (see Appendix B and C). Regarding (ii) we can 

assume simply that Kβ 0  but (as part of problem (iii)) we have to choose a 

reasonable prior for Ω . Given the Cholesky decomposition 'Ω C C  and the unique 

elements ijc  of the lower triangular matrix C  we assume: 

  
iid

ij
c ~ 0,1 ,  j i,i 1, ,n      

For matrix Σ  we assume a single-factor model based on the point that we 

made above. Specifically:  

 
t t t

f ε φ v ,                                                          (10) 

where 
t t1 tn

, ,     ε  , the common factor: 

  
iid

2

t t 1 t t
f af e ,   e ~ 0, 1 a


   ,                                     (11) 

provided |a| 1 . The formulation guarantees that (in the stationary case) the expected 

value of 
t

f  is zero and its variance is equal to one. 

Additionally, we assume:  
iid

2 2

t n 1 n
~ ,diag , ,   v 0   and φ  is an 1n  

vector of factor loadings. As our prior opinion is that cross-sectional correlations are 

similar, and to avoid the proliferation of parameters, we assume: 

1 n
    . 
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Moreover, we assume: 

  
iid

2 2

t n 1 n
~ ,  diag , ,   v 0  .                                              (12) 

We enforce parsimony by assuming:  

    2 2 2 2 2 2

i 1 1 1 1 2
log | ~ log ,  ,  i 2, ,n,   log ~ a ,a        .               (13)  

We set 0.4 , 
1 2

a 3, a 0.1   .  The resulting prior for 1  averages 0.23 with a 

standard deviation of 0.034. The typical ratio 1/ , 1i i    averages 1.06 and its 95% 

credible (Bayes) interval is from 0.69 to 1.70. 

For   we assume a flat prior: 

    p  0 1     .                                                     (14) 

This can be used to assess the validity of posterior results as we do not impose 

restrictive assumptions on the behavior of the margin. For parameter a  in (14) we 

assume: 

  p(a) 1 a 1    .                                                     (15) 

For model selection (values of p and q) we rely on the computation and comparison of 

marginal likelihoods and Bayes’ factors. The Bayes factors are computed using 

marginal likelihoods for threshold PVECM models (see Appendix C, D and E). We 

normalize the Bayes factor to 1 for 2, 1 p q , the simplest possible model in our 

context. Suppose  denotes the available data and  DR is the vector of 

parameters. For any posterior distribution whose kernel1 is: 

 p | ( ; )p( )     ,                                                (16) 

where ( ; )  is the likelihood function and ( )p   is the prior, the marginal 

likelihood can be expressed as: 

( ) ( ; )p( )d    M .                                                   (17) 
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The posterior itself is: 

   ( ; )p( ) ( ; )p( )
p |

( )( ; )p( )d


   
  

  
 




 

 M
.                                    (18) 

Similarly, we can define the marginal likelihood: 

1:t 1:t
( ) ( ; )p( )d    M ,                                                 (19) 

for data 1: t  from period 1up to t . Relative to a base model whose marginal likelihood 

is 0 ( )M  or 0 1:( ) tM   we define the recursive Bayes factor as 

 
 
 

1:t

1:t

0 1:t

BF 




M

M
 .                                                         (20) 

For details of computation see Appendix A and C. Here, we use the entire-

sample version of the Bayes factor (that is, we use t T ) and recursive Bayes factors 

will be used in the next section to compare with a model that does not allow for 

threshold effects. Based on the results of Table 3, we select a model with 3p  and 

2q   which is strongly favored over the other alternatives. 

<Insert Table 3 about here> 

IV.   FORMULATION OF RESEARCH HYPOTHESES  

In this section we develop the main research hypotheses regarding the 

existence of an asymmetric price adjustment mechanism in the wholesale and retail 

market segment, which are then tested empirically in the subsequent section of the 

paper.  

A widely used classification among studies that analyse the relationship 

between output and input gasoline prices is between short-run and long-run 

asymmetries. A short run analysis is suitable to compare the intensity of output price 

variations to positive or negative changes in input cost prices (i.e. crude oil price and 

spot gasoline price variations), while a long run analysis is needed if the empirical 

investigation focuses on the estimation and length of price fluctuations, as well as the 
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speed of adjustment toward an equilibrium level (Frey and Manera, 2007). In this 

study, by using a PVECM, we will decompose the wholesale and retail price 

fluctuations to long-run and short-run relationships while investigating for possible 

asymmetries in the adjustment process. Instead of using a typical ECM procedure 

where all variables are expressed in first differences, except for the stationary 

residuals that represent the Error Correction Term (ECT), indicating the deviations 

from the long-run equilibrium (speed of adjustment), we use a PVECM that is a 

system of equations allowing for decomposing short-run and long run asymmetric 

responses of gasoline prices to its input cost disturbances in a more efficient way (see 

for example Greenwood-Nimmo and Shin, 2013).   

As discussed above, one of the novelties of this paper is to split the sample 

allowing for different regimes determined by a threshold variable. This variable refers 

to the gross profit margin of the retailers, which is  a good proxy for market power  

(Deltas, 2008) In that case states will be sorted according to their prevailing 

“attitudes” towards competition placing them into competitive (low margin states) and 

non-competitive (high margin states) ones. Hence we will try to investigate if there is 

a link between the level of market power (or competition) and the asymmetric 

adjustment mechanism. Lastly, one of the main research questions that we want to 

examine is the dynamic gasoline price adjustment mechanism to innovations (shocks) 

caused by fluctuations of the input cost prices (i.e crude oil price and spot gasoline 

price). In this way, we trace out the duration of an exogenous shock to be either 

permanent or transitory.     

Based on the above, we formulate the following research hypotheses: 

 

Hypothesis 1. The effects of upstream price increases are larger than those of price 

decreases in the wholesale and retail segment (long-run asymmetry).  

Hypothesis 2. The positive ECTs are larger than the negative ones in the wholesale 

and retail segment. Alternatively, the speed of adjustment toward long-run 

equilibrium is larger to positive than to negative fluctuations (long-run asymmetry).    

 

Hypothesis 3. The positive short-run price effect is larger than its negative 

counterpart in the wholesale and retail segment (short-run asymmetry).   
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Hypothesis 4. States with high (low) profit margin experience a slower (faster) 

adjustment to input price cost shocks (dynamic price adjustment).  

 

Hypothesis 5.  The impact of an input price shock to the transmission mechanism of 

the wholesale and retail gasoline price is permanent or transitory.   

 

V.   EMPIRICAL FINDINGS  

1.  Estimated coefficients. 

Table 4 depicts the empirical findings. We present results for four threshold PVECM 

which capture the (asymmetric) transmission of spot gasoline and crude oil price 

changes to both the pre-tax wholesale and retail gasoline prices respectively. In the 

relevant table, Panel A depicts the gasoline price adjustment to fluctuations in the spot 

gasoline price, while Panel B, represents the estimated coefficients of the threshold 

PVECM when the input cost variable is the crude oil price.       

Examining Panel A, it is evident that in both models (wholesale and retail) 

positive coefficients are larger, in absolute value, than their negative counterparts. 

This finding which is also evident in other empirical studies (Grosso and Manera 

2007; Contin et al. 2006; Polemis, 2012) reflects the consumers’ perception of the 

actual effects of oil price variations on gasoline price changes, meaning that the 

effects of upstream price increases are larger than those of price decreases. The 

coefficients ρ+ and ρ- indicate the asymmetric adjustment speed, which is a measure 

of long-run asymmetry (Polemis, 2012). In other words, the positive and negative 

error correction terms are associated with adjustment to the long-run equilibrium level 

of price from above and from below (Galeotti et al, 2003).  

From the reported values, we argue that the speed of adjustment in Model 1 

ranges from 42-57% per month. It is worth mentioning that, positive changes of the 

error correction term are larger, in absolute value, than their negative counterparts 

(0.571 and 0.421 respectively). This means that if the wholesale price of gasoline is 

10% above its long-run equilibrium price, given the current spot price, the percentage 

change difference over a period of one month will be 0.10 × (−0.571) = −0.0571 or 

5.7%. In other words, if we are off the long-run equilibrium, the wholesale (rack) 
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gasoline price will reach equilibrium in a six month period approximately. the speed 

of adjustment in the retail market model follows a similar trend . Specifically, the 

positive change of the ECM to the long-run equilibrium is estimated to −0.638. This 

means that if the retail price of gasoline is 10% above its long-run equilibrium price, 

given the current spot price, 6.4% of the difference between the equilibrium price and 

the current price will be eliminated in the next month ceteris paribus. 

Moreover, we find a positive (β+) and negative (β-) long-run coefficient equal 

to 0.92 and 0.87 respectively, indicating that wholesalers are driven by the 

fluctuations in the input price of gasoline in the long run. This result reveals a long-

run rent-seeking oligopolistic behaviour by the oil companies, which in turns is 

consistent with an asymmetric gasoline price adjustment mechanism at least in the 

long run.  

In addition, the empirical findings indicate that positive short-run price effect 

is larger than its negative counterpart (0.313 instead of 0.236). This means that 

wholesale gasoline prices in the US seem to react more to price increases than to price 

decreases. This finding can be traced in many European countries as well2. From the 

magnitude of the relevant estimates, we see that a 10% short-run increase in spot price 

of gasoline (input price) will increase the wholesale price of gasoline by about 3.1%.  

< Insert Table 4 about here > 

The discussion now turns to Model 2. Column 2, shows where the responsiveness of 

retail price is symmetric in decreases and increases of the spot price of gasoline. More 

specifically, an increase in the spot price of gasoline of one unit induces a 

contemporaneous retail price increase of about 0.44, whereas a fall in spot price of 

one unit, results in a contemporaneous price effect of 0.38. Taken together, this means 

that the price responded more rapidly to cost increases than to decreases. From the 

above analysis, it is evident that the short-run accumulated pass-through in the retail 

price of gasoline is asymmetric. This result reveals long-run rent-seeking oligopolistic 

pricing behaviour by the retailers giving strong evidence that asymmetric price 

adjustment can be attributed to the oligopolistic pricing behavior (Radchenko, 2005). 

Specifically, the increasingly short-run rate of response of retail price of gasoline to 

input cost (wholesale price), gives an indication that a market power effect stemming 

from the wholesalers to retailers prevails in the oil supply chain. This can be 
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explained by the fact that, the US oil industry is dominated by large, multinational 

companies (BP, Exxon-Mobil, Texaco, Shell, etc). The oligopolistic structure of the 

oil market and the market power of oil companies (Verlinda, 2008), which has been 

reinforced by the low search intensity of final consumers (see among others Lewis, 

2011, Deltas, 2008 and Johnson, 2002) have lead to asymmetric price adjustments in 

the oil market and high profit margins for the oil companies. 

Lastly, if we try to compare the two-market segments (wholesale and retail), 

some striking features emerge. First, the magnitude of short-run coefficients is in the 

most cases larger in the retail than in the wholesale level. This means that, on the one 

hand, retailers do immediately transfer onto final prices (pump prices) all the 

adjustments in the spot gasoline prices. On the other hand, in the wholesale segment, 

oil companies tend to distribute changes over time. Second, the adjustment towards 

the equilibrium level is more gradual in the wholesale level revealing the differences 

between the two market segments. Furthermore, both the wholesalers and retailers 

tend to react more to price increases than price decreases. Lastly, the point estimates 

of the single threshold for the two models are also reported in the relevant table. More 

specifically, the estimates are very close ranging from 0.142 (Model 1) to 0.137 

(Model 2). Thus the estimates indicate the existence of two regimes (low and high 

market power).  

The existence of price asymmetry both in the wholesale and retail segment is 

also evident in Figure 2a. The latter provides finite-sample evidence about the 

parameters shown, ρ+, ρ-, δ and the threshold mark-up λ. The solid line is the 

posterior density of wholesale price, while the dashed line plots the distribution of 

retail gasoline price respectively. Most marginal posteriors deviate markedly from 

normal distribution. In other words, the gasoline price adjustment pattern to 

fluctuations in the spot price of gasoline in both market segments is far from 

symmetric.  

 

<Insert Figure 2a about here> 

Similarly, we find significant evidence of additively asymmetric dynamic 

adjustment to crude oil price fluctuations. It is evident from the following figure that 

marginal posteriors deviate significantly from the shape of normal distribution in both 
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market segments. These results indicate that a crude oil price increase is passed 

through more forcefully than a price decrease supporting the “rockets and feathers” 

hypothesis.   

<Insert Figure 2b about here> 

Although the above analysis reveals that there are short run relationships between the 

variables of each gasoline price adjustment model (wholesale and retail), it does not 

reveal the direction of their causal relationship (Kilian and Park, 2009). An alternative 

way to obtain the information regarding the relationships among the variables of the 

two relevant models is through the estimation of the Posterior Generalized Impulse 

Response Functions (PGIRFs) along the lines of Koop, Pesaran and Potter (1996) and 

Pesaran and Shin (1998). Our strategy is to compute the PGIRF for each MCMC draw 

and then average across draws (after convergence) to obtain a final measure, in order 

to account for parameter uncertainty.  

The upper panel of Figure 3a shows the PGIRFs of the wholesale gasoline 

price to the transmission of shocks of the input cost variable (spot gasoline price). 

This figure shows the typical speed of response to a cost increase and a cost decrease 

and underscores the point that the responses of wholesale gasoline price may differ 

substantially, depending on the time period of the spot price increases. Specifically, it 

is evident that the effect of one standard deviation shock of the spot price of gasoline 

on wholesale price of gasoline is positive and significant for a limited amount of time 

(one month period after the shock). Subsequently, the graph shows that an increase in 

the spot price of gasoline,e all else equal, would cause a transitory downward trend 

within the next month which stabilizes thereafter. Lastly, the peak response of 

wholesale price to spot price innovations occurs one month after the initial shock and 

is estimated to be approximately 8%.  

 
<Insert Figure 3a about here> 

We now turn our attention to the examination of PGIRFs at the retail level 

segment (lower panel of Figure 3a). If we look carefully the relevant diagram, we 

observe that similar findings as. the response is also found to be positive and 

statistically significant one month after the shock. The cumulative effect reaches 

10.0% in the first month, and then returns toward zero after the end of the second 
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month. However, the increasing trend stops within the next month of the peak 

response. Subsequently, the PGIRF of the retail price to a 10% increase in the spot 

price of gasoline is stable across the rest of the simulated period (8 months). This 

representation provides a solid illustration of an asymmetric gasoline price response 

in the US retail market segment.  

If we try to compare the PGIRFs between the two gasoline models, some 

important results emerge. First, the response of retail gasoline price to one standard 

deviation shock of the input price (spot price of gasoline) is more abrupt than the 

wholesale response since the relevant increase within a limited short run time span 

(one month) is estimated to 10% instead of 8% respectively. However, both series 

exhibit a decreasing trend after one month period stabilising thereafter. This finding 

reveals the absence of a sluggish adjustment price mechanism, which is often 

considered indicative of weak competition and significant market power (SMP) by the 

incumbents. Moreover, an oil shock in both models is short-lived. Specifically, the 

rate of response of wholesale (retail) price of gasoline to input price shocks, gives an 

indication that a market power effect stemming from the refiners to wholesalers 

(retailers) prevails in the wholesale gasoline price changes.  

Finally, we turn our attention to the investigation of the response of 

downstream gasoline prices at the two stage level regime to upstream shocks in the 

spot gasoline price. Figure 3b illustrates that gasoline market specific demand shocks, 

such as shocks to input cost price, will generate a significantly negative relationship 

between wholesale/retail gasoline price adjustments and spot gasoline price. 

Regarding Model 1 (upper panel)   a strong and negative rapid reaction of gasoline 

price to a 10% spot price decrease in the short-run. Similarly to Kilian and Park 

(2009), the peak response occurs one month after the shock and is estimated at 8%, 

revealing an incomplete pass-trough of wholesale gasoline price to the spot price 

decreases.  

The response of retail gasoline price to a 10% spot price decrease is also found 

to be negative and statistically significant one month after the shock, reaching a peak 

at 5%. From the combined investigation of the two figures, it appears that the peak 

response of the PGIRFs to a cost price decrease is lower in absolute terms than its 

relevant increase. This finding provides a solid illustration of an asymmetric gasoline 

price response in the US retail market segment.   
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<Insert Figure 3b about here> 

Since we use a random-coefficient model, it is possible to compute GIRFs for states 

with margin above and below the threshold (λ). In both cases the median PGIRF is 

used for the corresponding states and  the posterior standard deviations of these 

functions of interest monitor. The results are presented in Figures 4a and 4b. These 

figures plot the responses for two states (high and low profit margin) in each market 

segment (wholesale and retail). Figures 4a and 4b depict the responses of the two 

states: one with a high profit margin of 14.2 cents and one with a margin of 13.7 cents 

per gallon. The red dotted lines represent the 95% Bayes probability intervals 

computed by MCMC.  

<Insert Figure 4a about here> 

 

By comparing the two relevant figures, some important findings emerge. First, 

high margin states have faster wholesale and retail price responses to spot gasoline 

price changes than states with low margins. Second, in a state that exceeds the 

threshold value (14.2 and 13.7 cent margin in both market segments), wholesale 

(retail) prices will reflect 9% (10%) of a change in the spot gasoline price fluctuations 

within the first month. If a state falls under the threshold parameter, the corresponding 

figures are estimated as 7% and 8%, respectively.  

Lastly, similar to Deltas (2008), the degree of asymmetry varies systematically 

across states, especially in the first month after the shock, and is more pronounced in 

the high margin states. By the end of the second month, the gasoline price adjustment 

to increases and decreases of the input cost shocks does not appear to vary 

significantly, revealing that there is a symmetric response in the high and low margin 

states. However, a cost decrease produces mixed results in the low margin states for 

the direction of price responses in the two market segments after the first five months. 

More specifically, the wholesale gasoline price response to input cost decreases has 

surprisingly a positive but not statistically significant interaction effect. The reverse 

holds in the retail market segment. The above findings strengthen the notion that 

market power proxied by the level of gross profit margins appears to affect the extent 

to which it responds asymmetrically to cost increases and decreases. 
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<Insert Figure 4b about here> 

2.  Structural breaks 

The previous estimates reveal strong evidence of asymmetric adjustment in the retail 

and wholesale gasoline prices. As a further sensitivity test, we account for the 

possibility of structural breaks in the threshold parameter λ (gross profit margin). 

Specifically, the possibility that the margin changed abruptly during the examined 

period cannot be excluded a priori since exogenous shocks such as the U.S invasion to 

Iraq (March –May 2003), and the two main Hurricanes (Katrina and Rita) that hit the 

U.S (August 2005 and September 2005 respectively) may have left a significant mark 

on the oil sector.  

This analysis is also motivated by previous studies (Lewis, 2009, Sen et al, 

2011), which suggest that retail price asymmetries became sharper in some U.S. states 

in the aftermath of Hurricane Katrina. , Retail prices in some states remained at high 

levels for a considerable time period after the Hurricane, despite a gradual decline in 

wholesale prices from post Katrina levels. The sharp increase in retail gasoline prices 

has resulted in public concerns of “price gouging” by vertically integrated refiners 

and initiated several antitrust government investigations3. As noted by Sen et al. 

(2011), a possible theoretical explanation for sharper retail asymmetries observed 

post-Katrina could be because the occurrence of the Hurricane resulted in a uniform 

cost shock on prices which served as focal points for tacit collusion, allowing oil 

companies to better coordinate, and sustain price-fixing agreements that hinder 

competition.  

We allow for the possibility of an unknown number of breaks in the threshold 

parameter and use the Particle Filter suggested by He and Maheu, (2010) to compute 

the marginal likelihood and make inferences about the structural parameters of the 

model4. Apart from the two hurricane dummies e already in the model along with a 

break in the threshold parameter  , we allow for a general break of the form:  

  *
0

*

t t t t tt
y u ,  t 1,...,T       D γ D γ x β       (21) 

where 
t

D  is the set of hurricane dummies at given dates 
0

t  , and *t
D  is a set of 

dummies at an unknown set of dates * 0t t . For the threshold we have: 
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t t 

 D γ   (22) 

where   t 1,...,T

  without excluding the possibility that 

* 0
t t , t t
 
  . To search 

systematically for the possibility of breaks we use the stochastic search variable 

selection (SSVS) method developed by George et al, (2008) and Jochmann, et al, 

(2010). The SSVS involves a specific prior of the form:  

 | ~ N(0, )  D                                                         (23) 

where   is a vector of unknown parameters and its elements can be 0 1 j { }  . Also 

2 2
1

 
 
 

 D Gdiag d d :  

 ,0,2
0

2  jjj ifd  and ifd jj ,2
1

2  1j  (24) 

The prior implies a mixture of two normals:  

                                         γ j δ j ~      2
1

2
0 ,0,01 jjJj NN     (25) 

If 0 j  is “small” and 1 j  is “large”, then, when 0j  chances are that variable j will 

be excluded from the model while if 1j  chances are that variable j will be 

included in the model.  

The prior for the indicator parameter   is:  

                                                      jjjj qPqP  1)0(,)1(     (26) 

and we set 1
2jq . For 0 j  and 1 j , George, Sun and Ni (2008) propose a semi-

automatic procedure based on 2
0 0

ˆ  
 
 

j jc v   and 2
1 1

ˆ  
 
 

j jc v   for ,
10

1
0 c  

101 c and )(ˆ
ju  is any preliminary estimate of the variance of  j . We set the 

preliminary estimate to the one obtained by nonlinear LS allowing for a simple 

constant threshold. For the threshold parameters, we set the preliminary estimate of 

the variance to 0.20. The results were reasonably robust to this choice.   
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Based on this model, we compute the Recursive Bayes factors for different number of 

Breaks ( B ). The results are shown in Figure 5. The break in the data is inconclusive 

for B=1 while for B 2  the evidence against breaks is considerable. This evidence 

leaves little doubt that the threshold model captures the variation adequately and 

leaves no possibility for structural breaks in the parameters of the model. 

<Insert Figure 5 about here> 

3.  Robustness check 

ITthis subsection examines whether our conclusions are robust to alternative data and 

model specifications. The results are summarized in Table 3 (Panel B) and Figure 2b.  

In the first stage we estimate a new threshold PVECM and perform MCMC 

Bayesian techniques using crude oil price changes as the input cost variable affecting 

the wholesale and retail gasoline price adjustment respectively. It is well documented 

in the literature that this marker captures real oil price shocks driven solely by supply-

side disruptions in the crude oil market (Chang, and Hwang, 2015; Greenwood-

Nimmo and Shin, 2013, Honarvar, 2009, Deltas, 2008). Our results are generally 

robust to this alternative measure of oil price shocks. Specifically, the estimated 

positive coefficients in the wholesale and retail segment of the gasoline market are 

larger, in absolute value, than their negative counterparts leaving no doubt for the 

existence of an asymmetric adjustment price path (see Table 2 -Panel B). It is worth 

emphasising that the absolute magnitude of the estimated coefficients in this case is in 

general terms larger than the previous model. This finding shows that the response of 

gasoline prices in the downstream market (wholesale and retail segment) to crude oil 

price fluctuations is instantaneous.  

Figure 2b shows the marginal posterior densities for selected parameters 

accounting for the speed of adjustment (ρ+, ρ-), symmetry testing (δ) and lastly the 

threshold mark-up variable (λ) in the presence of crude oil price fluctuations. The 

posteriors are non-normal and, therefore, relying on asymptotic theory would be 

dangerous in this instance. 

Another useful insight is obtained by comparing the proposed model with the 

model of Greenwood-Nimmo and Shin (2013) – employing the same prior- for the 

common coefficients. The models can be compared in terms of their marginal 

likelihoods or their ratio, the Bayes factor. The results are provided in Figure 6. All 

http://www.mitpressjournals.org/action/doSearch?Contrib=Chang%2C+Y
http://www.mitpressjournals.org/action/doSearch?Contrib=Hwang%2C+S
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our empirical work uses 250,000 MCMC iterations the first 50,000 of which are 

discarded to mitigate the impact of startup effects. Convergence is assessed using 

Geweke’s (1992) diagnostic and relative numerical efficiency as well as numerical 

standard errors are monitored.5 It is evident that both models behave equally well 

before about 1999, when the model proposed here has a Bayes factor ranging from 

20:1 to 40:1, until 2006 when it jumps to over 120 reaching a maximum of 160:1 near 

2009. The Bayes factor remains well over 100 in the subsequent period. 

<Insert Figure 6 about here> 

 

VI.   RESULT DISCUSSIONS  

To contextualize these findings, we draw comparisons with Deltas (2008), a study 

which linearly evaluates the effects of market structure through interacting lagged 

wholesale and retail price changes with state specific margins. Deltas (2008) finds 

coefficient estimates of response differences for wholesale price changes to be 

positive, indicating a faster response to price increases than decreases, indicating 

retail price asymmetry. His results also reveal that both the speed of adjustment and 

the degree of asymmetry depend on the average retail-wholesale margin of a state. He 

claims that states with large average profit margins tend to have more asymmetric and 

slower adjustment than states with small margins. Our empirical findings are in 

alignment with the aforementioned study revealing an asymmetric response of 

gasoline price to crude oil and spot price fluctuations.  

 

Deltas (2008) did not split the sample into high and low margin states by using a 

threshold analysis and allow for dynamic interactions of wholesale and retail gasoline 

price to input cost shocks (e.g. crude oil price). Instead following the specifications of 

Borenstein and Shepard, 1996, Borenstein et al, (1997) and lastly Lewis, (2003), he 

used a linear lag adjustment model with an error correction term in order to 

investigate wholesale and retail price asymmetries. As described above, a linear ECM 

suffers from estimation uncertainty or errors arising from the estimation of the long 

run cointegrating relationship (Greenwood-Nimmo and Shin, 2013). In this study this 

limitation is addressed by the estimation of a threshold PVECM and subsequent 

PGIRFs that to assess the timing and magnitude of the responses to one time demand 



25 

 

or supply shocks in the spot gasoline market (Kilian and Park, 2009). Lastly, by using 

a threshold (sample splitting) PVECM, we treated all our variables as endogenous 

with the inclusion of an exogenous threshold variable in contrast to the above study 

which required that all right-hand-side variables are strictly exogenous.   

Another study that discusses estimates from nonlinear ARDL (NARDL) 

models is the study of Greenwood-Nimmo and Shin (2013), the first attempt in the 

literature to perform a non-linear approximation for the investigation of “rockets and 

feathers” hypothesis effect in four fuel markets in the UK following changes in the 

price of crude oil. They find significant evidence that the retail price of unleaded 

petrol before taxes and duties adjusts symmetrically to fluctuations to crude oil. 

However, this outcome is fully reversed once one accounts for the taxation effect 

(excise and value-added tax), raising the possibility that firms can use the tax system 

to conceal rent-seeking behaviour.  

The above study finds that the speed of adjustment (ρ) is estimated at 37% per 

month, indicating a sluggish adjustment towards the long-run equilibrium. This means 

that if the retail gasoline price is 10% above its long-run equilibrium price, given the 

current crude oil price, the percentage change difference over a period of 1 month will 

be 3.7%. In other words, if we are off the long-run equilibrium, the retail gasoline 

price will reach equilibrium in a four month period approximately. This finding is 

consistent with non-transitory periods of mispricing in the UK gasoline industry, 

revealing a weak competition among the market players (e.g. oil companies, retailers, 

hypermarkets, etc). Our study (see Table 2, column 4) claims that the speed of 

adjustment to the long-run equilibrium is larger in its impact ranging from 52-67% 

per month with larger positive changes of the error correction term (in absolute terms) 

than its negative counterpart. The difference between the magnitude of the speed of 

adjustment towards the long-run equilibrium reflects the dissimilar conditions that 

face the UK and the U.S. in their gasoline industry in terms of market structure (e.g. 

concentration level, level of vertical integration, barriers to entry, etc) and competitive 

behaviour among the marketers.      

Regarding the dynamic responses of gasoline price to crude oil fluctuations 

simulated over a short-run time horizon, the study of Greenwood-Nimmo and Shin 

(2013) argues that there is a strong and rapid reaction to positive changes but a more 

gradual response to negative changes. They claim that positive crude oil shocks will 
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generate a significantly positive effect in the retail price of gasoline. That effect 

(nearly 10%) starts on impact and reaches a peak in the first month after the shock. 

Similarly, we also find that the response of retail price to spot price fluctuations is  

positive and statistically significant one month after the shock, reaching a peak at 10% 

approximately. Contrary to our findings, the previous study estimates the peak 

response of retail gasoline price to a 10% negative crude oil price shock to 9% 

approximately. Similarly to our study,  however, the peak response occurs one month 

after the shock and is short-lived. The positive discrepancy between the difference of 

positive and negative values to crude oil fluctuations is also evident in the 

aforementioned study providing a stark illustration of an asymmetric gasoline price 

response.   

Similarly, Lewis and Noel, (2011) argue that in the U.S, it takes three weeks 

following a cost increase for retail prices to fully adjust to the long-run equilibrium 

level. The speed of adjustment to negative cost shocks is much slower since it takes 

nearly six weeks to approach full pass-through, suggesting an asymmetric gasoline 

price adjustment in the U.S cities. Specifically, a cost increase (decrease) is fully 

passed through to the retail price in almost five (seven) days, highlighting that these 

responses are short-lived.  

From the exposition of related evidence from various strands of empirical 

literature, it is safe to conclude that the magnitude of our estimated coefficients is 

reasonable and comparable to prior studies  revealing the relative importance of local 

market power in a coherent way.  

VII.   CONCLUDING REMARKS 

In this paper, we revisit the “rockets and feathers” hypothesis in the US wholesale 

and retail gasoline market segments by proposing a panel approach which allows for 

asymmetry, threshold effects, and optimal lag selection based on Markov Chain 

Monte Carlo Bayesian techniques. In order to empirically test our research 

hypotheses, we develop a new empirical methodology based on nonlinear threshold 

PVECMs and propose MCMC techniques to perform Bayesian inference in order to 

account for the investigation of gasoline price asymmetry. In doing so, we develop 

new econometric techniques for multivariate non-linear threshold error correction 

models accounting for wholesale and retail gasoline price responses respectively.  
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The motivation of this paper is to contribute to the empirical literature on retail 

and wholesale gasoline price asymmetry nexus by using for the first time in the 

gasoline price asymmetry controversy, a threshold PVECM and MCMC techniques in 

order to perform Bayesian inference with the following novelties. First, we allow for 

random coefficients in the Bayesian PVECM. Second, we account for cross-sectional 

dependence. Third, instead of the standard Gibbs sampler, we use a Langevin 

diffusion sampler which can deal effectively with autocorrelation and the non-

standard form of priors for the covariance matrices. Fourth, we propose new 

techniques in the conditional posterior sampling of the threshold parameter. Lastly, 

we account for model comparison with a standard model that does not allow 

thresholds by estimating recursive Bayes factors using the particle filtering 

methodology 

We examine differences between downstream and upstream gasoline markets, 

as we evaluate possible asymmetries in retail price adjustment to wholesale price 

shocks as well as the relationship between wholesale prices and spot price of gasoline 

shocks. We also attempt to evaluate the possible impacts of retail market power on the 

transmission of wholesale prices, and its potential effect on asymmetries in retail price 

adjustment. This is important, as very few studies have attempted to assess the effects 

of state specific market structure.  

In this respect, we focus on trends in retail and wholesale monthly gasoline 

prices in 48 U.S states over the period January 1994 to February 2011. Following 

Deltas (2008), we proxy the effects of market power through state specific gross profit 

margins. Our empirical findings suggest that there is a single threshold in all of the 

regression relationships, splitting the sample into two parts (high and low profit 

margin states). In addition, the econometric analysis support the notion that market 

power does result in behaviour that leads to higher retail prices, and potentially more 

profits. However, this is to be expected in oligopolistic markets and does not 

necessarily imply the existence of collusive behaviour. With respect to upstream 

markets, we do find evidence that wholesale prices respond asymmetrically to 

increases and decreases in spot gasoline price fluctuations. In order to sharpen the 

robustness of our results, we have addressed the impact of crude oil price changes on 

the wholesale and retail gasoline price adjustment. Our results are remarkably 

consistent and robust to this alternative measure of oil price shocks. In other words, 
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our findings for the effects of oil price shocks do not conflict with the conventional 

view that an oil price increase has a larger output effect than an oil price decrease 

indicating an asymmetric price adjustment path downstream (wholesale and retail 

segment).  

Our analysis implies that, states with high profit margin experience a slower 

adjustment and a more asymmetric response compared to low profit ones thus leading 

to the validity of Hypothesis 4. Moreover, the magnitude of the estimated short-run 

coefficients is in the most cases larger in the retail than in the wholesale level. 

However, the adjustment towards the equilibrium level is more gradual in the 

wholesale segment whereas both the wholesalers and retailers tend to react more to 

price increases than price decreases. In contrast to other studies (e.g Greenwood-

Nimmo and Shin, 2013), we find significant evidence that the price of gasoline before 

taxes and duties in the wholesale and retail segment adjusts more rapidly in an upward 

than a downward direction of the input price shocks. This implies also the validity of 

Hypotheses 1, 2 and 3. Lastly, the sign of the difference between the positive and the 

negative values of wholesale and retail gasoline prices to input cost shocks gives 

further support of an asymmetric response in both market segments  

Finally, our analysis claims that the traditional approach to studying 

asymmetric gasoline price adjustment must be rethought. An immediate implication 

of our analysis is that future researchers have to move beyond empirical models that 

treat regression functions as identical across all sample observations. Relaxing this 

counterfactual ceteris paribus assumption allows the individual observations to be 

divided into classes based on the value of an unobserved variable, which in our case is 

the level of local competition in the industry proxied by the gross profit margin. With 

this approach, panel cross section elements (states/cities, etc.) are sorted according to 

their level of competition in the gasoline market segments.  
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Notes 

 

1. “Kernel” means that the normalizing constant is omitted. In most circumstances 
this is because it is not available in closed form. 

 
 
2. For an extensive review  of price asymmetry in the European Union see, among 

others, the study of Polemis and Fotis (2014). 
 
 
3. See, for example, “FTC Releases Report on its Investigation of Gasoline Price 

Manipulation and Post-Katrina Gasoline Price Increases” for further details 
(https://www.ftc.gov/news-events/press- releases/2006/05/ftc-releases-report-its-
investigation-gasoline-price-manipulation). 

 
 
4. We implement this filter using 216 particles. From 10 different runs the root mean 

square error of difference in posterior means was 10-5. As a robustness check we 
recomputed using 214 particles to obtain the same results to the number of digits 
reported here. 

 
 
5. We use AR(10) processes fitted to the MCMC draws to compute the required 

long-run variance, the spectral density at zero. 
 
 
6. This guarantees the existence of moments up to order four. 
 
 
7. See also Poyiadjis et al. (2011). 
 
 
8. The benefit of MALA over Random-Walk-Metropolis arises when the number of 

parameters n  is large. This happens because the scaling parameter λ is 1 2
( )

 
O n for 

Random-Walk-Metropolis but it is 1 6
( )

 
O n  for MALA, see Roberts et al. (1997) 

and Roberts and Rosenthal (1998). 
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Appendix A Computational strategy 

 

We have a (large) Bayesian PVECM whose dimension is equal to n , the number of 

U.S. states. Without the random-coefficient specification, estimation of this VAR 

would present considerable challenges. For a given value of  , MCMC analysis can 

be easily implemented using standard techniques involving the Gibbs sampler. Let us 

write the PVECM in the following form: 

    p 1

t j t j t t t tj 1




     w Γ w Z ξ ε X β ε   

The VAR can be written as  

  i i i i
,  i 1, ,n   w X β ε    

Making the substitution  
iid

i i i K
,  ~ ,   β β η η 0 Ω  we obtain: 

  i i i
  w X β e   

where  i T
e 0  and      i j ij i j ij T

     e e X ΩX I , where ij  is Kronecker’s 

delta. 

Suppose 

1

 

 
   
  



n

w

w

w

,  
 

 

1

n







 
 

  
 
 

X

X

X

0

0



  



 and 

1

n

 
   
  

e

e

e

  so that the PVECM 

can be represented as: 

    w X β e   

and          n T

       ee X Ω I X Σ I V .  The likelihood function is 

         
1/2 1

1
2

; , exp ( ) ( )
  

        
 

θ w X V w X β V w X β  

and the posterior can be obtained from Bayes’ theorem: 



31 

 

      p | ; , pθ θ w X θ    

where ,   w X  denotes the data. 

As we can see, the posterior is a complicated function of the threshold 

parameter,  . The parameters θ  consists of , , ,β Σ Ω . It is useful to condition on the 

threshold parameter and define the conditional posterior: 

        p | p | , ; p |
 

  θ θ θ θ     

where    ; ; ,


 θ θ    is the conditional likelihood and  p |θ  is the 

conditional prior. The dimensionality of the parameter vector, despite the fact that we 

have a Bayesian VAR is small as there are K   elements in β , ( 1)
2

K K  different 

elements in Ω  and we have a single-factor model for the cross-sectional covariance 

matrix Σ .  

For given    the posterior can be analyzed easily using the methods that we 

explain below. MCMC draws for  are realized using a Metropolis-Hastings 

algorithm. Suppose we are currently at state s  and the draw is ( )s  . The new draw 

( 1)s   is realized as follows. Suppose we have a candidate draw c  from a 

distribution with density ( )g  .  Then, we set ( 1)s c    with probability 

 
 
 

c c

(s) (s)

p | , / g( )
min 1,  

p | , / g( )

   
 

   

θ

θ




,  

otherwise we set (s 1) (s)   . Our candidate generating density is crafted numerically 

as follows. Given a grid of values  1 G
, ,    we compute the marginal 

likelihood of the model. Suppose these values are , g g M . Our candidate 

generating density is based on a piecewise linear approximation to the obtained values 

of log marginal likelihoods. We do not need the normalizing constant in this 

expression. Marginal likelihoods are computed using the “candidate’s formula” (Chib, 

1995): 
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   

 
g d /2

1/2

ˆ ˆ; p |
,  g

2 | |


 







  



θ θ

C


M   

where 
S1 (s)

s 1

ˆ S

 
 θ θ ,   S1 (s) (s)

s 1
ˆ ˆS

    


  C θ θ θ θ ,  and 

 (s) ,s 1, ,S


θ   represents the MCMC draws for the parameters for a given value of 

 . The denominator is based on a normal approximation to the posterior  p |


θ   at 

the point ˆ
 
θ θ . The candidate generating density has been found an excellent 

approximation to the marginal posterior distribution  p |  . See Figure A1. 
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Figure A1. Marginal posterior and candidate generating densities 

 

The candidate generating function is a spline approximation to 20G   points equally 

spaced between the 10% and 90% percentiles of the empirical distribution of profit 

margins across all U.S. states and all time periods. 

 

To implement this procedure we use 20G   points equally spaced between 

the 10% and 90% percentiles of the empirical distribution of profit margins across all 

U.S. states and all time periods. In our application, this choice worked quite well. 

We deviate from standard practice that uses the Gibbs sampler in the context 

of Bayesian VAR models. Part of the problem, is that the priors on the different 

element of Σ  and Ω  are non-standard. Our procedure is based on the Langevin 

Diffusion MCMC methods proposed by Girolami and Calderhead (2011). As matrix 

Σ  is not available in closed form we do have to update the common factor 
t

f  via a 

separate MCMC step.  The set of common factor values is jointly updated using, 

again, a Girolami and Calderhead (2011) MCMC update. 
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Appendix B Markov chain Monte Carlo 

Following Girolami and Calderhead (2011) we utilize Metropolis-adjusted Langevin 

and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold, 

since we are sampling from target densities with high dimensions that exhibit strong 

degrees of correlation.  Consider the Langevin diffusion: 

      1
2 log ;d t p t dt d t  θ θ B , 

where B  denotes the D-dimensional Brownian motion. The first-order Euler 

discretization provides the following candidate generation mechanism: 

 * 21
2 log ;o op    θ θ θ z , 

where  ~ ,Dz 0 I , and 0   is the integration step size. Since the discretization 

induces an unavoidable error in approximation of the posterior, a Metropolis step is 

used, where the proposal density is  

    * 2 21
2| log ; ,    o o o

Dq p θ θ θ θ I  , 

 with acceptance probability  
   
   

* *

*

*

| |
, min 1,  

| |

  
  

  

o

o

o o

p q
a

p q

θ θ θ
θ θ

θ θ θ




. Here 

 denotes the available data. The Brownian motion of the Riemann manifold is given 

by: 

               
1/ 2 1/ 2

1 1

1

d

i ij
ij j

d t t t t dt t d t


 



           
B G θ G θ G θ G θ B

θ
 ,  

for 1,...,i D . 

         The discrete form of the above stochastic differential equations is: 
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     
 

 

   
 

  

    

* 2 1 2 1 11
2

1

2 1 1 1

1

1

log ;

            

                            , .

od
o o o o o

i i
i

j j
ij

od
o o

ij ij j

o

i i

p

tr t

t

 

 

 

  



  





 
           

 
        

    





G θ
θ θ G θ θ G θ G θ

θ

G θ
G θ G θ G θ z

θ

μ θ G θ z





 

The proposal density is     * 2 1| ~ , ,  o o o
d  θ θ μ θ G θ  and the acceptance 

probability has the standard Metropolis form:  

 
   
   

* *

*

*

| |
, min 1,  

| |

  
  

  

o

o

o o

p q
a

p q

θ θ θ
θ θ

θ θ θ




. 

The gradient and the Hessian are computed using analytic derivatives provided by 

computer algebra software. All computations are performed in Fortran 77 making 

extensive use of IMSL subroutines. 

The numerical performance, in terms of autocorrelation functions, is presented 

in Figure A2. The Metropolis-Hastings procedure we use is a simple random walk 

whose candidate generating density is a multivariate Student-t distribution with 5 

degrees of freedom6 and covariance equal to a scaled version of the covariance 

obtained from the Langevin Diffusion MCMC. The scale parameter is adjusted so that 

approximately 25% of the draws are accepted. The performance of Langevin 

Diffusion MCMC turns out to be vastly superior relative to the random-walk 

Metropolis-Hastings procedure. 
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Figure A2. Autocorrelation functions 
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Appendix C Marginal likelihood and Bayes factors 

For any posterior distribution whose kernel is  | ( ; ) ( ) p p    the marginal 

likelihood can be expressed as ( ) ( ; ) ( )   p d  M . Similarly, we can define 

the marginal likelihood 1: 1:( ) ( ; ) ( )  t t p d  M  for data 1: t  from period 1up to 

t . Relative to a base model whose marginal likelihood is 0 ( )M  or 0 1:( ) tM   we 

define the recursive Bayes factor as: 

 
 
 

1:
1:

0 1:





t

t

t

BF
M

M
 . 

The problem is, of course, how to compute the multivariate integrals involved in these 

calculations. From the expression: 

1: 1:( ) ( ; ) ( )  t t p d  M , 

in reality, we have: 

1: 1: 1: 1:( ) ( , ; ) ( )  t t t tp d d    M , 

where   denotes the latent variables in the model –the common factor 
t

f  in our case. 

To perform the computation we resort to particle filtering (PF) given   , the 

posterior mean of the parameters. To conform with notation in the PF literature, we let 

: S . In this work we use the PFMALA filter, see below. 
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Appendix D Particle filtering 

The particle filter methodology can be applied to state space models of the general 

form:  

 1( ) ( )T t t t t ty p y x s p s s     , (A1) 

where ts  is a state variable. For general introductions see Gordon et al. (1993), 

Doucet et al. (2000), Pitt and Shephard (1999), and Ristic et al. (2004).  

Given the data t  the posterior distribution ( )t tp s  can be approximated by a set of 

(auxiliary) particles  ( ) 1i
ts i N    with probability weights  ( ) 1i

tw i N    where 

( )

1
1

N i
ti

w


 . The predictive density can be approximated by:  

 ( ) ( )
1 1 1

1

( ) ( ) ( ) ( )  


     
N

i i
t t t t t t t t t t

i

p s Y p s s p s ds p s s w , (A2) 

 

and the final approximation for the filtering density is  

 ( ) ( )
1 1 1 1 1 1 1

1

( ) ( ) ( ) ( ) ( )      


      
N

i i
t t t t t t t t t t t

i

p s p y s p s p y s p s s w . (A3) 

The basic mechanism of particle filtering rests on propagating  ( ) ( ) 1i i
t ts w i … N      to 

the next step, viz.  ( ) ( )
1 1 1i i

t ts w i … N       but this often suffers from the weight 

degeneracy problem.  

Appendix E Particle metropolis adjusted Langevin filter 

Nemeth, Sherlock and Fearnhead (2014) provide a particle version of a Metropolis 

adjusted Langevin algorithm (MALA).7 In Sequential Monte Carlo we are interested 

in approximating 1( ) t tp s  . Given that:  

 1 1 1 1 1 1( ) ( ) ( ) ( )             t t t t t t t t tp s g y x f s s p s y ds    , (A4) 
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where 1 1 1( )t tp s y      is the posterior as of time 1t  . If at time 1t   we have a set set 

of particles  1 1i
ts i … N      and weights  1 1i

tw i … N      which form a discrete 

approximation for 1 1 1( )t tp s y      then we have the approximation:  

 1 1 1 1 1
1

ˆ ( ) ( )
N

i i
t t t t t

i

p s y w f s s     


     . (A5) 

See Doucet et al. (2000) and Cappe at al. (2007) for reviews. From (Α3) Fernhead et 

al. (2008) make the important observation that the joint probability of sampling 

particle 1
i
ts   and state ts  is:  

 1 1

1

( ) ( )

( )

i i
t t t t

t i i
t t t t

w g y s f s s

q s s y

 


 
 



   


  
, (A6) 

where 1( )i
t t tq s s y     is a density function amenable to simulation and:  

 1 1( ) ( ) ( )i i i
t t t t t t t tq s s y cg y s f s s           , (A7) 

 

and c  is the normalizing constant in (A3). In the MALA algorithm of Roberts and 

Rosenthal (1998)8 we form a proposal  

 
2( ) ( )

12 log ( )     c s s
Tz p     (A8) 

where (0 )z N I  which should result in larger jumps and better mixing properties, 

plus lower autocorrelations for a certain scale parameter  . Acceptance probabilities 

are  

 
( )

( ) 1
( ) ( )

1

( ) ( )
( ) min 1  

( ) ( )




  
   

  





c s c
c s T

s c s
T

p q
a

p q

  
 

  
. (A9) 

Using particle filtering it is possible to create an approximation of the score vector 

using Fisher’s identity:  

  1 1 1 1log ( ) log ( )            T T T Tp E p s   , (A10) 
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which corresponds to the expectation of  

 1 1 1 1 1 1 1log ( ) log ( ) log ( ) log ( ),                     T T T T T T T Tp s p s g y s f s s   

over the path 1Ts  . The particle approximation to the score vector results from 

replacing 1 1( )  T Tp s   with a particle approximation, 1 1
ˆ ( )  T Tp s   . With particle i 

at time t-1 we can associate a value 1 1 1 1 1log ( )       i i
t t tp s   which can be updated 

recursively. As we sample i  in the PF (the index of particle at time 1t   that is 

propagated to produce the i th particle at time t) we have the update:  

 1 1log ( ) log ( )ii i i i
t t t t t ta g y s f s s          . (A11) 

 

To avoid problems with increasing variance of the score estimate 1log ( )  tp   we 

can use the approximation:  

 1 1 1( )  i i
t t tm V  . (A12) 

The mean is obtained by shrinking 1
i
t   towards the mean of 1t   as follows:  

 1 1 1 1
1

(1 )   


   
N

i i i i
t t t t

i

m w   , (A13) 

where (0 1)   is a shrinkage parameter. Using Rao-Blackwellization one can avoid 

sampling i
t  and instead use the following recursion for the means:  

 1 1 1 1
1

(1 ) log ( ) log ( )   


        i i

N
i i i i i
t t t t t t t t

i

m m w m g y s f s s      (A14) 

which yields the final score estimate:  

 1
1

ˆlog ( )


   
N

i i
t t t

i

p w m . (A15) 

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking 0 95  . 

Furthermore, they show the important result that the algorithm should be tuned to the 

asymptotically optimal acceptance rate of 15.47% and the number of particles must be 
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selected so that the variance of the estimated log-posterior is about 3. Additionally, if 

measures are not taken to control the error in the variance of the score vector there is 

no gain over a simple random walk proposal.  

Of course, the marginal likelihood is:  

 1 1 1 1
2

( ) ( ) ( )  


     
T

T t t
t

p p y p y   , (A16) 

where:  

 1 1 1 1 1 1 1( ) ( ) ( ) ( )               t t t t t t t T t tp y g y s f s s p s ds ds   , (A17) 

provides, in explicit form, the predictive likelihood. Our implementation, for fixed θ, 

relies on 216=65,536 particles. 
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List of Tables and Figures 

TABLE 1 

Empirical studies on the existence of price asymmetry  

Study Country / product Frequency / Period Stage of transmission Model Findings 
Kristoufek and 

Lunackova (2015) 
Belgium, France, Germany, 
Italy, Netherlands, UK, USA 

/ gasoline  

Weekly / 1996-2014 Retail market ECM No evidence of price asymmetries 

Bumbass et al 
(2015) 

USA / gasoline  Monthly / 1976-2012 Retail market TAR Evidence in favor of long-run symmetric 
adjustment speeds to oil price shocks  

Remer (2015)  New Jersey,Maryland, 
Virginia,Washington, 

Philadelphia, Washington DC 
/ gasoline   

 

Daily / July 2008-
June 2009 

Retail market Panel ECM Retail gasoline prices respond 
asymmetrically to cost increases and 

decreases. 

Polemis and Fotis, 
(2015) 

12 European countries / 
gasoline 

Weekly / June 1996 
August 2011 

Retail market Dynamic OLS Existence of long-run price asymmetry in 
five European countries. Evidence of 
short-run price symmetry in all of the 

sample countries.   
Polemis and Fotis, 

(2014)  
12 European countries, USA / 

gasoline 
 Weekly / June 1996 

August 2011 
Wholesale & retail market Dynamic OLS Less competitive gasoline markets 

exhibit price asymmetry, while highly 
competitive gasoline markets follow a 

symmetric price adjustment path.  
Polemis and Fotis, 

(2013)  
11 Euro zone countries / 

gasoline 
 Weekly / 2000 
February 2011 

Wholesale & retail market GMM panel data ECM Evidence in favor of long-run symmetric 
adjustment speeds in the retail segment.  

Greenwood-
Nimmo and Shin 

(2013) 

United Kingdom / unleaded 
gasoline, diesel, kerosene, gas 

oil 

Monthly / 1999-2013 Retail market Non Linear ADRL Evidence of price asymmetry in diesel, 
kerosene and gasoil. Long-rum symmetry 

in pre-taxed unleaded gasoline   
Polemis (2012) Greece / gasoline Monthly / 1988 mid 

2006 
Wholesale and retail 

market 
ECM Retail gasoline prices respond 

asymmetrically to cost increases and 
decreases. 

Bermingham and 
O’ Brien (2010) 

United Kingdom and Ireland / 
gasoline and diesel 

Monthly / 1997-mid 
2009 

Retail market TAR No evidence of price asymmetries 
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TABLE 1 

Empirical studies on the existence of price asymmetry (continued)  

Study Country / product Frequency / Period Stage of transmission Model Findings 
Clerides (2010) Several European countries / 

gasoline and diesel 
Weekly 2000-2010 Retail market ECM Mixed results for price asymmetry 

Faber (2009) Netherlands / gasoline Daily / May 2006-
July 2008 

Wholesale / Retail market 
(3600 gas stations) 

ECM 38% of stations respond asymmetrically. 
No evidence of asymmetry at the level of 

the oil companies. 
Valadkhani (2009) Australia / gasoline Monthly / 1998-2009 Retail market ECM Evidence of price asymmetry in four out 

of seven Australian capital cities. 
Kuper and 

Poghosyan (2008) 
U.S. / gasoline  Weekly / 1986-2005 Retail market ECM Pre 1999: International oil price adjusts 

linearly to deviations from the 
long-term equilibrium. 

Post 1999: Evidence of price asymmetry. 
Deltas (2008)  USA / gasoline  Monthly / 1988-2002 Retail market ECM Retail price asymmetry  

Grasso and Manera 
(2007) 

Italy, France, Spain, 
Germany, UK / gasoline 

Monthly / 1985-2003 Retail market ECM, Threshold ECM, 
M-TAR 

ECM: Evidence of price asymmetry for 
all countries 

T – ECM: No evidence of price 
asymmetry 

M-TAR: Long – run price asymmetry 
Radchenko and 
Tsurumi (2006) 

US / gasoline Monthly / 1976 - 
1997 

Retail Market VAR Evidence in favour of symmetric 
adjustment speeds in the retail segment. 

Radchenko (2005) U.S. / gasoline Weekly / 1991, 
1993(1994) - 2003 

Wholesale and retail 
market 

ECM, VAR and PAM Evidence of price asymmetry 

Kaufmann 
and Laskowski, 

(2005) 

U.S. / gasoline and home 
heating oil 

Monthly / 1986-2002 Wholesale and retail 
market 

ECM Mixed results for price asymmetry 

Bachmeir and 
Griffin (2003) 

U.S.  / gasoline Daily / 1985-1998 Wholesale market ECM Mixed results for price asymmetry 

Galeotti, et al, 
(2003) 

Germany, France, UK, Italy 
and Spain / gasoline 

Monthly / 1985-2000 Wholesale and retail 
market 

ECM Mixed results for price asymmetry 

Note: ECM (Error-Correction Model), M-TAR (Momentum Threshold Autoregressive Model), TAR (Threshold Autoregressive Model), ARDL (Autoregressive Distributed 
Lag Model), PAM (Partial Adjustment Model), GMM (Generalized Method of Moments), VAR (Vector Autoregression Model).     
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TABLE 2 

Descriptive statistics 

Variable Mean Median Maximum Minimum 
Standard 
deviation 

Coefficient of 
variation 

Skewness Kurtosis Observations 

Wholesale price 1.250 0.957 4.012 0.350 0.708 0.566 0.933 2.918 9,819 

Retail price 1.414 1.124 4.197 0.474 0.716 0.507 0.938 2.944 9,871 

Spot price  1.146 0.873 3.292 0.307 0.695 0.606 0.924 2.833 206 

Crude oil price  41.781 29.635 133.88 11.35 27.08 0.648 1.113 3.588 206 

Gross profit margin 0.157 0.147 1.902 -0.821 0.070 0.442 2.132 60.267 9,807 

Δ (Wholesale price)  0.010 0.014 0.447 -1.096 0.146 14.394 -1.892 13.553 9,756 

Δ (Retail price) 0.010 0.005 0.549 -1.146 0.144 14.461 -1.935 15.031 9,808 

Average profit 
margin  0.158 0.153 0.265 0.110 0.034 0.212 0.972 4.093 48 

Notes: Table reports summary statistics for the 48 US states in the sample over the period January 1994 to February 2011. All variables except for the price of crude oil 
(dollars per barrel) are in dollars per gallon. Δ denotes change over the previous month. The gross profit margin is computed as the difference between the retail and the 

wholesale price for conventional motor gasoline. The average profit margin is calculated as   
t titi Tricewholesaleperetailpric /,, and is measured in dollars per 

gallon of unleaded gasoline. 
Source: Energy Information Administration (EIA)  
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TABLE 3 

Bayes factors for model selection 

 p 2  p 3  p 4  p 5  

q 1  1.000 0.312 0.171 0.005 

q 2  0.216 51.11 1.556 0.054 

q 3  0.116 0.005 0.001 0.001 

q 4  0.0032 0.001 0.000 0.000 
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TABLE 4 

Posterior means and standard deviations 

Coefficients 

Spot gasoline price  

Panel A 

Crude oil price  

Panel B 

Wholesale Retail Wholesale Retail 

  -0.421 

(0.085) 

-0.515 

(0.031) 

-0.418 

(0.027) 

-0.522 

(0.016) 

  -0.571 

(0.036) 

-0.638 

(0.022) 

-0.589 

(0.022) 

-0.677 

(0.016) 

   0.920 

(0.025) 

0.917 

(0.017) 

0.913 

(0.015) 

0.919 

(0.006) 

   0.872 

(0.033) 

0.910 

(0.015) 

0.875 

(0.021) 

0.914 

(0.008) 

0
  0.313 

(0.015) 

0.441 

(0.020) 

0.302 

(0.011) 

0.461 

(0.015) 

0
  0.263 

(0.022) 

0.381 

(0.035) 

0.212 

(0.014) 

0.392 

(0.033) 

q 1

jj 1

 


  0.817 

(0.007) 

0.915 

(0.018) 

0.821 

(0.005) 

0.934 

(0.008) 

q 1

jj 1

 


  0.770 

(0.005) 

0.887 

(0.019) 

0.781 

(0.007) 

0.892 

(0.011) 

  0.142 

(0.033) 

0.137 

(0.021) 

0.121 

(0.021) 

0.111 

(0.013) 

a  0.631 

(0.077) 

0.717 

(0.022) 

0.055 

(0.044) 

0.732 

(0.015) 

Notes: The entries in this table report posterior means and posterior standard 

deviations of the most important parameters of the model. Results are reported using 

both Spot and Crude oil price and Wholesale / Retail separately for the two time 

series. 
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Figure 1. Gasoline prices and profit margin (USD/gallon)   
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Figure 2a. Marginal posterior densities (Spot price of gasoline)  

 

. 
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Figure 2b. Marginal posterior densities (Crude oil price)   

 

 

 

 

Figure 3a. Posterior generalized impulse response functions (Spot gasoline - 10% 
increase) 

 

Notes: The figures present posterior mean estimates of impulse response functions 
corresponding to 10% increase in Spot price of gasoline. The vertical axis is in 
percentage units. 95% Bayes probability intervals (computed by MCMC) are shown 
in dotted lines. 
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Figure 3b. Posterior generalized impulse response functions (Spot gasoline  - 10% 
decrease) 

 

Notes: The figures present posterior mean estimates of impulse response functions 
corresponding to 10% decrease in Spot price of gasoline. The vertical axis is in 
percentage units. 95% Bayes probability intervals (computed by MCMC) are shown 
in dotted lines. 

 

 

 

Figure 4a. Posterior generalized impulse response functions on high profit margin 
states (Spot gasoline - 10% increase)  

 

Notes: The figures present posterior mean estimates of impulse response functions 
corresponding to 10% increase in Spot price of gasoline. The vertical axis is in 
percentage units. 95% Bayes probability intervals (computed by MCMC) are shown 
in dotted lines. 
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Figure 4b. Posterior generalized impulse response functions on low profit margin 

states (Spot gasoline - 10% decrease)  

 

Notes: The figures present posterior mean estimates of impulse response functions 
corresponding to 10% decrease in Spot price of gasoline. The vertical axis is in 
percentage units. 95% Bayes probability intervals (computed by MCMC) are shown 
in dotted lines. 

 

Figure 5. Bayes factors against structural breaks 

 



51 

 

Figure 6. Recursive Bayes factors 
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