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Abstract

One-way electric vehicle carsharing systems are receiving increasing attention due to their mobility, environmental, and societal
benefits. One of the major issues faced by the operators of these systems is the optimization of the relocation operations of person-
nel and vehicles. These relocation operations are essential in order to ensure that vehicles are available for use at the right place at
the right time. Vehicle availability is a key indicator expressing the level of service offered to customers. However, the relocation
operations, that ensure this availability, constitute a major cost component for the provision of these services. Therefore, clearly
there is a trade-off between the cost of vehicle and personnel relocation and the level of service offered. In this paper we are de-
veloping, solving, and applying, in a real world context, an integrated multi-objective mixed integer linear programming (MMILP)
optimization and discrete event simulation framework to optimize operational decisions for vehicle and personnel relocation in a
carsharing system with reservations. We are using a clustering procedure to cope with the dimensionality of the operational problem
without compromising on the quality of the obtained results. The optimization framework involves three mathematical models: (i)
station clustering, (ii) operations optimization and (iii) personnel flow. The output of the optimization is used by the simulation
in order to test the feasibility of the optimization outcome in terms of vehicle recharging requirements. The optimization model
is solved iteratively considering the new constraints restricting the vehicles that require further charging to stay in the station until
the results of the simulation are feasible in terms of electric vehicles’ battery charging levels. The application of the proposed
framework using data from a real world system operating in Nice, France sheds light to trade-offs existing between the level of
service offered, resource utilization, and certainty of fulfilling a trip reservation.
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1. Introduction low people to park the vehicles anywhere in the covered area,
whereas non-floating impose restrictions to users to park the ve-
hicles at stations with limited number of parking spots. Another
differentiating feature is the “one-way/round-trip” characteris-
tic: Round-trip systems force the user to return the car to the
location where it was picked-up whereas one-way systems al-
low drop-off at any station. The type of vehicle (combustion,
electric, etc.) affects also the system’s use.

Rental operations naturally induce imbalances in the spa-
tial and temporal distribution of vehicles of one-way carsharing
systems. To maximize the demand served, vehicle distribution
needs to be rebalanced by performing relocations to maximize
vehicle availability. There may be a wide variety of demand
types depending on their reservation pattern: some reservations
are made at the last minute while others are made long time in
advance when a vehicle is needed for a scheduled activity. Both
types of demand introduce constraints for the operator. Thus,
the operational management of carsharing systems is complex
due to the stochastic and dynamic nature of demand in time and
space, and the limited availability of information. The opera-
tor of such a system has to manage it in a way that maximizes
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The emergence of carsharing as a new transportation mean
between public and private transport is quite recent. People
benefiting from this service have to register and then can use
vehicles located within a designated service area. Carsharing
is an approach to increase vehicle utilization while decreasing
the cost encountered to each user. Expenses associated to car
ownership are nowadays quite high linked to purchase, gaso-
line, insurance, parking and maintenance. Avoiding these ex-
penses may be a motivation for a driver to adopt carsharing as
a regular transportation mean if the system is able to provide
high quality of service (accessibility and availability of vehi-
cles both at origin and destination of his/her trip at reasonable
cost). In addition to users’ benefits, carsharing systems are pro-
ducing broader societal and environmental benefits such as re-
duction of congestion, air pollution, and the urban space needed
for parking.

Carsharing systems can be classified in different categories
according to the rental conditions. Free-floating systems al-
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sharing systems because of their increased flexibility towards
the user compared to round-trip systems and their eco-friendly
characteristics. In particular, the objective of this paper is to
develop and apply an integrated framework for optimizing op-
erational decisions related to vehicle and relocation personnel
relocation decisions. The developed framework could be ex-
tended to free-floating one-way systems.

2. Previous related research

Carsharing systems have been studied intensively in recent
years. The existing body of literature addresses issues related
to carsharing systems characteristics and types, assessment of
carsharing system impacts, and modelling of strategic, tactical
and operational decisions. For a more comprehensive literature
review the reader refers to Jorge and Correia (2013), Shaheen
and Cohen (2013) and Boyac1 et al. (2015). Given the focus
of this paper on operational decisions we limit our literature
review to papers that are mostly relevant to the modelling of
operational decisions for one-way carsharing systems. These
decisions relate to the allocation and re-allocation of carshar-
ing vehicles and relocation personnel to stations. Optimization
and/or simulation are the methodological approaches that have
been used to support one-way carsharing operational decisions.

Barth et al. (1999) developed a queuing based discrete event
simulation model to evaluate operational decisions for a shared
vehicle system of a resort community in Southern California.
The types of decisions addressed include vehicle availability,
vehicle distribution, and energy management. This model uses
a variety of performance measure, such as total average wait
time, number of customers waiting, number of relocations, and
average battery state of charge, to assess the performance of the
system.

Kek et al. (2006) introduced a time-stepping simulation
model for assessing relocation operations using shortest time
and inventory balancing criteria. Zero-vehicle time, full-port
time, and number of relocations were the three indicators used
to assess the performance of the relocation operations. Kek
et al. (2009) used a three-phase optimization-trend-simulation
(OTS) approach to develop a decision support system (DSS),
for relocation operations. The optimization phase is based on
a mixed integer programming (MIP) formulation which is used
to determine the resources needed to operate the carsharing sys-
tem at minimum cost. In the second phase the output of the op-
timization phase is “filtered” to produce the parameters needed
to simulate the operation of the carsharing system. The simula-
tor developed in Kek et al. (2006) is used in the third step of the
proposed DSS.

Nair and Miller-Hooks (2011) proposed a stochastic mixed
integer programming (MIP) model to generate minimum cost
vehicle redistribution plans to satisfy a proportion of the near-
term stochastic demand of the carsharing system. The proposed
model was demonstrated on a real-world carsharing system in
Singapore.

Correia and Antunes (2012) developed an optimization ap-
proach for station location and trip selection schemes to max-
imize profit for one-way systems with stations. This work

showed that offering a high level of service to one-way systems
without involving relocation requires a very large fleet to cope
with the demand and high involved cost. Thus, integrating a re-
location module is necessary to deal with spatial and temporal
asymmetry of demand. Correia et al. (2014) considered how
information about vehicle availability in stations and flexibility
of users in renting from a station nearby, but not the closest sta-
tion, can improve the demand served. No relocation strategies
have been integrated in this formulation.

Relocation strategies and inventory management for bike-
sharing systems already exist in the literature (Nair et al., 2013;
Raviv et al., 2013; Raviv and Kolka, 2013; Benchimol et al.,
2011; Sayarshad et al., 2012). While bike- and carsharing sys-
tems share plenty of similarities both at the tactical and opera-
tional level, a significant difference is that relocation is usually
performed with trucks that are able to reposition simultaneously
a large amount of bicycles, while for carsharing systems, these
actions are more time- and personnel-consuming.

Weikl and Bogenberger (2015a,b) provided relocation strate-
gies for free-floating systems for pick up and drop-off. They
combine a macroscopic relocation optimization policy of mov-
ing vehicles between zones, with a rule based heuristic for sta-
tion to station relocations. Specific movements of relocation
personnel, frequency of relocation policies and detailed cost es-
timates are not provided in the paper. This approach was tested
in a free-floating system in Munich and is one of the few re-
ported tests in the literature.

Kaspi et al. (2014) considered a system with reservations and
model it as a dynamic system with Markovian characteristics.
The authors showed that under specific demand profiles, reser-
vations can improve the performance of the system compared
to free-access sharing systems. Nevertheless, the destination
spot is reserved at the beginning of the trip, which might cre-
ate under utilization of the system. Instead, if the return time
of the vehicle is known to some extend, more advanced reloca-
tion policies can guarantee a free spot at the destination and at
a desired time. We utilize this approach in our current work.

Pfrommer et al. (2014) developed a dynamic redistribution
model for a public bicycle sharing (PBS) system. The proposed
system is based on predictive control principles which are used
to dynamically calculate rewards for system users. The goal of
this model is to provide incentives to users to return the rented
bicycles to under-utilized stations in order to reduce bicycle
repositioning costs.

Bruglieri et al. (2014) addressed the vehicle relocation prob-
lem for an one way electric carsharing system in Milan. A
mixed integer programming (MIP) model was developed to de-
termine the optimum sequence of pick-up and delivery opera-
tions that should be performed by vehicle-relocation personnel.

Jorge et al. (2015) presented a mathematical programming
model for maximizing profitability of a carsharing system op-
timizing relocation operations for one-way carsharing system.
In addition a discrete-event time-driven simulation model was
proposed to evaluate alternative relocation policies.

Nourinejad and Roorda (2014) introduced an optimization-
simulation framework for supporting decisions for one way car-
sharing systems. The proposed framework includes a static



benchmark module and a dynamic module. The static com-
ponent determines the optimum number of vehicles needed to
serve the entire demand for the system. The dynamic relocation
component involves a vehicle relocation (VRO) and a parking
inventory model (PIO). The vehicle relocation model seeks to
optimize system revenues by relocating vehicles from the des-
tination of user i to the origin of user j. The parking inventory
model aims to minimize the total cost of parking by determining
the optimal relocation times for the vehicles determined by the
vehicle relocation optimization model. The VRO and PIO mod-
els are run in conjunction to a discrete-event simulation model
where an event is defined by a new user arrival. The solution of
the VRO and PIO determine the customer requests that will be
satisfied, the vehicles that will be relocated, and the time that
these relocations will take place.

Jorge et al. (2015) influenced vehicle imbalances by integrat-
ing a pricing scheme with a demand choice model that charges
high prices for the trips that contribute to imbalances and lower
prices for the ones that bring the system to more equilibrium
states. This analysis showed that pricing without any reloca-
tion strategies can improve the balance of the system, but with
less demand served, which might create less attractiveness in
the service. Investigating trip pricing combined with relocation
policies should be investigated.

The model proposed in this paper differs in many respects
from the papers mentioned above and complements the exist-
ing literature. In particular, in this paper we are introducing an
integrated optimization-simulation framework for vehicle and
personnel relocations for one-way electric carsharing systems
with reservations.

The proposed optimization framework is a multi-objective
mixed integer linear programming problem (MMILP) with hi-
erarchical objective functions. While in many multi-objective
problems, the objective functions are combined in a single ob-
jective function after applying variable weights, we prefer to
choose a hierarchical approach to ensure the satisfaction of
the objectives according to the importance assigned to them
by the decision makers. Our results highlight that there is a
large multi-optimal solution set for each objective function that
allows a meaningful application of the hierarchical approach.
More discussion is provided later. In order of importance, we
intend to maximize the demand of trips served and to minimize
the relocation cost after rental.

Demand served is prioritized over relocation cost and profit
because we would like to provide high quality of service and
maximize the vehicle availability for the users especially when
we are dealing with a system with reservations. The treatment
of a multi-objective problem allows for interesting policy impli-
cations and different types of relocation strategies to be studied.

The problem formulation allows to determine the optimal
temporal and spatial distribution of vehicles in stations and also
the personnel responsible for the relocation. To deal with the
computational complexity of the problem, physical character-
istics are considered when designing the mathematical formu-
lation. A simulation module is integrated in the optimization
in order to ensure the feasibility of the optimization outcome
in terms of vehicle recharging requirements. A direct integra-

tion of charging levels into the optimization model will not al-
low for solving large problem instances. As we formulate the
problem as a network with nodes and arcs, we are not using
individual stations to assign vehicles and personnel. Instead
we consider clusters of stations based on travel times in arcs,
that will aggregate stations with similar characteristics during
the optimization. More details about clustering are provided in
section 3.5. Station clustering is used to reduce the computa-
tional complexity of the problem. The remainder of the paper
is organized as follows: Section 3 presents the methodological
framework involving an optimization and a simulation module.
Section 4 provides the results of implementing and solving the
problem with data from a real case-study for different system
realizations and relocation policies. The last section provides a
discussion and further future directions.

3. Methodological framework

The proposed framework consists of the following two mod-
ules: (i) optimization, and (ii) simulation. Within the optimiza-
tion module, a clustering algorithm is developed which creates
clusters of stations in order to reduce the dimensionality of the
optimization module.

The optimization module involves three mathematical mod-
els: (i) station clustering, (ii) operations optimization and (iii)
personnel flow. The operations optimization formulation does
not explicitly account for battery levels and this is addressed
indirectly through the simulation module. The output of the op-
timization module is used by the simulation module in order
to test the feasibility of the optimization outcome in terms of
vehicle recharging requirements. After the first iteration of the
optimization process, if the results of the simulation are feasible
then the optimization process is stopped. If the simulation re-
sults are not feasible, the vehicles that require further charging
are restricted to stay in the station and the optimization model is
solved again considering the new constraints. The structure of
the proposed model and the interrelationship between its mod-
ules are illustrated in Fig. 1.

3.1. Modelling assumptions and concepts

The assumptions underlying the operations of the system are:

e The carsharing system is modelled as a network of sta-
tions. The state of each station at each time interval (de-
scribed in the next bullet) is the number of vehicles parked.

o The operating time of the carsharing system is divided into
equal time intervals (15 minutes). Using the network of
stations, a time-augmented network is generated by in-
cluding all station-time interval pairs and repeating the
network of stations for each time interval.

e Every trip and relocation with/without vehicle takes at
least one time interval.

e Each vehicle can have only one state at each time interval:
parked, serving trip (called trip from now on) or under re-
location (called relocation from now on). These 3 states
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Figure 1: Flow chart for the solution framework

appear as arcs in Fig. 2. These 3 states are defined as fol-
1 @)

lows:
Parked: Vehicle is available waiting at one of the stations. 2 ®
Trip: Vehicle is picked-up by one of the users and will be 3 @)

unavailable until it is dropped-off.

LEGEND

Relocation: Vehicle is relocated by one of the personnel . @time‘j’“e

and will be unavailable until its relocation is ended. pa,izdzrc

. [J] @ @ - ;ﬁlog?on arc
Each (relocation) personnel can have only one state at each P
3 4 5 6 7

time interval: idle, driving or moving.

Idle: Personnel is available waiting at one of the stations.

Driving: Personnel is relocating one of the vehicles and
will be unavailable until the relocation is completed.

Moving: Personnel is moving from his/her previous sta-
tion to another station and will be unavailable until
the moving is finalized

1 2 |T|

Figure 2: Time augmented vehicle network for a set of stations (J) and time
intervals (7). Different types of arcs (i.e. park, trip and relocation) are shown
starting and ending from the nodes at time interval 4.

Since every operation (e.g. trip, driving, moving) starts at
the beginning and ends at the end of a time interval, a ve-
hicle (or a personnel) starting the operation at time interval
t from node j has to be at node j at the end of the previous

These assumptions allow the realistic representation of the
problem and facilitate its mathematical formulation. In addition
to the stated assumptions the following concepts underpin the
mathematical formulation of the problem.

time interval 7 — 1. Under the same reasoning, a vehicle
(or a personnel) ending the operation at time interval u at
node [ is available for a new operation the earliest at time
interval u + 1.

e The operations of vehicles and personnel are described in o When a trip is accepted to be served from station j to /,

time-augmented networks, a single network for cars and
separate networks, one for each personnel shift, are cre-
ated. Interactions between the networks are described in
the next bullet points.

In the time-augmented networks, each node is defined with
two attributes, i.e. station and time interval, and represents
the number of vehicles or personnel depending on the net-
work, for given time interval (Figs. 2 and 3). The arcs of
the networks represent the states of vehicles and person-
nel. In Fig. 2, only the arcs starting and ending from nodes
at time interval 4 are shown. For example, vehicle is rented
from station 1 at time interval 1 and is returned to station
3 at time interval 4, where it is parked afterwards. Note
that relocation arcs in the vehicle network of Fig. 3 are al-
ways associated with a driving arc in personnel networks
of Fig. 3. Time augmented networks of personnel contain
only nodes related to the time intervals that the personnel
works (Fig. 3).

starting at time interval ¢ and ending at time interval u, a
unit flow is sent from nodes (j, ) to (I, u) in the vehicles’
network. In Fig. 3, 5 trips are shown with arcs T1-T5.

When a driving is executed for a vehicle at station j to /,
starting at time interval ¢ and ending at time interval u, a
unit flow is sent from nodes (j, ) to (/, u) in both the vehicle
and personnel networks. In Fig. 3, 5 drivings are shown
with arcs R1-R5 in the vehicle network. Those drivings
are executed by personnel from shift 1 (R1-R2) and shift
2 (R3-R5). Note that, there are driving arcs (D1-D2 and
D3-D5 respectively) starting exactly from the same nodes
in the personnel network by whom the driving is executed.

In addition to driving, relocation personnel can change sta-
tion by moving (i.e. they can ride to a vehicle driven by
someone else). This type of operation is labelled with M1
and M2 in Fig. 3. When a member of staff from personnel
shift s is moving from station j to / starting at time inter-
val ¢ and ending at time interval «, a unit flow is sent from
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Figure 3: Time augmented vehicle and personnel shift networks for a set of
stations (J) and time intervals (7). Different types of arcs are used for different
operations in different networks. Parked (P) and relocation (R) arcs are used in
vehicle’s network. Idle (I), moving (M) and driving (D) arcs are used personnel
shifts network. Trip arcs for the vehicles are excluded from the figure to keep it
simpler.
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(j,t) to (I, u) in the personnel network of the shift s. If a
personnel from shift s does not change its location at time
t and stays in station j, a unit flow is sent from stay arc
from (j,7) to (j,t + 1).

e In the exact operations optimization model, all possible
relocation, i.e. driving and moving, arcs are created. Note
that, the duration of all these operations are parameters
of the model. In other words, for any given relocation,
driving and moving arc from station j to station / starting
at time interval ¢, there is only one end time interval u.

e In order to decrease the number of variables in the oper-
ations optimization model (see Fig. 1), stations are clus-
tered for driving and moving operations. A second layer is
added for both driving and moving operations and each
of these operations is handled at the cluster level. In
other words, in the operations optimization model, driving
(moving) from station j to station / from time interval 7 to
u is done in three “artificial” states: (i) from origin station
J to origin station’s cluster b at time interval ¢, (ii) from
origin station’s cluster b to destination station’s cluster d
starting at time interval ¢ and ending at time interval u and
(iii) from destination stations cluster d to destination sta-
tion / at time interval u. Any relocation between a cluster

and a station is named intra-relocation and any relocation
between two clusters is named inter-relocation.

o Clusters of stations are created using an approach similar
to k-Medoid algorithm (Kaufman and Rousseeuw, 1987).
Further information about the algorithm is given in Section
3.5. Since clustering depends only on the network topol-
ogy, the clustering algorithm is the very first algorithm to
be executed and is not updated with time. The clustering
algorithm is applied for driving and moving arcs separately
since different speeds and routes are used in these two op-
erations (see Fig. 1).

e After solving the operations optimization model, the per-
sonnel flow model is used to create personnel assignments
from flows between clusters and between clusters and sta-
tions for any given time interval.

e Instead of forcing every vehicle to be fully charged be-
fore rental, charging levels of vehicles are controlled with
a simulator. The operations optimization model, the per-
sonnel flow model, and the simulation model are run itera-
tively until a charging level feasible solution is obtained. If
there is an infeasibility in the charging level of any vehicle,
this vehicle is forced to be charged before it is assigned to
its next task (i.e. relocation or trip). The flow chart of the
entire solution framework can be seen in Fig. 1.

3.2. Operations Optimization Model
3.2.1. Sets and Indices
iel :trips

jand [ e J : stations
t,uand w € T : time intervals
s € S : working shifts

band d € B : station clusters

3.2.2. Parameters
start/end(s) : start/end time intervals of working shift s

start/end(i) : start/end time intervals of trip i
origin/dest(i) : origin/destination stations of trip i
c.end(?) : the last interval that vehicle of trip i can be charged

d.end/m.end(?, b,d) : the time interval that driving/moving
from cluster b to d ends if it starts at time interval ¢

PC; : cost of a relocation personnel for working shift s

RC; : intra-relocation cost from/to station j

l?éhd : inter-relocation cost from a station in cluster b to a sta-
tion in cluster d

SG : (safety gap) number of time intervals the drop-off spot
is kept reserved at the destination station of a trip starting
from its stated end time

I. : set of trips after which the vehicle serving these trips
should be charged



3.2.3. Variables

z; : binary variable indicating if trip i is served or not

1

: number of personnel used from shift s

n; : number of vehicles in station j at the beginning of time
interval ¢

ﬁ; : number of vehicles in station j forced to be charged during
time interval ¢

m’ i number of personnel from shift s in station j at the begin-

ning of time interval ¢

r; © number of vehicles relocated by personnel of shift s to
station j finishing at time interval ¢

r.. : number of vehicles relocated by personnel of shift s from
station j starting at time interval ¢

py; : number of personnel of shift s moved to station j finishing
at time interval ¢

D, ; + number of personnel of shift s moved from station j start-
ing at time interval ¢

~t(u)

Foq - number of vehicles relocated by personnel of shift s from

a station in cluster b to a station from cluster d started at
time interval 7 and ending at time interval u

~t(u)

P,y - number of personnel of shift s moved from a station in

cluster b to a station from cluster d started at time interval
t and ending at time interval u

3.2.4. Formulation
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The proposed optimization model is a MMILP with lexico-
graphically ordered objective functions. The model, involves in
order of importance, the following two objectives: (i) maximize
number of trips served and (ii) minimize relocation cost.

The first-priority objective of the model (Eq. 1) is to maxi-
mize the number of trip requests served.

The second-priority objective of the model (Eq. 2) is to min-
imize total relocation cost. This objective function has three
components:

e Inter-relocation cost includes the fuel cost associated with
relocation operations between clusters. Note that, when
there is a relocation between two stations, it is assumed
that each relocation is performed in three artificial states:
(i) from origin station to origin station’s cluster, (ii) from
origin station’s cluster to destination station’s cluster and
(iii) from destination station’s cluster to destination sta-
tion. This function is related to state (ii), i.e. relocation
between clusters.

e Intra-relocation cost includes the fuel cost associated with
relocation operations between stations and clusters. In
other words, these are the costs related to artificial states
(i) and (iii) of the relocation operations described before.

e Personnel cost is the total cost of personnel used. It is as-
sumed that there is a number of working shifts and the
model determines the number of employees needed per
shift.

Demand served is prioritized over relocation cost because we
would like to maximize the availability of the system to the
users especially when we assume that the trip has been already
accepted and service is offered to the customer.



Constraints 3 are the flow conservation equations for vehicles
for each station and time interval. For all stations and time inter-
vals, the total number of vehicles at station j at the beginning of
time interval 7+ 1 (n;“) is equal to the number of vehicles at the

beginning of time interval ¢ (n’]) minus the number of vehicles

that have left station j at time interval ¢ by trip (Z T2 ,) and

relocation (ZS 7 j) plus the number of vehicles that have arrived

icend(i)=t

dest(i)=j % l) and relocation

to station j at time interval ¢ by trip (Z

(Zx rgj). Flow on the top of the rectangle at time interval ¢ of
Fig. 4 represents this relationship.
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Figure 4: Flow diagram of vehicles (top) and personnel shift s (bottom) in
station j at time interval 7.

Constraints 4 ensure that there are enough number of vehicles
to start trips and relocations at each station at each time interval.
These constraints prevent vehicles to start trips and relocations
at the time interval at which they end their trips and relocations.
With these constraints, it is guaranteed that every vehicle can
have one and only one state (i.e. parked, under rental, under
relocation) at each time interval. For all stations and time in-
tervals, the number of vehicles in station j at the beginning of
time interval ¢ (nj) should be more than or equal to the num-
ber of vehicles that have left station j at time interval ¢ by trip
(Z Bl mt ) and relocation (ZK 7 ,)

Constraints 5 keep track of the number personnel allocated in
each shift. In the first set of constraints, for all shifts, the total
number of personnel started working at different stations at the
beginning of the start time interval of shift s should be equal to
the number of personnel allocated in the same shift. Similarly
for the second set of constraints, for all shifts, the total number
of personnel ended working at different stations at the end of
the end time interval of shift s should be equal to the number of
personnel allocated in the same shift.

Constraints 6 are the flow conservation equations for each
shift, each station and time interval. For all shifts, stations and
time intervals, the total number of personnel from shift s at sta-
tion j at the beginning of time interval ¢ + 1 ( ”1) is equal to

the number of vehicles at the beginning of time interval ¢ ( . j)

minus the number of personnel that have left station j at time
interval ¢ by moving (p? ]) or driving (7 ( ) plus the number of
personnel that arrived the station j at time interval ¢ by mov-
ing (p ( ) or driving (r ]) Flow on the bottom rectangle at time
1nterva1 t of Fig. 4 illustrates this relationship.

Constraints 7 ensure that there are enough number of per-
sonnel from each shift to execute moving and driving at each
station at each time interval. These constraints prevent person-
nel to start drivings and movings at the time interval at which
they end their drivings and movings. With these constraints, it is
guaranteed that every personnel can have one and only one state
(i.e. idle, moving, driving) at each time interval. For all shifts,
stations and time intervals, the number of personnel from shift
s in station j at the beginning of time interval ¢ (m’S ) should
be more than or equal to the number of personnel that have left
station j at time interval ¢ by driving (ﬁi,) and moving (72,)

Constraints 8 are used to preserve flow conservation between
clusters and stations of clusters for driving operations. In the
first set of constraints, for all shifts, clusters and time intervals,
the total number of personnel of shift s started driving from the
stations of cluster b at time interval ¢ should be equal to the
number of personnel driving from all stations of cluster b (J b‘)
at the same time interval. Similarly, in the second constraint,
for all shifts, clusters and time intervals, the total number of
personnel of shift s ended driving at the stations of cluster b
ending at time interval ¢ should be equal to the number of per-
sonnel driving to all stations of cluster b (J ;) at the same time
interval.

Constraints 9 are used to preserve flow conservation between
clusters and the stations of clusters for moving operations. In
the first set of constraints, for all shifts, clusters and time in-
tervals, the total number of personnel of shift s started moving
from the stations of cluster b starting at time interval ¢ should
be equal to the number of personnel moving from all stations of
cluster b (J ;) at the same time interval. Similarly, in the second
set of constraints, for all shifts, clusters and time intervals, total
number of personnel of shift s ended moving at the stations of
cluster b ending at time interval ¢ should be equal to the number
of personnel moving to all stations of cluster b ( ) at the same
time interval.

Constraints 10 set the capacity restrictions for each station j
at each time interval 7.

Constraints 11 are used to keep track of charging vehicles
after rentals. As it is stated in Section 3, we use simulation to
check the charging level feasibility of the solution. The output
of the simulation is used to update the set /.. Feedback from the
simulation adds the trips with infeasible starting charging levels
to this set. The right hand sides of these constraints are only
applicable to the trips in this set. In the mathematical model,
we force vehicles to be charged after these trips (i € 1.) if they
are served (i.e. z; = 1). The constraints are not binding for
unserved trips (i.e. z; = 0). We satisfy these constraints by
forcing the number of parked vehicles after these trips at the
destination stations during the charging period (end(i) < f <
c.end(i)). Note that, for a given station and time interval, the
trips and relocations departing from the station are subtracted



from the number of vehicles at the beginning of the time interval
at the left hand side of the constraint. Without this update, the
model can assign any charging vehicles for a trip or a relocation
and cover its place with another vehicle arriving to the same
station without violating these constraints.

Constraints 12 are used to apply the safety gap of vehicle re-
turning time provided for the users. These constraints are used
to reserve destination stations for the duration of the safety gap
(SG) which is defined in the units of time intervals. For in-
stance, if SG is 2 and the time interval length is 15 minutes
then the destination spots of every accepted trips (i.e. z; = 1) is
reserved starting from the end time of the trip for 30 minutes.
The constraints are not binding for unserved trips (i.e. z; = 0).
With these constraints we guarantee two things: (i) There will
always be a spot available for the vehicle starting from its stated
trip end time for a period of the safety gap. (ii) The returned ve-
hicle will not be relocated or rented until the end of the safety
period, i.e. trip end time plus safety gap. We satisfy these two
conditions by forcing the vehicle to stay at the station from the
end of the trip for a duration of the safety gap. These constraints
work very similar to constraints 11. Constraints 12 are applied
to all trips for a period of safety gap whereas 11 are applied to
only trips in set /. until the charging end time.

Constraints 13-14 are used to define the domains of each
variable: z’s are restricted to be binary variables, the rest of
them are positive integers.

3.3. Personnel Flow Model

For each working shift s, the following model is solved with
the values acquired from the operations optimization model
(Egs. 15-20).

3.3.1. Sets and Indices
k € K : personnel

j € J : stations
bandd € B : clusters
t € T : time intervals

feF :flows

3.3.2. Parameters

m’ = number of personnel of shift s in station j at the beginning
of time interval ¢
r . : number of personnel of shift s finishing driving (state D)

to station j at time interval ¢

r,; : number of personnel of shift s starting driving (state D)
from station j at time interval ¢

Py - number of personnel of shift s finishing moving (state M)
to station j at time interval ¢

D, ; + number of personnel of shift s starting moving (state M)

from station j at time interval ¢

?t(u)

bq - Dumber of personnel of shift s driving from a station in

cluster b to a station from cluster d starting at time interval
t and ending at time interval u

ﬁg(:; : number of personnel of shift s moving from a station in

cluster b to a station from cluster d starting at time interval
t and ending at time interval u

vy : number of personnel used from shift s
start/end(f) : start/end time interval of flow f

origin/dest.(f) : origin/destination stations of flow f

3.3.3. Variables
x’].k : binary variable indicating if personnel k is in node j at the
" beginning of time interval ¢ or not

Y binary variable indicating if personnel k follows flow f or
not

3.4. Formulation

A prerequisite for setting-up the personnel flow model is to
run the operations optimization model in order to obtain the
optimal values of the flows r/ , s 7’222, P py;and ﬁ;(g‘;. A flow
contains two intra-flows and one inter-flow of the same type,
i.e. driving or moving. In other words, in order to generate a
flow from two intra- and one inter-flows, (i) the first inter-flow’s
time interval should be the starting time interval of the intra-
flow, (ii) the station of the first intra-flow should be element of
the origin cluster of the intra-flow, (iii) the second inter-flow’s
time interval should be ending time interval of the intra-flow,
and (iv) the station of the second intra-flow should be element
of the destination cluster of the intra-flow. All these generated
flows constitute set F. In order to simplify representation, all

flows, drivings (r) and movings (p), are represented with g.

min Z dist(f)y 5, (15)
[k
St )X =ml) RS ikt o (16)
k J
A== Syt DL vu Vikt (17
fistart(f)=t Frend(f)=t
origin(f)=j dest(/)=
Z Yo = Qs Z Y =4y Vit (18)
[rstart(f)=t Sfrend(f)=t
origin(f)=j dest(/)=/
Yo =% Vb,d,t  (19)
frstart(f)=t,origin(f)e],
end(f)=u,dest(f)eJ,
Xy vy €10,1) Vf, jk,t (20)

The objective of the personnel flow model (Eq. 15) aims to
minimize total distance travelled. We can minimize the total
difference between real relocation time and assumed relocation
time with clustering, which is discussed later.



First set of constraints 16 count the number of personnel from
shift s at each station j at each time interval 7 and sets this num-
ber equal to the number calculated by the operations optimiza-
tion model, i.e. x;.k. Second set of constraints 16 require that,
every personnel can be at most in one station at each time in-
terval . Note that, the LHS of these constraints not necessarily
equal to 1 since there may be driving and moving operations
which take more than one time interval.

Constraints 17 are the flow conservation equations for indi-
vidual personnel. If personnel k is at node j at the beginning
of time interval ¢ and he/she does not start driving or moving to
another station during that period, then he/she should be in sta-
tion j at the beginning of time interval ¢ + 1. On the other hand,
if personnel k is not at node j at the beginning of time interval
t and he/she performs driving or moving to station j from any
station finalizing at time interval 7, he/she should be in station j
at the beginning of time interval 7 + 1.

Constraints 18 and 19 are used to cover the same flow oper-
ations found by operations optimization model in the previous
step. Constraints 18 ensure that, the total number of flows as-
signed to all personnel from shift s should exactly cover all first
and second intra-flows with/without vehicle. Similarly, con-
straints 19 ensure that the total number of flows assigned to
all personnel from shift s should exactly cover all inter-flows
with/without vehicle.

~1(ut)
sbd

_Operations
Optimization Model

at time
interval u

at time
interval ¢

origin(f)=j dest(f)=l

Personnel
Flow Model

yfk
start(f)=t, origin(f)=j
end(f)=u, dest(f)=Il

Figure 5: The representation of flows (driving/moving) in two mathematical
models. In the operations optimization model, there is at least one flows from

station j to / from time interval ¢ to u executed by personnel shift s. The count

of these flows are kept with three variables: q’s. It qff,;‘; and 7y;. In personnel flow

model, this flow is performed by personnel k from personnel shift s. Only one
binary variable is needed to describe this flow, y e

3.5. Clustering Algorithm

Although it is possible to develop a mathematical model
without using clusters, this would be computationally very de-
manding. Since we allow dynamic relocations throughout the
day, we need to create in the order of O(|T||J| ) number of vari-
ables for driving and moving operations only in which 7 is the
set of time intervals and J is the set of stations. In order to de-
crease the number of variables and solution time as a result, we

develop clusters and assume relocations are happening between
clusters. This approach decreases the number of driving and
moving variables to the order of O(|T|IC? + 2|T||C]) in which C
is the set of clusters. Note that, if every cluster is set with one
and only one stations, the proposed model is equivalent to the
mathematical model without clusters.

A clustering model is developed to find clusters that mini-
mize the error created by aggregating stations to a given number
of clusters. Since our model works with time intervals, the ob-
jective of the clustering model is to minimize the sum of squares
of the deviation of relocation time of every pair of different sta-
tions. If T(j,/) is defined as the travel time from station j to
station / and (Tfnn( 5D, Tﬁax( J» l)] is the interval of the dura-
tion of relocation from cluster of station j to cluster of station
I; positive (devy) and negative (devy) deviations’ can be calcu-
lated using Eqgs. 21-22. Note that if travel time from origin to
destination station is in the interval of the duration of relocation
from the cluster of origin to the cluster of destination station,
both positive and negative deviations are zero.

devy(j. 1) = max {T(j,1) - T5,,(j. 1), 0} 1)

devy(j. ) = max {T5, (j.)) - T(j.]),0} (22)

The algorithm developed for clustering is similar to k-
Medoid algorithm (Kaufman and Rousseeuw, 1987). The algo-
rithm starts with an initial solution and iterates until the stop-
ping criterion, i.e. iteration count, is met. This problem is
quite complex to solve with an exact algorithm. We prefer
k-Medoid instead of k-means since former aims to minimize
dissimilarities within clusters whereas latter minimizes sum of
squared Euclidean distances. Since the time is discretized in
the mathematical model, our “similarity” function is discrete
and k-Medoid algorithm allows us to reflect this on our objec-
tive function.

Initial solution is created step by step by assigning each sta-
tion consecutively to the limited number of clusters. In every
iteration, the station is added to the cluster that minimizes the
objective function, the sum of positive and negative deviations.

After the initial solution is created, the configuration that
improves the objective function is found with consecutive ex-
change of stations to different clusters. Each exchange is ex-
ecuted in two steps. First, we remove each station from their
clusters iteratively to see which removal of the station improves
the objective function most. Then this station is added to each
of the clusters iteratively except its previous cluster. We cal-
culate the objective function improvement at each addition to
see to which cluster we should add the station to improve ob-
jective function most. After each exchange operations, best so-
lution is updated with the current solution if current solution
has smaller objective function than the best solution so far. The
best solution is reported when one of the stopping criterion is
met. The pseudocode of the clustering algorithm can be seen
in Algorithm 1 for the set of stations (J), the maximum number
of clusters (ng), the number of iterations (n.) and the objective
function value for clusters B (IF(B)). The set of clusters (B*)



with the best objective function is returned at the end of the al-
gorithm. Results of the clustering algorithm are presented in
Section 4 of the paper.

3.6. Simulation Module

For carsharing systems with combustion engine vehicles, the
solutions generated by the optimization module are always fea-
sible. However, this is not the case for systems with electric ve-
hicles. The charging level of each vehicle at each time interval
should be controlled in order to satisfy charging level feasibil-
ity of the solution. The charging level feasibility means that a
given vehicle has enough battery to allow it to fulfill the next
trip. For this purpose, a simulation module is used by the solu-
tion framework.

The purpose of the simulation module is to check the feasibil-
ity of the solution generated by the optimization module. If the
solution is feasible, it is accepted. If it is not feasible, the sim-
ulation module returns the infeasible vehicle with its assigned
rentals. The optimization module puts a charging restriction for
this vehicle and forces it to be charged. In other words, if there
is a vehicle to be rented with a charging level below thresh-
old, we force the vehicle which serves the same demand to stay
longer at the station that was previously rented in order to be
charged properly. It is worth noting that this strategy terminates
within a limited number of iterations. The maximum number
of iterations is not more than the total number of requested trip,
but during the implementation we notice that occurs in reality
with a much smaller number of iterations in most cases.

In order to find the optimal charging strategy, the model
needs to test all possible charging restrictions which requires
exponential number of runs. That is the reason, we select the
vehicle with infeasible charging and apply forced charging to
it. Furthermore, the strategy always returns a feasible solution.
The duration of the charging is just enough to replenish the elec-
tric energy consumed in the last trip. Note that, forced charging
constraint is active only if a demand for a trip is served. In
the worst case, there might be a request for charging after ev-
ery trip. In such a case, any solution would be charging level
feasible since this will be a model with all forced charging re-
strictions. A system with a restriction of fully charging after
every trip would be a carsharing system which only allows fully
charged vehicles to be rented. This strategy is not preferred at
the very first step because it sharply decreases the capacity of
the system (the availability of vehicles).

We have developed a discrete event simulator, which is de-
scribed in more details in Repoux et al. (2015). The general
structure is included in Fig. 6. Rentals and relocations are
fed to the simulator (see Read Rentals and Read Relocations
events) as parameters. Every rental and relocation of vehicles,
and movements of personnel are simulated with the help of this
simulator.

4. Model Application

The solution framework represented with the flow chart in
Section 3 (see Fig. 1) was applied to support operational deci-
sions for the one-way electric carsharing system in Nice, France
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Input: J, ng, n. and F(B)
Output: B*
// Initialization
for b — 1tong do

‘ B, «— @ // initialize clusters
end
for j — 1to|J|// for all stations do
Z < o0 // initialize objective
forb— 1tong // for all clusters do
B, « B, U{j}// add
if F(B) < Z then

b* «— band Z « F(B) // update
selected

end
B, «— B, \{j} // remove

end
By« < By« U{j} // assign to selected
cluster

end
B* « Band Z* « F(B) // initialize best
// Iteration
for ¢ — 1ton.do
// Find station to be removed
Z « oo // initialize c.best objective
forb — 1tong // for all clusters do
foreach j € B, // for all stations do
B, < B, \{j} // remove
if F(B) < Z then

Jj* « j,b* « band Z < F(B)

// update

end
Bb<—BbU{]}// add

end
end
By «— By \{j*} // remove from selected
// Find cluster to be added
Z « oo // initialize objective
for b — 1tongdo
if b = b* then
‘ continue // skip if the same
end
B, <—B/,U{j*}// add
if F(B) < Z then
b* «— band Z « F(B) // update
cluster

end
By < B, \{j*} // remove

end
By < By U{j*} // assign to selected
// Update best solution
if Z* < F(B) then
| B* « Band Z* « F(B)
end

end

Algorithm 1: Pseudocode for the clustering algoritm de-

scribed in Section 3.5.
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Figure 6: Simplified structure of events and their links to each other in the
simulator.

operated by VENAP Auto Bleue (see Fig. 7). VENAP Auto
Bleue has been operating a round-trip system with 66 stations
since 2011. In 2014, the system provided service to one-way
trips. In our model application, anonymised rental and station
location data! provided by VENAP Auto Bleue are used. The
demand data from individual days are aggregated. For differ-
ent demand levels, subsets with different number of trips are
generated randomly (for also confidentiality purposes).

Figure 7: Stations of the carsharing system of the city of Nice, France.

The whole model including the simulator, clustering algo-
rithm and mathematical models were implemented in C# .NET
environment. IBM ILOG Cplex Version 12.6 with Concert
Technology was used for solving MILPs.

The duration of each time interval is set to 15 minutes. It is
assumed that relocation personnel move between stations either
with a car (if a vehicle is relocated) or with a bike (if a vehicle
is not relocated). The driving and cycling distances were es-
timated using Google Maps API (Google, 2015). Driving and
cycling speeds are set to 30 and 15 kilometres per hour respec-
tively. Different speeds could be integrated in the optimization
module if historical (or real time) traffic data can be provided to
test the effect of traffic congestion in the system operations.

I'The full dataset cannot be shared publicly as it contains sensitive commer-
cial and private data. Readers could contact the authors to obtain a subset of
data for research purpose.
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4.1. Clustering Stations

First, separate clusters for driving (D) and moving (M) are
created. The aim of the clustering algorithm is to increase the
efficiency of the optimization algorithms by reducing the di-
mensionality of the problem. Note that, the difference between
the durations of relocations with (driving) and without (mov-
ing) vehicles results in two separate clusters. The clustering
algorithm described in Subsection 3.5 (see Algorithm 1) is ap-
plied for different number of clusters.

The results for the different number of clusters are shown
in Fig. 8 for both driving (Figs. 8a-8¢) and moving (Fig. 8f)
operations. In these figures, the numbers on the first row and
column show the station numbers. Values in the upper triangle
show the travel duration between the two stations (see the first
row and column) in seconds. This value is the largest of the two
travel durations between every pair of stations. Values in the
lower triangle are the number of time intervals needed to travel
between the two stations, simply the smallest integer larger than
the value symmetric to the diagonal divided by 900, i.e. the time
interval length in seconds. To facilitate the visualization of the
figure, colour of each cell shows the number of time intervals
needed to travel between each pair of nodes.

Each partition is separated with horizontal and vertical lines.
For instance, in Fig. 8a there are four clusters. The first cluster
has 50 stations starting with station 0 and ending with station
59; the second cluster has seven stations: 14, 15, 54, 55, 62, 63
and 65; and so on and so forth.

In the runs, we assume that the travel time between two sta-
tions is equal to the biggest difference of the travel time between
the pairs of stations of the two clusters. With this assumption,
the clustering algorithm always produces feasible relocation op-
erations. We have opted to overestimate relocation durations
instead of ending up with infeasible solutions due to the under-
estimation of relocation durations. As a result we never have
a positive difference (21) for any station pairs. Our objective
only minimizes the sum of negative differences (22) between
all pairs. For instance, any travel between the stations of cluster
1 and the stations of cluster 2 takes three time intervals since
for some pairs of stations from cluster 1 and 2, travelling takes
three time intervals (see orange cells). Travels from the stations
of cluster 2 to the stations of cluster 2 takes four time intervals
because of some red cells, for station pairs {15, 62} and {55,
62}).

The score of the cluster in Fig. 8a, which is calculated with
the help of algorithm described in Section 3.5, is 3302.7. This
algorithm calculates the sum of square errors expressed in terms
of time intervals squared between all pairs of different stations
because of the clustering which is represented by the vertical
axes in Fig. 9.

There is a trade-off between the efficiency and the accuracy
in selecting the number of clusters to be used for relocations
with/without vehicles. Higher number of clusters results in less
overestimation in relocation durations but increases the num-
ber of variables and as a result the model complexity. Lower
number of clusters results in higher overestimation in reloca-
tion times but decreases the number of variables and results in
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Figure 9: Clustering score for different number of clusters

shorter run times. In order to decide the most suitable cluster
sizes, the clustering algorithm is executed for various number
of clusters. Scores of each run for relocations with (Fig. 9a)
and without (Fig. 9b) are shown in Fig. 9. We have selected the
elbows in both cases as the best trade-off points that are able
to decrease 90% of the error compared to 2 clusters: 6 clus-
ters for relocations with vehicles (Fig. 8b) and 10 clusters for
relocations without vehicles (Fig. 8f). In Fig. 8, the results for
the different number of clusters can also be seen. The max-
imum value in the x-axes (39 for driving and 66 for moving
case) shows that number of clusters needed to have O error in
the relocation times.

After all experiments, the error of using 6 and 10 clusters
for relocations with/without vehicle for each run is also calcu-
lated. On average, the duration of relocations with vehicles is
overestimated by 5.97% more. The 95th percentile of the error
at each instance was 13.82%. These values were 10.93% and
19.10% respectively for relocations without vehicles. Regard-
ing the problem size and the efficiency of the method, these
errors are acceptable. Note also that, this error could be de-
creased if more clusters were used but this was not preferred to
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have solutions within reasonable run times. Definitely there is
a trade-off between the accuracy of the solution obtained and
the time needed to solve the problem. For this particular case
we have opted to use a number of clusters that yields a fairly
accurate solution in order to have a reasonable solution time
for the operational decisions. In general it is up to the decision
maker to select the number of clusters that will be used and the
associated accuracy.

4.2. Case Study Settings

After deciding on the clusters, demand samples with different
number of rentals were created. We tested samples of size 200,
250 and 300 rentals per day. For each demand level, 30 different
samples were created. Each sample is tested with two different
running configurations (type 1 and 2). In Type 1 configuration,
the entire demand is considered known a priori and it was fed to
the model all at once and solved all in a single step. In Type 2
configuration, the demand is received by the model one by one
and accepted/rejected after each iteration without reconsidering
the past decisions. Every rental request is accepted or rejected
in the iteration it is received. These decisions are ultimate and
cannot be changed in further iterations. Type 1 configuration
implies that all requests for trips are known through an advance
reservation system that has a cut-off time for accepting reserva-
tions (e.g. 24 hours in advance). Type 2 configuration sits on
the assumption that the demand is handled as it arrives in the
reservation system.

In all scenarios of type 1 and type 2 configurations, it was
assumed that there are three parking spots at each station one of
which has a fully charged parked vehicle at the beginning of the
runs. Since there were not many demand realized from 22:00 in
the evening to 6:00 in the morning, all scenarios were started at
6:00 and ended at 22:00. We set three different working shifts
throughout the day: (1) morning shift from 6:00 to 12:00, (2)
afternoon shift from 11:00 to 17:00 and (3) evening shift from
16:00 to 22:00. Personnel cost was set to €18 per hour which
makes the cost of each personnel in any shift €108 per person.

The system operating in Nice is a system with electric vehi-
cles. Range of a vehicle with full charge is around 120 kilome-
tres. It takes 8 hours to fully charge a vehicle with an empty
battery, i.e. for every kilometres of driving, 4 minutes of charg-
ing is required. It is assumed that rented vehicles were driven
30 kilometres per hour. The maximum trip length is set to 40
kilometres. Some important values of the parameters used in
the model representing the operating environment of our runs
are summarized in Table 1.

4.3. Results

The comparison of different performance measures for runs
with different demand levels (200, 250 and 300 demands per
day), safety gaps (0, 15, 30 and 45min) and configurations
(Type 1 and 2) is shown in Fig. 10. Each set of parameters
was repeated with 30 different samples. In all figures, the red
dots show individual runs. In all figures, x-axes show the con-
figuration and the level of demand. y-axes take different values
depending on the performance measures they represent. These



relocation personnel cost (€/shift): 108
relocation fuel cost (€/km): .02
maximum charging length (sec): 28800
charging length (sec/km): 240
maximum range without charging (km): 120
min-max (mean) trip distance (km): 3-40 (18)
min-max (mean) trip duration (hour): .2-10 (.8)
relocation speed with vehicle (km/h): 30
relocation speed without vehicle (km/h): 15
number of rentals per sample: 200-300
minimum trip start charging level: 40%

Table 1: Some important values of the parameters used in the model

values are counts (in Figs. 10b and 10c), percentages (in Figs.
10a, 10e and 10f) or ratios (in Fig. 10d).

Fig. 10a shows the percentage of unserved demand to total
demand for different configurations, safety gaps and demand
levels. In runs with demand 200 or less, there is no difference
between the runs of type 1 and 2. If the same set of demand re-
quests is accepted to be served by the three configurations, the
solutions of three runs should be the same. Because of that, for
the lower level of demand, the algorithm returns the same solu-
tions for both types of running configurations. Having the in-
formation of all demand requests before deciding in type 1 con-
figuration gives the algorithm freedom to choose rental requests
which are matching better to each other. In other words, since
type 1 runs have additional information about the requests, type
2 runs cannot outperform type 1 runs if all the other settings are
the same. Note that the uncertainty of the future demand for
type 2 runs create a system which is less robust. Even if the
average fraction of loss demand is similar (3% instead of 2%
for demand 300), there are a few days with significant losses
(in the range of 10-15%). This analysis suggests that different
pricing strategies could be implemented in an operating system
for short- and long-term reservations. This should be a research
priority. For type 2 runs, the accepted requests to be served in
previous iterations affect the decision to serve or not to serve
an additional demand. On the other hand, type 1 runs try to
find the largest subset of demands that can be served with the
current system. Because of that, as the system is more stressed
with increased demand levels, type 1 runs perform slightly bet-
ter than type 2 runs in terms of number of requests served. How-
ever, it should be stressed that this is on the expense of the cer-
tainty provided to the user that his/her request for service will
be granted.

The effect of the parameters on the number of relocations is
shown in Fig. 10b. In these figures, we see a trend of increase
of the number of relocations with the increase in demand. The
relationship between the number of relocations and the num-
ber of requests show almost a linear relationship: For every
8-10 rental requests, approximately 3 relocation operations are
needed. Slightly more relocations are needed with higher lev-
els of demand. As the system becomes congested and parking
spaces and/or vehicles are not available at the right stations,
more resources are used for relocations. The safety gap does
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not influence significantly relocations up to a value of 30 min-
utes. Nevertheless, we observe a significant decrease in relo-
cations if a safety gap of 45 minutes is applied. This comes
with a significant cost for the loss demand and highlights that
high safety gaps should not be allowed (or late returns should
be penalized).

In the same figure, we also observe some differences between
two configurations. As expected, type 1 runs required less num-
ber of relocations compared to type 2 runs for the same level of
demand requests. Type 2 runs usually serve less demand when
demand is high. The difference in the number of relocations be-
tween configurations shows the effect of selecting better subsets
of requests: If the requests are selected with more information,
more demand can be served with less number of relocations. As
expected, more relocation means more number of personnel. In
Fig. 10c, the total number of personnel from all shifts is shown.
Very similar trends with Fig. 10b are observed.

In Fig. 10d, we see the average number of relocations per per-
sonnel in different scenarios. While this value does not vary sig-
nificantly (ranges between 5 and 5.3), it is clear that for higher
safety gaps that increase the ratio of unserved demand (in Fig.
10a), a slightly smaller number of relocations per personnel is
performed. This is an interesting observation as the operator
can plan in advance the personnel needs if he has a good pre-
diction of the demand level.

In the last two figures, Figs. 10e and 10f, utilization of vehi-
cles under rental and relocation are shown respectively: An in-
crease in the demand of about 50% (from 200 to 300 requests)
increases the vehicle utilization for about the same amount
(from 19% to 28%). This is reasonable given that for the safety
gap not more than 30 minutes, unserved demand is little. Ve-
hicle utilization during relocation increases more sharply, from
3% to 6% as demand increases from 200 to 300. This highlights
the need for a larger number of relocations (and personnel) to
keep the quality of service high. As expected, the increase in
the number of demand requests increases the vehicle utilization
under rental and relocation. The difference between utilization
for rental operations is more evident with the demand level 250
and 300. But this difference is not as severe as Fig. 10a. This
may be because of the way we selected the first objective func-
tion (see Objective 1) in the operations minimization model
(see Sec. 3.2.4). In our first objective function, the duration
of the requests was not considered in the objective. Demand
requests with longer duration were not given higher weight as
compared to shorter ones. As a result, type 1 runs are inclined
to select shorter requests in case of high demand levels to serve
more demand with the same system resources. Final figure,
Fig. 10f, shows the power of freedom to choose demand subset
against accepting/rejecting requests with limited information.
Especially for higher demand levels, although more demand re-
quests were served, type 1 runs keep vehicles less busy with
relocations.

The remaining analysis focuses on a specific instance with
300 demand and type 1 run. In Fig. 11, the movements of ve-
hicles between stations are shown. In Fig. 12, movements of
relocation personnel on different working shifts can be seen. In
Fig. 13, two separate scenarios are applied on the same prob-
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Figure 11: Chart showing movements of vehicles and relocation routes for the case with 300 rental requests.
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lem instance with additional constraints. Constraints 23 were
applied to limit the maximum number of personnel at each shift
(see Fig. 13a). Constraint 24 was applied to type 1 runs to limit
the number of demand served.

v, < maximum number of personnel per shift

Z z; = demand served

Vs (23)
(24

In Fig. 11, the two leftmost vertical columns show the station
number and the number of spots of this station (3 per station).
The uppermost horizontal numbers are the starting hour and
minute of the intervals. Each colour shows a different state for
the parking spot. The legend for colour coding is shown in
the legend on the same figure. Note that, for all states except
“spot available”, the number inside the cell identifies the vehicle
affected with this state. For this instance, since only the 0" spot
of every station has an available vehicle at the beginning of the
day, each vehicle is numbered with the station parked at the
beginning of the day.

Fig. 11 also enables to see the detailed relocation operations.
Each orange line shows the relocations starting/ending time
and origin/destination stations. One of the expected results ob-
served from this figure is to see the relocations of vehicles from
stations with no/low demand to stations with high demand at
the beginning of the day and the opposite movement at the end
of the day. Vehicles from stations without demand (i.e. 61, 62,
63, 64 and 65) were relocated to stations with high demand (i.e.
14, 35 and 55 then 42 and 55) at the beginning.

The identification of numbers enables to track the daily as-
signments of each vehicle. For instance, vehicle O started from
the Ot spot of Station 0. Between 8:00 - 8:15, it was relocated
to the 1% spot of Station 25. The vehicle was charged for one
time interval and rented at 8:45. The vehicle was returned to the
0™ spot of Station 54 at 9:45. At 12:00, it was rented again with
a partial charge. At 12:30, the vehicle was returned to the 0
spot of Station 30. The vehicle stayed and fully charged there
until it was rented again at 19:15. At 20:45, the vehicle was
returned to the 1st spot of Station 29 and stayed there until the
end of the planning period.

To see the detailed movements (i.e. relocations with/without
vehicle) of each personnel, separate charts for each working
shift are created (see Fig. 12). Each set of the connected quad-
rants represents a separate station. Area of each quadrant is
directly proportional to the number of demand originating from
(gray, left top), demand destined to (blue, right top), relocation
destined to (green, bottom left) and relocation destined from
(red, right bottom) the station they are representing. Each line
set with different colors represents different personnel. Solid
lines show relocations with vehicles and dotted lines show relo-
cations without vehicles. For instance, the person represented
with red firstly relocated a vehicle from an outer station (from
Fig. 11 we can see it is Station 61) to Station 14. Then he moved
to Station 10 without vehicle. After that, he relocated a vehi-
cle to Station 16. Then he moved to Station 23 and relocated a
vehicle to Station 33. He then relocated a vehicle from Station
33 to 36. And finally he moved back to Station 29 and relo-
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cated another vehicle to Station 36. Regarding the size of each
quadrant per station, note that there are some repetitive trends
by looking at the aggregated values. For example, stations with
high demand of origins, usually have a high number of reloca-
tions destined to this station. Stations that have high demand
both as origins and destinations do not have a clear trend with
respect to relocations as the temporal distribution of demand
matters.

In Fig. 13a type 1 and type 2 runs are compared for the same
single instance with 300 demand. Different than the previous
runs, the maximum number of available relocation personnel
at each shift is limited to different values from O to 8. The
dark (i.e. black) lines and (darker) columns (on the left) show
the run results for type 1 runs. The light (i.e. gray) lines and
(lighter) columns (on the right) show results for type 2 runs.
The left vertical axis shows the number of personnel (columns)
and the number of relocations per personnel (lines with triangle
markers). The right vertical axis is for the total demand served
(lines with square markers) and the demand per personnel (lines
with diamond markers).

Note the difference between the number of demand served
with type 1 and type 2 runs. This difference shows that a car-
sharing system can serve more demand if it is able to choose
a specific subset. This analysis suggest that different business
models can be used for offering carsharing services with differ-
ent implications for the users in terms of service provision and
associated costs. Specifically a business model that requires ad-
vance reservation and notification regarding acceptance or not
of the requested services at the end of the reservation period
(type 1 configuration) may provide benefits to the operator on
the expense of uncertainty to the user’s request. In contrast, a
system that will provide immediate (within minutes) response
if a trip request is granted or not (type 2 configuration) requires
more resources for the same level of demand. These results can
also create intuition with respect to the development of pricing
strategies to deal with the emerging business models. It is also
clear that short term reservations can contribute in system im-
balances and loss demand. In other words, if the demand to be
served is selected with full knowledge of total demand, the pro-
ductivity of the system can be improved for the same level of
resources. In our case, we see an improvement ranging from 0
to 60% depending on the maximum number of personnel avail-
able per shift.

In Fig. 13b, the type 1 run has given freedom to choose a
number of demand to be served (170 to 300 in every 5) from a
set of 300 demand. 170 is selected as the starting point because
from Fig. 13a we can see that 174 rental requests of the se-
lected instance can be served without any relocation personnel.
We could not have the same test for the other running config-
uration since in type 2 runs, the requests become available and
are accepted/rejected iteratively as they appear in the system.
In this figure, the horizontal axis shows the number of rental
requests that needs to be served among 300 demand. Columns
show the number of personnel from different shifts. The purple
line shows the number of relocations per personnel. Both the
number of personnel and relocations per personnel are shown
on the left vertical axis. The blue line shows the demand per
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Figure 13: The effect of limited number of personnel and number of demand
served on the selected case with 300 rental requests.

personnel with the values on the right vertical axis.

From this figure, we can see how the demand per personnel
converges to a specific value. Although, this value is highly re-
lated to the system parameters, it is worth noting such a value
may exist for carsharing systems. This ratio could help in car-
sharing systems to determine the number of personnel needed
for any demand level. Similarly, with the increase in the num-
ber of demands served, relocation per personnel reaches to 6. In
other words, every member of staff needs one hour per reloca-
tion on average since in these runs we assumed personnel shifts
of 6 hours. Note that, these 6 hours include not only relocations
with vehicles but also relocations without vehicles. Between
every two relocations with vehicles, the personnel in charge of
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the relocations needs to travel from the destination station of
the previous relocation to the origin station of the next reloca-
tion. This value probably depends on the topology of the system
and the relocation strategy, but if known (or estimated), it can
be utilized to develop simpler formulations for the tactical and
strategic problems of the system (see for example Boyaci et al.,
2015).

In Fig. 14, various system states during the day are compared
for the two different types of runs. Figures on the left show the
number of stations with a specific number of vehicles (0 to 3)
for each time period. Figures on the right, show the number of
vehicles providing service, under relocation and the charging
level of vehicles at stations over time. The same 300-demand
set is used for all cases. In all figures, x-axes show the time of
the day during simulation. y-axes represents either the number
of vehicles (Figs. 14b and 14d) or the number of stations (Fig.
14a and 14c¢). Note that the distribution of the number of vehi-
cles per station converges to very similar values independently
of the run type.

5. Conclusions and Future Work

In this paper, we developed an integrated optimization-
simulation framework to deal with the operational decisions of
one-way (electric) carsharing systems with reservations. We
developed a clustering algorithm to decrease the computational
complexity of the model, an event-based simulator to test the
feasibility of charging levels during the optimization procedure
and MILP models to handle the operational decisions. The
three modules are interacting iteratively to guarantee close-to-
optimal solutions. Experimental results showed that, the devel-
oped framework is efficient. We have tested two types of runs
related to reservation confirmation policy: Type 1 is with full
information about the system, as it might happen in the case of
reservations in advance. In type 2, requests are appearing one
per time and the system does not know the future demand dur-
ing optimization. We also tested various demand levels to see
the performance differences and applicability range for differ-
ent settings.

Experimental results showed the importance of efficient al-
gorithms for relocation operations. Comparison between differ-
ent configurations also showed that especially in congested sys-
tems, forecasting the future demand or optimizing the initial lo-
cations of vehicles in the beginning of each day is quite impor-
tant to utilize system resources efficiently. To serve higher num-
ber of requests without increasing system resources, demand
should be managed through the use of incentives/disincentives
(e.g. pricing). Specifically, business models that require reser-
vations with an advanced cut-off point for confirming them may
lead to a more efficient use of the system resources on the ex-
pense of not receiving immediate confirmation for serving the
expressed demand (less flexible). The business models that re-
quire reservations based on type 2 runs provide higher flexibil-
ity to users in terms of making advanced reservations, but they
are less efficient in terms of the utilization of resources.

A field test to investigate the optimization results in real con-
ditions is also under preparation. Future work is looking to
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Figure 14: Comparison of the states of vehicles and stations for three different approaches for the selected case with 300 rental requests. Left figures represent the
stations with different number of vehicles whereas right figures represent the number of vehicles with different charging levels.

expand these models to systems without reservations. While
research work (e.g. Correia et al., 2014) dealt with system im-
balances through trip pricing, a combination of pricing and re-
location strategies should be another research priority.
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