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Abstract

In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of
the first four modes of the cavity as well as the RT

Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition
and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for
RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of
simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used
to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked
against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree
within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT

Q differs between the model and
CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding
how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the
HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.
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1. Introduction

RF cavities operating in a dipole mode have a variety of ap-
plications in modern particle accelerators and colliders. Com-
mon uses of RF deflecting cavities are for longitudinal beam
diagnostics [1], emittance exchangers [2], X-ray pulse com-
pression [3] and crab-crossing of bunches in colliders [4, 5].
In this report we shall focus on developing an equivalent circuit
model for a four rod deflecting cavity (4RDC) which operates
in a TEM-110 like mode. The model is compared to the de-
sign frequencies of the CEBAF RF separator cavity [6] and the
proposed HL-LHC 4-rod crab cavity [7, 8] which both show a
good agreement between the equivalent circuit model and sim-
ulation results. Other deflecting cavity designs exist, such as
the double quarter-wave crab cavity [9] and the RF dipole crab
cavity [10]; which are also proposed for HL-LHC.

A 4RDC is a deflecting cavity containing four rods arranged
in a plane, consisting of two parallel sections of two longitudi-
nally opposing rods, as shown in Figure 1. The four rods act
as separate coupled quarter-wave resonators, which allows the
cavity to resonate in the desired deflecting mode. However as
there are four coupled resonators, there are four eigenmodes of
the system due to the different permutations of the polarity of
the charge on each rod. The eigenmodes are two dipole modes
where transversely opposite rods have opposite charges giving
a transverse field, and two monopole modes where the trans-
versely opposing rods have the same polarity giving a longitu-
dinal field.

Equivalent circuit models of RF cavities are a useful means
of estimating cavity parameters such as the resonant frequency
and R/Q and give intuition and understanding about how the

cavity operates and what changes can be made to modify the
frequency, without the need for RF simulations which can
be time-consuming. Existing equivalent circuit models for
4RDCs, such as the model outlined in [11], are based on sim-
plifications such as neglecting the capacitance in the gap be-
tween longitudinally opposed rods and ignoring the effect of
the outer can of the cavity. Ignoring the end capacitance yields
the same resonant frequency for all four eigenmodes, which is
incorrect. Having the lower order mode (LOM) and deflecting
dipole mode at the same frequency would make it difficult to
damp the unwanted monopole mode hence it is beneficial to
separate the two modes in frequency. An improved equivalent
circuit model would provide an understanding of how best to
separate these modes.

In this report, we present an improved equivalent circuit
model whereby we derive equations for the line impedance of
the rods for the deflecting mode as well as the LOM. We then
provide a model for the capacitance between longitudinally op-
posed rods, starting with a physical model and then add some
empirical correction terms to create a model which fits the ob-
served results from CST simulations [12]. We then use the line
impedance and end capacitance models to determine the reso-
nant frequencies of a 4RDC for both the LOM and deflecting
mode. We then use this equivalent circuit model to develop a
model for the RT

Q , also known as the geometric transverse shunt
impedance, for the deflecting mode of the cavity. Finally, we
discuss how to use the equivalent circuit model to optimise the
cavity design parameters.
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Figure 1: A cross-sectional diagram of a generic four rod deflecting cavity.

Figure 2: An equivalent circuit for a rod in a four rod deflecting cavity described
as a transmission line terminated by a capacitance.

2. Equivalent Circuit Model

From the cross-section of a generic 4RDC (Figure 1), we
may consider the cavity as consisting of three distinct regions;
two transmission lines separated by a capacitive region. The
geometry of the cavity has been parameterised in terms of the
transverse rod separation, 2S , the longitudinal rod separation,
2g, the rod to wall separation, W, the rod length, Lrod and the
rod radius, R.

We assume that the transmission line has a characteristic
impedance, Z0, and that this is terminated through the capac-
itive region with a load impedance, ZL = −

j
ωCend

, where Cend is
the capacitance between the end of the rod and the symmetry
plane between longitudinally opposing rods (Figure 3), which
is a ground plane. This can be expressed by the equivalent cir-
cuit shown in Figure 2 where the input impedance, Zin, can be
expressed as [13]

Zin =
ZL + jZ0 tan

(
ωLrod

c

)
Z0 + jZL tan

(
ωLrod

c

) . (1)

At the resonant frequency, the input impedance tends to zero,
because the end is shorted, therefore from Eq. 1, the resonant
frequency can be determined by solving [14]

(a) Monopole (LOM) (b) Dipole

Figure 3: Diagrams illustrating the rod potential configurations for the LOM
and deflecting modes respectively.

1
ωCend

= Z0 tan
(
ωLrod

c

)
. (2)

Hence if we can determine the characteristic line impedance of
the relevant mode, Z0 and the capacitance between longitudi-
nally opposing rods, Cend, we can calculate the resonant fre-
quencies of the deflecting cavity. Conversely, if we neglect the
capacitance between longitudinally opposed rods, as in other
equivalent circuit models of 4RDCs, from Eq. 2 we obtain
Lrod = λ

4 and the frequency of all four eigenmodes becomes
c

4Lrod
.

2.1. Transmission line characteristic line impedance

The configuration of rod potentials differs between the de-
flecting mode and the LOM for the deflecting cavity (Figure 3).
The potential of the outer can and the symmetry planes can
be considered as ground. In the LOM, the capacitances of
the transversely opposing rods can be considered in parallel,
thus the capacitance of the transmission line can be defined as
CLOM

line = 2CW . For the deflecting mode, the capacitances of
the transversely opposing rods can be considered as being in
series because the rods have opposite charges; hence the ca-
pacitance of the transmission line can be defined as Cdipole

line =
1
2 (CW + CS ).

In Figure 4, one can see the other monopole and dipole
modes. As the longitudinally opposing rods have the same po-
tential, there is no end capacitance in this system, however there
is a small capacitance to ground between the end of the rod
and the wall and transversely opposing rod (only for the dipole
mode). However this capacitance is small compared to the line
impedance of the rod and therefore the difference in frequency
between the two eigenmodes is small. If g tends to zero, the
frequency of both eigenmodes tends to c

4Lrod
. Furthermore these

eigenmodes have very low shunt impedance compared to the
other modes and can therefore be neglected.

In this paper, we consider the case where the outer can of the
cavity has a rectangular cross section, such that the walls par-
allel to the deflecting plane are far away from the rods. This
allows us to neglect image charges out of the deflecting plane
as these can significantly alter the line impedance of the rods,
particularly for the LOM. Image charges out of the deflecting
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(a) Monopole (b) Dipole

Figure 4: Diagrams illustrating the rod potential configurations for the other
monopole and dipole eigenmodes.

plane can be extremely difficult to model as the distance to im-
age charges tend to be over a continuous range rather than at
discrete values, hence the perturbation to the line impedance
due to these image charges cannot be expressed as a series or
product expansion.

In order to determine the line impedance of the rods, we
shall consider each rod as a uniform line charge, where the total
charge of each rod is qrod = ±λrodLrod. The potential at a trans-
verse distance, x, from a uniform line charge of length Lrod can
be expressed as

V =
λrod

4πε0
ln


√

x2 + L2
rod + Lrod√

x2 + L2
rod − Lrod

 . (3)

However for simplicity, we shall assume Lrod → ∞, and the
potential can be expressed as

V =
λrod

2πε0
ln


∣∣∣xre f

∣∣∣
|x|

 . (4)

Where xre f is an arbitrary constant, which for simplicity we
shall define as xre f = 1. By using the definition |x| =

√
x2, we

can show that

V =
λrod

2πε0
ln

(
1
|x|

)
=
λrod

4πε0
ln

(
1
x2

)
. (5)

We shall consider the potential in the upstream half of the
4RDC due to the two rods and the nearest image charge of each
rod in the deflecting plane, which is assumed to be the horizon-
tal plane. In the presence of multiple line charges, the apparent
position of each line charge is displaced by a distance, d, such
that the potential on the surface of each rod remains uniform.
For the LOM, the potential due to the two rods and two image
charges can be expressed as

VLOM =
λrod
4πε0

(
ln

(
1

(S +dLOM+x)2

)
+ ln

(
1

(S +dLOM−x)2

)
− ln

(
1

(2W+S−dLOM+x)2

)
− ln

(
1

(2W+S−dLOM−x)2

))
=

λrod
4πε0

ln
(

((2W+S−dLOM )2−x2)2

((S +dLOM )2−x2)2

) (6)

where x = 0 is defined as the centre of the cavity. Similarly, for
the deflecting mode, the potential can be expressed as

Vdipole =
λrod
4πε0

(
− ln

(
1

(S +ddipole+x)2

)
+ ln

(
1

(S +ddipole−x)2

)
+ ln

(
1

(2W+S−ddipole+x)2

)
− ln

(
1

(2W+S−ddipole−x)2

))
=

λrod
4πε0

ln
(
(2W+S−ddipole+x)2(S +ddipole−x)2

(2W+S−ddipole−x)2(S +ddipole+x)2

)
.

(7)

The potentials for the LOM and deflecting mode are first-
order approximations because the exact potentials would re-
quire evaluating an infinite number of image charges, although
the approximation is accurate to ≤ 5% if W, S > 2R. To deter-
mine the apparent displacement of the line charges for the LOM
and deflecting modes, we require that the potential around the
rod be uniform, thus the potential potential is equal at x = S ±R.
For the LOM and deflecting modes respectively, we obtain the
line charge displacements as

dLOM = W −

√
α + R2 − 2

√
R2α + β2 (8)

ddipole = W −

√
α − 3R2 − 2

√
2R4 − αR2 + β2 (9)

where α and β are

α = S 2 + (S + W)2

β = S (S + W)
. (10)

Although the potentials in Eqs. 6 and 7 have been derived
by considering only the first two image charges. As there will
also be image charges of the image charges themselves, we end
up with an infinite sum of terms. However, as the higher order
terms diminish with increasing order, we can truncate the series
with little affect on accuracy. The solution to arbitrary order N
is

V (x) =
λrod

4πε0

N∑
n=1

ln (ϕn (x)) =
λrod

4πε0
ln

 N∏
n=1

ϕn (x)

 (11)

where ϕn for the LOM and deflecting potentials respectively
can be expressed as

ϕLOM,n =

(
((2nW+(2n−1)S−dLOM )2−x2)2

((2(n−1)W+(2n−1)S +dLOM )2−x2)2

)(−1)n−1

ϕdipole,n =
(2nW+(2n−1)S−ddipole+x)2(2(n−1)W+(2n−1)S +ddipole−x)2

(2nW+(2n−1)S−ddipole−x)2(2(n−1)W+(2n−1)S +ddipole+x)2

.

(12)
The expressions for dLOM and ddipole given in Eqs. 8 and

9 are solutions to the 4th-order polynomials obtained by solv-
ing

√
ϕ1 (S + R) +

√
ϕ1 (S − R) = 0; of which only one of the
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Figure 5: Scans of line impedance vs rod length, Lrod , comparing model (solid
lines) to results from CST (points) for the LOM (blue) and deflecting (red)
modes.

four possible solutions to each equation is physical. To eval-
uate dLOM and ddipole to second order or higher, the solution
must be solved numerically as no analytical solution exists for
higher order approximations. As only one of the 4n solutions to
the polynomial gives a physical solution, when evaluating dLOM

and ddipole to nth-order numerically, the first order approxima-
tions from Eqs. 8 and 9 should be used as the initial values.

Having determined the potential for the LOM and deflecting
mode, we can determine the capacitance per unit length of the
transmission line as

Cline =
λrod

V
. (13)

Thus the characteristic impedance of the transmission line can
be defined as

Z0 =
1

cCline
=

V
cλrod

(14)

where c is the speed of light in a vacuum. Since the capaci-
tances of the LOM combine in parallel and for the deflecting
mode they combine in series, the characteristic line impedance
for the LOM and deflecting mode respectively are

ZLOM
0,x =

1
8πε0c

ln

 N∏
n=1

ϕLOM,n (S + R)

 (15)

and

Zdipole
0,x =

1
2πε0c

ln

 N∏
n=1

ϕdipole,n (S + R)

 . (16)

Figures 5-8 show parameter scans of line impedance vs. de-
flecting cavity geometry parameters for both the LOM and de-
flecting mode for rod length, Lrod, transverse rod half separa-
tion, S , rod to wall separation, W, and rod radius, R, respec-
tively, comparing results from CST [12] to the models given in
Eqs. 15 and 16 evaluated using the first 105 terms. As we have
assumed that the rods are infinitely long, the line impedance is
not dependent on Lrod, similarly, the longitudinal rod half sepa-
ration, g, only affects the geometry near the end of the rod and
will not affect the line impedance.

Figure 6: Scans of line impedance vs transverse rod half separation, S , com-
paring model (solid lines) to results from CST (points) for the LOM (blue) and
deflecting (red) modes.

Figure 7: Scans of line impedance vs rod to wall separation, W, comparing
model (solid lines) to results from CST (points) for the LOM (blue) and de-
flecting (red) modes.

Figure 8: Scans of line impedance vs rod radius, R, comparing model (solid
lines) to results from CST (points) for the LOM (blue) and deflecting (red)
modes.
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Figure 9: A diagram showing the geometric similarity between the end capaci-
tance geometry and a hemispherical capacitor.

From Figure 8, as the rod radius increases, the accuracy of
the model deteriorates; the same is also true in Figures 6 and
7 as S and W decrease. This is because our model neglects
image charges in the rods as these will affect the displacements,
dLOM and ddipole, of the line charge in the rod. When R � S ,W
these image charges have a negligible effect on dLOM and ddipole,
however, if R becomes comparable to S or W then these image
charges will significantly affect dLOM and ddipole.

2.2. End Capacitance

The end capacitance is difficult to model because the elec-
tric field in the capacitive gap is strongly dependent on all the
design parameters of the 4RDC. We shall model the end capaci-
tance by starting with a simple physical model and then modify
this by adding empirical correction terms to obtain a model in
good agreement with CST [12]. By considering the symmetry
planes in the cavity for the LOM and deflecting modes (Fig-
ure 3), we can simplify the geometry of the cavity to provide
an electrically equivalent geometry to calculate the end capac-
itance. For the LOM, the two transversely opposing rods have
the same potential and no capacitance between them; therefore
we can combine these two rods into one. For the deflecting
plane, there is a symmetry plane between the transverse rods,
thus we need only consider one rod. The model of the end ca-
pacitance can be considered as a hemispherical capacitor (Fig-
ure 9).
The capacitance of a hemispherical capacitor can be expressed
as

C =
2πε0

1
R1
− 1

R2

(17)

where R1 is the radius of the inner hemisphere and R2 the ra-
dius of the outer hemisphere. For the end capacitance, we shall
assume that R1 = R and R2 = R + g, thus the capacitance of the
hemispherical capacitor can be expressed as

C =
2πε0

1
R −

1
R+g

=
2πε0R2

g
+ 2πε0R. (18)

Eq. 18 does not describe the end capacitance, but it is the first
step towards our model. The first term in Eq 18 is very similar
to the equation for a parallel plate capacitor and depends on

the geometry of the capacitor, whereas the second term is the
capacitance of the inner hemisphere, or in our case rod, in the
absence of the outer sphere, this is often referred to as the self-
capacitance. The end capacitance is strongly dependent on the
fringe fields in the capacitive gap, therefore we shall replace
the geometric capacitance term from Eq. 18 with a capacitance
model for a parallel plate capacitor which includes fringe fields
[15]. The capacitance for the parallel plate capacitor is

CPP =
πε0R2

g

[
1 +

g
πR

(
1 + ln

(
2πR

g

))]
. (19)

For our model of the end capacitance, Cend, we shall consider
a parallel plate capacitor with some correction terms; these
terms are empirically derived as the capacitance for such a com-
plex system cannot be easily derived. We shall consider the end
capacitance to have the following form

Cend = CPP fL ( fS + fW ) + fR + fg. (20)

In Eq. 20, CPP is the capacitance of a parallel plate capacitor
and is dependent on the geometry of the system; this term will
also depend on Lrod, S and W and hence correction terms, fL,
fS and fW respectively are included. fR and fg are additional
correction terms depending on R and g respectively which can
be considered the self-capacitance of the rod. We have chosen
fL to have the form

fL =
aL1√

1 + aL2

(
L
L0

)aL3
+ 1 −

aL1
√

1 + aL2
(21)

where aLi are fitting parameters, L0 is a reference value for Lrod

and 1 − aL1√
1+aL2

is used to ensure that fL = 1 when Lrod = L0.
Similarly for fS and fW we have chosen the form

fS + fW =
aS 1√

1+aS 2

(
S

S 0

)aS 3
+

aW1√
1+aW2

(
W

W0

)aW3

+1 − aS 1√
1+aS 2

−
aW1√
1+aW2

. (22)

This functional form has been chosen for fL, fS and fW because
it can be fit to a wide range of functions depending on the values
of the fit parameters. For the self-capacitance terms, we have
assumed a function of the form

fR + fg = aRπε0R + ag1

(
g
g0

)ag2

(23)

By fitting Eq. 20 to the results of CST simulations, using
the functional forms for the correction terms given in Eqs. 21-
23 and combining the reference parameters with the associated
fit coefficients, we obtain end capacitances for the LOM and
deflecting mode respectively as
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Figure 10: Scans of end capacitance vs rod length, Lrod , comparing model
(solid lines) to results from CST (points) for the LOM (blue) and deflecting
(red) modes.

CLOM
end = πε0

[
2R2

g

[
1 +

g
πR

(
1 + ln

(
2πR

g

))]
×(

1.05√
1+1.1×105L3.68

rod

+ 0.90
) (

12.14 − 5.56
√

1+4.02S 0.73
− 7.14
√

1+8.79W1.14

)
+

(
1.97R + 2.93 × 10−3g−0.53

)]
(24)

and

Cdipole
end = πε0

[
R2

2g

[
1 +

g
πR

(
1 + ln

(
2πR

g

))]
×(

3.63√
1+1.6×105L2.26

rod

+ 0.92
) (

8.44 − 6.00
√

1+5.19S 0.52
− 6.49
√

1+8.68W0.29

)
+

(
0.21R + 1.56 × 10−3g−0.29

)]
.

(25)
It should be noted that the end capacitances of the longitudi-

nally opposed rods are combined in parallel for the LOM and
in series for the deflecting term; thus the first term varies as 2R2

g

for the LOM and R2

2g for the deflecting mode. Although these
equations were empirically derived, the form from Eq. 20 is
physically justified. The mutual capacitance term, described as
a parallel plate capacitor with fringe fields, will be dependent
on the geometry of the system and will therefore depend on all
the design parameters. The self-capacitance term will depend
on the shape of the conductor and not on the local geometry.
The functional forms of the correction terms were chosen to
allow a good fit to a complicated function.

Figures 10-14 show parameter scans of end capacitance vs.
deflecting cavity geometry parameters for both the LOM and
deflecting mode for Lrod, S , W, R and g, respectively, compar-
ing results from CST [12] to the models given in Eqs. 24 and
25.

2.3. Resonant Frequency

Having determined models for the line impedance and end
capacitance, Eq. 2 can be solved numerically to determine the

Figure 11: Scans of end capacitance vs transverse rod half separation, S , com-
paring model (solid lines) to results from CST (points) for the LOM (blue) and
deflecting (red) modes.

Figure 12: Scans of end capacitance vs rod to wall separation, W, comparing
model (solid lines) to results from CST (points) for the LOM (blue) and deflect-
ing (red) modes.

Figure 13: Scans of end capacitance vs rod radius, R, comparing model (solid
lines) to results from CST (points) for the LOM (blue) and deflecting (red)
modes.
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Figure 14: Scans of end capacitance vs longitudinal rod half separation, g,
comparing model (solid lines) to results from CST (points) for the LOM (blue)
and deflecting (red) modes.

Figure 15: Scans of resonant frequency vs rod length, Lrod , comparing model
(solid lines) to results from CST (points) for the LOM (blue) and deflecting
(red) modes.

resonant frequency of the LOM and deflecting mode. Fig-
ures 15-19 shows parameter scans of the resonant frequency
vs. deflecting cavity design parameters for the LOM and de-
flecting mode, comparing results from CST [12] to the model
described within this report. Due to limitations in the models of
line impedance and end capacitance, the modeled frequency vs
R deviates from the CST results for large values of R, however
the errors are > 10% and are still capable of providing a good
estimate for the resonant frequencies of each mode.

2.4. Modeling the transverse geometric shunt impedance, RT
Q

RT
Q is an essential figure of merit for an cavity as this quanti-

fies how strongly the fields in the cavity couple to the beam.
Using an approach similar to that outlined in [11], we shall
derive an expression for the RT

Q for the deflecting mode of a
four-rod deflecting cavity and compare it to CST simulations.
The model derived in this section is an improvement to that
described in [11] as the authors neglect the end capacitance be-
tween longitudinally opposing rods whereas we take this into
account.

We shall assume that the potential along the rod is distributed
as

V = V0 sin
(

2πz
λ

)
(26)

Figure 16: Scans of resonant frequency vs transverse rod half separation, S ,
comparing model (solid lines) to results from CST (points) for the LOM (blue)
and deflecting (red) modes.

Figure 17: Scans of resonant frequency vs rod to wall separation, W, compar-
ing model (solid lines) to results from CST (points) for the LOM (blue) and
deflecting (red) modes.

Figure 18: Scans of resonant frequency vs rod radius, R, comparing model
(solid lines) to results from CST (points) for the LOM (blue) and deflecting
(red) modes.
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Figure 19: Scans of resonant frequency vs longitudinal rod half separation, g,
comparing model (solid lines) to results from CST (points) for the LOM (blue)
and deflecting (red) modes.

where we assume that the wavelength, λ = 4 (Lrod + g). This
is an approximation because some of the field penetrates into
the beam pipe, so the actual wavelength is slightly larger than
4 (Lrod + g), but this is a good approximation if Lrod � 0. The
the region between the end of the rod and the midplane of the
cavity, we assume that the potential drops off linearly to zero,
therefore the potential along the axis of one of the rods in the
region 0 ≤ z ≤ Lrod + g is given as

V =

V0 sin
(

πz
2(Lrod+g)

)
if z ≤ Lrod

V0
g sin

(
πLrod

2(Lrod+g)

)
((Lrod + g) − z) if Lrod < z ≤ (Lrod + g)

.

(27)
The energy stored in one rod in the cavity is a quarter of the
energy stored in the cavity, thus the total energy stored is

Ustored = 4
(∫ Lrod

0
ClineV2dz +

∫ Lrod+g

Lrod

Cend

g
V2dz

)
. (28)

Using Eqs. 14 and 27 and solving the integrals, the stored en-
ergy is given by

Ustored = 2V2
0

[(
Lrod

Z0c
+

Cend

3

)
−

(
Lrod + g
πZ0c

+
Cend

3

)
sin

(
πLrod

Lrod + g

)]
.

(29)
The RT

Q is given by

RT

Q
=

1
ωUstored

(
∇⊥V

k

)2

(30)

where k = 2π
λ

= ω
c . Therefore the RT

Q can be expressed as

RT

Q
=

c2

2ω3
[(

Lrod
Z0c +

Cend
3

)
−

(
Lrod+g
πZ0c +

Cend
3

)
sin

(
πLrod

Lrod+g

)] (
∇⊥V
V0

)2

.

(31)
If we use Eqs. 11 and 12 to evaluate the potential at a small
transverse offset, x, and by symmetry, the potential along the
longitudinal axis of the cavity is zero, then

∇⊥V
V0

=
V (x)
xV0

(32)

Figure 20: Scans of RT
Q vs rod length, Lrod , comparing the equivalent circuit

model (red) to results from CST (blue) for the deflecting mode.

Figure 21: Scans of RT
Q vs transverse rod half separation, S , comparing the

equivalent circuit model (red) to results from CST (blue) for the deflecting
mode.

where V (x) is the potential evaluated at a small transverse offset
x and V0 is the potential evaluated at the surface of the rod. Note
that in Eq. 32, we assume that the potential varies linearly with
x, although this is only valid for small values of x. By taking
this approximation, RT

Q becomes

RT

Q
=

c2

2ω3
[(

Lrod
Z0c +

Cend
3

)
−

(
Lrod+g
πZ0c +

Cend
3

)
sin

(
πLrod

Lrod+g

)] (
V (x)
xV0

)2

(33)

which is an equation which only depends on the cavity design
parameters (Lrod and g) and on parameters which have been
derived in previous sections (Cend, Z0, ω and V (x)).

Figures 20-24 show scans of RT
Q vs different design parameters,

comparing the model and CST results. With all of these figures,
it is clear that the model describes the trend of RT

Q vs the differ-
ent design parameters very well, however there is a systematic
error, which is most clearly seen on Figures 22 and 24. This
systematic error is due to the fact that we assume a simplistic
model for the potential along the rod and between the rod and
the grounding plane; this affects the stored energy of the cavity,
thus RT

Q . However, in order to optimise a cavity design, max-
imising RT

Q is generally more important than the exact value of
RT
Q .
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Figure 22: Scans of RT
Q vs rod to wall separation, W, comparing the equivalent

circuit model (red) to results from CST (blue) for the deflecting mode.

Figure 23: Scans of RT
Q vs rod radius, R, comparing the equivalent circuit model

(red) to results from CST (blue) for the deflecting mode.

Figure 24: Scans of RT
Q vs longitudinal rod half separation, g, comparing the

equivalent circuit model (red) to results from CST (blue) for the deflecting
mode.

2.5. Comparison Between the Improved Equivalent Circuit
Model and the CEBAF and HL-LHC deflecting cavities

As a benchmark we compare the simulations and calcula-
tions for the two existing 4 rod deflecting cavities. These two
cavities make an effective benchmark as the rod radius and sep-
aration compared to the wall radius is very different and hence
verifies our model in the two extremes. Table 1 shows the de-
sign parameters for the CEBAF separator [6] and the HL-LHC
four-rod crab cavity [8] and shows a good agreement between
the simulations in CST and the prediction from the equivalent
circuit model. The CST models of the CEBAF and HL-LHC
cavities are simplified versions of the actual designs described
in [6, 8] in order to compare to the equivalent circuit model.

Table 1: A table of parameters for the CEBAF separator [6]

Parameter CEBAF HL-LHC
Lrod [cm] 12.8 16.3
R [cm] 1 2
S [cm] 1.75 6.2
W [cm] 12.85 4
g [cm] 1 3

Frequencies [MHz] CST Model CST Model
LOM 320.9 307.1 366.4 362.8

Deflecting 507.7 505.3 394.1 390.6
2nd monopole 546.3 585.5 411.1 459.8

2nd dipole 552.9 585.5 408.1 459.8
RT
Q 10941 15017 464.2 580.0

For the deflecting modes in Table 1, CST and the equiva-
lent circuit model agree within 0.47% for the CEBAF separator
and within 0.89% for the HL-LHC four-rod crab cavity. For
the LOMs, CST and the equivalent circuit model agree within
4.3% for the CEBAF separator and within 0.93% for the HL-
LHC four-rod crab cavity. Since we neglect end capacitance
for the 2nd monopole and dipole modes, we assume that both
frequencies are that for a quarter-wave resonator and the model
and CST agree for these modes within 7% for the CEBAF sep-
arator and within 12% for the HL-LHC crab cavity. Due to the
simplicity of the model of the 2nd monopole and dipole modes,
we do not expect a good agreement between model and simu-
lation.

Design specifications stated in the HiLumi LHC Final Project
Report [16] places constraints on the cavity dimensions and
beam impedance; which in turn defines the values for S and
W. In order to separate the LOM and deflecting frequencies,
we require a small value of S and a large value of W, however
for the HL-LHC crab cavity we have a large value of S and a
small value of W; therefore an alternative method of separat-
ing frequencies is needed. The HL-LHC crab cavity has been
designed with complex rod shapes in order to reduce the ca-
pacitance to the outer wall and increase the capacitance to the
transversely opposing rods in order to mimic the effect of re-
ducing S and increasing W. If the LOM and deflecting mode
cannot be separated sufficiently, LOM and HOM (higher order
mode) couplers can be used to damp unwanted modes [17].
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2.6. Design optimisation with the equivalent circuit model
Design specifications constrain the design parameters for the

cavity. In the case of the HL-LHC crab cavity the stringent
design specifications limit the possible range of the design pa-
rameters. For the HL-LHC the specifications are

1. cavity aperture: S − R = 42 mm
2. transverse cavity size: S + W = 102 mm
3. deflecting mode frequency: f = 400 MHz ∝ 1

Lrod

4. maximise mode separation: maximise R,W, minimise S
5. maximise RT

Q : maximise R,W, minimise S , g

Since the deflecting mode frequency is most strongly depen-
dent on Lrod, we shall assume that this specification constrains
Lrod. In addition to the above constraints, the peak surface fields
need to be considered. An equivalent circuit model cannot es-
timate peak surface fields, but a study in CST for the HL-LHC
crab cavity determined that we require W − R ≤ 20 mm and
g ≥ 30 mm to keep peak fields within acceptable limits. From
the fifth specification above, we need to minimise g, therefore
g = 30 mm is optimal. Since we need to maximise R, we
can state that W − R = 20 mm, which combined with the first
2 specifications above gives S = 62 mm, W = 40 mm and
R = 20 mm. Then Lrod is determined to provide the correct
resonant frequency.

In the case of the CEBAF deflector, there was no limit on
the transverse cavity size, hence in the CEBAF design, this was
made significantly larger to increase RT

Q and mode separation.
As the CEBAF separator is a CW normal conducting cavity, it
is power limited and operates at a lower transverse voltage, thus
peak surface electric field is less critical and g = 10 mm.

In general, we can assume that Lrod is used to obtain the cor-
rect resonant frequency of the deflecting mode and as we aim
to maximise mode separation and RT

Q , we need to maximise R
and W, while minimising S and g. Other design specifications,
such as cavity aperture and limits on peak surface fields apply
further limits to constrain the design parameters and allow an
optimum or a compromise to be obtained.

3. Summary

An improved equivalent circuit model for a four rod deflect-
ing cavity is presented in this paper. We present a physical
model for the line impedance of the rods and a semi-empirical
model for the end capacitance. From the line impedance and
end capacitance we are able to calculate the resonant frequency
of the deflecting cavity for the LOM and deflecting mode. Mod-
els of the line impedance, end capacitance and resonant fre-
quency are compared to CST simulations and show a good
agreement. We then apply this model to develop a model for
the RT

Q for the deflecting mode. The model provides RT
Q to an

accuracy of ≤ 37%, which is sufficient for understanding how
to optimise the cavity design.

The equivalent circuit model was used to calculate resonant
frequencies for the LOM and deflecting modes for the CEBAF
deflector and HL-LHC four-rod crab cavity and the results com-
pared to CST simulations. For the deflecting mode, CST and

the equivalent circuit model agree within 0.47% for the CEBAF
separator and within 0.89% for the HL-LHC four-rod crab cav-
ity. For the LOM, CST and the equivalent circuit model agree
within 4.3% for the CEBAF separator and within 0.93% for the
HL-LHC four-rod crab cavity.

The equivalent circuit model described in this paper assumes
a simple geometry. It assumes cylindrical rods within a cuboid
cavity. The cavity dimension is large out of the deflecting plane
in order to neglect image charges out of the deflecting plane,
we also neglect roundings on corners and edges as well as the
effect of a beam pipe connected to the cavity.

Further studies are intended to obtain an improved model of
the end capacitance. This model would be based on a more
physically realistic model rather than an empirical fit to results
from CST. This would allow for a model which is valid over a
wider range of parameters.
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