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Abstract 25 

The presence of black carbon (BC) in soil drastically reduced the mineralization 26 

of 14C-phenanthrene and its extractability by hydroxylpropyl-β-cyclodextrin 27 

(HPCD) extractions. This study also tested the effects of pH on the HPCD 28 

extraction of 14C-phenanthrene in soils with BC. Extractions using 60 mM HPCD 29 

solutions prepared in deionized water (pH 5.89) and phosphate buffers (pH 7 30 

and 8) were conducted on 14C-phenanthrene-spiked soils amended with three 31 

different types of BC (1% dry weight) after 1, 25, and 50 d of ageing. 32 

Biodegradation assays using a Pseudomonas sp. strain were also carried out. 33 

Results showed that after 1 and 25 d, HPCD at pH 7 extracted significantly more 34 

14C-phenanthrene (p < 0.05) from BC-amended soils than the other two solutions 35 

(un-buffered and pH 8), while HPCD at pH 8 extracted statistically similar (p > 36 

0.05) amounts of phenanthrene compared to the un-buffered solution. At 50 d, 37 

HPCD at pH 8 generally extracted more 14C-phenanthrene from all treatments. It 38 

was proposed that higher pH promoted the dissolution of soil organic matter 39 

(SOM), leading to a greater solubility of phenanthrene in the solvent phase and 40 

enhancing the extractive capability of HPCD solutions. Although correlations 41 

between extractability and biodegradability of 14C-phenanthrene in BC-amended 42 

soils were poor, increasing pH was demonstrated a viable approach to enhancing 43 

HPCD extractive capability from the 14C-PAH from soil. 44 
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1. Introduction 50 

Massive consumption on fossil fuels and combustion of biomass in modern 51 

world has dramatically increased the input of black carbon (BC) into the 52 

environment [1]. BC is a group of heterogeneous carbon possessing strong 53 

sorptive capabilities and recalcitrance to chemical and biological transformation 54 

[4]. It is mainly produced by incomplete combustion of fossil fuels or biomass [1-55 

4]. BC is ubiquitously distributed across the environmental compartments 56 

including soil, where it impacts the fate and behaviour of a range of 57 

contaminants such as hydrophobic organic contaminants (HOCs) [5, 6]. 58 

Moreover, commercially produced BC (e.g. activated carbon, AC) has also been 59 

proposed and piloted as a tool for contaminated land remediation [7]. 60 

Nevertheless, there is still a lack of understanding regarding the implications of 61 

BC on the bioaccessibility of soil organic contaminants and risk assessment of 62 

contaminated land [4]. 63 

In the presence of BC, fastest rates and extents of biodegradation of polycyclic 64 

aromatic hydrocarbons (PAHs) can be dramatically reduced [2, 3, 8]. 65 

Furthermore, extractability of PAHs from contaminated soils by hydroxylpropyl-66 

β-cyclodextrin (HPCD) has been shown to be influenced by the presence of BC [2, 67 

9]. Importantly, HPCD is acknowledged as a well-established mimetic method to 68 

assess the bioaccessibility of organic contaminants in soils [10-12]. However, the 69 

HPCD extraction has been shown to underestimate the mineralization of 70 

phenanthrene in soils amended with 0.1% or more of AC [2], thereby interfering 71 

with the reliability of this technique. [2]. Rhodes et al. [2] and Xia et al. [3] 72 

attributed such incompatibility between HPCD extractability and 73 

biodegradability to the direct mineralisation of BC-associated phenanthrene by 74 



microorganisms, which HPCD extraction was not able to account for. Although 75 

the mechanism involved in direct microbial uptake of sorbed substances has 76 

been reported by Alexander [13], this explanation is still questionable 77 

considering that the uptake of organic substances by soil microorganisms 78 

predominantly takes place in the aqueous phase [14, 15]. It is also possible that 79 

other microbial processes (e.g. biosurfactant production) could promote the 80 

desorption of the BC-associated target chemical, while water as the solvent of 81 

HPCD solution used in these researches was not capable of displacing target 82 

compounds from sorption sites on BC particles [16]. 83 

As it has been previously suggested [4], it is important to find a reliable chemical 84 

method to estimate the bioaccessibility of HOCs in soils with BC given the 85 

growing input of BC to soil from anthropogenic sources and the application of 86 

commercially produced BC as a strategy for the remediation of contaminated 87 

systems. For this purpose, a potential approach is to modify HPCD extraction 88 

methodology by integrating a buffer of higher pH into the solvent to achieve a 89 

greater displacement capacity for target compounds, as increasing pH promotes 90 

the dissolution of SOM [17] which contributes to greater aqueous solubility of 91 

organic pollutants [18]. This was also demonstrated by Reid et al. [10] who 92 

observed enhanced extractive capability of HPCD solution prepared in 93 

phosphate buffer of pH 8 for phenanthrene [10]. Therefore, this study aims to 94 

investigate the effects of phosphate buffers of higher pH values on the extractive 95 

capability of HPCD solutions for phenanthrene (a) in soils amended with 96 

different types of commercially produced BC, (b) after different periods of soil-97 

contaminant interactions. Parallel biodegradation assays with a phenanthrene-98 



degrading inoculum (Pseudomonas sp.) to measure the microbially accessible 99 

fraction of the PAHs in the soil. 100 

2. Materials and methods  101 

2.1 Chemicals  102 

Unlabelled phenanthrene was obtained from Sigma Aldrich Co, Ltd. UK. [9-14C] 103 

Phenanthrene was purchased from American Radiolabelled Chemicals, Inc., USA. 104 

Liquid scintillation cocktail (Goldstar) and sample oxidation cocktails (Carbotrap 105 

and Carbocount) were obtained from Meridian Biotechnologies Ltd, UK. 106 

Hydroxylpropyl-β-cyclodextrin (HPCD) was purchased from Acros Organics, 107 

Belgium. General purpose grade agar (GPA) was obtained from Fisher Scientific, 108 

UK. Activated carbon (Colorsorb P3-1, Aquasorb CP2 and Aquasorb BP2) was 109 

obtained from Jacobi Carbons, UK.  110 

2.2 Soil collection and characterization 111 

Pristine soil was collected (A horizon; 5 – 20 cm) from Myerscough Agricultural 112 

College in Lancashire, UK, and passed through a 2 mm sieve to remove stones 113 

and roots. General soil properties are presented in Table 1. Particle size was 114 

analysed through laser diffraction (Hydro 2000MU, Malvern Instruments Ltd., 115 

UK). Soil organic matter content (dry weight basis) was determined by mass loss 116 

on ignition (450 °C for 24 h). Total carbon and nitrogen content (%) were 117 

assessed using an Elementar Vario EL III elemental analyser (Hanau, Germany). 118 

2.3 BC amendment and soil spiking 119 

Prior to BC amendment, the soil was rehydrated with deionized water to field 120 

moisture content (30 – 35% dry weight basis). Subsequently, soil treatments 121 

with 1% (dry weight basis) of three different types of BC (designated as P3-1, CP 122 

2 and BP 2, properties presented in Table 2) were prepared by blending specific 123 



quantities of BC with each treatment using a stainless spoon [2]. A treatment 124 

without BC was also prepared as a control. Immediately after BC amendment, 125 

soils were spiked with 12C-/14C-phenanthrene using acetone as carrier (3.75 ml 126 

per 300 g dry soil at 0.8 mg/ml for 12C- and 6666.67 Bq/ml for 14C-phenanthrene) 127 

as described by Doick et al. [19], to achieve a 12C-phenanthrene concentration of 128 

10 mg kg-1 and 14C-phenenthrene-associated radioactivity of 64 – 78 kBq kg-1 dry 129 

soil. Unspiked control soils were also prepared for each BC treatment. As 130 

mineralisation of phenanthrene by both indigenous and inoculated 131 

microorganism has been shown to be equally efficient and dependent solely on 132 

the available amount of phenanthrene [20, 21], the soil samples were not 133 

sterilised after spiking and were incubated in sealed amber glass jars at room 134 

temperature (21 ± 1 °C) for 1, 25, and 50 d.  135 

2.4 Preparation of phenanthrene-degrading inoculum 136 

Prior to the mineralization assay, a phenanthrene-degrading inoculum of 137 

Pseudomonas sp. was cultured in a mixture of minimal basal salts solution (MBS) 138 

containing phenanthrene solution (0.1 ml l-1) as the sole C-source [22] on an IKA 139 

Labortechnik KS501 digital orbital shaker at 100 rpm at room temperature (21 ± 140 

1 °C). On the fourth day of incubation (late exponential phase of growth), the 141 

inoculum was concentrated by centrifugation at 10,000 x g for 30 minutes 142 

(Hettich Zentrifugen, Rotanta 460, UK). The supernatant was then discarded and 143 

the cell pellet washed and re-suspended with fresh MBS. A second centrifugation 144 

was subsequently carried out to ensure the removal of any residual 145 

phenanthrene, obtaining a final cell density of approximately 108 cells ml-1. 146 

2.5 Mineralization of 14C-phenanthrene 147 



Mineralization assays were conducted in ‘respirometers’, which were modified 148 

250 ml Schott bottles as described by Reid et al. [22]. After 1, 25 and 50 d of soil 149 

incubation, the respirometers (n = 3) were set up with 10 ± 0.2 g soil wet weight 150 

(~7.5 g dry soil), 25 ml of MBS, and 5 ml of concentrated inoculum (105 – 106 151 

cells per g soil) [23]. Uninoculated respirometers (n = 3) and soil incubations 152 

with no 14C-activity (n=3) were also set up for each treatment. The 153 

respirometers were then incubated on an IKA Labortechnik KS501 digital orbital 154 

shaker at 100 rpm for 14 days at room temperature (21 ± 1 °C). During this 155 

period of time, 14CO2 generated from microbial degradation of 14C-phenanthrene 156 

was trapped in 7 ml glass scintillation vials suspended from the Teflon lined-lid 157 

containing 1 ml of NaOH (1 M). The vials were replaced every 24 h, after which 5 158 

ml Goldstar scintillation cocktail was subsequently added to each of the sampled 159 

vials and the 14C-associated activity was quantified by liquid scintillation 160 

counting (LSC, Canberra Packard Tri-Carb2250CA) after a >12h storage in the 161 

dark to avoid chemo-luminescence.  162 

2.6 Extraction of 14C-phenanthrene with hydroxylpropyl-β-cyclodextrin (HPCD) 163 

solutions 164 

Three different HPCD solutions (60mM) were prepared in deionized water (pH 165 

5.89), and phosphate buffers of pH 7 and 8 respectively. The buffers of pH 7 and 166 

8 were prepared by combining K2HPO4 (0.2 M) and KH2PO4 (0.2 M) solutions at 167 

ratios of 1.6:1 and17.9:1 respectively. The extraction assays were carried out 168 

after 1, 25 and 50 days of ageing, following the methodology described by Reid et 169 

al. [10]. In brief, soil (1.25 ± 0.1 g wet weight) from each treatment was weighed 170 

into 35 ml Teflon centrifuge tubes with 25 ml of each HPCD solution (n = 3). The 171 

tubes were then placed onto an orbital shaker (IKA Labortechnik KS501 digital) 172 



at 100 rpm for 22 h in darkness at room temperature (21 ± 1 °C). Subsequently, 173 

the tubes were centrifuged at 3000 x g for 1 h (Hettich Zentrifugen, Rotanta 460, 174 

UK) and 5 ml of supernatant was then mixed with 15 ml Goldstar scintillation 175 

cocktail. The samples were assessed by LSC as described previously. 176 

2.7 Statistical analysis 177 

Following blank-correction, statistical analysis of the results was carried out 178 

with the Statistical Package for the Social Sciences (SPSS Version 22 for Mac). 179 

The statistical significance of BC addition, BC type and ageing period to 180 

phenanthrene biodegradability and phenanthrene extractability by HPCD 181 

solutions, as well as the statistical significance of pH to HPCD extractive 182 

capability, was determined using a linear model (ANOVA, Tukey Test) and/or 183 

Student t-test at 95% confidence level (p < 0.05).  184 

3. Results and discussion 185 

3.1 Mineralization of 14C-phenanthrene in soils 186 

14C-Phenanthrene catabolism was drastically reduced in all BC-treated soils at all 187 

time points. Compared to soil without BC, the fastest rates (the highest yield of 188 

14CO2 per day during mineralisation assays) and extents and of 14C-189 

phenanthrene mineralization decreased by more than 99% at 1 and 25 d, and 190 

more than 93% after 50 d of soil incubation (Table 3, 4). The fastest rates of 191 

phenanthrene mineralisation did not exceed 0.10% per d at 1 and 25 d and were 192 

less than 0.3% per d at 50 d in BC-amended soils (Table 3). At 1 d, only 0.15%, 193 

0.07%, and 0.11% of 14C-PAH was mineralized in soils amended with P3-1, CP 2, 194 

and BP 2 respectively, while 63.20% of the 14C-phenanthrene was mineralised in 195 

soil without BC. Furthermore, influences of BC type on biodegradation were 196 

observed. At 25 d contact time, soil amended with CP 2 yielded significantly less 197 



(p < 0.05) 14CO2 than the other two BC-amended soils, while significantly more 198 

14C-phenanthrene (p < 0.05) was mineralized in soil with P3-1 at 50 d than the 199 

other two BC-treated soils. Overall, these results were in agreement with 200 

previous studies by Rhodes et al. [2, 8]. These trends have been attributed to the 201 

strong sorptive capacity of BC [24, 25]. Consequently, the aqueous concentration 202 

and biodegradation of target compound was reduced, as the microbial uptake of 203 

organic substances mainly takes place in soil aqueous phase [14, 15]. Moreover, 204 

a fraction of 14C-phenanthrene may have become inaccessible to microorganisms 205 

due to entrapment in collapsed pores on BC particles [4, 26]. However, the extent 206 

to which 14C-phenanthrene mineralization was inhibited in BC-amended soils 207 

was much greater than those observed by Rhodes et al. [2, 8]. At least 6% of 208 

spiked 14C-phenanthrene was mineralised in each soil treatment in research by 209 

Rhodes et al. (2008) all treatments (0 – 5% AC dry weight) in the study by 210 

Rhodes et al. [2], while Rhodes et al. [8] only obtained biodegradation extents 211 

lower than 1% in soils treated with 5% AC. It appears that the types of BC used 212 

in this study possessed greater sorptive capacity than those used in studies by 213 

Rhodes et al. [2, 8]. The BC type also influenced the rates and extents of 214 

mineralisation of 14C-phenanthrene in the present study (Table 3, 4). These 215 

variations may be attributed to the specific properties of each BC such as surface 216 

heterogeneity and functional groups, pore volume, activation and production 217 

methods, source material, as well as processing temperature [3, 4, 27-29].  218 

After 50 d ageing, all BC-amended soils yielded greater 14C-phenanthrene 219 

mineralization compared to 1 and 25 d. Unlike BC-amended soils, biodegradation 220 

of 14C-phenanthrene in soil without BC decreased significantly (p < 0.05) over 221 

time (Table 4). Apparently, ageing effect, where biodegradability of HOCs 222 



diminishes over time [30], was absent in BC-amended soils. Similar results were 223 

also obtained by Rhodes et al., who attributed such findings to sorptive 224 

attenuation, where soil organic matter (SOM) competes for limited sorption sites 225 

on BC particles and blocks them from the spiked chemical, thus lowering 226 

sorptive capacity of BC for target substances [2, 31]. Such competitive sorption 227 

has also been observed by other researchers; for example, Wang et al. [28] found 228 

that organic chemicals with larger molecular sizes covered the binding sites on 229 

BC particles and blocked them from smaller molecules.  230 

3.2 HPCD extraction of 14C-phenanthrene in soils 231 

Addition of BC also led to drastic reduction in the extractability of the 14C-PAH by 232 

HPCD solutions in each soil treatment at all soil-contaminant contact times 233 

(Table 5). Compared to the soil without BC, 14C-activity extracted by unbuffered 234 

aqueous HPCD solution decreased by more than 99% at 1 and 25 d, while 93 – 235 

98% less 14C-phenanthrene was extracted by the unbuffered solution after 50 d 236 

of ageing. Extractions with buffered HPCD solutions were also strongly 237 

influenced by the presence of BC, but the phosphate buffer also resulted in 238 

changes in amounts of 14C-phenanthrene extracted by HPCD. At 1 and 25 d, 239 

HPCD at pH 7 extracted 1.03 – 1.56% of spiked phenanthrene from all BC-treated 240 

soils (Table 5), which was statistically higher (p < 0.05) than the amounts 241 

extracted by the other two solutions. Further increase in pH of HPCD solution to 242 

8 led to statistically similar (p > 0.05) yield of extracted 14C-activity from all BC-243 

amended soils compared to its aqueous counterpart at 1 and 25 d (Table 5). 244 

However, after 50 days of soil incubation, HPCD at pH 8 extracted significantly 245 

more (p < 0.05) 14C-activity than the other two solutions in soils amended with 246 

CP 2 and BP 2, while the amounts of 14C-phenanthrene extracted by HPCD at pH 247 



7 were statistically similar (p > 0.05) to the values from extractions using 248 

aqueous HPCD solution for all BC-amended soils (Table 5).  249 

HPCD is a well-established non-exhaustive extraction technique to measure 250 

microbial bioaccessibility of numerous HOCs in soils under different conditions 251 

[11, 20, 32-38]. The HPCD molecules are able to separate organic compounds 252 

from water solution, thus mimicking microbial uptake of organic substances and 253 

driving mass-transfer of target compound from soil matrix to dissolved phase 254 

[10, 39-42]. However, in presence of BC, sorption of the 14C-PAH resulted in 255 

reduction of dissolved phenanthrene for HPCD molecules to separate. Moreover, 256 

Jonker and Koelmans [16] suggested that water, as the solvent of aqueous HPCD 257 

solution, was not capable of displacing BC-associated phenanthrene molecules 258 

from binding sites on BC particles. In the present study, buffered solutions of pH 259 

7, at 1 and 25 d, as well as that of pH 8, at 50 d, enhanced the extractive 260 

capability of HPCD solutions in soils amended with BC. Additionally, the buffered 261 

extracts from each soil treatment at each time point were highly coloured. This 262 

was consistent with the observations made by Reid et al. [10] and was indicative 263 

of the existence of dissolved organic matter in the extracts [10, 43]. The 264 

promotion of dissolution of SOM by phosphate buffers at higher pH has been 265 

reported in previous studies [44-46]. It was suggested that the deprotonation 266 

under basic conditions brought by phosphate buffers attenuated the association 267 

between SOM and soil minerals, thus increasing the amount of dissolved organic 268 

matter (DOM) [44]. Although other researchers also demonstrated the ability of 269 

phosphate to inhibit the sorption of phenanthrene in soils [47], the effects of 270 

phosphate itself in this research on the release of phenanthrene from soil are 271 

considered minimal given the amount of phosphate used and its contact time 272 



with spiked soils. DOM subsequently contribute to greater solubility of 273 

phenanthrene [18], so that there were more PAH molecules in the aqueous phase 274 

for HPCD molecules to separate. 275 

Interestingly, increases in pH did not always result in increases in extraction 276 

using HPCD solutions, as a biphasic feature of increasing pH was identified in BC 277 

amended soils at 1 and 25 d, and was absent after 50 days of ageing. This 278 

observation reflects the complex interactions between soil, BC, phenanthrene 279 

and HPCD solutions. It is therefore postulated that extensive sorption of both 280 

SOM and 14C-phenanthrene to BC particles was achieved shortly after BC 281 

amendment and PAH spiking, while at 1 and 25 d, HPCD at pH 8 dissolved so 282 

much BC-associated SOM that sorption sites on BC particles were exposed to 283 

phenanthrene. Consequently, greater sorption of phenanthrene to BC was 284 

facilitated. At 50 d, however, greater amount of SOM was attached to BC particles 285 

and phenanthrene molecules partitioned deeper into BC. As a result, buffer of pH 286 

8, which was able to dissolve more SOM, released more BC- and SOM-bound 287 

phenanthrene than buffer of pH 7 (Fig. 1).  288 

A simple comparison between HPCD extraction assays and mineralisation assays 289 

conducted in BC-amended soils was carried out by calculating the ratios of 290 

extraction to mineralisation. The results indicated that in most cases aqueous 291 

HPCD extracted underestimated mineralisation of 14C-phenanthrene (Table 6). 292 

However, the extents to which biodegradation was underestimated were not as 293 

great as those reported by Rhodes et al. [2] except for few cases (Table. 6). Such 294 

findings suggest that the differences between HPCD extractive capability and 295 

biodegradability of phenanthrene in soils with BC may not be as great as they 296 

were previously observed. The amounts of phenanthrene extracted by HPCD in 297 



pH 7 were 3 to 15 times greater those degraded by microorganisms at 1 and 25 d, 298 

and mildly deviated from the degraded amounts at 50 d (Table 6). HPCD in pH 8 299 

provided mixed results in ratios of extraction to mineralisation in all BC-treated 300 

soils, but the deviations of extractability from biodegradability were not as great 301 

as those demonstrated by aqueous HPCD and HPCD in pH 7. These findings have 302 

two implications. Firstly, the mechanism which was direct degradation of BC-303 

associated phenanthrene proposed in previous studies may not be actually 304 

involved in mineralisation assays. Secondly, increasing pH enhances the 305 

extractive capability of HPCD and could improve this method in predicting 306 

microbial accessibility of phenanthrene in soils with BC after substantial ageing 307 

period, as the ratios of HPCD extraction in buffers were approach 1 compared to 308 

those of aqueous HPCD (Table 6). However, due to the size of the data acquired 309 

in the current study, further verification of these findings are required to 310 

optimise this modification of HPCD extraction under various conditions 311 

including different pH values, and soil and BC types. Besides, the order of BC 312 

amendment and PAH spiking should also be considered as the faster and greater 313 

binding of PAH with BC particles in pre-amended soils may occur, thus bringing 314 

differences to the results obtained. 315 

4. Conclusion 316 

Addition of BC significantly reduced mineralisation and extraction of 14C-317 

phenanthrene after different periods of soil-contaminant interactions, where 318 

variations brought by BC type were identified among soil treatments. 319 

Introduction of phosphate buffers produced varying effects to the extractive 320 

capability of HPCD solutions, as HPCD at pH 7 extracted significantly more 321 



phenanthrene at 1 and 25 d, and HPCD at pH 8 yielded more extracted 14C-322 

activity at 50 d. 323 

A biphasic feature of increasing pH on HPCD extractive capability was observed 324 

at 1 and 25 d but not at 50 d. overall, these findings reflected the complex 325 

interactions between SOM, BC, HPCD, and phenanthrene. Aqueous HPCD 326 

extractions did not always underestimate biodegradation of phenanthrene in BC-327 

amended soil, rejecting previously proposed mechanism for the incompatibility 328 

between mineralisation and HPCD extraction. More studies should be carried out 329 

to find out whether presence of BC indeed leads to underestimation of 330 

biodegradation by HPCD extraction. If yes, increasing pH of HPCD solution, as it 331 

has been demonstrated in this study, is a viable approach to modifying this 332 

technique for better prediction of the bioaccessibility of organic contaminants in 333 

soils with BC. 334 



Table 1. Physical-chemical properties of soil used in this study. Errors are shown as 1 335 
SEM (n = 3). 336 

Soil Properties 
 

Parameter Value 
pH (in dH2O) 

 
5.36 ± 0.01 

Organic matter (%) 
 

9.15 ± 0.06 
Nitrogen (%)  0.20 ± 0.02 
Carbon (%)  2.24 ± 0.01 
Particle size* Clay 23.42% 

 
Silt 75.26% 

 
Sand 1.27% 

 
Soil texture Silt loam 

* Analysis of particle size by laser diffraction reflected the distribution of particles with 337 
diameter < 1 mm, using total surface area as baseline. 338 



Table 2. Properties of black carbon used for soil amendments. 339 

Activated 
Carbon 

Source 
Activation 
method 

Processing 
Temperature 

Surface 
area (m2 g-

1)  

Pore 
volume 
(cm3 g-1) 

Mean particle 
diameter (μm) 

P3-1 Wood 
Chemical 
activation 

700°C 1150 
Not 
provided 

Not applicable 
a 

BP 2 Coal Steam activation 850-950°C 1000 1.56 21 

CP 2 
Coconut 
shell 

Steam activation 850-950°C 950 0.55 21 

a Particle size of this grade was expressed as distribution of powder size: <150 μm = 95 -100%, <75 μm = 85 – 95%, <45μm = 65 – 85%.340 



Table 3. Fastest rates of 14C-phenanthrene mineralization in soils amended with 0% black carbon and 1% P3-1, CP 2, and BP 2 at 1, 25 341 
and 50 days of soil-phenanthrene interactions. Values are the % 14CO2 per d mean (n = 3) ± standard error of the mean (SEM). Values in 342 
the same column followed by the same letter, or row followed by the same number are statistically similar (student t-test and ANOVA 343 
Tukey test, n = 3, p < 0.05). 344 

Ageing 
period 
(days) 

Black carbon treatment 

0% BC 1% P3-1 1% CP2 1% BP2 

1 day 26.13 ± 1.73a1 0.03 ± 0.01a2 0.02 ± 0.00a2 0.03 ± 0.00a2 

25 day 13.78 ± 1.43b1 0.05 ± 0.01a2 0.02 ± 0.01a2 0.10 ± 0.01b3 

50 day 3.85 ± 0.16c1 

 
 

0.25 ± 0.00b2 

 
 

0.04 ± 0.01a3 

 
 

0.06 ± 0.01c3 

 
 



Table 4. Total extents of 14C-phenanthrene mineralised by microorganisms in soils amended with 0% black carbon and 1% P3-1, CP 2, 345 
and BP 2 after 1, 25, and 50 days of soil-phenanthrene interactions. Values are the % mean (n = 3) ± standard error of the mean (SEM). 346 
Values in the same column followed by the same letter, or row followed by the same number are statistically similar (student t-test and 347 
ANOVA Tukey test, n = 3, p < 0.05). 348 

Ageing 
period 
(days) 

Black carbon treatment 

0% BC 1% P3-1 1% CP2 1% BP2 

1 day 63.20 ± 0.52a1 0.15 ± 0.03a2 0.07 ± 0.01a2 0.11 ± 0.02a2 

25 day 38.79 ± 1.01b1 0.24 ± 0.04a2 0.09 ± 0.04ab3 0.29 ± 0.02b2 

50 day 21.29 ± 0.98c1 1.46 ± 0.00b2 

 
 

0.21 ± 0.03b3 

 
 

0.38 ± 0.06b3 

 



Table 5. 14C-Phenanthrene extracted by HPCD solutions from soils amended with 0% black carbon and 1% P3-1, CP2, and BP2 after 1, 25 349 
and 50 days of soil-phenanthrene interactions. Values are the % mean (n = 3) ± standard error of the mean (SEM). At each time point, 350 
values in the same column followed by the same letter are statistically similar; values in the same column generated from the extraction 351 
assays with the same HPCD solution followed by the same Greek letter are statistically similar; values in the same row followed by the 352 
same number are statistically similar (student t-test and ANOVA Tukey test, n = 3, p <0.05). 353 
Ageing 
period 
(days) 

HPCD 
solution 

Black carbon treatment 

0% BC 1% P3-1 1% CP2 1% BP2 

1 day dH2O 74.16 ± 0.39aα1 0.08 ± 0.08aα2 0.08 ± 0.02aα2 0.10 ± 0.10aα2 

pH 7 74.96 ± 0.80aα1 1.37 ± 0.07bα2 1.03 ± 0.21bα3 1.10 ± 0.14bα3 

pH 8 72.70 ± 1.46aα1 0.05 ± 0.05aα2 0.11 ± 0.08aα2 0.11 ± 0.11aα2 

25 day dH2O 14.29 ± 1.05aβ1 0.01 ± 0.01aα2 0.06 ± 0.06aα2 0.02 ± 0.02aα2 

 pH 7 24.71 ± 1.35bβ1 1.56 ± 0.17bα2 1.11 ± 0.09bα3 1.01 ± 0.17bα3 

pH 8 31.69 ± 0.06cβ1 0.20 ± 0.12aα2 0.20 ± 0.13aαβ2 0.13 ± 0.10aα2 

50 day dH2O 3.76 ± 0.35aγ1 0.24 ± 0.15aα2 0.05 ± 0.01aα2 0.08 ± 0.06aα2 

pH 7 8.90 ± 0.89bγ1 0.52 ± 0.07aβ2 0.09 ± 0.07aβ3 0.05 ± 0.04aβ3 

pH 8 12.55 ± 0.28cγ1 0.64 ± 0.33aα2 0.61 ± 0.12bβ2 0.44 ± 0.06bα2 



Table 6. The ratios of the amounts of extracted 14C-activity to that of mineralised 354 

14C-activity in BC-amended soils.  355 

HPCD 
solution 

Ageing 
period 

BC treatment 

1% P3-1 1% CP2 1% BP2 
dH2O 1 day 0.55 1.14 0.85 

25 day 0.05 0.68 0.07 
50 day 0.26 0.06 0.42 

pH 7 1 day 9.30 15.18 9.73 
25 day 6.50 12.36 3.49 

50 day 0.48 0.75 1.15 
pH 8 1 day 0.31 1.61 1.01 

25 day 0.83 2.22 0.45 

50 day 0.67 2.73 1.78 



 356 

Fig. 1. Proposed mechanism for the biphasic feature of increasing pH on 357 
extractive capability of HPCD solutions at 1 and 25 d, and the absence of this 358 
feature at 50 d. At 1 and 25 d, HPCD at pH 8 dissolved large quantity of BC-359 
associated SOM and exposed sorption sites on BC to phenanthrene, leading to 360 
greater sorption of phenanthrene to BC particles. At 50 d, more SOM and 361 
phenanthrene was attached to BC, HPCD at pH was more capable of dissolving 362 
SOM and therefore released more BC- and SOM- bound phenanthrene.363 
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