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Abstract 

Amphibians are undergoing dramatic population declines, with environmental 

pollution reported as a significant factor in such declines. Technologies are required 

that are able to monitor populations at risk of deteriorating environmental quality in a 

rapid, high-throughput and low-cost manner. The application of biospectroscopy in 

environmental monitoring represents such a scenario. Biospectroscopy is based on the 

vibrations of functional groups within biological samples and may be used to 

signature effects induced by chemicals in cells and tissues. Here, attenuated total 

reflection Fourier-transform infrared (ATR-FTIR) spectroscopy in conjunction with 

multivariate analysis was implemented in order to distinguish between embryos, 

whole tadpoles at an early stage of development and individual tissues of late-stage 

tadpoles of the common frog collected from ponds in the UK with varying levels of 

water quality, due to contamination from both urban and agricultural sources. In 

addition, a Xenopus laevis cell line was exposed to low-levels of fungicides used in 

agriculture and assessed with ATR-FTIR spectroscopy. Embryos, in general did not 

represent a sensitive life stage for discriminating between ponds based on their 

infrared spectra. In contrast, tadpoles exposed to agricultural and urban pollutants, 

both at early and late stages of development were readily distinguished on the basis of 

their infrared spectra. ATR-FTIR spectroscopy also readily detected fungicide-

induced changes in X.laevis cells, both as single-agent and binary mixture effects. 

Data reported in this study confirm the use of ATR-FTIR spectroscopy as a sensitive 

technique capable of detecting small changes in cellular groups, and as such 

represents a valuable starting point for its use in the monitoring of amphibian 

populations. However further research is needed in order to overcome confounding 

factors existent in natural populations of complex organisms.  
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1. Introduction 

Amphibian populations are declining on a global scale (Stuart et al., 2004), which is 

thought to be due to several factors including habitat destruction (Cooke and 

Ferguson, 1976), climate change (Beebee, 1995; Todd et al., 2010), diseases (Daszak 

et al., 1999; Daszak et al., 2003) and pollution (Blaustein et al., 2003; Sparling et al., 

2001). There is likely to be significant overlap amongst these factors, as well as 

variation among species, populations and different life stages within populations 

(Blaustein et al., 2011; Brühl et al., 2011; Greulich and Pflugmacher, 2003; Hof et al., 

2011), rendering the situation highly complex with no single factor wholly responsible 

for the worldwide declines recorded.  

While habitat loss is regarded as the greatest threat to amphibian biodiversity (GAA, 

2004), environmental pollution has also been linked to population declines (Davidson 

et al., 2002; Rohr et al., 2008), particularly on a local scale (Cooke, 1972a, 1981). 

With habitat loss due to agricultural intensification, some amphibian species are also 

increasingly utilising urban habitats, exposing them to pollutants associated with these 

environments (Hamer and McDonnell, 2008). Small water bodies typical of 

amphibian habitats, such as ditches and ponds, may be the first to receive run-off 

containing contaminants from sources such as sewage effluent, industrial waste, 

accidental spills and agriculture, indicating that amphibians may be considered 

sentinel species for assessing ecosystem health as whole  (Ralph & Petras, 1997). 

Amphibians are considered particularly vulnerable to contaminant exposure due to 

their highly permeable skin and life cycle, which comprises both aquatic and 

terrestrial phases, thus offering multiple routes of exposure (Brühl, Pieper, & Weber, 

2011; Cooke, 1981; Kloas & Lutz, 2006; Ralph & Petras, 1998). This together with 

the observation that application of contaminants such as pesticides and fertilisers 

coincides with breeding and larval development in shallow water bodies, suggests that 

amphibians may be at particular risk of deleterious effects due to exposure from 

agricultural sources (Hayes et al., 2006; Mann et al., 2009). 

A method which may be applicable to determining the effects of environmental 

contamination on amphibians is infrared (IR) spectroscopy. IR spectroscopy is a 

technique used to signature effects induced by chemicals in biological cells and tissues 

based on the vibrations of functional groups within the sample (Ellis and Goodacre, 
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2006). This technology has previously been employed in environmental toxicology in 

the laboratory in both cells (Holman et al., 2000b; Johnson et al., 2014; Llabjani et al., 

2010), and tissues (Cakmak et al., 2006; Palaniappan et al., 2011) and also in the field 

(Malins et al., 2006; Malins et al., 1997; Malins et al., 2004).  

This chapter will examine threats to amphibian health from urban and agricultural 

pollution, and the current status of amphibians in the UK, focusing on the most 

widespread species, the Common frog, Rana temporaria. The use of infrared 

spectroscopy coupled with computational analysis as a novel environmental 

monitoring technique will be explored, and its application to the monitoring of the 

health of amphibian populations exposed to urban and agricultural contaminants in the 

field will be elucidated. 

 

2. Threats to amphibian health from pollution 

Amphibians are regarded as a group sensitive to environmental pollution due to their 

biphasic life style, comprising aquatic and terrestrial phases and therefore multiple 

exposure routes (Hayes et al., 2006), and the permeability of their skin, which allows 

the diffusion of contaminants across it (Quaranta et al., 2009). There have been many 

studies exploring the link between environmental pollution and amphibian population 

declines, with correlations found between proximity to agricultural and urbanised land 

and declining populations (Bishop et al., 1999; Davidson, 2004; Davidson et al., 2002; 

Hamer and Parris, 2011; Houlahan and Findlay, 2003; Sparling et al., 2001).  

Current methods used to assess the effects of environmental contamination on 

amphibian populations include both controlled exposure in the laboratory, often 

employing a surrogate test species, such as the African-clawed frog, Xenopus laevis 

(Coady et al., 2005; Gillardin et al., 2009) and sampling in the field at sites where 

contamination is a concern such as constructed wetlands and agricultural land 

(Christin et al., 2013; Ouellet et al., 1997; Ruiz et al., 2010). Endpoints commonly 

measured include mortality, growth, time to metamorphosis, deformities, effects on 

sexual differentiation, thyroid and immune function, hormone systems, energy/stress 

response and genotoxicity, examples of which are presented in Table 1. 
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Table1. Examples of endpoints in amphibians commonly measured following exposure to environmental contaminants in the field and in 

laboratory and mesocosm studies. 

Endpoint Study type Pollutant Life stage Species Example 

reference 

Survival Laboratory 

microcosm 

Stormwater pond sediment Embryo and 

tadpole 

Bufo americanus and Rana 

sylvatica 

(Snodgrass et al., 

2008) 

 In situ field 

study 

Agricultural gradient Tadpole Pseudacris regilla (Sparling et al., 

2014) 

 Outdoor 

mesocosm 

Glyphosate Tadpole R.pipiens, B.americanus, 

Hyla versicolor 

 

(Relyea, 2005) 

Growth Laboratory Naphthenic acids Tadpole Lithobates (Rana) pipiens (Melvin et al., 

2013) 

 In situ field 

study 

Agricultural intensity Embryo, tadpole 

and metamorphs 

Bufo bufo (Orton and 

Routledge, 2011) 

 Outdoor 

mesocosm 

Carbaryl, atrazine Tadpole R.sphenocephala, 

B.americanus Ambystoma 

maculatum, A. Texanum 

 

(Boone and 

James, 2003) 

Deformities Laboratory Triadimefon and triadimenol Embryo and 

tadpole 

X. laevis (Groppelli et al., 

2005) 

 Field Wastewater run-off Tadpole R. catesbeiana  (Ruiz et al., 

2010) 

 Outdoor 

mesocosm 

Atrazine, chlorpyrifos, MSMA and 

methyl mercury 

 

Tadpole H.chrysoscelis (Britson and 

Threlkeld, 1998) 

Gonadal 

abnormalities 

Laboratory Atrazine Tadpole X.laevis (Hayes et al., 

2002) 

 Field Agricultural intensity gradient Adult B. marinus (McCoy et al., 
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2008) 

 Outdoor 

mesocosm 

 

Atrazine Tadpole R.pipiens (Langlois et al., 

2010) 

Time to 

metamorphosis 

Laboratory Chlorpyrifos and endosulfan Tadpole P.regilla, R.boylii (Sparling and 

Fellers, 2009) 

 Field Oil sands processed material Tadpole Lithobates (Rana) sylvaticus (Hersikorn and 

Smits, 2011) 

 Outdoor 

mesocosm 

 

Malathion and nitrate Tadpole R.sylvatica, B.americanus (Smith et al., 

2010) 

Thyroid function Laboratory Triclosan Tadpole R.catesbeiana (Veldhoen et al., 

2006) 

 Field Oil sands processed material Tadpole L.sylvaticus (Hersikorn and 

Smits, 2011) 

 

Immune function Laboratory Pesticide mixture (atrazine, 

metribuzine, endosulfan, lindane, 

aldicarb and dieldrin) 

Adult X.laevis, R.pipiens (Christin et al., 

2004) 

 Field Agricultural pesticides Adult R.pipiens (Christin et al., 

2013) 

 In situ field 

study 

Lambda-cyhalothrin Tadpole Scinax squalirostris and 

Leptodactylus mystacinus 

(Attademo et al., 

2013) 

 

Cholinesterase 

activity 

Laboratory Chlorpyrifos and endosulfan Tadpole P.regilla, R.boylii (Sparling and 

Fellers, 2009) 

 Field Pesticide mixtures associated with 

rice fields 

Adult Leptodactylus chaquensis (Attademo et al., 

2011) 

 Outdoor 

mesocosm 

Chlorpyrifos Tadpole R.sphenocephala (Widder and 

Bidwell, 2006) 
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Glutathione-S-

transferase activity 

Laboratory Diazinon and endosulfan Adult B.regularis (Ezemonye and 

Tongo, 2010) 

 Field Pesticide mixtures associated with 

rice fields 

Adult Chaunus schneideri (Attademo et al., 

2007) 

 Outdoor 

microcosm 

Contaminated sediment from 

agricultural/industrial pollution 

Tadpole Trachycephalus typhonius (Peltzer et al., 

2013) 

 

Corticosterone 

level 

Laboratory Chlorothalonil Tadpole Osteopilus septentrionalis (McMahon et al., 

2011) 

 Field Chlorinated hydrocarbons Adult Necturus maculosus (Gendron et al., 

1997) 

 

Energy storage Laboratory Pharmaceutical mixture Tadpole L.pipiens (Melvin, 2015) 

 Field Chlorinated hydrocarbons Adult Necturus maculosus (Gendron et al., 

1997) 

 Laboratory Atrazine, glyphosate and 

quinclorac 

Tadpole Lithobates (Rana) 

catesbeiana 

(Dornelles and 

Oliveira, 2014) 

 

Genotoxicity Laboratory Endosulfan Tadpole H.pulchella (Lajmanovich et 

al., 2005) 

 Field Agricultural and industrial run-off Tadpole R.clamitans, R.pipiens (Ralph and 

Petras, 1997) 

 Outdoor 

microcosm 

Contaminated sediment from 

agricultural/industrial pollution 

Tadpole T.typhonius (Peltzer et al., 

2013) 



8 
 

2.1 Pollution from urban environments 

Increased urbanisation has been cited as a possible reason for population declines in 

certain areas and amongst particular species of amphibian (Hamer and McDonnell, 

2008); however constructed wetlands, which are utilised in urban areas to capture 

storm-water and treated wastewater run-off also have the added benefit of providing 

potential habitats for wildlife, with several amphibian species found to be abundant in 

such locations (Brand and Snodgrass, 2010; O’Brien, 2014; Ruiz et al., 2010; 

Snodgrass et al., 2008). Amphibian species which are habitat generalists, such as 

R.temporaria are more likely to be able to utilise such habitats. Indeed some studies 

have demonstrated the importance of urban ponds as breeding sites for R.temporaria, 

where this species shows increased persistence in urban and suburban areas in 

comparison to rural areas where other species are unable to tolerate due to their life 

history (Beebee, 1979; Carrier and Beebee, 2003; Cooke, 1975). As a consequence, 

species breeding and developing in urban environments may be exposed to 

environmental pollutants associated with storm run-off, wastewater and leachates 

from landfill from both residential and industrial sources (Brand and Snodgrass, 2010; 

Pablos et al., 2011; Ruiz et al., 2010; Snodgrass et al., 2008).  

Pollutants associated with water bodies located in urban areas include those referred to 

as organic wastewater contaminants (OWCs) such as antibiotics, analgesic and anti-

inflammatory drugs, beta-blockers, antiepileptic and antidepressant drugs and 

antineoplastics used in cancer treatment (Ashton et al., 2004; Fent et al., 2006; Kolpin 

et al., 2002). Flame retardants, both brominated (PBDEs) and organophosphorus (OP) 

compounds are also frequently found in surface waters (Hale et al., 2006; Kolpin et 

al., 2002; Oros et al., 2005; Reemtsma et al., 2008; Regnery and Püttmann, 2010; van 

der Veen and de Boer, 2012). Other pollutants associated with urban environments 

include heavy metals, pesticides, road de-icing salts and polycyclic aromatic 

hydrocarbons (PAHs) from surface run-off, and increased nutrient levels (nitrate and 

phosphate) from detergents in treated wastewater (Efroymson et al., 2007; Harris et 

al., 2001; Pablos et al., 2011; Sanzo and Hecnar, 2006; Snodgrass et al., 2008). 

However, there is currently a lack of knowledge regarding the ecotoxicological effects 

of OWCs on aquatic and terrestrial organisms, with chronic effects being particularly 

under researched (Fent et al., 2006).  
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Studies examining exposure of amphibians directly to wastewater in the field have 

found high incidences of skin lesions, edema and calcinosis of soft tissue, as well as 

deleterious effects on growth and development rates (Keel et al., 2010; Ruiz et al., 

2010). Laboratory studies have revealed effects toxic effects of wastewater, including 

deleterious effects on thyroid morphology, metamorphosis and sexual development in 

males following exposure to different concentrations of estrogenic municipal 

wastewater (Sowers et al., 2009). Specific contaminants commonly associated with 

wastewater, such as caffeine and acetaminophen have also been shown to have 

detrimental impacts on amphibian behaviour and physiology at environmentally 

relevant concentrations (Fraker and Smith, 2004).  

 

2.2. Pollution from agriculture 

Agricultural pollutants primarily cover pesticides (herbicides, insecticides and 

fungicides) and fertilisers, which are associated with increased nutrient levels in water 

bodies (Smith et al., 1999). Agricultural pollutants may be from point sources, where 

a single source of pollution is identified, or from a non-point source such as land run-

off, atmospheric deposition, precipitation or drainage (Humenik et al., 1987; Sparling 

and Fellers, 2009; Tilman et al., 2001). Environmental contamination from 

agricultural sources is widely considered to have a detrimental impact on amphibian 

health and survival (Bishop et al., 1999; Mann et al., 2009; Smalling et al., 2015; 

Sparling et al., 2001). Despite this, many amphibian species are able to survive and 

persist in modified habitats, indeed; where natural wetlands are scarce, constructed 

agricultural ponds may provide important breeding habitats if properly managed (Da 

Silva et al., 2012; da Silva et al., 2011; Knutson et al., 2004; Smalling et al., 2015). 

There is also emerging evidence that some amphibian species located in close 

proximity to agricultural areas may evolve tolerance to pesticides over time (Cothran 

et al., 2013; Hua et al., 2013a; Hua et al., 2013b). However, assessments of long-term 

health and survival are necessary as the populations may still be under chronic stress 

following sub-lethal exposures to agricultural contaminants, leading to increased risk 

of disease, reduced survivorship and negative effects on reproduction (Smalling et al., 

2015). 
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There is a large amount of research on the effect of pesticides and fertilisers on 

amphibian health both in laboratory and field studies, with detrimental effects 

recorded on growth, survival, reproduction, development, and immune function, 

examples of which are presented in Table 1 (reviewed in Mann et al. 2009, Orton and 

Tyler 2014, Egea-Serrano et al. 2012 and Sparling et al. 2010). Naturally, there exists 

considerable variation between different species, life stages and the agricultural 

chemicals studied (Mann et al., 2009). 

 

2.2.1. Fungicides 

In the UK, the largest quantities of plant-protection pesticides are used in arable 

agriculture; with crops treated including wheat, barley, oats, rye, triticale, oilseed rape, 

linseed, ware and seed potatoes, dry harvest pea, field beans, and sugar beet, with 

wheat covering the largest area (45%). Of the products used, fungicides account for 

the largest area treated (40%), with chlorothalonil, an organochlorine fungicide, and 

tebuconazole, a triazole fungicide most widely applied. Herbicides account for the 

next largest area (31%), with glyphosate and iodosulfuron-

methylsodium/mesosulfuron-methyl used the most frequently (Garthwaite et al., 

2015). 

Although fungicides are the most widely used plant-protection product in temperate 

regions, this is not reflected in the number of research studies conducted on their 

effects in non-target species such as amphibians (Ghose et al., 2014; Reilly et al., 

2012; Smalling et al., 2013; Sparling et al., 2010), with fewer still examining the 

chronic sub-lethal effects. Of the studies available, there is an indication that 

fungicides may have deleterious effects in amphibians such as decreased growth, 

increased mortality, morphological abnormalities, delayed metamorphosis, reduced 

swimming abilities and an altered immune response (Belden et al., 2010; Bernabò et 

al., 2016; Di Renzo et al., 2011; Ghose et al., 2014; Groppelli et al., 2005; Hartman et 

al., 2014; Hooser et al., 2012; Junges et al., 2012; McMahon et al., 2011; Menegola et 

al., 2006; Papis et al., 2006; Teplitsky et al., 2005; Yoon et al., 2008). 



11 
 

Types of fungicides include strobilurins, azoles and imidazoles, benzimidazoles, 

chloronitriles, carbamates, carboxamides and morpholines; Table 2 shows a list of 

commonly used fungicides in the UK and their mechanism of action.  

 

Table 2. List of commonly used fungicides in the UK and their mechanism of action 

(Garthwaite et al., 2015) 

Chemical Group Examples Mode of Action 

Strobilurin Azoxystrobin Quinone Outside Inhibitors (QoI), which 

inhibit respiration.  Fluoxastrobin 

 Picoxystrobin 

 Trifloxystrobin 

 Pyraclostrobin 

   

Triazole Cyproconazole Inhibit sterol biosynthesis 

 Difenoconazole 

 Epoxiconazole 

 Fluquincazole 

 Flusilazole 

 Metconazole 

 Tebuconazole 

   

Imidazole Prochloraz Inhibit sterol biosynthesis 

   

Triazolinthione Prothioconazole Inhibits sterol biosynthesis 

   

Benzimidazole Carbendazim Inhibits microtubule assembly and therefore 

cell division 

   

Cyanoimidazole Cyazofamid Inhibits respiration 

   

Pyrazolium Bixafen Succinate dehydrogenase inhibitor 

 Fluxapyroxad 

 Isopyrazam 

   

Carbamate Mancozeb Disrupts lipid metabolism 

   

Carboxamide Boscalid Succinate dehydrogenase inhibitor, inhibits 

spore germination.  Penthiopyrad 

   

Benzamide Fluopicolide Affects spectrin-like proteins in the 

cytoskeleton of oomycetes 

   

Mandelamide Mandipropamid Inhibits spore germination with preventative 

action. Inhibits cellulose synthesis. 

   

Phthalimide Folpet Inhibits cell division 
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Morpholine Dimethomorph Inhibits ergosterol biosynthesis 

 Fenpropimorph 

 Spiroxamine 

   

Chloronitrile Chlorothalonil Binds to glutathione, disrupting cellular 

respiration 

   

Phenylpyridinamine Fluazinam Uncoupler of oxidative phosphorylation in 

mitochondria 

   

Anilinopyrimidine Cyprodinil Inhibits protein synthesis 

   

Quinazolinone Proquinazid Translocates and inhibits appressoria 

(specialised fungal cell used to infect host 

plant) development, stopping infections. 

 

Among the fungicides, triazole compounds are perhaps the most studied due to their 

usage in both agriculture and medicine, where they are used to treat mycoses and as 

non-steroidal anti-estrogens in the treatment of some breast cancers (Menegola et al., 

2006). Triazole fungicides share the structural element of a five-membered azole ring 

containing two carbon and three nitrogen atoms. Triazole fungicides act by blocking 

the synthesis of the essential cell membrane component ergosterol in yeast and fungi, 

which in turn affects the structure of the plasma membrane making it susceptible to 

further attack (Chambers et al., 2014; Georgopapadakou, 1998).  This is achieved 

through inhibition of the Cytochrome-P450-mediated (CYP51, lanosterol-14-

demethylase) conversion of lanosterol to ergosterol, leading to an accumulation of 

lanosterol and other 14-methylated sterols and a depletion in ergosterol, which 

changes the shape and properties of the plasma membrane (Menegola et al., 2006). 

There have been notable developmental effects of azole fungicides in non-target 

organisms including amphibians, where they have been associated with developmental 

problems such as skeletal defects, craniofacial abnormalities and hydrocephaly 

(Bernabò et al., 2016; de Jong et al., 2011; Di Renzo et al., 2011; Groppelli et al., 

2005; Menegola et al., 2006; Papis et al., 2006). Recent studies have demonstrated the 

accumulation of triazole fungicides in the tissues of amphibians and evidence of 

endocrine disruption at low concentrations (Hansen et al., 2014; Poulsen et al., 2015; 

Smalling et al., 2013). 



13 
 

Other fungicides associated with negative effects in amphibians include 

chlorothalonil, which led to high mortality rates and elevated corticosterone levels in 

R.sphenocephala, O.septentrionalis and H.squirella tadpoles following exposure at 

the expected environmental concentration (McMahon et al., 2011). Strobilurin 

fungicides such as pyraclostrobin at environmentally relevant concentrations have 

demonstrated acute mortality rates of up to 100% in Bufo cognatus tadpoles (Belden 

et al., 2010; Hooser et al., 2012), with chronic effects on development, growth and 

mortality also noted at sub-lethal concentrations (Hartman et al., 2014). However,  

sensitivity to strobilurins has also been shown to vary between amphibian species 

(Junges et al., 2012). 

 

3. Life stages of anuran amphibians and sensitivity to environmental 

pollutants  

Exposure  to pollutants across amphibian life stages potentially varies significantly 

due to the different interactions with the environment associated with each stage of 

metamorphosis (egg to larvae, larvae to metamorph etc) (Sparling et al., 2010). Both 

laboratory and field studies have indicated varying sensitivities to pollutant exposure 

across different stages of development in amphibians. 

 

3.1 Life cycle of anuran amphibians  

According to Gosner (1960), there are 46 stages in the metamorphosis of anuran 

amphibians (frogs and toads), from fertilisation of the embryo through to emergence 

as a frog. A simplified life cycle of R.temporaria, showing embryos after fertilisation 

is shown in Figure 1. After fertilisation, the eggs take 10-14 days to develop 

depending on temperature. Stages 1-25 comprise the embryonic pre-feeding stages, 

with stages 21-23 the period at which full development of the external gills occurs. 

Tadpoles hatch and remain on the surface of the spawn clump or attached to plants 

until the yolk is fully absorbed (Beebee and Richard, 2000). Stages 23-25 represent 

when the external gills disappear and the operculum develops, covering the internal 

gills. At this stage the tadpoles become free-swimming and free-feeding and disperse 
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from the spawn site. After this stage the hind limb buds begin to develop (stages 26-

30), followed by the development of the toes of the hind limbs from stages 31-38 and 

subarticular tubercles at stages 39-40. Metamorphosis rapidly occurs following the 

emergence of the front limbs and reabsorbtion of the tail from stages 41-46 (Gosner, 

1960). Froglets appear usually in the middle of summer and grow in size before 

entering hibernation. Frogs reach sexual maturity and 2-3 years of age and at a 

minimum size of 50 mm (Beebee and Richard, 2000). 

 

Figure 1. Simplified life cycle of the common frog, Rana temporaria. 

3.2. Embryos 

Eggs of amphibians can be used to perform biological and chemical assays; this 

practice is usually regarded as non-destructive and is therefore favoured to reduce the 

number of animals used in experiments (Scholz et al., 2013; Walker, 1998). However, 

embryos are generally considered a less sensitive stage of development due to the jelly 

coat and perivitelline membrane that surrounds the embryo. The jelly coat is 



15 
 

composed of mucin-type glycoproteins, which are highly glycosylated molecules 

synthesised  by oviduct cells and which play an important part in the fertilisation 

process, species recognition and as protection to the developing embryo (Maes et al., 

1997). The jelly layers vary in thickness and viscosity depending on species (Hatch 

and Burton, 1998) and act like a barrier to a number of chemicals (Berrill et al., 1994; 

Berrill et al., 1998; Brodeur et al., 2009; Edginton et al., 2007; Hall and Swineford, 

1980; Wagner et al., 2015). However, in some this cases, this gelatinous matrix can 

react with chemicals and become more toxic, for example solvent toxicity in 

R.temporaria embryos was enhanced by the presence of the jelly coat (Marquis et al., 

2006). The jelly coat may also not offer sufficient protection against contaminants 

such as α-cypermethrin, where significant abnormalities occurred following exposure 

(Greulich and Pflugmacher, 2003). 

Embryos may also show less sensitivity to pollutants which affect the nervous system, 

as the nervous system at this early ontogenic stage is not yet fully developed 

(Ortiz‐Santaliestra et al., 2006). This is also true of nitrates, which are transformed 

into the more toxic nitrites and nitrosamines by gut bacteria, thus incomplete 

differentiation of the gut in early life stages may have a protective effect (Egea-

Serrano et al., 2012) 

 

3.3. Tadpoles 

Earlier larval stages of amphibians are generally regarded at the most sensitive life 

stage when assessing the effects of environmental pollution (Anguiano et al., 1994; 

Berrill et al., 1994; Berrill et al., 1998; Cooke, 1972b; Greulich and Pflugmacher, 

2003; Ortiz‐Santaliestra et al., 2006). Tissue and organ development begins at 

fertilisation, continuing through to metamorphosis; this incomplete organ and tissue 

differentiation could make earlier larval stages more sensitive to chemical 

contamination (Egea-Serrano et al., 2012). Differences in the sensitivity of larval 

stages may also be due to changes in surface area: volume ratios, permeability of the 

skin and metabolism (Ralph and Petras, 1998b). However, a recent meta-analysis 

found no difference in sensitivity to pollutants between embryos and larvae (Egea-

Serrano et al., 2012). The authors stated this may be due to a lack of carry-over 

effects, as many studies only lasted until the embryos hatched. Indeed, there is 
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evidence that an earlier exposure to pollutants at the embryonic stage of development 

results in detrimental effects, such as sexual differentiation and deformities that may 

only be apparent at metamorphosis (Bridges, 2000; Orton and Routledge, 2011; Orton 

and Tyler, 2014).  

Later larval stages of tadpoles, i.e. pro-metamorphic tadpoles with emerged hind legs 

may be more tolerant to pollutants than earlier stages. For example, Rhinella 

arenarum tadpoles were more sensitive to atrazine exposure at Gosner stage 25 in 

comparison to those exposed at stage 38-39 (Brodeur et al., 2009). This differential 

sensitivity may be due to a higher metabolic detoxification ability in tadpoles at a later 

stage of development (Bucciarelli et al., 1999). However, there are studies which 

demonstrate increased sensitivity of later larval stages in comparison to earlier larval 

stages after exposure to certain contaminants. For example, Howe et al. (1998) 

exposed larval Rana pipiens and Bufo americanus at an early (Gosner stage 29) and 

late (Gosner stage 40) of development to the herbicides alachlor and atrazine, with the 

finding that both species were more sensitive to both chemicals when exposed at the 

later stage of development. This was suggested to be due to the complex changes that 

are taking place during this stage as the tadpole enters metamorphosis, adding extra 

physiological and developmental stress (Howe et al., 1998). A recent study has 

demonstrated differential sensitivity in larval Hyla intermedia exposed to the 

fungicides tebuconazole and pyrimethanil throughout the development period, with 

low concentrations (5 µg/L) associated with greater effects on survival and deformity 

incidences than high concentrations (50 µg/L) if exposure occurred prior to 

metamorphic climax. During metamorphic climax, there was a clear dose-response 

(Bernabò et al., 2016). Therefore, there is likely to be differential sensitivity between 

life stages as well as between species, depending on the chemical to which larval 

amphibians are exposed, thus it is critical to consider different life stages in any 

monitoring study.  
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3.4. Amphibian cell lines 

The use of cell cultures in environmental risk assessment is a growing area, which 

allows the number of vertebrates used in experimental procedures to be reduced in 

line with the 3R principles – replacement, reduction and refinement, of animal tests 

(Scholz et al., 2013). In addition, the key interaction between chemical contaminants 

and organisms initially occurs within cells, therefore determining the effects of 

environmental pollutants at the cellular level is of great importance, in order to 

elucidate mechanistic information (Fent, 2001). Using cell lines is cost-effective, 

reduces waste and allows multiple experiments to be conducted, including those using 

chemical mixtures, and is thus less time-consuming than using whole organisms 

(Schirmer, 2006). However, there may be issues with extrapolation from cell lines to 

whole organisms, with toxicity sometimes underestimated (Schirmer, 2006; Walker, 

1998).  

There are already a large number of studies confirming the use of several fish cell 

lines in the in vitro cytotoxicity testing of chemicals (Fent, 2001; Schirmer, 2006; 

Walker, 1998). Although fewer in number, there are also studies using amphibian cell 

lines to determine the effects of environmental contaminants at the cellular level. 

Available amphibian cell lines are those derived from Xenopus laevis: A6 and XLK-

WG, both epithelial cell lines derived from the kidney of X.laevis (Martin et al., 1998; 

Rafferty Jr, 1969), the fibroblast FT cell line, derived from R.catesbeiana tongue 

(Wolf and Quimby, 1964), and the ICR-2A/-134 fibroblast cell lines derived from 

R.pipiens embryos (Freed and Mezger-Freed, 1970). Of the small number of 

continuous cell lines available, A6 cells are most widely used, as they are well-

characterised, simple to culture, growing at 22°C without carbon dioxide, and have a 

population doubling time of 24-36 hours (Ikuzawa et al., 2007; Kitamoto et al., 2005; 

Perkins and Handler, 1981; Rafferty Jr, 1969). A6 cells have previously been used in 

toxicity studies, measuring responses such as levels of heat shock proteins (HSPs), 

intracellular calcium and cell cycle progression after exposure to a variety of 

environmental contaminants, including toxic metals, detergents, and nanoparticles 

(Bjerregaard, 2007; Bjerregaard et al., 2001; Brunt et al., 2012; Darasch et al., 1988; 

Faurskov and Bjerregaard, 1997; Faurskov and Bjerregaard, 2000; Faurskov and 

Bjerregaard, 2002; Heikkila et al., 1987; Khamis and Heikkila, 2013; Khan et al., 

2015; Music et al., 2014; Thit et al., 2013, 2015; Woolfson and Heikkila, 2009; Young 
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et al., 2009; Yu et al., 2007). The use of cell lines alongside methods involving whole 

organisms thus provides further mechanistic information, as well as reducing the 

number of animals used in research. 

 

4. Amphibians as biological indicators 

Amphibians are frequently regarded as sentinels or biological indicators of water 

quality due to their high sensitivity to environmental pollution (Blaustein et al., 1994; 

Burkhart et al., 2000). Small bodies of water like those frequented by amphibians are 

often the first to be impacted by contaminants, and also tend to be closed systems, 

thus an accumulation of contaminants may occur (Ralph and Petras, 1997).Tadpoles 

in particular go through many physiological and anatomical changes during 

development, therefore the risk of deleterious changes occurring during larval 

development is increased (Cooke, 1981). The use of an indicator species in the field is 

of benefit in situations where a broad spectrum of contaminants may be detected, such 

as that from agricultural or wastewater run-off. Analysis of water and sediment 

samples is expensive and knowing the concentrations of contaminants in such samples 

does not necessarily give information concerning biological relevance (Cooke, 1981). 

Additionally, whilst exposure to single agents at concentrations found in the 

environment may not elicit a harmful response, repeated exposures and the exposure 

to multiple agents at environmental concentrations, as found in the field may have 

deleterious consequences (Hayes et al., 2006; Hua and Relyea, 2014; Relyea, 2009; 

Relyea and Diecks, 2008). Laboratory studies also tend not to replicate the complexity 

of natural habitats (Ralph and Petras, 1998a; Relyea and Mills, 2001; Thompson et al., 

2004). Using an indicator species in the field therefore represents a more 

environmentally-realistic scenario, although there are limitations to this approach due 

to the inability to control the heterogeneous environment of natural systems (Rowe 

and Dunson, 1994). 
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4.1. Suitability of the common frog as a biological indicator 

The common frog has numerous characteristics that make it a suitable indicator 

species, among them a widespread distribution, high reproductive output and ability to 

exploit multiple habitats and it has been previously used in several studies to assess 

environmental impacts (Beebee, 1979; Cooke, 1981; Piha et al., 2009).  

 

4.1.1. Identification 

There are few native species of amphibian in the UK; in addition to R.temporaria, 

there is the common Toad, Bufo bufo, the pool frog Pelophylax lessonae, and the 

Natterjack Toad, Epidalea calamita, which comprise the anurans. There are also three 

species of newt (urodeles): the Great-crested Newt, Triturus cristatus, the smooth 

newt, Lissotriton vulgaris and the palmate newt, Lissotriton helveticus. This makes 

identification relatively simple; frog and toad spawn is distinguished by appearance, 

with frogs producing clumps of spawn in shallow water, as shown in Figure 2A, 

whereas toads produce long thin strings of spawn wrapped around vegetation in 

relatively deep water (Beebee and Richard, 2000). Pool frogs were reintroduced to 

two sites in Norfolk in 2005 (Beebee, 2014) and breed later in the year than the 

common frog, making the distinction between these two species straightforward. 

Newts lay single eggs on the underside of leaves and their larvae look identical to the 

adult newts making them quite distinct from anuran species. Tadpoles of frogs and 

toads are distinguishable by appearance and behaviour, with tadpoles of R.temporaria 

developing flecks of brown/gold as they grow (Fig. 2B), whereas toad larvae remain 

uniformly black. Common frog tadpoles do not shoal, in contrast to tadpoles of the 

common toad, which often shoal in open water (Beebee and Richard, 2000). This 

makes using R.temporaria spawn or tadpoles as a monitoring species a relatively 

simple process.  
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Figure 2.  Rana temporaria spawn (A) and tadpoles (B). 

4.1.2. Reproduction 

Breeding of R.temporaria in the UK generally occurs in early Spring, however there is 

considerable variation in spawning dates with frogs in Southern Britain spawning as 

early as November, whereas those in Northern Britain may spawn as late as April, 

with rising temperature used as a cue to begin spawning (Scott et al., 2008). Spawning 

occurs in shallow, small water bodies, including temporary ponds (Cooke, 1975). 

R.temporaria has a high reproductive output and is regarded as an ‘explosive breeder’, 

completing spawning within 1-2 weeks unless interrupted by cold weather (Beebee 

and Richard, 2000). Each clutch of spawn comprises around 700-2000 eggs and 

averages 1300 eggs per clump (Cummins, 1986; Ryser, 1996).  Figure 3 shows 

R.temporaria spawning in a shallow pond in March.  

A

 

B
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Metamorphosis takes 40-80 days from fertilisation, with water temperature, 

population origin and population density causing variation in the length of time 

development takes (Loman, 2002; Scott et al., 2008). R.temporaria shows high site 

fidelity, and has a summer home range close to the breeding pond, allowing the same 

populations to be studied each year, making it an ideal species for longer term 

monitoring studies (Cummins, 1986; Haapanen, 1970).  

 

Figure 3. Rana temporaria photographed breeding in March in the UK. 

4.1.3. Routes of exposure to environmental pollutants 

The common frog may be useful as an indicator species due to its widespread 

distribution in the UK (and much of Europe), where it forms an important part of 

ecological communities (Johansson et al., 2006). This species is regarded as a habitat 

generalist (Van Buskirk, 2005), capable of exploiting both urban and agricultural 

environments and thus has the potential to be exposed to a variety of environmental 

contaminants . Like most species of amphibian, it has a biphasic life cycle, with 

spawning and larval development occurring in the aquatic environment in Spring and 

Summer, whilst metamorphosed frogs lead a predominantly terrestrial lifestyle, 

returning to ponds for breeding; thus there is the possibility of both aquatic and 
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terrestrial exposure routes. The period of larval development coincides with the 

application of pesticides to adjacent land, with tadpoles potentially exposed following 

pesticide spray drift or run-off following heavy rain (Johansson et al., 2006). Larval 

R.temporaria are filter feeders, which allows them to exploit a wide range of food 

sources in detritus, algae and sediment and thus play an important role in aquatic 

ecosystems (Viertel, 1990). The combination of a restriction to an aquatic 

environment and their feeding behaviour mean that tadpoles stand to have a greater 

exposure to pollutants than their terrestrial counterparts (Roe et al., 2005; Semlitsch, 

2000).  

 

4.1.4. UK research on the effect of pollutants on native amphibians 

Overall numbers of R.temporaria are not thought to be declining; however some 

populations may be susceptible to local extinctions, with pollution examined as a 

possible reason. As well as the loss in habitat driven by agricultural intensification, it 

was postulated that certain areas in Britain may have had declines in numbers of 

R.temporaria and Bufo bufo due to usage of pesticides in the 1950s and 1960s in 

highly agricultural areas (Beebee, 2014; Cooke and Ferguson, 1976). Several studies 

were conducted around this time using native amphibian species in the laboratory and 

in situ to investigate the effects of pesticides and fertilizers in common usage with the 

finding that acute and chronic levels of these contaminants can have deleterious 

effects on larval amphibians, including altered development and abnormal feeding 

behaviour, as well as direct mortality at high concentrations (Cooke, 1970, 1972b, 

1973a, b, 1977, 1981; Oldham et al., 1997; Osborn et al., 1981). Since these studies, 

there has been relatively little research conducted on the effect of contaminants on 

native amphibian species in the UK despite the continued production of new 

pesticides (Beebee, 2014), and the projected increase in environmental pollution due 

to a growing human population and therefore increased agricultural and industrial 

activities (Tilman et al., 2001). The small numbers of studies conducted in the UK 

recently have noted significant effects on development, growth, sexual differentiation 

and reproductive physiology in a native species (the common toad, Bufo bufo) in areas 

of high agricultural intensity and  high human impact (Orton et al., 2014; Orton and 

Routledge, 2011).  
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5. Biospectroscopy 

Infrared spectroscopy is a powerful and sensitive technique which has been previously 

utilised in chemistry and physics to identify the molecular structure of unknown 

chemical entities, as well as providing quantitative information such as the 

concentration of a molecule in a sample (Smith, 2011). With advances in 

instrumentation and concurrent computational analysis, this technique is now widely 

applied in the characterisation of biochemical components in complex biological 

samples (Baker et al., 2014). Following exposure to chemical agents, commonly used 

toxicological measurements in cells and tissues include  cell viability and  

proliferation assays (Fotakis and Timbrell, 2006; Soto et al., 1995), genotoxicity and 

carcinogenicity assays such as the Syrian Hamster Embryo (SHE) and micronucleus 

assays (Ahmadzai et al., 2012; Fenech, 2000), induction of CYP enzymes (Malins et 

al., 2006; Malins et al., 2004), changes in histological structures (Malins et al., 2006; 

Malins et al., 2004), and growth inhibition in plants (Wang, 1986). Whilst these assays 

are extremely useful, they may be labour-intensive, subjective, expensive and require 

the use of reagents which are potentially polluting to the environment. In contrast, 

spectroscopy approaches are rapid, often requiring minimal sample preparation and 

non-destructive, thus allowing samples to be used for subsequent applications (Ellis 

and Goodacre, 2006; Martin et al., 2010; Naumann, 2000). For example, the SHE 

assay is laborious and the visual scoring of transformed colonies may be prone to 

subjectivity, whereas use of FTIR spectroscopy in assessing cellular transformation is 

objective (Ahmadzai et al., 2012; Trevisan et al., 2010). Cytotoxicity assays such as 

the MTT assay use colorimetric methods to assess cell viability; in contrast IR 

spectroscopy does not require the use of reagents, allowing cells to be used for 

subsequent applications and produces comparable results (Fale et al., 2015). Results 

obtained using the E-screen assay to identify estrogenic compounds, whilst rapid in 

comparison to other methods (Soto et al., 1995), is still relatively time consuming, 

whereas FTIR spectroscopy may offer comparable sensitivity in a shorter time-frame 

(Johnson et al., 2014). Infrared spectroscopy also has the advantage of providing a 

metabolic fingerprint as it is able to analyse carbohydrates, lipids, proteins and amino 

acids simultaneously, thus providing integrated information in a short time frame 

(Ellis and Goodacre, 2006; Hu et al., 2016). 
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5.1. Background to Fourier-transform infrared spectroscopy  

Infrared spectroscopy is the study of the interaction of infrared light with matter 

(Smith, 2011). An interferometer takes a beam of light, splits it into two beams and 

makes one beam travel a different distance to the other, known as the optical path 

difference. A Michelson interferometer is the most commonly used interferometer, 

and comprises four arms: one a source of IR light, the next a fixed mirror, the third a 

moving mirror and the fourth arm is open. Intersecting the four arms is a beamsplitter, 

usually comprised of potassium bromide, which transmits half of the IR radiation, 

striking the fixed mirror and reflecting the other half, which then strikes the moving 

mirror. Following this, the two light beams recombine at the beamsplitter and then 

leave the interferometer to interact with the sample and strike the detector, as shown 

in Figure 4. There are several choices available for the light source, including globar 

used in benchtop instruments (Miller and Smith, 2005), synchrotron, which offers a 

much brighter light source and improved resolution, thus allowing subcellular 

resolution (Diem et al., 2004), and quantum cascade lasers (QCLs), which preclude 

the necessity for an interferometer (Yeh et al., 2014). There are also a variety of 

choices for the detector, including 2D focal plane array (FPA), linear array and single 

element (Carter et al., 2009). FPA and linear array are used to generate image maps, 

whereas single element detectors are used to generate point spectra across a whole 

sample, therefore choice of detector is based on whether imaging or point spectra with 

a high signal to noise ratio is required (Miller and Smith, 2005). 
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Figure 4.  A schematic of a Michelson interferometer, the most commonly used in 

FTIR spectroscopy. 

The measurement obtained from the detector is known as an interferogram and 

comprises a plot of light intensity versus optical path difference and is essentially a 

large number of sinusoidal waves added together. This interferogram undergoes a 

Fourier-transformation to give a spectrum, plotted as absorbance against wavenumber, 

as shown in Figure 5, hence Fourier-transform infrared (FTIR) spectroscopy (Smith, 

2011). Here, the wavenumber of a wave of light is simply defined as the reciprocal of 

the wavelength; the wavelength is the distance between adjacent crests or troughs, 

hence the unit of wavenumber is cm-1, and is a measure of the number of waves 

(crests or troughs) per centimetre. Spectra obtained from FTIR measurements are 

plotted from high wavenumber to low wavenumber, in order of decreasing energy 

intensity. The wavenumber positions of the peaks in the spectrum correspond to 
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molecular structure, and quantitative information may also be obtained, making an 

infrared spectrum highly information-rich (Smith, 2011). 

 

Figure 5. Representative raw FTIR spectra following Fourier -transformation of the 

interferogram. The sample analysed was Rana temporaria kidney tissue. 

 

5.2. Principles of FTIR spectroscopy 

FTIR spectroscopy is based on the vibrations of the atoms of a molecule. Exposure of 

a sample to IR radiation will cause the functional groups within the sample to absorb 

the radiation and vibrate in a number of ways; stretching, bending, deformation or a 

combination of these vibrations (Ellis and Goodacre, 2006; Stuart, 2005). Examples of 

these vibrational modes are shown in Figure 6. IR spectroscopy is a measure of this 

absorption, with peaks in the spectrum corresponding to the chemical structure of a 

particular molecule (Kelly et al., 2011; Stuart, 2005).  
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Figure 6. Vibrational modes in infrared spectroscopy. 

The mid IR region (400-4000 cm-1) of the electromagnetic spectrum is absorbed by 

biomolecules based on the chemical bonds present, with the range 1800-900 cm-1 

regarded as the biological fingerprint region and commonly used when analysing 

biological samples (Griffiths and De Haseth, 2007; Stuart, 2005). FTIR spectroscopy 

provides information down to the molecular-level, which allows the investigation of 

functional groups, types of vibrational mode and molecular conformations within 

biological samples (Movasaghi et al., 2008). The spectral bands obtained from the 

resulting spectra are molecule-specific, as shown in Figure 7, where the fingerprint 

region with corresponding assignment of major peaks is denoted; thus providing direct 

information about the biochemical composition of the sample (Movasaghi et al., 

2008). The assignment of peaks can be difficult in complex biological systems where 

absorbance bands overlap, and thus can be considered tentative (Naumann, 2000); 

however, many studies have been conducted which have recorded marked similarities 

in the spectral interpretation of equivalent areas in the derived spectra, creating 

detailed tables of wavenumber assignments for diverse biological samples (Cakmak et 
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al., 2006; Movasaghi et al., 2008). Changes in the absorbance intensity or area of 

particular peaks can thus be correlated to histological structures and are directly 

related to the concentration of molecules in the sample (Yang et al., 2011). For 

example, decreases in the intensity of the glycogen band at 1042 cm-1 and the 

asymmetric CO-O-C band at 1152 cm-1, also due to glycogen in tissues, were 

observed in fish liver tissue exposed to 17β-estradiol in comparison to control fish. 

These decreases are due to the liver being the main site for gluconeogenesis in fish 

and may be related to the energy requirement of estradiol-induced vitellogenin 

synthesis (Cakmak et al., 2006).  

 

 

Figure 7. A representative spectrum obtained of the fingerprint region with chemical 

peaks tentatively assigned. The sample analysed was Rana temporaria kidney tissue 

using ATR-FTIR spectroscopy. 
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5.3. Sampling modes in FTIR spectroscopy 

The three main sampling modes in FTIR spectroscopy are transmission, transflection 

and attenuated total reflection (ATR) as shown in Figure 8. In transmission (Figure 

8A), the infrared beam is passed directly through the sample before it is detected; 

therefore the substrate must be of an IR transparent material such as barium fluoride 

or zinc selenide. This type of sampling mode has a high signal-to-noise ratio (SNR), 

but it is limited by the thickness of the sample, with samples greater than 20 µm thick 

absorbing too much radiation, making it impossible to obtain a spectrum. Therefore 

more time may be spent appropriately preparing samples for analysis (Baker et al., 

2014; Smith, 2011). In transflection sampling modes (Figure 8B), the infrared beam is 

bounced off the sample, rather than passing straight through it. This sampling mode 

has the advantage of requiring less sample preparation than for samples prepared for 

transmission as the sample can be thicker than 20 µm. This technique is also non-

destructive, allowing samples to be used for other applications. However, the depth to 

which the infrared beam penetrates into the sample is not accurately known, plus the 

surface of the sample contributes more than the bulk of the sample, as the depth of 

penetration varies between 1-10 µm, thus giving variable results (Smith, 2011). 

Attenuated total reflection Fourier-transform infra-red spectroscopy (ATR-FTIR) 

(Figure 8C) is based on the same principles as transmission and transflection, 

however, it uses a different technique to transmit the IR and obtain the absorbance 

values (Kazarian and Chan, 2006). ATR-FTIR spectroscopy is carried out using an 

accessory that fits into the sample compartment of an FTIR. Within the accessory is a 

crystal of IR transparent material with a high refractive index, usually composed of 

zinc selenide, germanium or diamond, known as the internal reflection element (IRE) 

(Smith, 2011). The IR radiation is focussed onto the face of the crystal using mirrors 

on the accessory. Under the right conditions, that is, the crystal has the correct 

refractive index and the light has the correct angle of incidence, the IR radiation, 

instead of leaving the crystal undergoes total internal reflection. As the IR radiation is 

inside the crystal, a standing wave of radiation known as an evanescent wave is 

created. The evanescent wave is slightly larger than the crystal and so penetrates a 

small distance beyond the crystal surface into the sample. The sample in close contact 

with the crystal, interacts with the evanescent wave, absorbs the IR, and an IR 

spectrum is detected. The evanescent wave is attenuated by the absorbance of the 
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sample, hence attenuated total reflectance (Kazarian and Chan, 2006; Smith, 2011). 

ATR-FTIR, in contrast to FTIR, is unable to distinguish cell type as it is unable to 

differentiate cellular characteristics at a microscopic level (Martin et al., 2010). 

However, the main advantage of ATR-FTIR spectroscopy is the minimal sample 

preparation that is required, as the penetration depth of IR light in the sample is 

independent of sample thickness (Kazarian and Chan, 2006). While FTIR 

spectroscopy is subject to interference from water in the mid-IR region, this is not the 

case with ATR-FTIR and as such it is more suitable for a wider variety of biological 

specimens (Winder and Goodacre, 2004). 

 

Figure 8. Sampling modes in FTIR spectroscopy. A. Transmission. B. Transflection. 

C. Attenuated total reflection (ATR).   



31 
 

6. Data analysis  

Large amounts of complex data are generated following spectral acquisition, which 

require robust methods to extract key information from the resulting spectra. This 

requires pre-processing which removes unwanted spectral artefacts from the data sets, 

and data analysis methods which reduce the inherent complexity of the IR spectrum, 

whilst retaining its most useful features. 

 

6.1. Spectral pre-processing  

Following spectral acquisition, pre-processing of the raw data is an important step for 

subsequent data analysis, particularly when using classification models. An overview 

of commonly used spectral pre-processing steps is shown in Figure 9. Pre-processing 

raw data aims to improve the robustness and classification accuracy of the acquired 

spectra and to ease the interpretability of complex data sets.  

Prior to any corrections to the baseline or normalisation, data are often cut to 

particular areas of interest, most commonly the region 1800-900 cm-1, which is known 

as the ‘fingerprint region’, and is an information-rich area in biological samples. Other 

areas of interest may include the regions 3600-3030 cm-1 and 3030-2800 cm-1 

(Cakmak et al., 2006). Unwanted spectral contributions may arise from carbon 

dioxide, paraffin (in paraffin-embedded samples) and changes in atmospheric 

conditions. Carbon dioxide and paraffin contributions (~2,954 cm−1, 2,920 cm-1, 2,846 

cm−1, 1,462 cm-1
 and 1,373 cm-1) can be dealt with by cutting these regions out of the 

spectrum, (Baker et al., 2014). Changes in atmospheric conditions can be accounted 

for by taking a background reading before the acquisition of spectra from the sample 

commences; this is then automatically subtracted from the resulting spectrum. 
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Figure 9. Overview of commonly used pre-processing steps in infrared spectroscopy. The samples analysed are Rana temporaria muscle
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6.1.1 Baseline correction 

A step necessary to many datasets is baseline correction, due to a sloped or oscillatory 

baseline. Typical mean raw ATR-FTIR spectra cut to the fingerprint region prior to 

any baseline correction is shown in figure 9A. Spectral baselines may be distorted as a 

result of scattering, substrate absorption, alterations in experimental conditions during 

data acquisition and variability in instrumental parameters (Kelly et al., 2011; Lasch, 

2012). All methods for baseline correction aim to reduce baseline distortions, 

unwanted spectral offsets and positive and negative sloping (Lasch, 2012). Frequently 

used methods to correct sloping baselines include rubber band baseline correction and 

differentiation (either 1st or 2nd order).  

Rubber band baseline correction operates by dividing the spectrum into ranges of 

equal size, the minimum y-value is then found in each range. The baseline is then 

created by connecting these minima with a straight line. Starting from below, the 

rubber band (a convex polygonal line) is stretched over this curve, which becomes the 

baseline. Any points which do not lie on this baseline are discarded (Baek et al., 

2015). An advantage of this method is the ease of interpretability, as the spectra still 

retain the appearance of the original spectrum (Kelly et al., 2011). Mean spectra 

following rubber band baseline corrections are shown in figure 9B.  

Differentiation (usually 1st or 2nd order) is a technique also employed as a baseline 

correction, as constant and linear components of baseline errors are removed in the 

differentiation, thus allowing quantitative information to be obtained from the 

spectrum (Rieppo et al., 2012; Trevisan et al., 2012). Differentiation also has the 

advantage of resolving overlapping peaks in the spectrum so that more detailed 

analysis of individual peaks is possible (Rieppo et al., 2012). For broad spectra the 

derivative intensity decreases with increasing derivative order, whereas for sharp 

spectra, the reverse is true. Therefore the underlying shape of the spectrum determines 

the intensity of the derivative spectrum, with flat peaks decreasing in intensity with 

each derivative order, and sharp peaks increasing in intensity, thus allowing small 

sharp peaks overlapped by broad flat peaks to be exposed (Kus et al.). However, the 

magnitude of spectral noise is increased with each differentiation order (Rieppo et al., 

2012); therefore a smoothing technique, most frequently the Savitzky-Golay (SG) 

algorithm is applied at the same time as the application of differentiation (Savitzky 
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and Golay, 1964; Trevisan et al., 2012). The original shape of the spectrum is also 

changed when using differentiation (Kelly et al., 2011). First derivatives cross the X-

axis at the wavelength where the absorbance peak is at its maximum value and has 

maximum values either side of this in the positive and negative directions. The second 

derivative has its maximum value at the same wavelength as the underlying peak, in 

the negative direction, and is flanked by two positive artefact peaks (Mark and 

Workman Jr, 2010). First and second derivatives of the raw mean spectra shown in 

figure 9A are shown in figures 9C and 9D respectively. 

 

6.1.2. Normalisation 

Following baseline correction, spectra must be normalised to account for differences 

in sample thickness in heterogeneous samples, or to account for variations in the 

intensity of the source (Lasch, 2012; Randolph, 2006). Common methods include 

Min-Max normalisation and vector normalisation. Min-Max normalisation, most 

frequently to the Amide I peak can be applied when this peak is consistently present in 

all spectra (Kelly et al., 2011; Trevisan et al., 2012) and is commonly applied after 

rubber band baseline correction. Spectra are offset-corrected by setting the minimum 

intensity of the spectrum to zero; spectra are then scaled, with the maximum intensity 

value set to one (Lasch, 2012). Amide I normalisation, where the maximum intensity 

is set to the Amide I peak is shown in figure 9E. Vector normalisation is used as an 

alternative to normalisation to a particular peak after rubberband baseline correction 

as shown in figure 9F. Vector normalisation is also used when there is no consistent 

peak in the spectrum where each spectrum is divided by its Euclidean norm (Kelly et 

al., 2011). Therefore this normalisation technique is used after differentiation as 

shown in figures 9G and 9H. 

 

6.2 Feature extraction 

The resulting output from IR spectroscopy is in the form of an absorbance spectrum. 

Within the cut and processed spectrum, there are over two hundred wavenumbers 

some correlated and overlapping, which can make data analysis challenging. 

Therefore using multivariate analysis can be an efficient tool in extracting patterns 
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from the dataset in a more readily interpretable fashion by reducing the dimensionality 

of the data (Ellis and Goodacre, 2006). Multivariate pattern recognition techniques 

can be divided into unsupervised and supervised methods: unsupervised methods use 

no prior knowledge of the classes the data are divided into, whereas in supervised 

pattern recognition the information about which classes the data are divided into is 

incorporated into the learning algorithm (Wang and Mizaikoff, 2008). 

 

6.2.1 Principal component analysis  

Principal component analysis (PCA) is an unsupervised method of data analysis, 

which looks for inherent similarities in the data and then groups them in the way the 

data ‘naturally’ cluster (Ellis and Goodacre, 2006; Wang and Mizaikoff, 2008). This 

method is used as a variable reduction technique to compress the variance in large 

complex datasets, like the ones generated from spectroscopic analysis, into a smaller 

number of principal components (PCs), simplifying interpretation and retaining the 

most relevant analytical information. PCA operates by resolving datasets into 

orthogonal components, the linear combinations of which approximate the original 

dataset (Jolliffe, 2002). The PCs are eigenvectors of the correlation coefficient matrix 

of squared deviations, with the first PC presenting the most variance, the second PC 

presenting the maximum amount of the remaining variance and so on (Davies and 

Fearn, 2004). PCA is commonly applied and is useful for small datasets, where the 

number of observations may be small in comparison to the number of variables (i.e. 

wavenumbers), like in many spectroscopic data sets (Ellis and Goodacre, 2006; 

Martínez and Kak, 2001). The disadvantage of PCA is that it does not distinguish 

between within group and between group variances (Wang and Mizaikoff, 2008). 

 

6.2.2. Linear discriminant analysis 

Supervised methods of data analysis include linear discriminant analysis (LDA), a 

technique used to find a linear combination of features that correctly discriminate 

between two or more data classes, rather than simply those that best describe the data. 

LDA maximises the differences between classes and minimises the heterogeneity 

within classes (Martínez and Kak, 2001).  In order for the output from LDA to be 
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unbiased, the number of features (samples) must be much larger than the number of 

variables (wavenumbers). Therefore a variable reduction technique, such as PCA or 

partial least squares (PLS) is often employed before input into LDA. 

6.2.3 PCA-LDA 

PCA is frequently employed to reduce the dimensionality of the data, as typically the 

data sets generated from IR spectroscopy have many more features (wavenumbers) 

than observations and without feature reduction, the model would overfit the data, 

thus resulting in good separation in the data by chance. Use of PCA also overcomes 

the issue of colinearity in the data matrix, as the principal components generated are 

orthogonal to each other (Gromski et al., 2015). Implementation of PCA prior to LDA 

reduces the number of features to a much smaller number of variables (principal 

components), whilst still preserving the majority of the variance in the data; this is 

achieved without prior knowledge of the classes within samples in the original dataset 

(Gromski et al., 2015; Trevisan et al., 2012)  The number of PCA factors retained 

prior to input into LDA must be carefully selected, usually through percentage of 

variance captured, or by cross-validation based upon the mean-square error in the 

spectrum reconstruction (Baker et al., 2008). All supervised methods must be cross-

validated, commonly with leave-one-out or k-fold cross validation (where k = 5 or 10), 

which uses a small portion of the data set to train the model, so as to prevent bias in 

the output (Trevisan et al., 2012).  

 

6.3. Data visualisation 

The resulting outputs from both PCA and PCA-LDA/LDA are scores and loadings 

plots. Each score corresponds to an individual observation (in this case, spectrum), 

which can be viewed in several possible dimensions and are thus commonly viewed as 

one, two or three-dimensional scatter plots. For PCA, the number of dimensions is the 

number of principal components retained (usually 5-20), and in PCA-LDA/LDA it is 

the number of classes minus one. Score plots give information regarding how the 

classes cluster i.e. do different classes cluster together or away from one another. 

Loadings plots give information about the contribution individual wavenumbers 

contribute in forming the new features (scores) (Trevisan et al., 2012). An alternative 

to viewing loadings to determine the wavenumbers to attributable to the data 
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separation seen in the scores plots is to use cluster vectors. Cluster vectors generate 

‘pseudo-spectra’; which have a direct relation to the original absorbance spectra and 

are used to reveal biochemical alterations specific to each data class relative to the 

control, which is set at the origin (Trevisan et al., 2012). Examples of the outputs from 

PCA/PCA-LDA are shown in Figure 10. 

 

 Figure 10. Example outputs following PCA-LDA analysis of Rana temporaria 

tissue. A: Two-dimensional scores plot; B: Loadings plot corresponding to LD1 of 

scores plot, representing wavenumbers distinguishing between sample 1/2 and sample 

3/4; C: Loadings plot corresponding to LD2 of scores plot, representing wavenumbers 

distinguishing between sample 1 and sample 2, and sample 3 and sample 4; D: Cluster 

vector plot, where sample 1 is set at the origin and the wavenumbers represent 

alterations relative to this. 

 

Data generated from IR spectroscopy may also be inputted into a classification model 

and the classification accuracy rate, defined as the average between sensitivity and 

specificity determined where appropriate (Owens et al., 2014). There are many 

classifiers in use in FTIR analysis for classification of data based upon particular 
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parameters e.g. cancer identification (Baker et al., 2008; Gajjar et al., 2013), 

taxonomical classification of microorganisms (Maquelin et al., 2002; Mariey et al., 

2001; Winder and Goodacre, 2004), in food analysis to identify adulteration of 

consumer products (Rohman and Man, 2010) or chemical modification (Fernández 

Pierna et al., 2005) and to some extent in environmental pollution research (Gómez-

Carracedo et al., 2012; Llabjani et al., 2012). For supervised classification, 

mathematical models are generated which estimate the correct classification of an 

unknown dataset based upon knowledge gained from a training dataset. Classifiers are 

therefore divided into ‘training’ and ‘testphases (Trevisan et al., 2012). Feature 

extraction, such as PCA or PLS may first be implemented as a data reduction 

technique as datasets are typically large and complex (Fernández Pierna et al., 2005). 

A list of some of the methods available is presented in Table 3 and a more detailed 

analysis of each classification method is presented in a number of reviews (Krafft et 

al., 2009; Mariey et al., 2001; Trevisan et al., 2012).  

 

Table 3. A list of commonly used methods for classification of datasets generated 

from IR spectroscopy. 

Method Example references 

Linear Discriminant Classifier 

(LDC)/PCA-LDC 

(Gómez-Carracedo et al., 2012; Liu et al., 2006; 

Pereira et al., 2006; Wu et al., 1996) 

Partial Least Squares-

Discriminant Analysis (PLS-DA) 

(Gómez-Carracedo et al., 2012; Liu et al., 2006) 

Support Vector Machines (SVM) (Fernández Pierna et al., 2005; Gómez-Carracedo 

et al., 2012; Huang et al., 2008) 

Artificial Neural Networks 

(ANN) 

(Goodacre et al., 1996; Gómez-Carracedo et al., 

2012) 

Quadratic Discriminant Analysis 

(QDA) 

(Khanmohammadi et al., 2013; Wu et al., 1996) 

k-Nearest Neighbours (kNN) (Gómez-Carracedo et al., 2012; Kansiz et al., 

1999) 

Soft Independent Modelling of 

Class Analogies (SIMCA) 

(Gómez-Carracedo et al., 2012; Kansiz et al., 

1999) 
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6.4. Applications of biospectroscopy in environmental toxicology  

Biospectroscopy has been employed in several studies in order to identify changes in 

cells and tissues associated with environmental contamination; this has been explored 

in vitro and also in vivo. For example, in vitro, ATR-FTIR has been implemented in 

order to signature the effect of sub-lethal concentrations of several different 

environmental contaminants in algal, bacterial and human cell types  (Barber et al., 

2006; Corte et al., 2010; Heys et al., 2014; Holman et al., 2000a; Holman et al., 

2000b; Johnson et al., 2014; Kardas et al., 2014; Li et al., 2016; Llabjani et al., 2010, 

2011; Mecozzi et al., 2007; Riding et al., 2012; Ukpebor et al., 2011). This technique 

therefore has the potential to be utilised in other cell-lines not yet explored, in 

particular cell-lines relevant to environmental toxicology such as those derived from 

amphibians. Results obtained using IR spectroscopy show concordance with those 

obtained from traditional cell-based assays, For example MCF-7 cells exposed to 17β-

estradiol showed comparable EC50 values when assessed with either the E-screen 

assay or FTIR spectroscopy, with the added benefit that the results obtained  using 

FTIR spectroscopy were obtained in a much shorter time frame (Johnson et al., 2014). 

A positive correlation was found between CYP1A1 expression and IR absorption of 

the phosphate band in HEPG2 cells exposed to TCDD (Holman et al., 2000b). Results 

obtained using ATR-FTIR spectroscopy were similar to those obtained from  the SHE 

assay, when assessing transformation of cells exposed to potential carcinogens 

(Trevisan et al., 2010). 

FTIR spectroscopy has been implemented in order to develop biomarkers for 

assessing contamination in the aquatic and terrestrial environment, both in the 

laboratory and in situ. Laboratory studies using the fish species Labeo rohita 

demonstrated that exposure to arsenic instigated significant structural changes in gill 

and kidney tissue, with major alterations in lipids, proteins and nucleic acids 

(Palaniappan and Vijayasundaram, 2009; Palaniappan et al., 2011). Changes in liver 

structure, including decreases in glycogen and protein concentration and increases in 

lipids and nucleic acids were found in Rainbow trout (Onchorhynchus mykiss) 

exposed to both estradiol and the estrogenic compound nonylphenol (Cakmak et al., 

2006; Cakmak et al., 2003). FTIR spectroscopy has recently been utilised in order to 

enhance the duckweed (Lemna minor L.) toxicity test, where growth inhibition is used 

as an endpoint. Following exposure of duckweed to metals, industrial wastewater and 
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herbicides, similar ECx values were obtained using FTIR spectroscopy in comparison 

to those obtained from standard toxicity endpoints (frond number, chlorophyll 

content), with FTIR spectroscopy also able to determine biochemical alterations and 

thus explain potential toxic mechanisms (Hu et al., 2016). In field studies using the 

fish species Parophrys vetulus, differences have been observed in the deoxyribose 

nucleic acid (DNA) of liver and gill samples of fish from sites contaminated with 

PAHs and polychlorinated biphenyls (PCBs) compared to those from ‘clean’ sites, 

using FTIR (Malins et al., 2006; Malins and Gunselman, 1994; Malins et al., 1997; 

Malins et al., 2004). This allowed the establishment of a DNA damage index, which 

provided information about the extent of damage to liver and gill DNA due to 

contaminant exposure under environmental conditions, with the results obtained using 

FTIR spectroscopy showing consistency with those obtained from assessment of 

histology and CYP1A expression (Malins et al., 2006; Malins et al., 2004). Recent 

studies have demonstrated the use of IR spectroscopy in assessing fish tissues and bird 

feathers in order to identify areas at risk of environmental pollution, as well as to 

ascertain the effects such contamination have on tissues at a biochemical level (Abdel-

Gawad et al., 2012; Li et al., 2015; Llabjani et al., 2012; Obinaju et al., 2014; Obinaju 

et al., 2015).  
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7. Aims and objectives 

This thesis consists of four main research projects, which aim to explore the use of 

biospectroscopy as a novel method in assessing the health of amphibian populations, 

both using an amphibian cell line and in tissues of the widespread anuran species 

R.temporaria collected from ponds with differing water quality at several life stages. 

In addition, included in the appendix are several co-author projects, which apply IR 

spectroscopy in other areas of biological research, as well as a paper which explores 

the potential to standardise methods and protocols in order to optimally apply IR 

spectroscopy in biological applications. An overview to the aims and objectives of the 

thesis is provided in schematic form in Figure 11. The main objectives of the four 

projects are as follows: 

 To determine the use of ATR-FTIR spectroscopy in identifying incipient water 

quality problems in ponds at risk of environmental contamination by assessing 

differences in spawn and early stage tadpoles of R.temporaria from ponds with 

presumed differing water quality, and confirm the differences in water quality 

parameters in a pilot study (Chapter 2). 

 

 Once the use of ATR-FTIR spectroscopy in distinguishing spawn and early 

stage tadpoles from different ponds is established, implement this technique 

over a longer-term period in order to explore its use in a multi-generational 

study, and to identify temporal differences in populations (Chapter 3). 

 

 

 To provide a spectroscopic assessment of individual tissues (liver, muscle, 

kidney and skin) of pro-metamorphic late-stage Common frog tadpoles 

collected from ponds with differing water quality in order to establish the 

tissues most sensitive to environmental pollutants (Chapter 4). 

 

 To assess the effects of low-dose fungicide (carbendazim and flusilazole) 

exposure to the A6 kidney epithelial cell line derived from X.laevis in both 

single agent and binary mixture experiments, as determined by analysis with 

ATR-FTIR spectroscopy (Chapter 5).
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Figure 11. Schematic diagram giving an overview of the aims and objectives of the thesis. 
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8. Overview to methods 

8.1. Field sites 

One of the aims of this thesis was to utilise biospectroscopy in identifying incipient 

water quality problems in ponds at risk of environmental contamination by using 

R.temporaria as a sentinel organism. With that in mind, ponds were selected to give a 

comparison between a relatively clean site with minimal pesticide input, a site 

impacted by commonly used agricultural pesticides and an urban location with run-off 

from wastewater and storm water based on land-use data and information from the 

land owners/managers. Approximate locations of the study sites on a map of the UK 

together with photographs of each site is provided in Figure 12.  

The ponds were as follows: 

1. Minimally impacted pond: Crake Trees (CT), Crosby Ravensworth is a farm 

used as beef grazing land and marginal arable land, which has been accepted 

onto Natural England’s Higher Level Environmental Stewardship Scheme and 

uses minimal quantities of pesticides, with buffer zones to prevent pesticide 

run-off into water courses (see Fig.12A).  

2. Pesticide impacted pond: Whinton Hill (WH), Plumpton, Cumbria is a farm 

consisting of arable land used for winter wheat, maize and potatoes, and 

grazing land for beef and sheep, which is routinely sprayed with herbicides 

and fungicides (Fig. 12B). The pond sampled receives run-off from the 

surrounding farmland. 

The ponds surveyed at WH and CT are constructed wetlands, created as part of 

the MOPS2 (Mitigation Options for Phosphorus and Sediment) project 

monitored by Lancaster University http://mops2.diffusepollution.info/ 

3. Urban pond: Pennington Flash Country Park (PF) is a nature reserve and 

recreational park located in Leigh, Lancashire. The site consists of a lake 

formed through the subsidence of mine workings, situated in a country park, 

and there are numerous small ponds located around the site which receive run-

off from landfill and wastewater from a nearby wastewater treatment works. 
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The site is also liable to flooding; therefore water quality is likely to vary 

(Fig.12C).  

Figure 12. Approximate locations of the study sites on a map of the UK, together with 

photographs of each site. Sites are as follows: A: Crake Trees, a pond located on a 

farm which does not receive pesticides; B: Whinton Hill, a pond impacted by 

agricultural pesticides; C: Pennington Flash, a pond located in an urban park which 

receives run-off from landfill and wastewater. 

 

8.2. Sample preparation 

Samples of R.temporaria spawn, early-stage but free-swimming tadpoles (Gosner 

stage 25-28) and late-stage tadpoles (Gosner stage 38-40) were collected from the 

three ponds annually. Samples were prepared using a Stadie-Riggs tissue slicer to 

obtain slices ~ 0.5 mm thick, mounted onto Low-E slides and spectra obtained using 

an ATR-FTIR spectrometer. An outline of this procedure using a late-stage tadpole as 

an example is shown in Figure 13.  
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Figure 13. A workflow of the procedure used to obtain ATR-FTIR spectra of tissue 

samples of Rana temporaria tadpoles.  
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Abstract 

Worldwide amphibian populations are declining due to habitat loss, disease and 

pollution. Vulnerability to environmental contaminants such as pesticides will be 

dependent on the species, the sensitivity of the ontogenic life stage and hence the 

timing of exposure and the exposure pathway. Here we focus on the Common frog, 

Rana temporaria, and use biospectroscopy to investigate the biochemical tissue 

‘fingerprint’ in spawn and early-stage tadpoles from urban and agricultural ponds with 

contrasting water quality. Tissue analysis using attenuated total reflection-Fourier-

Transform infrared (ATR-FTIR) spectroscopy revealed only subtle differences in 

biochemistry between spawn from the different ponds. For tadpoles of the same 

Gosner life stage, gross morphological differences (e.g. head width and snout-to-vent 

length) were also not apparent between the ponds. However, marked differences (p < 

0.05) were observed in the ATR-FTIR spectra between tadpoles from a rural 

agricultural pond with no pesticide input and those from both an agricultural pond 

impacted by pesticides and an urban pond affected by wastewater and landfill run-off.  

These differences related principally to carbohydrates, particularly  the glycogen 

region of the spectra (1030-1150 cm-1) and to a lesser extent the phosphate chain 

vibrations in nucleic acids and phospholipids (e.g. 1003 cm-1) Tadpoles from the 

intensive agricultural and urban ponds  have altered levels of glycogen in comparison 

to those from the rural agricultural pond. In the absence of population surveys our 

results demonstrate that levels of stress (marked by biochemical constituents involved 

in compensatory metabolic mechanisms) can be observed in tadpoles in freshwater 

systems with low water quality. 
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Introduction 

Globally, amphibians are facing precipitous declines (Alford and Richards, 1999; 

Wake and Vredenburg, 2008), with environmental pollution cited as a major threat to 

amphibian health and survival (Carey and Bryant, 1995; Mann et al., 2009). The 

vulnerability of amphibians to contaminant exposure is due to their highly permeable 

skin and complex lifecycle comprising both aquatic and terrestrial phases (Brühl et al., 

2011; Cooke, 1981; Ralph and Petras, 1998). In addition, certain environmental 

contaminants, such as pesticides used in agriculture, are applied to adjacent land at the 

same time breeding and larval development occurs; a period thought to be particularly 

susceptible to the effects of chemical exposure (Hayes et al., 2006a; Mann et al., 

2009). Environmental contamination, in particular contamination from agricultural 

sources, was implicated in local reductions in abundance of the Common frog, Rana 

temporaria and Common toad, Bufo bufo in the UK during the 1960s and a number of 

subsequent studies demonstrated deleterious effects of pesticides in use at that time on 

UK amphibian species (Cooke, 1970, 1972, 1973a, b, 1981; Osborn et al., 1981). 

More recent studies have examined the effects of agricultural intensification on native 

species of amphibian (Oldham et al., 1997; Orton and Routledge, 2011; Watt and 

Jarvis, 1997).  Although populations of R.temporaria have since stabilised, there 

remains a paucity of data regarding the effect of agricultural perturbations and newer 

pesticides on UK amphibian populations (Beebee, 2014). 

Amphibians are thought to vary in their vulnerability to environmental contamination 

depending on ontogenic stage; therefore it is important to take this into account in any 

monitoring study. Several studies have shown that the jelly coat surrounding the 

embryo may act as a physical barrier to several contaminants, offering some 

protection against mortality and developmental abnormalities (Berrill et al., 1994; 

Berrill et al., 1998; Cooke, 1972; Edginton et al., 2007; Marquis et al., 2006; Meredith 

and Whiteman, 2008; Ortiz‐Santaliestra et al., 2006). However,  the jelly coat offers 

little in the way of protection against certain toxic chemicals  such as the pyrethroid 

insecticide α-cypermethrin (Greulich and Pflugmacher, 2003). Additionally, some 

chemicals, particularly those that are lipophilic may be maternally transferred to 

spawn (Bergeron et al., 2010; Hopkins et al., 2006; Kadokami et al., 2004; Orton and 

Routledge, 2011; Wu et al., 2009; Wu et al., 2012). Therefore this exposure route 
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must be considered in addition to that from the surrounding environment. Exposure to 

environmental pollutants at the embryonic stage may result in developmental 

abnormalities, which are only apparent at metamorphosis following this earlier 

exposure (Bridges, 2000; Orton and Routledge, 2011; Orton and Tyler, 2014) . Within 

larval stages, there may also be variation in susceptibility to particular contaminants, 

with the earlier larval stages generally regarded as most vulnerable (Cooke, 1972; 

Greulich and Pflugmacher, 2003), although this can vary between species and 

contaminant type (Richards and Kendall, 2002). This variation in susceptibility may 

be important if the more vulnerable stages coincide with pesticide application.  

Due to the widely accepted sensitivity of amphibians to environmental contamination, 

several studies have attempted to establish possible biomarkers of effect (Mann et al., 

2009; Venturino et al., 2003). Endpoints commonly measured include growth (Relyea 

and Diecks, 2008; Widder et al., 2008), behavioural abnormalities (Cooke, 1972), 

time to metamorphosis (Greulich and Pflugmacher, 2003; Hersikorn and Smits, 2011; 

Relyea and Diecks, 2008), deformities (Ruiz et al., 2010), endocrine disruption (Harris 

et al., 2001; Hayes et al., 2006a; Hayes et al., 2006b), induction or suppression of 

enzymes and endogenous compounds related to oxidative metabolism such as 

glutathione s-transferases and β-esterases (Buryskova et al., 2006; Ferrari et al., 2009; 

Hersikorn and Smits, 2011; Lajmanovich et al., 2010), suppression of  immune 

function (Carey et al., 1999; Christin et al., 2004), and genotoxicity (Clements et al., 

1997; Ralph and Petras, 1997). 

A technique also employed to develop biomarkers for use in environmental 

monitoring is infrared spectroscopy (IR); a tool which can potentially be used to 

monitor the effects of a suite of contaminants in a non-destructive and high throughput 

manner (Holman et al., 2000; Johnson et al., 2014; Llabjani et al., 2011). Spectra 

derived using this approach represent a “biochemical cell fingerprint”, with 

wavenumbers corresponding to particular biochemical entities; such constituents 

include those related to the secondary structure of proteins (Amide I, II and III at 

~1650 cm-1, ~1550 cm-1, ~1250 cm-1 respectively), lipids (~1750 cm-1), carbohydrates 

(~1150 cm-1 and ~1030 cm-1) and DNA/RNA (~1225 cm-1 and ~1080 cm-1) (Bellisola 

and Sorio, 2012; Movasaghi et al., 2008). The IR spectrum produced is highly 

information-rich and therefore key features may be extracted by determining changes 
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in absorbance values at key peaks in the spectrum, or by using  multivariate data 

analysis techniques such as principal component analysis in order to reduce the 

complexity of the data sets (Cakmak et al., 2006; Ellis and Goodacre, 2006). The 

assignment of peaks can be difficult in complex biological systems like whole 

organism and tissue samples where absorbance bands overlap, and thus can be 

considered tentative (Naumann, 2000). Nevertheless, many studies have been 

conducted which have recorded marked similarities in the spectral interpretation of 

equivalent areas in the derived spectra, creating detailed tables of wavenumber 

assignments, thus assisting greatly in determining the chemical structure of diverse 

biological samples using IR spectroscopy (Cakmak et al., 2006; Movasaghi et al., 

2008). In addition, the use of spectral derivatives allows the more detailed resolution 

of underlying peaks in the broad bands of the spectrum (Rieppo et al., 2012). Fourier-

transform IR (FTIR) and attenuated total reflection-FTIR (ATR-FTIR) spectroscopy 

has previously been employed in order to identify potential biomarkers in fish and 

bird species exposed to contaminants both in the laboratory and field; such 

contaminants include heavy metals (Henczova et al., 2008; Henczova et al., 2006; 

Llabjani et al., 2012; Palaniappan and Vijayasundaram, 2009; Palaniappan et al., 

2011), nanoparticles (Palaniappan and Pramod, 2010), polycyclic aromatic 

hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) (Malins et al., 2006; 

Malins et al., 2004; Obinaju et al., 2014; Obinaju et al., 2015) and endocrine 

disruptors (Cakmak et al., 2006; Cakmak et al., 2003) . However, to our knowledge 

this technique has yet to be employed in examining any contaminant-induced stresses 

in amphibians exposed to environmental pollution.    

The aim of this study was to establish the viability of using ATR-FTIR spectroscopy 

to interrogate embryos and early-stage tadpoles of R.temporaria collected from ponds 

with differing water quality due to pollution from agricultural and urban sources. 

Subsequent data analysis of the derived spectra was implemented in order to 

determine molecular modifications suggestive of exposure to chemical stressors. The 

detection of differences in the IR spectra of embryos and tadpoles could suggest the 

use of IR spectroscopy as an environmental monitoring technique, capable of 

identifying incipient water quality problems in ponds at risk of environmental 

contamination.  
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Materials and methods 

Ponds 

Sites were selected in order to give a comparison between agricultural and urban 

ponds and were based on site characteristics and information from landowners/land 

managers.  

1. Whinton Hill (WH), Plumpton, Cumbria is a farm consisting of arable land 

used for winter wheat, maize and potatoes, and grazing land for beef and 

sheep, which is routinely sprayed with herbicides and fungicides (see 

supplementary information table S1 for agronomist’s report). The pond 

surveyed was the second pond of a pair of deep and shallow ponds (8 m long x 

8 m wide and 32 m long x 8 m wide), located in a boggy field, and fed by a 

field drain from approximately 30 ha of farmland. 

2. Crake Trees (CT), Crosby Ravensworth is a farm used as beef grazing land 

and marginal arable land, which has been accepted onto Natural England’s 

Higher Level Environmental Stewardship Scheme and uses minimal quantities 

of pesticides, with buffer zones to prevent pesticide run-off into water courses. 

The pond surveyed was the second pond of a pair of shallow ponds (each 17 m 

long x 6 m wide), located in a field corner, and fed by surface runoff from 

approximately 20 ha of farmland. 

The ponds surveyed at WH and CT constructed wetlands, created as part of the 

MOPS2 (Mitigation Options for Phosphorus and Sediment) project monitored 

by Lancaster University http://mops2.diffusepollution.info/ 

3. Pennington Flash Country Park (PF) located in Leigh, Lancashire is a site 

managed by Wigan and Leigh Culture Trust. The ‘Flash’ is a large lake formed 

over time by mining subsidence. The southern part of the Flash was filled with 

domestic waste during the 1950s to prevent the regular flooding of nearby St 

Helens Road. The pond sampled (PF) is adjacent to Westleigh Brook, which 

receives treated wastewater from Leigh sewage works. Several areas of this 

site are liable to flooding, so the quality of the water received is likely to vary.  



71 

 

Collection and processing of spawn and tadpoles  

Samples of R.temporaria spawn were taken from all of the sites at different times 

(WH and CT 07/03/2012, PF 16/03/2012) due to the variation in spawning date. 

Spawn was collected in solvent-rinsed glass jars and transported back to the laboratory 

before the jelly coat was removed with forceps and the embryo fixed in 70% ethanol 

overnight at 4°C. The Gosner stage (Gosner, 1960) of spawn samples was noted prior 

to fixation. Spawn from all sites was classified as Gosner stage 10-11 (dorsal lip). 

Whole fixed embryos were mounted directly onto Low-E reflective glass slides 

(Kevley Technologies, Chesterland, OH, USA), dried overnight and stored in a 

desiccator before subsequent interrogation with ATR-FTIR spectroscopy. 

Common frog tadpoles were caught using dip nets (ten from each site) and euthanised 

using a solution of tricaine methanesulfonate (MS-222) (200mg/L) buffered with 

sodium bicarbonate (both from Sigma Aldrich, Poole, Dorset UK), in accordance with 

Schedule 1 of the British Home Office Animals (Scientific Procedures) Act 1986. 

Tadpoles were rinsed in distilled water and then fixed immediately in the field in 70% 

ethanol (Fisher Scientific, UK). Ethanol was replaced after 24 hours with fresh. 

Tadpoles were weighed and measurements were taken of snout-vent length (SVL) and 

head width (HW) using digital callipers to the nearest 0.01mm after fixation and 

tadpoles were staged according to Gosner (1960)(Gosner, 1960). All tadpoles were 

between stages 25-28 (full details of stages and tadpole mass, SVL and HW 

measurements are in Table S2 of supplementary information), with variation both 

within and between sites. In order to process samples for ATR-FTIR spectroscopy, a 

longitudinal slice (~ 0.5 mm thick) was taken from the ventral side of the tadpole 

using a Stadie-Riggs tissue slicer; a technique previously employed  for preparing 

tissue samples for analysis with IR spectroscopy (Maher et al., 2014; Obinaju et al., 

2014; Taylor et al., 2011). The second slice was used for spectroscopy. Slices were 

mounted skin side down onto Low-E slides, dried overnight and stored in a desiccator 

before interrogation with ATR-FTIR spectroscopy.  
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Water quality analysis 

Samples of surface water (15-20 cm depth) were collected concurrently with spawn 

and tadpole samples (March and April 2012 respectively). Water samples were 

collected in methanol-rinsed amber bottles for organics analysis and acid-washed 

bottles for nutrient analysis and then stored at 4°C until analysis. The concentrations 

of trace metals (Al, Fe, Mg, Ca, K and Na) were determined in filtered acidified 

samples (HNO3) using inductively coupled plasma optical emission spectrometry 

(ICP-OES) using a Perkin Elmer DV 7300, while concentrations of major anions (Cl, 

NO3-N, SO4-S) as well as phosphate, ammonium and total organic N (TON) were 

determined using colorimetric methods performed by the Centre for Ecology and 

Hydrology (Lancaster) in a quality-assured, previously published method (Neal et al., 

2000). For organic chemical analysis, 800 mL of sample water (adjusted to pH 9.5 

with borate buffer) underwent liquid-liquid (1:1) extraction using dichloromethane 

(DCM) on a laboratory shaker (Gerhardt Shaker LS-500) followed by separation and 

evaporation of the DCM on a rotary evaporator (rotavapor Büchi R-210). The 

concentrated DCM extracts (700 μL) underwent initial qualitative screening using Gas 

chromatography–mass spectrometry (GC-MS) (Agilent 6890N GC and Agilent 5973 

single quad MS) operated by ChemStation software (D.02.00.275) with subsequent 

mass spectral identification using Mass Hunter software and comparison to the NIST 

spectral library. The following chemicals were detected: aniline, metazachlor, 

acetochlor, dimetachlor, triethylphosphate (TEP), tributylphosphate (TBP), tris(2-

chloroethyl)phosphate (TCEP), tris(1-chloro-2-propyl)phosphate (TCPP) and 

flusilazole. These compounds were quantitatively analysed using authentic standards 

using a 7-point calibration, with standards ranging from 0-2000 ng/L for each analyte. 

Internal standards comprising 13C-labelled aniline, acetochlor and metalochlor were 

added to sample extracts and calibration standards prior to analysis. Limits of 

quantification (LoQ) ranged from 5-10 ng/L (aniline 200 ng/L) with recoveries based 

on spiked water samples ranging from 80-120%.  Water samples were also analysed 

for more polar, water–soluble compounds. For this analysis, 10 mL of a water sample 

was filtered (using a 0.2 µm RC syringe filter), spiked with internal standards and 

analysis performed on a Waters Acquity Binary Ultra Performance Liquid 

Chromatograph (UPLC) (Waters Corporation, Milford, USA) coupled to a Waters 

Premier XE triple quadrupole mass spectrometer (LC-MS/MS) operated by MassLynx 
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software V 4.1.The MS was operated in electrospray positive (ESI+) ionisation mode 

with multiple reaction monitoring (MRM). A 250 μL aliquot was injected via an 

autosampler, with analyte separation performed under a methanol (MeOH)/H2O (with 

5 mmol/L ammonium acetate added to both phases) mobile gradient eluted through an 

Acquity BEH C18 column (1.7 µm, 2.1 mm x 50 mm) fitted with a VanGuard Acquity 

pre-column. The following compounds, including pesticides and pharmaceuticals, 

were qualified/quantified: chlorotoluron, isproturon, caffeine, tebuconazole, 

prochloraz, carbendazim, gabapentin, acetaminophen, benzotriazole, benzotriazole-

methyl, ketoprofen, dimethyl-chlorotoluron, metconazole, spiroxamine, boscalid, 

erythromycin,   Samples were analysed separately for glyphosate and its degradation 

by-product, aminomethylphosphonic acid (AMPA), using LC-MS/MS. For the 

analysis of glyphosate and AMPA, 8 mL of a water sample was acidified to pH 1 

(addition of 160 μL of 6 M HCl) and subject to derivatisation using 9-fluorenylmethyl 

chloroformate in a method detailed by Ibáñez et al. (Ibáñez et al., 2006). Analytes 

were separated using the same LC-MS/MS instrument and method above. Internal 

standards comprised of 1,2-13C2 15N Glyphosate and 13C 15N AMPA with a 7-point 

calibration with standards ranging from 0 to 2000 ng/L. Ionisation was through ESI+ 

(precursor ions) and MRM (product ions). LoQs were 10 ng/L for both glyphosate and 

AMPA and recoveries ranged from 70-130% (water spiked with internal standards). A 

list of the chemicals screened for in the analysis of water samples together with 

detection limits is provided in Table S3 in the SI.  

ATR-FTIR spectroscopy 

Spectra of both spawn and tadpoles were obtained using a Tensor 27 FTIR 

spectrometer with Helios ATR attachment (Bruker Optics Ltd, Coventry, UK) 

containing a diamond crystal (≈250 μm×250 μm sampling area). Spectra were 

acquired at 8 cm-1 resolution with 2x zero-filling, giving a data-spacing of 4 cm-1 over 

the range 400-4000 cm-1. Ten embryos and ten tadpoles were analysed from each site, 

with twenty five spectra per slide acquired each time in order to account for the 

variability inherent in whole organisms. Distilled water was used to clean the crystal 

in between analysis of each sample. A new background reading was taken prior to the 

analysis of each sample in order to account for changes in atmospheric conditions.  
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Data processing  

A representative ATR-FTIR spectrum was obtained by taking the mean of the spectral 

measurements for each sample (n = 10 embryos and tadpoles for each site sampled). 

Spectra were then cut at the biochemical cell fingerprint region (1800-900 cm-1), 

baseline corrected using Savitzky-Golay 2nd order differentiation (2nd order 

polynomial and 9 filter coefficients), and vector normalised. Use of second derivative 

spectroscopy allows the resolution of overlapping peaks in the original spectrum, 

thereby allowing more detailed analysis of particular absorption peaks. Processing the 

data using differentiation also removes constant and linear components of baseline 

errors (Rieppo et al., 2012).  

Principal component analysis 

Multivariate analysis using principal component analysis (PCA) allows rapid 

reduction of the large datasets generated from spectral measurements into a smaller 

number of principal components, whilst retaining the majority of the variance in the 

data (Jolliffe, 2002).  PCA is an unsupervised and therefore unbiased analysis which 

reveals the underlying patterns in the data. Data points from PCA can then be viewed 

as ‘scores’ in several dimensions, with scores clustering together indicating 

similarities, whereas those clustering away from one another suggest differences 

(Kelly et al., 2011). This type of analysis also generates loadings vectors, which 

demonstrate which wavenumbers and corresponding biochemical entities are 

responsible for the separation between classes when viewed alongside the scores plots 

(Trevisan et al., 2012).  

After the data were mean-centred, PCA was employed to reduce the 227 absorbance 

values into 10 principal components, which represented > 96 % of the variance in the 

datasets (see figures S1A and S1B in supplementary information). One-way analysis 

of variance (ANOVA) followed by Tukey’s multiple comparisons tests, or one-way 

ANOVA with Welch’s correction followed by Games-Howell multiple comparison 

tests if there were inequality of variances was used to calculate the statistical 

significance of the PC scores in SPSS 22 (SPSS Inc., Chicago, IL, USA), the results of 

which are shown in Table S4 in the SI. The most statistically significant PCs were 

retained, a technique previously employed by Malins et al. (Malins et al., 2006; 
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Malins et al., 2004). Corresponding loadings from the most significant PCs were used 

to identify wavenumbers accounting for the separation between sites. A peak detecting 

algorithm was employed to determine the seven largest loadings values (constrained 

by a minimum of 20 cm-1 spacing between values).  

Second derivative absorbance values 

Analysis of peak heights in the fingerprint region of the spectrum allows more 

detailed quantification of any differences between samples at specific wavenumbers. 

Second derivative spectroscopy has previously been used in order to quantify 

components measured in the infrared spectrum (Rieppo et al., 2012). The second 

derivative has its maximum value at the same wavelength as the underlying 

absorbance peak, but in the negative direction (Mark and Workman Jr, 2010). 

The values of absorbance peak-heights were determined from the second derivative 

spectrum for samples of both spawn and tadpoles. Statistical significance at each 

absorbance peak was tested using one-way ANOVA followed by Tukey’s post-hoc 

tests to determine differences between ponds. Data with unequal variances were tested 

using one-way ANOVA with Welch’s correction followed by Games-Howell post hoc 

tests (SPSS 22 software, SPSS Inc., Chicago, IL, USA). 

All spectral pre-processing and data analysis was implemented using the IRootLab 

toolbox https://code.google.com/p/irootlab/ (Martin et al., 2010; Trevisan et al., 2013) 

in Matlab (r2012a) (The MathWorks, Inc., USA), unless otherwise stated. 

Morphometric data 

Body condition indices (BCI) were calculated for each tadpole as follows: (body 

mass/SVL3) X 100 (Melvin et al., 2013). One-way ANOVA was used to compare 

mass, BCI, HW and SVL between sites followed by post-hoc comparisons with Tukey 

multiple comparison tests where appropriate (SPSS 22 software, SPSS Inc., Chicago, 

IL, USA). 

 

  

https://code.google.com/p/irootlab/
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Results 

Water quality analysis 

Water samples collected at the same time as spawn and tadpole samples were 

screened for major anions and cations, the results of which are presented in Table 1. 

Nitrate concentrations were highest at PF in March in comparison to the other two 

sites, whereas in April concentrations were highest at WH, although concentrations 

still remained low (< 3 mg/L). Phosphate concentrations were low at all three sites 

during the March sampling period < 0.08 mg/L. However during April, concentrations 

at PF and WH increased to high levels (0.3 and 0.6 mg/L respectively). At CT 

concentrations of phosphate remained low as before. 

Table 1. Analysis of water samples for inorganic anions and cations collected from 

CT: a rural agricultural pond with no pesticide input; WH: an agricultural pond known 

to be impacted by pesticides and PF: an urban pond impacted by wastewater and 

landfill run-off. Water samples were collected to coincide with the collection of spawn 

(March) and tadpoles (April) of Rana temporaria. 

Anion/cations 

(mg/L) 
CT 

March 

PF 

March 

WH 

March 

CT 

April 

PF 

April 

WH 

April 

Ca 84.40 46.30 53.20 77.60 36.80 56.60 

Cl 9.06 21.60 64.10 10.40 11.60 47.80 

Fe 0.47 0.01 0.03 0.01 0.76 0.03 

K 1.97 3.88 11.30 1.57 4.01 18.10 

Mg 2.95 10.00 9.35 4.37 7.99 10.70 

Na 4.88 15.00 38.80 4.97 9.82 37.20 

NH4-N 0.03 0.06 0.30 0.41 0.13 0.28 

NO3-N < 0.01 0.43 0.01 0.22 1.18 2.49 

PO4-P 0.03 0.07 0.01 0.03 0.30 0.64 

SO4-S 0.71 6.59 9.92 0.20 2.61 12.70 

Results from the analysis of water samples for micro-organics are shown in Table 2. 

The agronomist’s report from WH (SI Table 1) determined which pesticides were 

likely to be detected in the water samples. Screening of the water samples collected 

from CT, PF and WH revealed large differences in the organic contaminants detected. 

CT appeared to be the least contaminated site, particularly when spawn was collected 

(~March 2012), with only TCPP, an organophosphorus (OP) flame retardant detected 

at this point. PF, in contrast showed detectable levels of naphthalene, glyphosate and 

its degradation product (AMPA), two OP flame retardants (TCEP and TCPP) and the 
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pharmaceutical drugs gabapentin and acetaminophen at this time point. Water samples 

collected from WH around the same time showed low levels of TCPP, like CT, and 

similar levels of gabapentin and acetaminophen to that found at PF. Additionally, the 

triazole fungicide tebuconazole and relatively high levels of aniline, a compound 

generated during the degradation of several herbicides and pesticides (Xiao et al., 

2007) were detected at WH. 

Table 2. Organic contaminant analysis of water samples collected from CT: a rural 

agricultural pond with no pesticide input; WH: an agricultural pond known to be 

impacted by pesticides and PF: an urban pond impacted by wastewater and landfill 

run-off. Water samples were collected to coincide with the collection of spawn 

(March) and tadpoles (April) of Rana temporaria. Chemicals recorded as < LD are 

below the limits of quantification. 

Chemical (ng/L) 
CT 

March 
PF 

March 
WH 

March 
CT 

April 
PF 

April 
WH 

April 

Naphthalene < LD 10 < LD < LD < LD < LD 

Aniline < LD < LD 1100 < LD < LD < LD 

Dimethachlor < LD < LD < LD < LD < LD 26 

Chlorotoluron < LD < LD < LD < LD < LD 23 

Caffeine < LD < LD < LD 441 107 < LD 

Glyphosate < LD 40 < LD < LD < LD 50 

AMPA < LD 130 < LD 150 658 1470 

Tebuconazole < LD < LD 76 < LD < LD < LD 

Carbendazim < LD < LD < LD < LD < LD 866 

Triethylphosphate, TEP < LD 11.00 < LD < LD 11.00 < LD 

Tributhylphosphate, TBP < LD < LD < LD 13 < LD < LD 
Tris(2-

chloroethyl)phosphate, 

TCEP < LD 190 < LD 26 12 7.2 
Tris(1-chloro-2-

propyl)phosphate, TCPP 15 142 25 125 314 1600 

Flusilazole < LD < LD < LD < LD < LD 552 

Gabapentin < LD 75 21 < LD < LD < LD 

Acetaminophen < LD 20 50 < LD < LD 33 

Benzotriazol < LD < LD < LD < LD < LD 85 

Benzotriazol-methyl < LD < LD < LD < LD < LD 268 

Spiroxamin < LD < LD 30 < LD < LD < LD 

Erytromycin < LD < LD < LD < LD < LD 181 

 

Water samples collected at the same time as tadpole samples (~April 2012) again 

showed CT to have relatively low levels of contamination, although with notable 

detection of caffeine, AMPA and OP flame retardants (TCPP and TCEP). PF also 

showed detectable levels of caffeine, AMPA, and OP flame retardants. In contrast, 



78 

 

water collected from WH demonstrated detectable levels of several pesticides, 

particularly the fungicides carbendazim and flusilazole, the antibiotic erythromycin 

and the corrosion inhibitor benzotriazole. OP flame retardants were also detected at 

relatively high levels. 

Spawn 

Mean absorbance spectra of spawn samples prior to pre-processing are shown in 

Figure 1A, with figure 1B showing the mean spectra labelled with wavenumbers 

following pre-processing with second-order differentiation and vector normalisation . 

The assignment of the second derivative peaks are shown in Table 3.  

Analysis of the peak heights of the second derivative spectra with one-way ANOVA 

and subsequent post-hoc tests demonstrated significant differences in regions assigned 

as OCH3 and polysaccharides, where spawn collected from CT had a larger peak 

height than that from WH. Spawn collected from PF also had a larger peak height in 

comparison to spawn from WH in the region assigned as the stretching mode of 

phosphate groups in RNA. No other comparisons were significant (see Table 3).  

Analysis of the data generated from the IR spectra of R.temporaria spawn with PCA 

revealed significant differences between CT and WH along PC4 (Fig. 2A), in regions 

associated with lipids and fatty acids (~1755-1730 cm-1), with some contribution from 

proteins (~1600-1630 cm-1), as shown in the loadings plot in Fig. 2B. Significant 

differences  were also detected between  spawn from CT and PF along PC7  (Fig. 2C)  

in regions associated with DNA (1096 cm-1) and protein phosphorylation (1069 cm-1) 

with additional contributions from the amide I absorbance of proteins (~1670-1610 

cm-1) , as denoted in the loadings plot in Fig. 2D. All other comparisons were not 

significant (P > 0.05). The largest seven discriminating loadings values for each 

significant PC and corresponding wavenumber assignments are shown in Table 4.  
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Figure 1. Mean ATR-FTIR spectra of Rana temporaria spawn collected from ponds 

with different contamination profiles: CT: a rural agricultural pond with no pesticide 

input; WH: an agricultural pond known to be impacted by pesticides; PF: an urban 

pond impacted by wastewater and landfill run-off. Spectra are shown prior to pre-

processing (A) and following pre-processing (B). Pre-processed spectra were cut to 

the 1800-900 cm-1 region, the second derivative calculated using the Savitzky Golay 

algorithm (9 smoothing points) and vector normalised. 
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Table 3. Wavenumbers and assigned bands of infrared peaks following ATR-FTIR 

analysis of spawn of Rana temporaria. Absorbance values of second derivatives were 

compared between CT: a rural agricultural pond with no pesticide input; WH: an 

agricultural pond known to be impacted by pesticides and PF: an urban pond impacted 

by wastewater and landfill run-off.  

Wavenumber (cm-1) Proposed assignment a Site comparison 

972 OCH3 polysaccharides bCT = PF 

CT > WH ** 

PF = WH 

 

995 Stretching mode of phosphate groups in RNA bCT = PF 

CT = WH 

PF > WH * 

 

1026 Glycogen absorption (C-O stretching) CT = PF 

CT = WH 

PF = WH 

 

1080 PO2
− symmetric stretching: nucleic acids and 

phospholipids 

CT = PF 

CT = WH 

PF = WH 

 

1153 Stretching vibrations of hydrogen-bonded C-

OH groups 

CT = PF 

CT = WH 

PF = WH 

 

1234 PO2
−  asymmetric stretching, with overlap from 

Amide III 

CT = PF 

CT = WH 

PF = WH 

 

1312 Amide III of proteins CT = PF 

CT = WH 

PF = WH 

 

1381 Bending CH3 CT = PF 

CT = WH 

PF = WH 

 

1462 CH2 stretching of lipids CT = PF 

CT = WH 

PF = WH 

 

1516 Amide II of proteins CT = PF 

CT = WH 

PF = WH 

 

1531 Amide II, C≡N stretching CT = PF 

CT = WH 

PF = WH 

 

1624 Amide I, β-sheet CT = PF 

CT = WH 

PF = WH 
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1655 Amide I of proteins (α helix) CT = PF 

CT = WH 

PF = WH 

 

1744 C=O stretching of lipids CT = PF 

CT = WH 

PF = WH 

 
a Sources: (Bellisola and Sorio, 2012; Cakmak et al., 2006; Cakmak et al., 2003; Chu et al., 

2001; Maziak et al., 2007; Movasaghi et al., 2008). 

Asterisks denote significance at the P < 0.05 (*) or < 0.001 level (**) following one way 

ANOVA and subsequently by Tukey’s post-hoc comparison tests. 
b Assumption of equality of variances not met, therefore one-way ANOVA with Welch’s 

correction applied followed by Games-Howell post-hoc comparison tests. 

 

 

Figure 2.  PCA scores  and loadings  generated from ATR-FTIR spectral data of Rana 

temporaria spawn collected from ponds with different contamination profiles: CT: a 

rural agricultural pond with no pesticide input; WH: an agricultural pond known to be 

impacted by pesticides; PF: an urban pond impacted by wastewater and landfill run-

off  (n = 10 embryos for each pond sampled, total 30). The most discriminating PCs as 

determined by one-way ANOVA (where P < 0.05) were used to generate scores and 

corresponding loadings which best described the separation seen in the data: A, B: 

PC4 scores and loadings respectively; C, D: PC7 scores and loadings respectively. 

Tukey’s or Games-Howell multiple comparison tests were used to determine where 

the significant differences were between sites. Different letters denote a significant 

difference between spawn (P < 0.05). 
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Table 4.  Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria spawn and tadpoles with ATR-FTIR spectroscopy 

following analysis with PCA. The seven largest loadings values for the most 

discriminating principal components are shown.  

Loading 

and Stage 

Wavenumber 

(cm-1) 

Proposed Assignment a 

Loading 4 

Spawn 

1732 C=O stretching of lipids 

1755 Lipids and fatty acids 

1624 Amide I 

1462 CH2 bending vibration (lipids and proteins) 

1169 C-O bands from glycomaterials and proteins 

1690 Peak of nucleic acids from base carbonyl stretching and 

ring breathing mode 

1597 C=N, NH2 adenine 

Loading 7 

Spawn 

995 Stretching modes of phosphate groups in RNA 

1609 Adenine vibration in DNA 

1096 Symmetric stretching of phosphate PO-
2

 

1034 Collagen 

1639 Amide I of β-pleated sheet structures 

1666 C=O stretching vibration of pyrimidine base 

1069 Stretching C-O DNA, RNA, phospholipid, 

phosphorylated protein 

Loading 1 

Tadpole 

1003 Sugar phosphate chain vibrations in nucleic acids 

1030 Glycogen vibration 

1076 Symmetric phosphate stretching 

957 Stretching of phosphorylated protein 

1049 Glycogen, C-O stretching and bending of carbohydrates 

1150 C-O stretching of carbohydrates 

1616 Amide I (carbonyl stretching vibrations in side chains of 

amino acids) 

Loading 3 

Tadpole 

1624 Amide I, β-sheet 

1462 CH2 bending vibration (lipids and proteins) 

1497 C=C deformation, C-H 

1693 High frequency vibration of Amide I (β-sheet) 

1034 Collagen 

1551 Amide II base vibrations 

1717 C=O vibration of purine base 

Loading 5 

Tadpole 

1616 Amide I (carbonyl stretching vibrations in side chains of 

amino acids) 

1643 Amide I (C=O stretching vibrations) 

1501 Amide II (N-H bending vibration coupled to C-N 

stretching) 

1069 Stretching C-O ribose 

1042 C-O stretching: polysaccharides 

1555 Ring base 

1721 C=O band 
a Sources: (Bellisola and Sorio, 2012; Cakmak et al., 2006; Cakmak et al., 2003; Chu et al., 

2001; Maziak et al., 2007; Movasaghi et al., 2008). 
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Tadpoles 

Mean absorbance spectra of tadpole samples prior to pre-processing are shown in 

Figure 3A, with figure 3B showing the mean spectra labelled with wavenumbers 

following pre-processing with second-order differentiation and vector normalisation. 

The assignment of the second derivative peaks are shown in Table 3. Analysis of the 

peak heights from the second derivative spectra of R.temporaria tadpoles shown in 

figure 3B with one-way ANOVA revealed that there were significant differences 

between tadpoles from each pond for the majority of the wavenumbers tested, as 

shown in Table 5. Subsequent post-hoc tests demonstrated that in general the 

differences were between tadpoles from CT and those from PF and/or WH (in 12 out 

of 15 wavenumbers tested), with differences between PF and WH only apparent at 5 

out of 15 wavenumbers tested. 

In regions associated with DNA vibrations and phospholipids (964, 1080, 1234 cm-1), 

peak heights generated from tadpoles from CT were generally significantly smaller 

than those from PF and WH. In contrast, in regions associated with glycogen (1030 

cm-1), peak heights measured in tadpoles from CT were significantly larger than those 

from PF and WH. The peak at  ~1740 cm-1 associated with lipids was absent from the 

second derivative spectrum of the tadpoles measured (see Fig. 3B); other peaks 

associated with lipids and fatty acids at 1447 and 1393 cm-1 demonstrated no 

differences between ponds and a significantly larger peak measured in tadpoles from 

CT compared to PF respectively. Protein absorbance varied between ponds, with peak 

height in tadpoles collected from CT significantly smaller at some measures of protein 

absorbance in comparison to those from PF and in some cases WH (1312, 1157, 1531, 

and 1624 cm-1), but larger at others (1643 cm-1).  
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 Figure 3. Mean ATR-FTIR spectra of Rana temporaria tadpoles collected from 

ponds with different contamination profiles: CT: a rural agricultural pond with no 

pesticide input; WH: an agricultural pond known to be impacted by pesticides; PF: an 

urban pond impacted by wastewater and landfill run-off. Spectra are shown prior to 

pre-processing (A) and following pre-processing (B). Pre-processed spectra were cut 

to the 1800-900 cm-1 region, the second derivative calculated using the Savitzky-

Golay algorithm (9 smoothing points) and vector normalised. 

 



85 

 

Table 5. Wavenumbers and assigned bands of infrared peaks following ATR-FTIR 

analysis of whole tadpoles of Rana temporaria. Absorbance values of second 

derivatives were compared between CT: a rural agricultural pond with no pesticide 

input; WH: an agricultural pond known to be impacted by pesticides and PF: an urban 

pond impacted by wastewater and landfill run-off. 

Wavenumber (cm-

1) 

Proposed assignment a Site comparison 

964 C-C stretch of nucleic acids b CT < PF * 

CT < WH * 

PF = WH 

 

999 C-C vibration of DNA b CT > PF ** 

CT > WH ** 

PF = WH 

 

1030 Glycogen vibration b CT > PF ** 

CT > WH ** 

PF = WH 

 

1080 PO2
− symmetric stretching: nucleic acids 

and phospholipids 

CT < PF ** 

CT < WH ** 

PF > WH ** 

 

1115 Symmetric stretching P-O-C CT > PF ** 

CT > WH ** 

PF = WH 

 

1157 C-O vibrations of proteins and 

carbohydrates 

CT < PF ** 

CT = WH 

PF > WH ** 

 

1234 PO2
−  asymmetric stretching CT < PF ** 

CT < WH ** 

PF = WH 

 

1312 Amide III of proteins b CT < PF ** 

CT > WH * 

PF > WH ** 

 

1393 CH3 bending of proteins and lipids CT > PF ** 

CT = WH 

PF = WH 

 

1447 CH2 bending of lipids and fatty acids CT = PF 

CT = WH 

PF = WH 

 

1516 Amide II of proteins CT = PF 

CT = WH 
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PF = WH 

 

1531 Amide II, C≡N stretching CT < PF * 

CT < WH ** 

PF = WH 

 

1624 Amide I, β-sheet CT =PF  

CT < WH ** 

PF < WH ** 

 

1643 Amide I (C=O vibrations) CT > PF * 

CT > WH ** 

PF = WH 

 

1690 Peak of nucleic acids due to carbonyl 

stretching 

CT = PF 

CT = WH 

PF < WH * 

 
a Sources: (Bellisola and Sorio, 2012; Cakmak et al., 2006; Cakmak et al., 2003; Chu et al., 

2001; Movasaghi et al., 2008). 

Asterisks denote significance at the P < 0.05 (*) or < 0.001 level (**) following one way 

ANOVA and subsequently by Tukey’s post-hoc comparison tests. 
b Assumption of equality of variances not met, therefore one-way ANOVA with Welch’s 

correction applied followed by Games-Howell post-hoc comparison tests. 

Analysis of the data generated from the IR spectra of R.temporaria tadpoles with PCA 

revealed significant segregation along PC1, with tadpoles from CT segregating very 

clearly away from those collected from PF and WH but no differences between 

tadpoles from PF and those from WH along this dimension, as shown in Figure 4A. 

The wavenumbers attributable to this separation were from regions associated with 

protein phosphorylation (~960-1000 cm-1) and carbohydrates, particularly glycogen 

(~1030-1050 cm-1, 1150 cm-1), with smaller contributions from DNA (1076 cm-1) and 

protein (1616 cm-1) (see Fig. 4B). In contrast, along PC3 (Fig. 4C), tadpoles from WH 

segregate away from PF and CT tadpoles in regions mainly associated with protein 

(amide I and II) and lipid (see Fig. 4D).  

PC5 accounts for separation between tadpoles from WH and PF only (Fig. 4E); here 

the wavenumbers responsible for the separation were in regions associated with 

protein (amide I and II), DNA, carbohydrate and lipids (Fig. 4F). No other PCs 

accounted for significant segregation between PC scores (Table S4 in SI).The largest 

seven discriminating loadings values for each significant PC and corresponding 

wavenumber assignments are shown in Table 4. 
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Figure 4. PCA scores and loadings generated from ATR-FTIR spectral data of 

R.temporaria tadpoles collected from ponds with different contamination profiles: CT: 

a rural agricultural pond with no pesticide input; WH: an agricultural pond known to 

be impacted by pesticides; PF: an urban pond impacted by wastewater and landfill 

run-off (n = 10 tadpoles per pond, total 30). The most discriminating PCs as 

determined by one-way ANOVA (where P < 0.05) were used to generate scores and 

corresponding loadings which best described the separation seen in the data: A, B: 

PC1 scores and loadings respectively; C, D: PC3 scores and loadings respectively; E, 

F: PC5 scores and loadings respectively. Tukey’s or Games-Howell multiple 

comparison tests were used to determine where the significant differences were 

between sites. Different letters denote a significant difference between tadpoles (P < 

0.05). 
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Morphometric measurements 

Tadpoles did not differ significantly between sites in measurements of mass, BCI, HW 

or SVL (One-way ANOVA: Mass: F2, 27 = 1.34, P > 0.05; BCI: F2, 27 = 3.17, P > 0.05; 

HW: F2, 27 = 0.67, P > 0.05; SVL: F2, 27 = 0.33, P > 0.05).  

 

Discussion 

Chemical analysis of the water (Tables 1 and 2) confirmed the classification of ponds 

based on their land-use data i.e. CT was defined as a rural agricultural site, with the 

input sources confirmed as nutrients and commonly found water contaminants such as 

caffeine, but no input from pesticides. Levels of nitrate and phosphate at this site 

remained low during the sampling period (< 0.22 and <0.03 mg/L respectively). PF 

was defined as an urban site with input from general-use herbicides (glyphosate), 

some pharmaceuticals such as acetaminophen, and the PAH naphthalene. Additionally 

there was input from phosphates at this site, reaching high levels (0.07-0.30 mg/L), 

most likely due to wastewater run-off containing detergents (Mainstone and Parr, 

2002). WH was defined as an agricultural site impacted by pesticides, which was 

confirmed by detectable levels of several herbicides, particularly fungicides, in 

agreement with agronomist’s report on pesticide use in the surrounding farmland (SI 

Table S1).  

Fungicides, particularly azole fungicides as measured at WH, have been associated 

with negative effects on development and sexual differentiation in amphibians and 

other aquatic species even at low levels of exposure (Andrade et al., 2016; Menegola 

et al., 2001; Poulsen et al., 2015; Yoon et al., 2008). Glyphosate and its metabolite 

AMPA was detected at both WH and PF. Glyphosate has been associated with 

detrimental effects on survival in some species of amphibian (Relyea, 2005) and with 

decreases in biochemical parameters such as glycogen and triglycerides in bullfrog 

tadpoles at relatively low (18 µg/L) concentrations (Dornelles and Oliveira, 2014; 

Dornelles and Oliveira, 2016). Pharmaceutical drugs and corrosion inhibitors, were 

also detected in water samples at WH as well nutrient input from nitrate and 

phosphate, the latter reaching levels of 0.64 mg/L during April, which is regarded as 
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relatively high and associated with moderate/poor water quality in lowland non-

alkaline water bodies in the UK and likely due to agricultural run-off (UKTAG, 2013; 

Williams et al., 2004). Exposure of tadpoles to acetaminophen has previously shown 

to have either no effect on activity levels, or significant effects depending on the 

species of tadpole exposed, although at higher concentrations than those found here 

(Fraker and Smith, 2004; Smith and Burgett, 2005). Caffeine was found in both CT 

and PF water samples; levels similar to those measured in this study have previously 

shown no effect on survivorship or activity levels of Bufo americanus tadpoles (Smith 

and Burgett, 2005), although activity levels were significantly reduced and startle 

response increased in Rana pipiens tadpoles (Fraker and Smith, 2004), suggesting the 

response is species-specific. Interestingly, all three sites had detectable levels of OP 

flame retardants (TCEP, TCPP TEP and TBP), the highest of which were found at PF 

and WH. These compounds are used as plasticizers and flame retardants and 

frequently detected in surface waters due to their lack of biodegradability in 

wastewater treatment (Fries and Puttmann, 2003; Regnery and Püttmann, 2010). As 

PF receives treated wastewater as well as run-off from landfill, this may explain the 

higher levels found here. WH also received water run-off from a septic tank system; 

this was upgraded in February 2012 (Ockenden et al., 2014). Research on the toxicity 

of OP flame retardants is limited, however in human cell lines and zebrafish, 

endocrine disrupting activity has been noted, with the ratio of estradiol to testosterone 

disrupted following exposure to these compounds (Liu et al., 2012). 

 Analysis of R.temporaria spawn with ATR-FTIR spectroscopy revealed small but 

significant differences between embryos from CT and those from PF and WH. These 

differences were small in comparison to those found between tadpoles, which is in 

agreement with other studies and likely to be due in part to the jelly capsule 

surrounding the embryo, affording protection against some environmental 

contaminants (Anguiano et al., 1994; Berrill et al., 1994; Berrill et al., 1998; Cooke, 

1972; Edginton et al., 2007; Marquis et al., 2006; Meredith and Whiteman, 2008; 

Ortiz‐Santaliestra et al., 2006), but not others (Greulich and Pflugmacher, 2003). This 

may explain why the differences detected between embryos in the current study were 

relatively smaller in comparison to that of the tadpoles despite water quality 

differences between the sites. 
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The regions of the IR spectrum associated predominantly with lipids and proteins 

(~1730-1755, 1462, 1624 cm-1) were responsible for differences between spawn from 

CT and WH, whereas symmetric phosphate stretching and protein 

phosphorylation/phospholipids (1096, 1069 cm-1) and the amide I protein region 

(1666, 1639 cm-1) accounted for differences between spawn from CT and that from 

PF. Increases in phospholipids and decreases in protein content have previously been 

observed in Bufo arenarum embryos exposed to the OP insecticide malathion 

(Rosenbaum et al., 1988).  Further analysis of the second derivative peak heights 

demonstrated that spawn from CT had higher levels of polysaccharides in comparison 

to WH, and PF had greater absorbance in the region associated with the stretching 

modes of phosphate groups in RNA in comparison to WH. The yolk platelets are the 

main energy store of vertebrate embryos, including amphibians, and contain small 

amounts of nucleic acids and polysaccharides, which are released into the cytoplasm 

of embryonic cells during degradation of the yolk in early embryogenesis (Komazaki 

and Hiruma, 1999). The differences in polysaccharides and nucleic acids detected 

between spawn from different ponds in this study may simply be reflective of slightly 

different stages in embryogenesis (Fagotto and Maxfield, 1994). 

Clear differences were apparent in the mean spectra of R.temporaria tadpoles 

collected from CT, PF and WH, with the largest differences apparent between CT and 

the other two ponds. This was confirmed by analysis with PCA and analysis of the 

second derivative peak heights, with the greatest segregation between tadpoles from 

CT and the other two ponds. Regions of the IR spectrum associated with 

carbohydrates, particularly glycogen showed marked decreases in the peak heights in 

spectra of tadpoles from PF and WH in comparison to those from CT.  Several studies 

have measured glycogen levels in tissues of both larval and adult amphibians 

following exposure to various environmental contaminants, including pesticides such 

as atrazine (Dornelles and Oliveira, 2014; Ezemonye and Tongo, 2009; Zaya et al., 

2011), glyphosate (Dornelles and Oliveira, 2014; Dornelles and Oliveira, 2016), 

quinclorac (Dornelles and Oliveira, 2014),  basudin (Ezemonye and Ilechie, 2007), 

naphthenic acids (Melvin et al., 2013) and PAHs (Gendron et al., 1997). In general, 

these studies found depleted levels of glycogen in response to pesticide exposure, 

although not in all cases (Zaya et al., 2011). Tadpoles exposed to sub-lethal 

wastewater mixtures also show decreased glycogen levels (Melvin et al., 2016). 
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Glycogen levels can be depleted in response to other environmental stressors, such as 

hypoxia/anoxia, as glycogen is the main energy substrate utilised during metabolic 

depression in ranid species (Emel’yanova et al., 2007; Loumbourdis and 

Kyriakopoulou-Sklavounou, 1991; Smith, 1950). Given that the levels of phosphate 

were relatively high during tadpole development at PF and WH (0.3 mg/L and 0.6 

mg/L respectively); these ponds could potentially be at risk of eutrophication, 

resulting in hypoxia (Correll, 1998). Larval amphibians are susceptible to chemical 

insult during development, causing alterations in energy storage and metabolism as 

energy is allocated towards detoxification pathways and maintaining homeostasis, 

resulting in decreased levels of key energy stores such as glycogen. Thus the 

decreases seen in glycogen absorbance in the infrared spectra of tadpoles collected 

from ponds with urban and agricultural run-off may be due to increased 

glycogenolysis (Dornelles and Oliveira, 2014; Dornelles and Oliveira, 2016; Melvin et 

al., 2013; Melvin et al., 2016). This could have broader ecological consequences as 

organisms may divert energy away from other processes such as growth, development 

and reproduction, resulting in an overall negative effect on the health of the organism 

in response to environmental stress (Wingfield et al., 1998).   

Loadings corresponding to PC1 also showed changes in regions associated with 

phosphate chain vibrations in nucleic acids (1003 cm-1) and stretching of symmetric 

phosphate (1076 cm-1); increases in both symmetric and asymmetric phosphate 

absorbance values were also observed in tadpoles from PF and WH in comparison to 

those from CT. Infrared spectroscopy has previously detected increases in asymmetric 

and symmetric phosphate absorbance values in fish following exposure to endocrine 

disruptors (Cakmak et al., 2006; Cakmak et al., 2003) and PAHs (Obinaju et al., 

2014). Exposure to agricultural and urban run-off has been associated with 

genotoxicity in tadpoles (Ralph and Petras, 1997, 1998), with exposure to chemicals 

including those measured in this study such as glyphosate associated with DNA 

damage (Clements et al., 1997). Whilst only speculative, the changes in regions of the 

spectrum associated with DNA vibrations could therefore be due to exposure of 

tadpoles to potential genotoxic agents in the water, although caution must be exercised 

as tadpoles were exposed to a mixture of chemicals, as well as varying nutrient levels, 

so it is not possible to identify a single factor. PC3 showed separation between 

tadpoles from WH and those from both PF and CT, with the wavenumbers responsible 
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mainly associated with proteins and lipids. PC5, which accounted for the smallest 

amount of variance in the data (6.1%), revealed differences between WH and PF 

only); these differences were in regions associated with protein (amide I and II) and 

DNA mainly, with some contribution from carbohydrate and lipids.    

Anuran amphibians also utilise lipids as a primary endogenous energy source, 

particularly during metamorphic climax, reproduction and hibernation (Gurushankara 

et al., 2007; Sheridan and Kao, 1998).  The deposition and mobilisation of lipids in 

amphibians is controlled by hormone –sensitive enzyme systems, with whole-body 

levels of lipid low in early pre-metamorphic tadpoles (prior to significant hind-limb 

development, < Gosner stage 31 (Crespi and Denver, 2005)), followed by an increase 

in pro-metamorphic tadpoles ( during hind-limb development > Gosner stage 36 

(Crespi and Denver, 2005)) (Sheridan and Kao, 1998). As the tadpoles in this study 

were Gosner stage 25-28, the absence of a distinct lipid peak ~1740 cm-1 (Cakmak et 

al., 2006) in the spectrum is therefore not surprising. There were, however, other 

peaks associated with lipids and fatty acids detected in the infrared spectrum (1393, 

1447 cm-1); with either no differences between ponds or a greater peak height at CT in 

comparison to PF. Disturbances in lipid metabolism due to contaminant exposure have 

previously been associated with negative impacts on amphibian health (Gurushankara 

et al., 2007) , with some studies finding an increase in lipid levels (Melvin et al., 

2013), while others found a decrease (Zaya et al., 2011). Changes in constituents 

associated with regulation of energy metabolism such as lipids and glycogen have 

been suggested as potential integrative markers of exposure to chemical stressors in 

larval amphibians due to the large physiological and metabolic changes associated 

with metamorphosis (Dornelles and Oliveira, 2016; Melvin, 2015; Melvin et al., 2013; 

Melvin et al., 2016). 

Several studies have applied IR spectroscopy as an ecotoxicological tool in assessing 

the effects of environmental pollution in fish (Cakmak et al., 2006; Cakmak et al., 

2003; Chu et al., 2001; Malins et al., 2006; Malins et al., 2004; Obinaju et al., 2014; 

Obinaju et al., 2015) The results here suggest that IR spectroscopy may also have 

promise as an environmental monitoring tool in amphibian populations and future 

work should aim to assess populations over longer periods of time in order to account 

for potential multi-generational effects (Sparling et al., 2010). None of these sites, to 
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the authors’ knowledge have been subject to amphibian surveys to assess population 

numbers. In view of the fact that no major morphological differences were apparent 

between these sites, then biospectroscopy offers a unique tool to assess the stress 

status of wild populations living in contaminated sites.  In addition, the use of hand-

held IR devices could potentially allow the non-destructive monitoring of amphibians 

throughout their development, which could be of great benefit in the many species of 

amphibian vulnerable to extinction.  

 

Acknowledgements The Doctoral programme of RJS was funded by a NERC-CEH 

CASE studentship. The authors wish to thank Professor John Quinton (LEC) and the 

respective farmers and landowners for access to CT and WH experimental ponds, 

funded by the UK Department of Environment, Food and Rural Affairs (DEFRA), 

under the project ‘Mitigation of Phosphorus and Sediment 2 (MOPS-2)’, contract 

WQ0127. Permission to sample at Pennington Flash was granted by Wigan and Leigh 

Culture Trust. 

  



94 

 

References 

Alford, R.A., Richards, S.J., 1999. Global amphibian declines: a problem in applied ecology. 

Annual review of Ecology and Systematics, 133-165. 

Andrade, T.S., Henriques, J.F., Almeida, A.R., Machado, A.L., Koba, O., Giang, P.T., Soares, 

A.M.V.M., Domingues, I., 2016. Carbendazim exposure induces developmental, biochemical 

and behavioural disturbance in zebrafish embryos. Aquatic Toxicology 170, 390-399. 

Anguiano, O.L., Montagna, C.M., de Llamas, M.C., Gauna, L., de D'Angelo, A.M.P., 1994. 

Comparative toxicity of parathion in early embryos and larvae of the toad, Bufo arenarum 

Hensel. Bulletin of Environmental Contamination and Toxicology 52, 649-655. 

Beebee, T.J.C., 2014. Amphibian Conservation in Britain: A 40-Year History. Journal of 

Herpetology 48, 2-12. 

Bellisola, G., Sorio, C., 2012. Infrared spectroscopy and microscopy in cancer research and 

diagnosis. American Journal of Cancer Research 2, 1-21. 

Bergeron, C.M., Bodinof, C.M., Unrine, J.M., Hopkins, W.A., 2010. Bioaccumulation and 

maternal transfer of mercury and selenium in amphibians. Environmental Toxicology and 

Chemistry 29, 989-997. 

Berrill, M., Bertram, S., McGilliray, L., Kolohon, M., Pauli, B., 1994. Effects of low 

concentrations of forest-use pesticides on frog embryos and tadpoles. Environmental 

Toxicology and Chemistry 13, 657-664. 

Berrill, M., Coulson, D., McGillivray, L., Pauli, B., 1998. Toxicity of endosulfan to aquatic 

stages of anuran amphibians. Environmental Toxicology and Chemistry 17, 1738-1744. 

Bridges, C.M., 2000. Long-term effects of pesticide exposure at various life stages of the 

Southern Leopard frog (Rana sphenocephala). Archives of Environmental Contamination and 

Toxicology 39, 91-96. 

Brühl, C.A., Pieper, S., Weber, B., 2011. Amphibians at risk? Susceptibility of terrestrial 

amphibian life stages to pesticides. Environmental Toxicology and Chemistry 30, 2465-2472. 

Buryskova, B., Hilscherova, K., Blaha, L., Marsalek, B., Holoubek, I., 2006. Toxicity and 

modulations of biomarkers in Xenopus laevis embryos exposed to polycyclic aromatic 

hydrocarbons and their N-heterocyclic derivatives. Environmental Toxicology 21, 590-598. 

Cakmak, G., Togan, I., Severcan, F., 2006. 17β-Estradiol induced compositional, structural 

and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative 

study with nonylphenol. Aquatic Toxicology 77, 53-63. 

Cakmak, G., Togan, I., Uğuz, C., Severcan, F., 2003. FT-IR spectroscopic analysis of rainbow 

trout liver exposed to nonylphenol. Applied Spectroscopy 57, 835-841. 

Carey, C., Bryant, C.J., 1995. Possible interrelations among environmental toxicants, 

amphibian development, and decline of amphibian populations. Environmental Health 

Perspectives 103, 13. 

Carey, C., Cohen, N., Rollins-Smith, L., 1999. Amphibian declines: an immunological 

perspective. Developmental and Comparative Immunology 23, 459-472. 



95 

 

Christin, M.S., Menard, L., Gendron, A.D., Ruby, S., Cyr, D., Marcogliese, D.J., Rollins-

Smith, L., Fournier, M., 2004. Effects of agricultural pesticides on the immune system of 

Xenopus laevis and Rana pipiens. Aquatic Toxicology 67, 33-43. 

Chu, H.-L., Liu, T.-Y., Lin, S.-Y., 2001. Effect of cyanide concentrations on the secondary 

structures of protein in the crude homogenates of the fish gill tissue. Aquatic Toxicology 55, 

171-176. 

Clements, C., Ralph, S., Petras, M., 1997. Genotoxicity of select herbicides in Rana 

catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (comet) assay. 

Environmental and Molecular Mutagenesis 29, 277-288. 

Cooke, A.S., 1970. The effect of pp′-DDT on tadpoles of the common frog (Rana 

temporaria). Environmental Pollution 1, 57-71. 

Cooke, A.S., 1972. The effects of DDT, dieldrin and 2,4-D on amphibian spawn and tadpoles. 

Environmental Pollution 3, 51-68. 

Cooke, A.S., 1973a. Response of Rana temporaria tadpoles to chronic doses of pp′-DDT. 

Copeia 1973, 647-652. 

Cooke, A.S., 1973b. The effects of DDT when used as a mosquito larvicide on tadpoles of the 

frog Rana temporaria. Environmental Pollution 5, 259-273. 

Cooke, A.S., 1981. Tadpoles as indicators of harmful levels of pollution in the field. 

Environmental Pollution Series A, Ecological and Biological 25, 123-133. 

Correll, D.L., 1998. The role of phosphorus in the eutrophication of receiving waters: A 

review. Journal of Environmental Quality 27, 261-266. 

Crespi, E.J., Denver, R.J., 2005. Roles of stress hormones in food intake regulation in anuran 

amphibians throughout the life cycle. Comparative Biochemistry and Physiology Part A: 

Molecular & Integrative Physiology 141, 381-390. 

Dornelles, M.F., Oliveira, G.T., 2014. Effect of atrazine, glyphosate and quinclorac on 

biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates 

catesbeianus). Archives of Environmental Contamination and Toxicology 66, 415-429. 

Dornelles, M.F., Oliveira, G.T., 2016. Toxicity of atrazine, glyphosate, and quinclorac in 

bullfrog tadpoles exposed to concentrations below legal limits. Environmental Science and 

Pollution Research 23, 1610-1620. 

Edginton, A.N., Rouleau, C., Stephenson, G.R., Boermans, H.J., 2007. 2, 4-D butoxyethyl 

ester kinetics in embryos of Xenopus laevis: the role of the embryonic jelly coat in reducing 

chemical absorption. Archives of Environmental Contamination and Toxicology 52, 113-120. 

Ellis, D.I., Goodacre, R., 2006. Metabolic fingerprinting in disease diagnosis: biomedical 

applications of infrared and Raman spectroscopy. Analyst 131, 875-885. 

Emel’yanova, L.V., Savina, M.V., Belyaeva, E.A., Brailovskaya, I.V., 2007. Peculiarities of 

functioning of liver mitochondria of the river lamprey Lampetra fluviatilis and the common 

frog Rana temporaria at periods of suppression and activation of energy metabolism. Journal 

of Evolutionary Biochemistry and Physiology 43, 564-572. 

Ezemonye, L.I.N., Ilechie, I., 2007. Acute and chronic effects of organophosphate pesticides 

(Basudin) to amphibian tadpoles (Ptychadena bibroni). African Journal of Biotechnology 6. 



96 

 

Ezemonye, L.I.N., Tongo, I., 2009. Lethal and sublethal effects of atrazine to amphibian 

larvae. Jordan Journal of Biological Science 2, 29-36. 

Fagotto, F., Maxfield, F.R., 1994. Changes in yolk platelet pH during Xenopus laevis 

development correlate with yolk utilization. A quantitative confocal microscopy study. 

Journal of Cell Science 107, 3325-3337. 

Ferrari, A., Lascano, C.I., Anguiano, O.L., D’Angelo, A.M.P.d., Venturino, A., 2009. 

Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of 

the toad Rhinella (Bufo) arenarum Hensel. Aquatic Toxicology 93, 37-44. 

Fraker, S.L., Smith, G.R., 2004. Direct and interactive effects of ecologically relevant 

concentrations of organic wastewater contaminants on Rana pipiens tadpoles. Environmental 

Toxicology 19, 250-256. 

Fries, E., Puttmann, W., 2003. Monitoring of the three organophosphate esters TBP, TCEP 

and TBEP in river water and ground water (Oder, Germany). Journal of Environmental 

Monitoring 5, 346-352. 

Gendron, A.D., Bishop, C.A., Fortin, R., Hontela, A., 1997. In vivo testing of the functional 

integrity of the corticosterone‐producing axis in mudpuppy (amphibia) exposed to chlorinated 

hydrocarbons in the wild. Environmental Toxicology and Chemistry 16, 1694-1706. 

Gosner, K.L., 1960. A simplified table for staging anuran embryos and larvae with notes on 

identification. Herpetologica 16, 183-190. 

Greulich, K., Pflugmacher, S., 2003. Differences in susceptibility of various life stages of 

amphibians to pesticide exposure. Aquatic Toxicology 65, 329-336. 

Gurushankara, H.P., Meenakumari, D., Krishnamurthy, S.V., Vasudev, V., 2007. Impact of 

malathion stress on lipid metabolism in Limnonectus limnocharis. Pesticide Biochemistry and 

Physiology 88, 50-56. 

Harris, M.L., Bishop, C.A., McDaniel, T.V., 2001. Assessment of rates of deformity in wild 

frog populations using in situ cages: a case study of Leopard Frogs (Rana pipiens) in Ontario, 

Canada. Biomarkers 6, 52-63. 

Hayes, T.B., Case, P., Chui, S., Chung, D., Haeffele, C., Haston, K., Lee, M., Mai, V.P., 

Marjuoa, Y., Parker, J., Tsui, M., 2006a. Pesticide mixtures, endocrine disruption, and 

amphibian declines: Are we underestimating the impact? Environmental Health Perspectives 

114, 40-50. 

Hayes, T.B., Stuart, A.A., Mendoza, M., Collins, A., Noriega, N., Vonk, A., Johnston, G., 

Liu, R., Kpodzo, D., 2006b. Characterization of atrazine-induced gonadal malformations in 

African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen 

antagonist (cyproterone acetate) and exogenous estrogen (17β-estradiol): Support for the 

demasculinization/feminization hypothesis. Environmental Health Perspectives 114, 134-141. 

Henczova, M., Deer, A.K., Filla, A., Komlosi, V., Mink, J., 2008. Effects of Cu2+ and Pb2+ 

on different fish species: Liver cytochrome P450-dependent monooxygenase activities and 

FTIR spectra. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 

148, 53-60. 



97 

 

Henczova, M., Deer, A.K., Komlosi, V., Mink, J., 2006. Detection of toxic effects of Cd2+ on 

different fish species via liver cytochrome P450-dependent monooxygenase activities and 

FTIR spectroscopy. Analytical and Bioanalytical Chemistry 385, 652-659. 

Hersikorn, B.D., Smits, J.E.G., 2011. Compromised metamorphosis and thyroid hormone 

changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca 

oil sands. Environmental Pollution 159, 596-601. 

Holman, H.-Y.N., Goth-Goldstein, R., Martin, M.C., Russell, M.L., McKinney, W.R., 2000. 

Low-dose responses to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in single living human cells 

measured by synchrotron infrared spectromicroscopy. Environmental Science & Technology 

34, 2513-2517. 

Hopkins, W.A., DuRant, S.E., Staub, B.P., Rowe, C.L., Jackson, B.P., 2006. Reproduction, 

embryonic development, and maternal transfer of contaminants in the amphibian 

Gastrophryne carolinensis. Environmental Health Perspectives 114, 661-666. 

Ibáñez, M., Pozo, Ó.J., Sancho, J.V., López, F.J., Hernández, F., 2006. Re-evaluation of 

glyphosate determination in water by liquid chromatography coupled to electrospray tandem 

mass spectrometry. Journal of Chromatography A 1134, 51-55. 

Johnson, C.M., Pleshko, N., Achary, M., Suri, R.P.S., 2014. Rapid and sensitive screening of 

17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS). 

Environmental Science & Technology 48, 4581-4587. 

Jolliffe, I., 2002. Principal component analysis. Wiley Online Library. 

Kadokami, K., Takeishi, M., Kuramoto, M., Ono, Y., 2004. Maternal transfer of 

organochlorine pesticides, polychlorinated dibenzo-p-dioxins, dibenzofurans, and coplanar 

polychlorinated biphenyls in frogs to their eggs. Chemosphere 57, 383-389. 

Kelly, J.G., Trevisan, J.l., Scott, A.D., Carmichael, P.L., Pollock, H.M., Martin-Hirsch, P.L., 

Martin, F.L., 2011. Biospectroscopy to metabolically profile biomolecular structure: a 

multistage approach linking computational analysis with biomarkers. Journal of Proteome 

Research 10, 1437-1448. 

Komazaki, S., Hiruma, T., 1999. Degradation of yolk platelets in the early amphibian embryo 

is regulated by fusion with late endosomes. Development, Growth & Differentiation 41, 173-

181. 

Lajmanovich, R.C., Peltzer, P.M., Junges, C.M., Attademo, A.M., Sanchez, L.C., Basso, A., 

2010. Activity levels of β-esterases in the tadpoles of 11 species of frogs in the middle Parana 

River floodplain: Implication for ecological risk assessment of soybean crops. Ecotoxicology 

and Environmental Safety 73, 1517-1524. 

Liu, X., Ji, K., Choi, K., 2012. Endocrine disruption potentials of organophosphate flame 

retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquatic 

Toxicology 114, 173-181. 

Llabjani, V., Crosse, J.D., Ahmadzai, A.A., Patel, I.I., Pang, W.Y., Trevisan, J., Jones, K.C., 

Shore, R.F., Martin, F.L., 2011. Differential effects in mammalian cells induced by chemical 

mixtures in environmental biota as profiled using infrared spectroscopy. Environmental 

Science & Technology 45, 10706-10712. 

Llabjani, V., Malik, R.N., Trevisan, J., Hoti, V., Ukpebor, J., Shinwari, Z.K., Moeckel, C., 

Jones, K.C., Shore, R.F., Martin, F.L., 2012. Alterations in the infrared spectral signature of 



98 

 

avian feathers reflect potential chemical exposure: A pilot study comparing two sites in 

Pakistan. Environment International 48, 39-46. 

Loumbourdis, N.S., Kyriakopoulou-Sklavounou, P., 1991. Reproductive and lipid cycles in 

the male frog Rana ridibunda in northern greece. Comparative Biochemistry and Physiology 

Part A: Physiology 99, 577-583. 

Maher, J.R., Matthews, T.E., Reid, A.K., Katz, D.F., Wax, A., 2014. Sensitivity of coded 

aperture Raman spectroscopy to analytes beneath turbid biological tissue and tissue-

simulating phantoms. Journal of Biomedical Optics 19, 117001-117001. 

Mainstone, C.P., Parr, W., 2002. Phosphorus in rivers — ecology and management. Science 

of The Total Environment 282–283, 25-47. 

Malins, D.C., Anderson, K.M., Stegeman, J.J., Jaruga, P., Green, V.M., Gilman, N.K., 

Dizdaroglu, M., 2006. Biomarkers signal contaminant effects on the organs of English sole 

(Parophrys vetulus) from Puget Sound. Environmental Health Perspectives 114, 823-829. 

Malins, D.C., Stegeman, J.J., Anderson, J.W., Johnson, P.M., Gold, J., Anderson, K.M., 2004. 

Structural changes in gill DNA reveal the effects of contaminants on puget sound fish. 

Environmental Health Perspectives 112, 511-515. 

Mann, R., Hyne, R., Choung, C., Wilson, S., 2009. Amphibians and agricultural chemicals: 

Review of the risks in a complex environment. Environmental Pollution 157, 2903-2927. 

Mark, H., Workman Jr, J., 2010. Chemometrics in spectroscopy. Academic Press. 

Marquis, O., Millery, A., Guittonneau, S., Miaud, C., 2006. Toxicity of PAHs and jelly 

protection of eggs in the Common frog Rana temporaria. Amphibia Reptilia 27, 472-476. 

Martin, F.L., Kelly, J.G., Llabjani, V., Martin-Hirsch, P.L., Patel, I.I., Trevisan, J., Fullwood, 

N.J., Walsh, M.J., 2010. Distinguishing cell types or populations based on the computational 

analysis of their infrared spectra. Nature Protocols 5, 1748-1760. 

Maziak, D.E., Do, M.T., Shamji, F.M., Sundaresan, S.R., Perkins, D.G., Wong, P.T.T., 2007. 

Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer 

cells of esophagus: An exploratory study. Cancer Detection and Prevention 31, 244-253. 

Melvin, S.D., 2015. Oxidative stress, energy storage, and swimming performance of 

Limnodynastes peronii tadpoles exposed to a sub-lethal pharmaceutical mixture throughout 

development. Chemosphere 150, 790-797. 

Melvin, S.D., Lanctôt, C.M., Craig, P.M., Moon, T.W., Peru, K.M., Headley, J.V., Trudeau, 

V.L., 2013. Effects of naphthenic acid exposure on development and liver metabolic processes 

in anuran tadpoles. Environmental Pollution 177, 22-27. 

Melvin, S.D., Lanctôt, C.M., van de Merwe, J.P., Leusch, F.D.L., 2016. Altered bioenergetics 

and developmental effects in striped marsh frog (Limnodynastes peronii) tadpoles exposed to 

UV treated sewage. Aquatic Toxicology 175, 30-38. 

Menegola, E., Broccia, M.L., Di Renzo, F., Giavini, E., 2001. Antifungal triazoles induce 

malformations in vitro. Reproductive Toxicology 15, 421-427. 

Meredith, C.S., Whiteman, H.H., 2008. Effects of nitrate on embryos of three amphibian 

species. Bulletin of Environmental Contamination and Toxicology 80, 529-533. 



99 

 

Movasaghi, Z., Rehman, S., ur Rehman, D.I., 2008. Fourier transform infrared (FTIR) 

spectroscopy of biological tissues. Applied Spectroscopy Reviews 43, 134-179. 

Naumann, D., 2000. Infrared spectroscopy in microbiology. Encyclopedia of Analytical 

Chemistry, 102-131. 

Neal, C., Jarvie, H.P., Howarth, S.M., Whitehead, P.G., Williams, R.J., Neal, M., Harrow, M., 

Wickham, H., 2000. The water quality of the River Kennet: Initial observations on a lowland 

chalk stream impacted by sewage inputs and phosphorus remediation. Science of the Total 

Environment 251-252, 477-495. 

Obinaju, B.E., Alaoma, A., Martin, F.L., 2014. Novel sensor technologies towards 

environmental health monitoring in urban environments: A case study in the Niger Delta 

(Nigeria). Environmental Pollution 192, 222-231. 

Obinaju, B.E., Graf, C., Halsall, C., Martin, F.L., 2015. Linking biochemical perturbations in 

tissues of the African catfish to the presence of polycyclic aromatic hydrocarbons in Ovia 

River, Niger Delta region. Environmental Pollution 201, 42-49. 

Ockenden, M.C., Quinton, J.N., Favaretto, N., Deasy, C., Surridge, B., 2014. Reduced 

nutrient pollution in a rural stream following septic tank upgrade and installation of runoff 

retention measures. Environ Sci Process Impacts 16, 1637-1645. 

Oldham, R., Latham, D., HiltonBrown, D., Towns, M., Cooke, A., Burn, A., 1997. The effect 

of ammonium nitrate fertiliser on frog (Rana temporaria) survival. Agriculture Ecosystems & 

Environment 61, 69-74. 

Ortiz‐Santaliestra, M.E., Marco, A., Fernández, M.J., Lizana, M., 2006. Influence of 

developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. 

Environmental Toxicology and Chemistry 25, 105-111. 

Orton, F., Routledge, E., 2011. Agricultural intensity in ovo affects growth, metamorphic 

development and sexual differentiation in the Common toad (Bufo bufo). Ecotoxicology 20, 

901-911. 

Orton, F., Tyler, C.R., 2014. Do hormone‐modulating chemicals impact on reproduction and 

development of wild amphibians? Bio. Rev. 90, 1100-1117. 

Osborn, D., Cooke, A.S., Freestone, S., 1981. Histology of a teratogenic effect of DDT on 

Rana temporaria tadpoles. Environmental Pollution Series a-Ecological and Biological 25, 

305-319. 

Palaniappan, P.L.R.M., Vijayasundaram, V., 2009. Arsenic-induced biochemical changes in 

Labeo rohita kidney: An FTIR study. Spectroscopy Letters 42, 213-218. 

Palaniappan, P.R., Pramod, K.S., 2010. FTIR study of the effect of nTiO2 on the biochemical 

constituents of gill tissues of Zebrafish (Danio rerio). Food and Chemical Toxicology 48, 

2337-2343. 

Palaniappan, P.R.M., Vijayasundaram, V., Prabu, S.M., 2011. A study of the subchronic 

effects of arsenic exposure on the liver tissues of Labeo rohita using Fourier transform 

infrared technique. Environmental Toxicology 26, 338-344. 

Poulsen, R., Luong, X., Hansen, M., Styrishave, B., Hayes, T., 2015. Tebuconazole disrupts 

steroidogenesis in Xenopus laevis. Aquatic Toxicology 168, 28-37. 



100 

 

Ralph, S., Petras, M., 1997. Genotoxicity monitoring of small bodies of water using two 

species of tadpoles and the alkaline single cell gel (comet) assay. Environmental and 

Molecular Mutagenesis 29, 418-430. 

Ralph, S., Petras, M., 1998. Caged amphibian tadpoles and in situ genotoxicity monitoring of 

aquatic environments with the alkaline single cell gel electrophoresis (comet) assay. Mutation 

Research-Genetic Toxicology and Environmental Mutagenesis 413, 235-250. 

Regnery, J., Püttmann, W., 2010. Occurrence and fate of organophosphorus flame retardants 

and plasticizers in urban and remote surface waters in Germany. Water Research 44, 4097-

4104. 

Relyea, R.A., 2005. The lethal impact of Roundup on aquatic and terrestrial amphibians. 

Ecological Applications 15, 1118-1124. 

Relyea, R.A., Diecks, N., 2008. An unforeseen chain of events: Lethal effects of pesticides on 

frogs at sublethal concentrations. Ecological Applications 18, 1728-1742. 

Richards, S.M., Kendall, R.J., 2002. Biochemical effects of chlorpyrifos on two 

developmental stages of Xenopus laevis. Environmental Toxicology and Chemistry 21, 1826-

1835. 

Rieppo, L., Saarakkala, S., Närhi, T., Helminen, H.J., Jurvelin, J.S., Rieppo, J., 2012. 

Application of second derivative spectroscopy for increasing molecular specificity of fourier 

transform infrared spectroscopic imaging of articular cartilage. Osteoarthritis and Cartilage 

20, 451-459. 

Rosenbaum, E.A., Caballero de Castro, A., Gauna, L., Pechen de D'Angelo, A.M., 1988. 

Early biochemical changes produced by malathion on toad embryos. Archives of 

Environmental Contamination and Toxicology 17, 831-835. 

Ruiz, A.M., Maerz, J.C., Davis, A.K., Keel, M.K., Ferreira, A.R., Conroy, M.J., Morris, L.A., 

Fisk, A.T., 2010. Patterns of development and abnormalities among tadpoles in a constructed 

wetland receiving treated wastewater. Environmental Science & Technology 44, 4862-4868. 

Sheridan, M.A., Kao, Y.-H., 1998. Regulation of metamorphosis-associated changes in the 

lipid metabolism of selected vertebrates. American Zoologist 38, 350-368. 

Smith, C.L., 1950. Seasonal changes in blood sugar, fat body, liver glycogen, and gonads in 

the common frog, Rana temporaria. Journal of Experimental Biology 26, 412-429. 

Smith, G.R., Burgett, A.A., 2005. Effects of Three Organic Wastewater Contaminants on 

American Toad, Bufo americanus, Tadpoles. Ecotoxicology 14, 477-482. 

Sparling, D.W., Linder, G., Bishop, C.A., Krest, S., 2010. Ecotoxicology of amphibians and 

reptiles. CRC Press. 

Taylor, S.E., Cheung, K.T., Patel, II, Trevisan, J., Stringfellow, H.F., Ashton, K.M., Wood, 

N.J., Keating, P.J., Martin-Hirsch, P.L., Martin, F.L., 2011. Infrared spectroscopy with 

multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic 

approach. British Journal of Cancer 104, 790-797. 

Trevisan, J., Angelov, P.P., Carmichael, P.L., Scott, A.D., Martin, F.L., 2012. Extracting 

biological information with computational analysis of Fourier-transform infrared (FTIR) 

biospectroscopy datasets: current practices to future perspectives. Analyst 137, 3202-3215. 



101 

 

Trevisan, J., Angelov, P.P., Scott, A.D., Carmichael, P.L., Martin, F.L., 2013. IRootLab: a 

free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. 

Bioinformatics 29, 1095-1097. 

UKTAG, 2013. Phosphorus standards for rivers—updated recommendations. UK Technical 

Advisory Group on the Water Framework Directive. . 

Venturino, A., Rosenbaum, E., De Castro, A.C., Anguiano, O.L., Gauna, L., De Schroeder, 

T.F., De D'Angelo, A.M.P., 2003. Biomarkers of effect in toads and frogs. Biomarkers 8, 167-

186. 

Wake, D.B., Vredenburg, V.T., 2008. Are we in the midst of the sixth mass extinction? A 

view from the world of amphibians. Proceedings of the National Academy of Sciences 105, 

11466-11473. 

Watt, P., Jarvis, P., 1997. Survival analysis in palmate newts exposed to ammonium nitrate 

agricultural fertilizer. Ecotoxicology 6, 355-362. 

Widder, P.D., Bidwell, J.R., Widder, P.D.B.J.R., 2008. Tadpole size, cholinesterase activity, 

and swim speed in four frog species after exposure to sub-lethal concentrations of 

chlorpyrifos. Aquatic Toxicology 88, 9-18. 

Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P., Sear, D., 2004. 

Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in 

Southern England. Biological Conservation 115, 329-341. 

Wingfield, J.C., Maney, D.L., Breuner, C.W., Jacobs, J.D., Lynn, S., Ramenofsky, M., 

Richardson, R.D., 1998. Ecological Bases of Hormone—Behavior Interactions: The 

“Emergency Life History Stage”. American Zoologist 38, 191-206. 

Wu, J.-P., Luo, X.-J., Zhang, Y., Chen, S.-J., Mai, B.-X., Guan, Y.-T., Yang, Z.-Y., 2009. 

Residues of polybrominated diphenyl ethers in frogs (Rana limnocharis) from a contaminated 

site, South China: tissue distribution, biomagnification, and maternal transfer. Environmental 

Science & Technology 43, 5212-5217. 

Wu, J.-P., Zhang, Y., Luo, X.-J., Chen, S.-J., Mai, B.-X., 2012. DDTs in rice frogs (Rana 

limnocharis) from an agricultural site, South China: Tissue distribution, biomagnification, and 

potential toxic effects assessment. Environmental Toxicology and Chemistry 31, 705-711. 

Xiao, J.P., Zhou, Q.X., Tian, X.K., Bai, H.H., Su, X.F., 2007. Determination of aniline in 

environmental water samples by alternating-current oscillopolarographic titration. Chinese 

Chemical Letters 18, 730-733. 

Yoon, C.S., Jin, J.H., Park, J.H., Yeo, C.Y., Kim, S.J., Hwang, Y.G., Hong, S.J., Cheong, 

S.W., 2008. Toxic effects of carbendazim and n-butyl isocyanate, metabolites of the fungicide 

benomyl, on early development in the African clawed frog, Xenopus laevis. Environmental 

Toxicology 23, 131-144. 

Zaya, R.M., Amini, Z., Whitaker, A.S., Kohler, S.L., Ide, C.F., 2011. Atrazine exposure 

affects growth, body condition and liver health in Xenopus laevis tadpoles. Aquatic 

Toxicology 104, 243-253. 

 

  



102 

 

Supplementary information: 

Number of figures = 1 
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Figure S1. Percentage variance the first ten PCs contribute following PCA of ATR-

FTIR spectral data generated from Rana temporaria spawn (S1A) and tadpoles (S1B). 

The line represents cumulative variance. Data were cut at the 1800-900 cm-1 region, 

the second derivative calculated using the Savitzky-Golay algorithm (9 smoothing 

points), vector normalised and mean-centred prior to PCA.  

  



103 

 

Table S1. Agronomist’s report from Whinton Hill detailing which pesticides were 

applied from August 2011-July 2012, covering the sampling period. 

Trade 

name 
Constituents 

Application 

date 
Type Crop 

Oryx 
83 g/L Quinmerac; 

333g/L Metazachlor 
15/08/2011 Herbicide Oilseed rape 

Cirrus CS 
371.130 g /L 

Clomazone 
15/08/2011 Herbicide 

Combining pea, 

field bean, oilseed 

rape, vining pea 

Grounded 

Proprietary blend of 

aliphatic 

hydrocarbons, 

hexahydric alcohol 

ethoxylates and C18-

C20 fatty acids and 

alkanolamides 

15/08/2011 

Spray 

application 

deposition aid 

 

Carakol 3 3 % Metaldehyde 15/08/2011 Molluscicide All edible crops 

Shogun 
100 g / L 

propaquizafop 
11/09/2011 Herbicide 

Bulb onion, carrot, 

cut log, oilseed rape, 

parsnip, pea 

(combining), potato, 

sugar beet, swede, 

turnip 

Capitan 25 250 g/l Flusilazole 23/10/2011 Fungicide 

Winter wheat, 

winter and spring 

barley, oilseed rape 

and sugar beet 

Sunorg Pro 90 g/L Metconazole 23/10/2011 Fungicide 

Winter wheat, 

winter and spring 

barley, oilseed rape 

and sugar beet 

Multitrace B 

Fertilizer - trace 

elements including 

boron 

23/10/2011 
Foliar 

nutrient 
 

Monkey 

133 g/ L 

Tebuconazole; 267 

g/L Prochloraz 

25/03/2012 Fungicide 
Wheat, barley, rye, 

oilseed rape 

Filan 50% Boscalid 25/03/2012 Fungicide 
Wheat, barley, rye, 

oilseed rape 

Snapper Glyphosate 24/07/2012 Herbicide 
Wheat, barley, rye, 

oilseed rape 

Companion 

Gold 

Aqueous solution of 

polymer and 

ammonium sulphate 

24/07/2012 

Adjuvant for 

use with 

glyphosate 

 

  



104 

 

Table S2. Gosner stage, snout to vent length (SVL), head width (HW), mass and body 

condition index (BCI = (body mass/SVL3) X 100) of Rana temporaria tadpoles collected 

from two agricultural sites; one with pesticide use (WH) and one without pesticide use 

(CT) and an urban site (PF). 

Site 

Gosner 

Stage 

SVL 

(mm) 

Head Width 

(mm) 

Mass 

(mg) 

BCI Date 

collected 

PF 26 8.60 5.18 84.0 13.2 17/04/2012 

PF 25 5.75 3.30 33.0 17.4 17/04/2012 

PF 25 6.44 3.04 40.0 15.0 17/04/2012 

PF 25 7.16 4.16 61.5 16.8 17/04/2012 

PF 25 6.17 2.97 26.0 11.1 17/04/2012 

PF 25 6.16 3.47 34.7 14.8 17/04/2012 

PF 26 7.42 4.41 74.2 18.2 17/04/2012 

PF 26 7.20 3.57 61.5 16.5 17/04/2012 

PF 26 7.54 4.47 80.6 18.8 17/04/2012 

PF 25 6.84 3.95 60.9 19.0 17/04/2012 

CT 25 7.22 4.64 59.0 15.7 18/04/2012 

CT 25 6.17 3.78 26.0 11.1 18/04/2012 

CT 25 6.87 3.82 60.9 18.8 18/04/2012 

CT 27 8.03 4.83 84.7 16.4 18/04/2012 

CT 25 7.00 4.34 52.0 15.2 18/04/2012 

CT 25 5.86 3.42 25.0 12.4 18/04/2012 

CT 25 5.74 3.52 33.0 17.4 18/04/2012 

CT 25 6.55 3.73 35.0 12.5 18/04/2012 

CT 28 9.32 6.06 84.0 10.4 18/04/2012 

CT 25 6.15 3.50 34.7 14.9 18/04/2012 

WH 28 8.09 4.26 84.7 16.0 18/04/2012 

WH 28 7.65 4.15 68.4 15.3 18/04/2012 

WH 26 7.59 4.16 80.6 18.4 18/04/2012 

WH 27 6.33 3.65 41.0 16.2 18/04/2012 

WH 27 7.31 4.03 74.2 19.0 18/04/2012 

WH 26 6.65 3.35 52.7 17.9 18/04/2012 

WH 28 7.71 4.46 68.4 14.9 18/04/2012 

WH 27 6.95 3.70 66.4 19.8 18/04/2012 

WH 26 7.17 3.74 61.5 16.7 18/04/2012 

WH 26 6.37 3.29 44.0 17.0 18/04/2012 
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Table S3. List of chemicals screened for in the analysis of water samples collected 

from CT, PF and WH. Herbicides and fungicides were measured using LC/MS/MS 

(triple quadrapole detector). All other compounds were measured using GC/MS with 

mass spectra identification screening of unknowns (NIST 02 and Wiley Mass Spectra 

Library). 

Chemical Group Detection 

limit 

(ng/L) 

Metazachlor Chloroacetanilide herbicide 5 

Dimethachlor Chloroacetanilide herbicide 5 

Acetochlor Chloroacetanilide herbicide 5 

Chlorotoluron Urea herbicide 20 

Glyphosate Phosphonoglycine herbicide 25 

AMPA Phosphonoglycine herbicide degradation product 25 

Tebuconazole Triazole fungicide 20 

Prochloraz Imidazole fungicide 20 

Metconazole Triazole fungicide 10 

Carbendazim Benzimidazole fungicide 10 

Flusilazole Triazole fungicide 5 

Spiroxamine Morpholine fungicide 10 

Boscalid Carboxamide fungicide 10 

Aniline Chemical intermediate/degradation product from 

herbicides. 

200 

Acetaminophen Pharmaceutical (analgesic) 20 

Gabapentin Pharmaceutical (anti-convulsant) 20 

Ketoprofen Pharmaceutical (NSAID) 10 

Erythromycin Macrolide antibiotic 10 

Benzotriazole Heterocyclic corrosion inhibitor 10 

Benzotriazole-methyl Heterocyclic corrosion inhibitor 10 

Triethyl phosphate (TEP) Non-halogenated alkyl phosphate flame retardant 10 

Tributyl phosphate (TBP) Non-halogenated alkyl phosphate flame retardant 10 

Tris(2-

chloroethyl)phosphate 

(TCEP) 

Chlorinated alkyl phosphate flame retardant 5 

Tris(1-chloro-2-

propyl)phosphate (TCPP) 

Chlorinated alkyl phosphate flame retardant 5 

Naphthalene  Polycyclic aromatic hydrocarbon (PAH) 5 
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Table S4. Results from one way ANOVA of the scores generated from principal 

component analysis for the first ten principal components following ATR-FTIR 

analysis of spawn and tadpoles of Rana temporaria. Significant results are in bold. 

PC  Spawn Tadpole 

F Statistic  P value  F Statistic  P value  

1  2.59  0.09  31.88 a  <0.001a 

2  0.64  0.54  0.35  0.71  

3  0.46 0.64  11.29  <0.001  

4  3.78  0.04  0.95  0.40  

5  0.95  0.40  3.59  0.04  

6  3.38  0.05  1.46  0.25  

7  5.81a  0.002a  0.09  0.91  

8  0.70  0.14  0.95  0.40  

9   2.10 0.16  0.25  0.78  

10  1.96 0.09  0.03  0.97 

a These values were generated following Welch’s correction due to inequality of 

variances. 
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Abstract 

Amphibians are a class of organism vulnerable to environmental pollution due to their 

life history and permeable skin. As many species of amphibian show high site fidelity, 

there is a need for a biomonitoring approach that can assess the impacts of repeated 

exposure to environmental contamination over a long term period. This study assessed 

the use of infrared (IR) spectroscopy coupled with multivariate analysis and 

classification techniques in monitoring the health of common frog spawn and tadpoles 

over a three year period. Tadpoles and spawn were collected from ponds with 

differing water quality in 2012, 2013 and 2014. Comparisons were made between 

ponds using data collected over the three year period to determine if spawn and 

tadpoles could be classified based on pond of origin, despite marked annual 

differences. Comparisons were also made at each pond, between years to determine 

the effect annual factors had on the IR spectra generated. Tadpoles were readily 

classified based on pond of origin despite annual differences, whereas spawn showed 

much poorer classification rates, likely due to annual factors such as temperature 

masking any differences between ponds. The differences between years for tadpoles 

were generally in different areas of the spectrum in comparison to those between 

ponds, suggesting temporal effects, possibly tied to body size, as measures of body 

size also showed annual variation. This study highlights the use of IR spectroscopy in 

monitoring amphibian populations over time as a rapid and cost-effective technology, 

which has great promise in environmental research. 
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Introduction 

Amphibian numbers are declining at alarming rates around the world (Alford and 

Richards, 1999), with several factors implicated in such declines, among them 

environmental pollution, which is cited at the most important factor in such declines 

after habitat degradation (Davidson et al., 2002; Egea-Serrano et al., 2012; Mann et 

al., 2009). Several different types of pollutants occur in natural habitats, among them 

fertilisers and pesticides from agricultural run-off or direct application (Carpenter et 

al., 1998; Carter, 2000), and pharmaceutical drugs, detergents, flame retardants and 

plasticisers used in consumer products from urban and industrial wastewater and 

surface run-off (Buerge et al., 2003; Fent et al., 2006; Fries and Puttmann, 2003; 

Stackelberg et al., 2004). Atmospheric deposition also contributes to the overall 

deposition of contaminants around the world from areas of intensive use (Reemtsma et 

al., 2008; Wania and Mackay, 1993). The amount of pollutants in the environment is 

projected to increase in the future, with growing human populations and thus 

increased agricultural and industrial activities (Tilman et al., 2001). This may have an 

increasingly negative impact on amphibian populations, a group sensitive to 

environmental contamination as a result of their permeable skin, which is instrumental 

in gaseous exchange and exchange of electrolytes, particularly in larval and 

embryonic stages (Seymour and Bradford, 1995), and which is also thought to allow 

potentially toxic contaminants to be absorbed (Sparling et al., 2010).  Pollution from 

agriculture may be of particular significance to amphibians, as breeding and larval 

development occurs in spring and early summer, which is often when pesticides are 

applied to adjacent agricultural land, and is a period sensitive to chemical exposure 

(Bridges, 2000). 

Monitoring amphibian populations from the same areas over time is of importance in 

order to track any deleterious changes that occur over multiple generations. Certain 

contaminants may also be maternally transferred to embryos following 

bioaccumulation throughout development, which may lead to impaired reproductive 

success (Bergeron et al., 2010; Todd et al., 2011). As many anuran amphibian species 

show high breeding site fidelity and limited mobility between sites (Blaustein et al., 

1994; Laurila and Aho, 1997), it is possible that the same populations may be 

monitored over time. Additionally, these factors may also mean that populations are 



 

111 
 

susceptible to local extinctions, should environmental conditions change significantly 

(Blaustein et al., 1994).  

A technique gaining increasing use in environmental research is infrared (IR) 

spectroscopy. It is based on the principle that when a sample is probed with an IR 

beam, the functional groups within the sample and vibrate in a number of different 

ways: stretching, deformation or bending. There may also be combinations of these 

vibrational modes (Ellis and Goodacre, 2006; Stuart, 2005). This technique has 

previously been employed to interrogate samples of fish tissue exposed to several 

different environmental contaminants both under controlled laboratory conditions 

(Cakmak et al., 2006; Cakmak et al., 2003; Henczova et al., 2008; Henczova et al., 

2006; Li et al., 2015; Palaniappan and Vijayasundaram, 2008, 2009a, b; Palaniappan 

et al., 2010; Palaniappan and Pramod, 2010; Palaniappan and Renju, 2009; 

Palaniappan and Vijayasundaram, 2009c; Palaniappan et al., 2011) and in field studies  

with promising results (Abdel-Gawad et al., 2012; Malins et al., 2006; Malins and 

Gunselman, 1994; Malins et al., 1997; Malins et al., 2004; Obinaju et al., 2014; 

Obinaju et al., 2015). However, this technique has yet to be applied in a field study 

over a more long-term period. As the spectral data sets produced are typically large 

and complex, multivariate feature-extraction techniques such as principal component 

analysis (PCA) and linear discriminant analysis (LDA) are typically employed in 

order to reduce the data sets into less complex and more readily interpretable formats 

and identify which areas of the spectrum are responsible for differences between data 

sets (Ellis and Goodacre, 2006; Trevisan et al., 2012). Use of machine-learning 

techniques for classification of data also allows unknown samples to be classified on 

the basis of their IR spectra, and have previously been used to identify alterations 

induced by different pollutant types in bird feathers (Llabjani et al., 2012), as well as 

the origin of oil spills from polluted beaches (Gómez-Carracedo et al., 2012). 

Tadpoles at an early developmental stage are generally regarded as the stage most 

sensitive to environmental pollution (Cooke, 1972; Greulich and Pflugmacher, 2003; 

Ortiz‐Santaliestra et al., 2006; Rohr et al., 2003), with embryos deemed a less 

sensitive stage as the jelly coat and perivitelline membrane surrounding the embryo 

acts as a barrier to contaminants (Edginton et al., 2007; Wagner et al., 2015). This is 

in agreement with the pilot study in Chapter 2, which suggested that this stage of 
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development is much less sensitive than the larval stage for distinguishing between 

ponds with different water quality using ATR-FTIR spectroscopy. However, 

amphibian embryos also show changes in developmental rates and subsequent 

deformities at metamorphosis as a result of maternal exposure (Orton and Routledge, 

2011) and therefore the inclusion of amphibian embryos in a longer-term monitoring 

study is of merit.  

The primary aim of this study was to determine if ATR-FTIR spectroscopy coupled 

with multivariate data analysis and classification techniques was able to distinguish 

embryos and tadpoles of the common frog, Rana temporaria collected from ponds 

with differing water quality over a three year period (2012-2014) on the basis of 

differences in their spectral signature, despite annual differences in conditions unable 

to be controlled for in a field study. The sites studied were in Northern England and 

were selected in order to give a comparison between a rural agricultural site with no 

pesticide input, a high pesticide-impacted agricultural site, and an urban site impacted 

by treated wastewater and landfill run-off. These sites are not subject to amphibian 

surveys and hence no time-series exists of population numbers, so the study carried 

out here could reveal the health-status of a given frog population. Temporal changes 

were also determined to ascertain which parts of the spectrum were responsible for 

any annual differences observed in the spectral signature of tadpoles and embryos at 

each pond. Within each year, separate analysis was also conducted to determine if 

similar areas of the spectrum were responsible for the differences detected in the 

spectral signature of embryos and tadpoles between ponds each year.  

Current work in biomedical science aims to use IR spectroscopy to create a database 

of healthy individuals and those with diseases such as cancer in order to establish 

vibrational spectroscopy as a screening tool in disease diagnosis (Ellis and Goodacre, 

2006; Gajjar et al., 2013; Hands et al., 2013; Mitchell et al., 2014). Whilst still only a 

relatively short-term monitoring study, the intention in this study was to ascertain a 

baseline level of ‘healthy’ R.temporaria  embryos and tadpoles, defined as those 

collected from  a pond minimally impacted by environmental contaminants and with 

good water quality for comparison with those from ponds with known water 

contamination. This approach could then potentially demonstrate the utility of 
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vibrational spectroscopy as an environmental monitoring tool and identify ponds with 

incipient water quality problems.  

 

Methods 

Field Sites 

Sites were selected in order to give a comparison between agricultural and urban 

ponds and were based on site characteristics and information from landowners/land 

managers.  The sites were: 

1. Whinton Hill (WH), Plumpton, Cumbria is a farm consisting of arable and 

grazing land for beef and sheep, which is routinely sprayed with herbicides 

and fungicides. 

2. Crake Trees (CT), Crosby Ravensworth is a farm used as beef grazing land 

and marginal arable land, which has been accepted onto Natural England’s 

Higher Level Environmental Stewardship Scheme and uses minimal quantities 

of pesticides, with buffer zones to prevent pesticide run-off into water courses. 

The ponds surveyed at WH and CT are constructed wetlands created as part of 

the MOPS2 (Mitigation Options for Phosphorus and Sediment) project 

monitored by Lancaster University http://mops2.diffusepollution.info/ 

3. Pennington Flash Country Park (PF) located in Leigh, Lancashire is a site 

which receives run-off from treated wastewater and landfill, as this area was 

previously a landfill site.  

Water quality for each pond was assessed through the measurement of key nutrients 

(nitrate and phosphate) as well as a range of organic chemical pollutants including 

pesticides. A summary of concentrations are presented in Strong et al. (2016). In brief, 

water quality with respect to these chemical parameters resulted in the ranking of the 

ponds as: CT highest water quality, followed by PF with WH having the lowest water 

quality of the three ponds.  
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Collection and processing of samples 

Spawn  

Samples of R.temporaria spawn were collected in 2012, 2013 and 2014 from all three 

sites (10-20 per site), at varying dates depending on the date of spawning (full details 

in supplementary information Table S1). Spawn was collected in solvent-rinsed glass 

jars and transported back to the laboratory before the jelly coat was removed with 

forceps and the embryo fixed in 70% ethanol overnight at 4°C. The Gosner stage of 

spawn samples was noted prior to fixation (Gosner, 1960). Spawn was classified as 

Gosner stage 10-12. Whole fixed embryos were mounted directly onto Low-E 

reflective glass slides (Kevley Technologies, Chesterland, OH, USA), dried overnight 

and stored in a desiccator before subsequent interrogation with ATR-FTIR 

spectroscopy. 

Tadpoles 

Rana temporaria tadpoles were caught from all three sites in 2012, 2013 and 2014 

using dip nets (ten per site, per year), euthanised using a solution of MS-222 

(200mg/L) buffered with sodium bicarbonate (both from Sigma Aldrich, Poole, Dorset 

UK), as per Schedule 1 of the British Home Office Animals (Scientific Procedures) 

Act 1986. Tadpole samples were then rinsed in distilled water and fixed immediately 

in the field in 70% ethanol (Fisher Scientific, UK). Ethanol was replaced after 24 

hours with fresh. Tadpoles were weighed and measurements taken of snout-vent 

length (SVL) and head width (HW) using digital callipers to the nearest 0.01mm after 

fixation. Tadpoles were staged according to Gosner (1960), with all tadpoles between 

stages 25-28 (full details of stages and tadpole SVL and HW measurements are in 

Table S2 of supplementary information). Body condition indices (BCI) were 

calculated for each tadpole as follows: (body mass/SVL3) X 100 (Melvin et al., 2013). 

 For ATR-FTIR spectroscopy measurements, a longitudinal slice (~ 0.5 mm thick) 

was taken from the ventral side of the tadpole using a Stadie-Riggs tissue slicer; a 

simple technique previously employed for preparing tissue samples for analysis with 

IR spectroscopy (Maher et al., 2014; Obinaju et al., 2014; Taylor et al., 2011). Slices 
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were mounted skin side down onto Low-E slides, dried overnight and stored in a 

desiccator before interrogation with ATR-FTIR spectroscopy.  

Temperature data 

Temperature data (maximum, minimum and average air temperatures) was obtained 

from the Hazelrigg weather station at Lancaster University covering two week time 

periods beginning approximately one month prior to the start of the breeding season 

(~ 29th January) and finishing after all individuals had gone through metamorphosis 

(~26th August) for each year.. Details are provided in graphs S1A-C in the SI. 

ATR-FTIR Spectroscopy  

Between 10 and 25 spectra were taken per sample of spawn and tadpole using a 

Tensor 27 FTIR spectrometer with Helios ATR attachment (Bruker Optics Ltd, 

Coventry, UK) containing a diamond crystal (≈250 μm×250 μm sampling area). 

Spectra were acquired at 8 cm-1 resolution with 2x zero-filling, giving a data-spacing 

of 4 cm-1 over the range 400-4000 cm-1. The crystal was cleaned with distilled water 

between the analysis of each sample and a new background reading was taken prior to 

the analysis of each sample in order to account for changes in atmospheric conditions. 

Data pre-processing  

A representative ATR-FTIR spectrum was obtained by taking the mean of the spectral 

measurements for each sample. Spectra were then cut at the biochemical cell 

fingerprint region (1800-900 cm-1), baseline corrected using Savitzky-Golay 2nd order 

differentiation (2nd order polynomial and 9 filter coefficients), and vector normalised.  

Multivariate analysis 

Data were mean-centred before input into principal component analysis-linear 

discriminant analysis (PCA-LDA) with k-folds cross validation, where k = 5; this 

method uses a small portion of the dataset to train the model in order to prevent LDA 

overfitting (Trevisan et al., 2012). PCA reduces the spectra (227 wavenumbers) into a 

smaller number of principal components for input into LDA. In this case 9 PCs were 

picked for spawn analysis and 12 for analysis of tadpoles, using the PCA Pareto 

function in the IRootLab toolbox, as this represented ~95% of the variance in the data 
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and where the variance began to plateau, thus preventing noise being incorporated into 

the LDA algorithm. LDA maximises the differences between classes and minimises 

the heterogeneity within classes. The data can then be viewed as scores, to determine 

how the different classes separate from each other. The corresponding loadings 

vectors when viewed alongside the scores allow the wavenumbers which contribute 

maximally to the variance to be identified (Trevisan et al., 2012). 

For both analysis of spawn and tadpoles, data were classed by pond (CT, PF and WH) 

using all of the data collected over the three year period. This was the main goal of the 

study; identifying differences between ponds despite annual variations. Additionally, 

samples of spawn and tadpoles were analysed within each year group using PCA 

alone due to the reduced sample size (Ellis and Goodacre, 2006; Martínez and Kak, 

2001) to determine if the differences between ponds were consistently expressed each 

year. Within each pond, annual differences were also determined to identify which, if 

any areas of the spectrum corresponded to annual factors. Finally, as tadpole body size 

parameters showed a large variation over the course of the study (see Table S2 in SI), 

with significant variation found between tadpoles from PF and those from CT and 

WH in 2013 and 2014, separate analysis was conducted between tadpoles from CT 

and those from WH, excluding tadpoles from PF to try and exclude the effect of body 

size on the results. 

All spectral pre-processing and data analysis was implemented using the IRootLab 

toolbox https://code.google.com/p/irootlab/ (Martin et al., 2010; Trevisan et al., 2013) 

in Matlab (r2012a) (The MathWorks, Inc., USA), unless otherwise stated. 

Statistical analysis 

One-way ANOVA followed by Tukey’s multiple comparison tests, or two-sample t-

tests where appropriate, were conducted to determine significant differences between 

classes using the scores from the PCA-LDA and PCA outputs. One-way ANOVA 

followed by Tukey’s multiple comparison tests were also used to determine 

significant differences between body size parameters. These analyses were conducted 

in XLSTAT (Addinsoft, Paris). 

  

https://code.google.com/p/irootlab/
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Classification of data 

For this study, two commonly applied classifiers; principal component analysis-linear 

discriminant classifier (PCA-LDC) and support vector machines (SVMs) were 

employed for comparison of their classification ability. Both are supervised 

classification techniques i.e. where the classes are labelled a priori. The output from 

each classifier was a ‘classification accuracy rate’, which is defined as the average 

between sensitivity (true positives) and specificity (true negatives) (Owens et al., 

2014). 

PCA-LDC Classifier 

Classifiers may be generated using PCA first as a data reduction tool so that the data 

are not over-fitted in the subsequent LDC model; the classification version of LDA 

(Trevisan et al., 2012). LDC generates n-1 linear discriminant functions (2 in this 

study) which optimally discriminate n classes (3 classes per data set in this study). 

LDC uses these discriminant functions to assign unknown observations to classes. The 

Mahalanobis distance (the distance between a data point and a multivariate space’s 

overall mean) is used in the classification process, as the group with the smallest 

distance is the one LDC classifies the observation into (Krafft et al., 2009). 

Data were pre-processed as for PCA-LDA , standardised and the number of principal 

components for input into the classification model was selected as before using the 

PCA Pareto function in Matlab before input into the classifier. Five-fold cross-

validation was implemented in order to prevent the model from being over-fitted 

during the training phase. 

SVM Classifier 

SVM is a machine-learning approach, which aims to separate data classes by a 

hyperplane, which maximises the margin between different classes while giving a low 

generalisation error (Sattlecker et al., 2011). Given the labelled training dataset, the 

model creates an optimal hyperplane which then classifies new examples.  The points 

determining the hyperplane are called support vectors (Fernández Pierna et al., 2005). 

SVMs can be linear, however they can also be useful for data that cannot be separated 

linearly; in this case the predictors are mapped onto a new higher-dimension space, 
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where they can be separated linearly, which is known as the ‘kernel trick’ (Subasi and 

Ismail Gursoy, 2010).  Although originally designed to solve binary classification 

problems, they can also be applied to multiclass problems by creating several binary 

classifiers and combining them. The most common approaches for multiclass datasets 

are “one-against-one”, which creates a separate SVM for each class or “one-against-

all”, which creates a separate SVM for each pair of classes (Sattlecker et al., 2011).  

In this study, the SVM was set up using a “one-against-one” approach using the 

LibSVM library (Chang and Lin, 2011) in Matlab (software available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm), as there were three classes in each data set. 

Prior to the application of the SVM classifier, the data were pre-processed as before 

and then each variable was linearly scaled to the [0, 1] range. Scaling avoids variables 

in larger numeric ranges from dominating those in smaller ranges and prevents 

numerical difficulties during the calculations (Hsu et al., 2003). A radial basis kernel 

function (RBF) was employed and the optimum penalty parameter, C, and the kernel 

function parameter, γ, were found using the grid search algorithm. This approach 

identifies the C, γ pairs with the best cross-validation accuracy (Huang et al., 2008). 

Five-fold cross-validation was conducted in order to prevent over-fitting during the 

training process (as in the PCA-LDC classifier for comparison). 

 

Results 

Body Size Measurements 

As shown in figures 1A-D tadpoles did not differ in the majority of their body size 

measurements between ponds when all of the data were analysed together over the 

duration of the study, with the exception of HW, where tadpoles from PF had a 

significantly lower measurement of this parameter than those from CT (One-way 

ANOVA: F2,87 = 3.97, P = 0.02; Tukey’s multiple comparison test, P < 0.05). 

http://www.csie.ntu.edu.tw/~cjlin/libsvm


 

119 
 

 Figure 1. Comparison of body size parameters of Rana temporaria tadpoles collected 

over a three year period (2012-2014). Comparisons were made between tadpoles from 

CT: a rural agricultural pond with minimal pesticide input; PF: an urban pond 

impacted by wastewater and landfill run-off and WH: an agricultural pond known to 

be impacted by pesticides. Measurements are (A) snout-vent-length (SVL), (B) head 

width (HW) (C) body mass, and (D) body condition index (BCI). One-way ANOVA 

followed by Tukey’s multiple comparison tests were used to compare each body size 

parameter between ponds. Different letters denote a significant difference (P < 0.05). 

 

However, there were significant differences in body size measurements between 

ponds, within each year group for tadpoles collected in 2013 and 2014, but not 2012 

(see Figs. 2A-D). Tadpoles collected in 2013 from PF were significantly smaller than 

those from both CT and WH on all measures of body size (One-way ANOVA: SVL: 

F2,27 = 25.42, P < 0.001; HW: F2,27 = 67.08, P < 0.001; Mass: F2,27  = 46.07, P  < 

0.001; Tukey’s multiple comparison tests, P < 0.05), but not BCI (BCI: F2,27 = 1.12, P 

= 0.34); there were no significant differences between tadpoles from CT and those 
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from WH in the same year (Tukey’s multiple comparison test, P > 0.05). Tadpoles 

collected in 2014 from CT were smaller than those collected from PF on measures of 

SVL and mass, (One-way ANOVA: SVL: F2,27 = 3.91, P = 0.03; Mass: F2,27  = 6.09, P  

= 0.007; Tukey’s multiple comparison tests, P < 0.05) but not BCI or HW (BCI: F2,27 

= 3.06, P = 0.06; HW: F2,27 = 3.2, P = 0.06). Tadpoles from WH also had a smaller 

mass in comparison to those from PF in this year group (Tukey’s multiple comparison 

test, P < 0.05). There were no body size differences between tadpoles from CT and 

those from WH in 2014 (Tukey’s multiple comparison test, P > 0.05). 

There were also significant differences in body size measurements within ponds 

between different years, as shown in Figs. 2E-H. Comparisons of body size 

parameters between years within each pond revealed that tadpoles collected from CT 

were significantly smaller in 2014 than those collected in 2013 and 2012 on measures 

of SVL, HW and mass (One-way ANOVA: SVL: F2,27 = 18.50, P < 0.001; HW: F2,27 

= 19.47, P < 0.001; Mass: F2,27  = 19.45, P  < 0.001; Tukey’s multiple comparison 

tests, P < 0.05). Mass differed between all years at this pond, with tadpoles collected 

in 2013 heaviest, followed by those collected in 2012 and then 2014. Body condition 

indices were lower in 2012 in comparison to those in 2013 and 2013 (BCI: F2,27 = 

4.80, P = 0.02; Tukey’s multiple comparison tests, P < 0.05). Tadpoles collected from 

PF in 2013 were smaller on all measures of body size in comparison to those collected 

in both 2012 and 2014 (One-way ANOVA: SVL: F2,27 = 11.31, P < 0.001; HW: F2,27 

= 15.78, P < 0.001; Mass: F2,27  = 10.13, P  = 0.001; Tukey’s multiple comparison 

tests, P < 0.05), although no differences in BCI were found (BCI: F2,27 = 0.65, P = 

0.53). No differences were found between tadpoles collected in 2013 and 2014 from 

PF (Tukey’s multiple comparison tests, P > 0.05).  

Tadpoles collected from WH showed significant variation in their body size 

measurements but not BCI (One-way ANOVA: SVL: F2,27 = 8.22, P = 0.002; HW: 

F2,27 = 12.23, P < 0.001; Mass: F2,27  = 16.85, P  < 0.001; BCI: F2,27 = 2.00, P = 0.16). 

Tadpoles collected in 2014 were significantly smaller than those collected in 2013 and 

2012 on measures of HW and mass; 2014 tadpoles were also smaller on measures of 

SVL in comparison to those collected in 2012 (Tukey’s multiple comparison tests, P < 

0.05).  

 



 

121 
 

 
 Figure 2. Comparison of body size parameters of Rana temporaria tadpoles collected 

from ponds with differing water quality for the years 2012, 2013 and 2014. Body size 

parameters were also compared at each pond, between years. Ponds are CT: a rural 

agricultural pond with minimal pesticide input; PF: an urban pond impacted by 

wastewater and landfill run-off and WH: an agricultural pond known to be impacted 

by pesticides. Measurements are: (A) snout-vent-length (SVL), (B) head width (HW), 

(C) body mass, and (D) body condition index (BCI) for comparisons between ponds 

each year. Within each pond, measurements are: (E) snout-vent-length (SVL), (F) 

head width (HW) (G) body mass, and (H) body condition index (BCI) for comparison 

between years. One-way ANOVA followed by Tukey’s multiple comparison tests 

were used to compare each body size parameter between ponds and between years. 

Different letters denote a significant difference (P < 0.05). 
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ATR-FTIR spectroscopy 

Spawn: differences between ponds  

The mean spectra of spawn collected from each pond over the three year period are 

shown in figure 3A. There is very little visual difference between the mean spectra of 

spawn collected from each site. Analysis with PCA-LDA followed by One-way 

ANOVA and Tukey’s multiple comparison tests demonstrated significant separation 

along LD1 between all three sites, but no separation along LD2 (Fig. 3B). The 

loadings from PCA-LDA analysis demonstrated the regions attributable to the 

separation of spawn between ponds was predominantly in regions associated with 

protein (amide I and II regions) and C=O stretching of lipids (Fig. 3C, Table 1.) The 

classification of spawn based on pond of origin was generally quite poor for both 

PCA-LDC and SVM, the latter achieving a slightly higher classification rate (see Fig. 

3D and 3E), although still only achieving correct classification up to  a maximum of 

~65% of the time for spawn collected from WH (Fig. 3E).  

Table 1. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria spawn with ATR-FTIR spectroscopy following analysis 

with PCA-LDA. The five largest loadings values for significant linear discriminants 

are shown. Comparisons were made between sites: CT: a rural agricultural pond with 

no pesticide input; WH: an agricultural pond known to be impacted by pesticides and 

PF: an urban pond impacted by wastewater and landfill run-off.  

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Comparison ≠ 

By site LD1 1732 C=O stretching of lipids CT a 

PF b 

WH c 

 1709 C=O stretching (bases) 

 1616 Amide I (carbonyl stretching 

vibrations in side chains of amino 

acids) 

 1558 Amide II proteins 

 1477 CH2 lipids 
¥ (Movasaghi et al., 2008; Naumann, 2001; Podrabsky et al., 2001). 
≠ Different letters denote a significant difference at the P < 0.05 level following one-

way ANOVA and Tukey’s multiple comparison tests. 
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Figure 3. A: Mean spectra of Rana temporaria spawn collected over a three year 

period (2012-2014) from CT: a rural agricultural pond with minimal pesticide input; 

PF: an urban pond impacted by wastewater and landfill run-off and WH: an 

agricultural pond known to be impacted by pesticides. Spectra were cut at the 

biochemical fingerprint region (1800-900 cm-1), processed with Savitzky-Golay 

second-order differentiation and vector-normalised. B: Two-dimensional scores plot 

generated following cross-validated PCA-LDA analysis of spectra. C: Corresponding 

loadings generated from PCA-LDA analysis; the five largest loadings values are 

highlighted. Spectra of spawn samples were classified based on pond of origin using a 

linear (PCA-LDC): D and non-linear (SVM): E classification method. Green circles 

show the % of spawn spectra correctly classified by pond of origin, with red circles 

showing the % of spawn spectra incorrectly classified by pond of origin. 
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Comparisons between spawn samples within each year group are shown in figs 4A-F 

and table S3 in the SI. Significant separation was found between spawn samples 

collected from CT and WH in 2012 along PC4 in areas associated with protein and 

lipids; and between CT and PF along PC6 (Fig. 4A) in areas associated with protein 

(amide I), nucleic acids and collagen as determined from the loadings plots (Fig. 4B). 

No differences were observed between spawn samples from PF and WH. In 2013, 

spawn samples from PF and WH separated along PC1 in areas associated with lipids 

and amide I and II proteins; PC2 revealed differences between spawn collected from 

CT and that from PF and WH in areas associated with lipids and symmetric phosphate 

stretching (Figs. 4C and 4D). Significant separation was found between spawn 

samples collected in 2014 from WH in comparison to those from both CT and PF 

along PC1 in areas associated with lipids, amide I, asymmetric phosphate stretching in 

RNA and glycogen; significant separation was also found along PC3 in areas 

associated with fatty acid esters and protein (amide I and II) between spawn collected 

from CT in comparison to that from both PF and WH (Figs. 4E and F). 

Spawn: differences between years 

Comparisons between spawn samples between years within each pond are shown in 

Figs. 5A-F and Table S4 in the SI. At CT, significant separation between spawn 

samples collected in 2012 and those collected in both 2013 and 2014 was apparent 

along PC1 in areas associated with lipids and proteins (amide I and II); along PC2, the 

separation was between spawn collected in 2013 and that collected in both 2012 and 

2014, again in protein regions (amide I and II) as shown in Figs. 5A and 5B.  Spawn 

collected from PF again showed separation along PC1 in samples collected in 2012 in 

comparison to those collected in 2013 and 2014 in lipid and protein regions. Some 

separation was also apparent between samples collected in 2013 and those in 2014 in 

regions associated with amide I and C=O stretching (Figs. 5C and 5D). In contrast, at 

WH, spawn collected in 2014 showed the greatest separation from that collected in 

2012/3 along PC1 in regions associated with lipids and amide I/II, with some 

separation evident along PC2 between spawn collected in 2012 and that in 2013/4 in 

regions associated with amide I/II but also the phosphodiester region (Figs 5E and 

5F). 

 



 

125 
 

Figure 4. Rana temporaria spawn collected from three different ponds separated into 

year groups and analysed with PCA following interrogation with ATR-FTIR 

spectroscopy. A. Scores and B. Loadings plots of spawn collected in 2012; C. Scores 

and D. Loadings plots of spawn collected in 2013 and E. Scores and F. Loadings plots 

of spawn collected in 2014. Ponds are: CT: a rural agricultural pond with minimal 

pesticide input; PF: an urban pond impacted by wastewater and landfill run-off and 

WH: an agricultural pond known to be impacted by pesticides. 
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Figure 5. Rana temporaria spawn collected from three different years (2012, 2013, 

and 2014), separated into pond of origin and analysed with PCA following 

interrogation with ATR-FTIR spectroscopy. A. Scores and B. Loadings plots of spawn 

collected from CT; C. Scores and D. Loadings plots of spawn collected from PF and 

E. Scores and F. Loadings plots of spawn collected from WH. Ponds are: CT: a rural 

agricultural pond with minimal pesticide input; PF: an urban pond impacted by 

wastewater and landfill run-off and WH: an agricultural pond known to be impacted 

by pesticides. 
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Tadpoles: differences between ponds 

The mean spectra of tadpoles collected from each pond over a three year period are 

shown in Fig. 6A. Visual inspection of the spectra suggests that some separation is 

apparent in the 1150-900 cm-1 region. Further analysis with PCA-LDA confirmed 

significant separation along LD1 between all three ponds (Fig. 6B) in regions 

associated predominantly with symmetric phosphate stretching of DNA/glycogen 

(~1100-1000 cm-1) as shown in the loadings plot in Fig. 6C. Additionally, regions 

associated with Amide I (proteins) also contributed to the separation along this 

dimension. LD2 accounts for separation between tadpoles collected from CT/PF and 

WH. This is again in similar regions as before: primarily symmetric phosphate 

stretching of DNA/glycogen (1092, 1057 cm-1) with some contribution from Amide I. 

The top five loadings values and corresponding wavenumber assignments are shown 

in Fig. 6C and Table 2. In contrast to the poor classification results achieved for 

spawn cased on pond of origin, both PCA-LDC and SVM achieved high classification 

rates for tadpoles, both demonstrating correct classification for tadpoles collected 

from each pond over 85% of the time (see Figs. 6D and 6E). SVM again achieved the 

highest classification rates, with tadpoles collected from CT correctly identified at the 

highest frequency, attaining a classification rate of ~94%  (Fig. 6E).  
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Figure 6. A: Mean spectra of Rana temporaria tadpoles collected from ponds with 

differing water quality over a three year period (2012-2014) from CT: a rural 

agricultural pond with minimal pesticide input; PF: an urban pond impacted by 

wastewater and landfill run-off and WH: an agricultural pond known to be impacted 

by pesticides. Spectra were cut at the biochemical fingerprint region (1800-900 cm-1), 

processed with Savitzky-Golay second-order differentiation and vector-normalised. B: 

Two-dimensional scores plot generated following cross-validated PCA-LDA analysis 

of spectra. C: Corresponding loadings generated from PCA-LDA analysis; the five 

largest loadings values are highlighted. Spectra of tadpole samples were classified 

based on pond of origin using a linear (PCA-LDC): D and non-linear (SVM): E 

classification method. Green circles show the % of tadpole spectra correctly classified 

by pond of origin, with red circles showing the % of tadpole spectra incorrectly 

classified by pond of origin. 
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Table 2. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria tadpoles with ATR-FTIR spectroscopy following 

analysis with PCA-LDA. The five largest loadings values for the two linear 

discriminants are shown. Comparisons were made between sites: CT: a rural 

agricultural pond with no pesticide input; WH: an agricultural pond known to be 

impacted by pesticides and PF: an urban pond impacted by wastewater and landfill 

run-off.  

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Comparison ≠ 

LD1 1682 Amide I deformation CT a 

PF b 

WH c 

 1620 Peak of nucleic acids due to the base 

carbonyl stretching and ring 

breathing mode 

 1096 Stretching PO2
- symmetric 

 1072 Nucleic acid band (symmetric 

phosphate stretch) 

 1003 Sugar phosphate chain vibrations in 

nucleic acids 

 

LD2 1647 Amide I CT a 

PF a 

WH b 

 1624 Amide I, β-sheet 

 1115 Symmetric stretching P-O-C 

 1092 Symmetric phosphate stretching 

 1057 Glycogen 
¥ (Cakmak et al., 2006; Chu et al., 2001; Movasaghi et al., 2008; Palaniappan and 

Vijayasundaram, 2008). 
≠ Different letters denote a significant difference at the P < 0.05 level following one-

way ANOVA and Tukey’s multiple comparison tests. 

 

Comparisons between tadpoles within each year group are shown in Figs7A-F and 

table S5 in the SI. In 2012, tadpoles collected from CT showed the greatest separation 

between those collected from both PF and WH along PC1 in regions associated with 

carbohydrates (glycogen) and symmetric phosphate stretching; there was also 

separation along PC3 between tadpoles from WH and those from both CT and PF in 

regions associated with protein, lipid and glycogen (Figs. 7A and B). In 2013, 

tadpoles from PF separated from those from both CT and WH along PC1 in regions 

associated with glycogen and DNA; tadpoles from all three sites separated 

significantly along PC3 with the greatest separation between tadpoles from CT and 

those from WH, again in regions associated with glycogen and DNA, with some 

protein contribution (Figs. 7C and 7D). In 2014, tadpoles from PF separated from 

those from both CT and WH along PC1, as in 2013, although this time in regions 

largely associated with lipid. Along PC3, the differences were between tadpoles from 
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WH and those from both CT and PF, in regions largely associated with carbohydrates 

like glycogen, with some lipid contribution (Figs. 7E and 7F). 

 
Figure 7. Rana temporaria tadpoles collected from three different ponds separated 

into year groups and analysed with PCA following interrogation with ATR-FTIR 

spectroscopy. A. Scores and B. Loadings plots of tadpoles collected in 2012; C. 

Scores and D. Loadings plots of tadpoles collected in 2013 and E. Scores and F. 

Loadings plots of tadpoles collected in 2014. Ponds are: CT: a rural agricultural pond 

with minimal pesticide input; PF: an urban pond impacted by wastewater and landfill 

run-off and WH: an agricultural pond known to be impacted by pesticides. 
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As significant differences in body size measurements were found between tadpoles 

from PF and those from CT and WH in 2013 and 2014, separate analysis was 

conducted with tadpoles from PF excluded from the analysis in order to remove the 

potentially confounding effects of body size. Significant differences were apparent 

between tadpoles from CT and those from WH in 2013 along PCs 2 and 3 in regions 

associated with C=O stretching of lipids, amide I proteins and symmetric stretching of 

P-O-C and nucleic acids (Table S6, Figs. 2A and B in SI). In 2014, there were 

differences between tadpoles from CT and those WH along PC2 only, in regions 

associated predominantly with carbohydrates/glycogen and sugar phosphate vibrations 

in nucleic acids, with some lipid contribution (Table S6, Figs 2C and 2D in SI). 

Tadpoles: differences between years  

Comparisons between tadpole samples between years within each site are shown in 

Figs. 8A-F and Table S7 in the SI. At CT, significant separation was seen along PC2 

between tadpoles collected in 2014 and those collected in 2012/3 in regions largely 

associated with lipid and fatty acid esters, with some protein contribution. Along PC3, 

differences were confined to tadpoles collected in 2012 and those collected in 2013 in 

regions associated with amide I/II and lipid (Figs. 8A and 8B). At PF, like at CT, 

significant separation was seen between tadpoles collected in 2014 and those collected 

in 2012/3 in very similar regions: lipids and fatty acid esters. Along PC2, the 

differences at PF were confined to tadpoles collected in 2012 and those in 2013/14, 

again in lipid regions but mainly in amide I and II protein regions (Figs. 8C and 8D). 

Again at WH, significant separation was seen between tadpoles collected in 2014 and 

those collected in 2012/3, with lipid and protein regions indicated as before. There 

was also significant separation along PC2 between tadpoles collected in 2012 and 

those collected in 2013/14 in regions associated with amide I, but also in regions 

associated with symmetric phosphate stretching and glycogen (Figs. 8E and 8F). 

 



 

132 
 

Figure 8. Rana temporaria tadpoles collected from three different years (2012, 2013 

and 2014), separated into pond of origin and analysed with PCA following 

interrogation with ATR-FTIR spectroscopy. A. Scores and B. Loadings plots of 

tadpoles collected from CT; C. Scores and D. Loadings plots of tadpoles collected 

from PF and E. Scores and F. Loadings plots of tadpoles collected from WH. Ponds 

are: CT: a rural agricultural pond with minimal pesticide input; PF: an urban pond 

impacted by wastewater and landfill run-off and WH: an agricultural pond known to 

be impacted by pesticides. 
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Discussion 

Amphibians are sensitive to environmental pollution due to their life history and a 

tendency to show high site fidelity, thus allowing repeated exposure to environmental 

contaminants over time (Blaustein et al., 1994). Although species such as 

R.temporaria are relatively abundant (Beebee, 2014), they may serve as a useful 

sentinel species in environmental monitoring studies as a proxy for rarer species.  

This study has demonstrated that ATR-FTIR spectroscopy in conjunction with 

multivariate analysis and classification techniques is able to effectively distinguish 

between tadpoles of the common frog, R.temporaria collected from ponds with 

differing water quality over a three year period. This was in spite of annual 

differences, which were also apparent when the data were analysed each year. In 

contrast, the differences between years for spawn were much more profound than 

those between ponds, suggesting that annual differences masked many of the 

differences detected in the IR spectra of spawn collected from each pond. 

In biomedical studies involving disease screening, there naturally exists variation 

between individuals and possible confounding variables between samples (Bhargava 

et al., 2006; Lewis et al., 2010; Wood et al., 1998). Therefore screening programmes 

using spectroscopy must be specific enough to determine signatures attributable to a 

particular disease state in spite of ‘noise’ in the data. Chemometric processing of the 

data , often using multivariate methods is thus an important step in distinguishing 

between ‘healthy’ and ‘diseased’ tissues in these highly complex data sets. In addition, 

patients are matched for potentially confounding factors such as age or ethnicity 

where possible (Theophilou et al., 2015). 

In this study, there were minimal differences in body size between tadpoles (with the 

exception of head width between PF and CT tadpoles), when all of the data were 

analysed together, thus excluding body size as a reason for the separation and high 

classification rates seen between ponds. The differences between ponds were largely 

in areas associated with glycogen/carbohydrates and symmetric phosphate stretching, 

with some protein contribution. Glycogen, and to a lesser extent, protein, is utilised as 

an energy source in amphibians and may be depleted in response to stressful 

situations, such as exposure to environmental contaminants, as the organism attempts 

to maintain homeostasis by compensatory metabolic mechanisms, thus utilising 
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energy reserves (Dornelles and Oliveira, 2014; Melvin et al., 2013). The differences in 

symmetric phosphate may be reflective of the type of contaminants tadpoles were 

exposed to as the ponds studied were subject to run-off from agricultural and urban 

environments (Strong et al., 2016), which may be associated with genotoxicity (Ralph 

and Petras, 1997, 1998). However caution must be exercised in interpreting the results 

as by the nature of the study, tadpoles were exposed to a mixture of xenobiotics as 

well as varying nutrient levels and no one single factor can be elucidated. 

The differences between years for both tadpoles and spawn are unsurprising given the 

factors that may vary each year, such as temperature, and therefore date of spawning, 

food availability, competition and predation. Interestingly, the differences seen 

between tadpoles from different years were in different areas of the spectrum in 

comparison to the differences seen between tadpoles from different ponds. Between 

ponds, tadpoles varied in regions associated with carbohydrates and asymmetric and 

symmetric phosphate stretching with some protein contribution, whereas between 

years the differences were mainly confined to areas of the spectrum associated with 

lipids and proteins (mainly amide I and II). These differences may be tied to body size 

differences, as there was variability in tadpole body size parameters between years 

within each site. Tadpoles show developmental plasticity, where they are able to 

adjust their developmental rate according to environmental conditions, producing 

smaller individuals under conditions of low food availability and high population 

density (Alvarez and Nicieza, 2002; Audo et al., 1995; Beebee and Richard, 2000; 

Kupferberg, 1997). Although there were body size differences between tadpoles from 

PF and those from CT/WH in 2013/4, once tadpoles from PF were excluded from the 

analysis, thus excluding body size as a confounding factor, there was still significant 

separation between tadpoles from CT and those from WH in areas associated with 

amide I proteins, symmetric phosphate stretching and carbohydrates/glycogen.  

In contrast, the differences between spawn samples between ponds were in similar 

areas of the spectrum to those between years, being predominantly in areas associated 

with protein and lipids. This may account for the poorer separation and classification 

seen in spawn samples in comparison to tadpoles. There are several factors 

influencing the development of spawn including temperature, oxygen levels and 

maternal investment (Beattie et al., 1991; Carroll et al., 2009; Gillooly et al., 2002; 
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Loman, 2002; Neveu, 2009; Pakkasmaa et al., 2003; Seymour et al., 2000). 

Unfortunately these factors cannot be controlled for in a field study of this kind. 

Temperature is capable of influencing egg development markedly, with date of 

spawning significantly correlated with ambient water temperature (Carroll et al., 2009; 

Neveu, 2009). Indeed, there were differences seen in this study in terms of date of 

spawning, with frogs spawning in early/mid March in 2012 and 2014 (between 7th and 

16th March), whereas this was delayed in 2013 to late March/early April in 2013 (see 

Table 1 in SI), which was likely related to temperature, as average, minimum and 

maximum temperatures were lower around this time in 2013 (see Figs. S1A-C in the 

SI). Additionally in 2012, maximum temperatures were higher around the times of 

spawning in comparison to 2013 and 2014, which again may have influenced spawn 

development, with a reduction in clutch fecundity associated with extreme 

temperatures in the preceding year (Neveu, 2009). 

 

Conclusions 

This study demonstrated the use of ATR-FTIR spectroscopy as a monitoring tool in 

assessing the health of R.temporaria spawn and tadpoles from ponds with differing 

water quality over a three year period. While spawn appeared to be more influenced 

by annual factors such as temperature, thus showing relatively poorer separation 

between ponds with differing water quality, tadpoles were correctly classified by pond 

of origin up to 94% of the time, despite annual differences. The annual variation 

between tadpoles within ponds was generally confined to different areas of the 

spectrum to those between ponds, and may be related to body size differences, which 

also showed annual differences.  

As body size may influence biochemical parameters, it is recommended that any 

future study should ideally case-match individuals on the basis of their body size, 

developmental stage and where possible abiotic factors, such as temperature, pH and 

dissolved oxygen in order to control for such factors. In biomedical studies currently 

utilising IR spectroscopy in disease screening, patients are matched where possible to 

exclude confounding variables. With larger data sets and complementary laboratory 
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and mesocosm studies, IR spectroscopy could be a highly useful, cost-effective and 

rapid tool in monitoring amphibian health.  
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Supplementary Information:  

 

Number of Figures = 2 

 

Number of Tables = 7 

 

Table S1. Dates spawn samples of Rana temporaria were collected from the three 

ponds studied over a three year period. Ponds are CT: a rural agricultural pond with 

minimal pesticide impact, PF: an urban pond exposed to wastewater/landfill run-off 

and WH: an agricultural pond impacted by pesticides. 

Pond Year Date Collected 

CT 2012 07/03/2012 

CT 2013 11/04/2013 

CT 2014 07/03/2014 

PF 2012 16/03/2013 

PF 2013 27/03/2013 

PF 2014 12/03/2014 

WH 2012 07/03/2012 

WH 2013 11/04/2013 

WH 2014 07/03/2014 
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Table S2. Full details of tadpoles collected from each pond over the period 2012-

2014. Ponds are CT: a rural agricultural pond with minimal pesticide impact, PF: an 

urban pond exposed to wastewater/landfill run-off and WH: an agricultural pond 

impacted by pesticides. SVL = snout-vent-length, HW = head width, GS = Gosner 

Stage. 

Pond Year Collection 

Date 

Number SVL 

(mm) 

HW 

(mm) 

Mass 

(mg) 

BCI GS 

CT 2012 18/04/2012 1 7.22 4.64 59.00 15.68 25 

CT 2012 18/04/2012 2 6.87 3.82 60.90 18.78 25 

CT 2012 18/04/2012 3 8.03 4.83 84.70 16.36 25 

CT 2012 18/04/2012 4 7.00 4.34 52.00 15.16 27 

CT 2012 18/04/2012 5 5.86 3.42 25.00 12.42 25 

CT 2012 18/04/2012 6 5.74 3.52 33.00 17.45 25 

CT 2012 18/04/2012 7 6.55 3.73 35.00 12.46 25 

CT 2012 18/04/2012 8 9.32 6.06 84.00 10.38 25 

CT 2012 18/04/2012 9 6.15 3.50 34.70 14.92 28 

CT 2012 18/04/2012 10 6.17 3.78 26.00 11.07 25 

CT 2013 31/05/2013 1 6.88 3.70 60.90 18.70 25 

CT 2013 31/05/2013 2 6.96 4.47 66.40 19.69 26 

CT 2013 31/05/2013 3 7.36 4.29 74.20 18.61 26 

CT 2013 31/05/2013 4 6.63 3.98 52.30 17.95 26 

CT 2013 31/05/2013 5 7.66 4.36 68.40 15.22 25 

CT 2013 31/05/2013 6 7.61 4.64 80.60 18.29 26 

CT 2013 31/05/2013 7 7.20 4.06 61.50 16.48 26 

CT 2013 31/05/2013 8 7.77 4.49 84.70 18.06 27 

CT 2013 31/05/2013 9 6.76 3.73 59.60 19.29 27 

CT 2013 31/05/2013 10 6.64 4.08 52.70 18.00 25 

CT 2014 11/04/2014 1 4.69 2.74 25.00 24.23 25 

CT 2014 11/04/2014 2 5.13 2.78 28.00 20.74 25 

CT 2014 11/04/2014 3 4.02 2.29 14.00 21.55 25 

CT 2014 11/04/2014 4 5.47 2.89 22.00 13.44 25 

CT 2014 11/04/2014 5 4.77 3.05 23.00 21.19 25 

CT 2014 11/04/2014 6 5.09 2.96 24.00 18.20 25 

CT 2014 11/04/2014 7 6.28 3.20 40.00 16.15 25 

CT 2014 11/04/2014 8 5.87 3.15 25.00 12.36 25 

CT 2014 11/04/2014 9 5.57 2.80 23.00 13.31 25 

CT 2014 11/04/2014 10 5.15 2.96 25.00 18.30 25 

PF 2012 17/04/2012 1 8.60 5.18 84.00 13.21 26 

PF 2012 17/04/2012 2 6.44 3.04 40.00 14.98 25 

PF 2012 17/04/2012 3 7.16 4.16 61.50 16.75 25 

PF 2012 17/04/2012 4 6.17 2.97 26.00 11.07 25 

PF 2012 17/04/2012 5 6.16 3.47 34.70 14.85 25 

PF 2012 17/04/2012 6 7.42 4.41 74.20 18.16 25 

PF 2012 17/04/2012 7 7.20 3.57 61.50 16.48 26 

PF 2012 17/04/2012 8 7.54 4.47 80.60 18.80 26 

PF 2012 17/04/2012 9 6.84 3.95 60.90 19.03 26 

PF 2012 17/04/2012 10 6.84 3.95 60.90 19.03 25 

PF 2013 30/05/2015 1 4.72 2.11 18.80 17.88 25 

PF 2013 30/05/2015 2 4.81 2.81 25.20 22.64 25 

PF 2013 30/05/2015 3 5.50 2.99 35.20 21.16 25 

PF 2013 30/05/2015 4 6.15 2.95 34.70 14.92 26 

PF 2013 30/05/2015 5 4.99 2.31 21.60 17.38 26 

PF 2013 30/05/2015 6 5.26 2.28 16.40 11.27 25 
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PF 2013 30/05/2015 7 5.36 2.64 20.40 13.25 25 

PF 2013 30/05/2015 8 5.95 2.93 31.10 14.76 25 

PF 2013 30/05/2015 9 4.58 2.26 16.20 16.86 25 

PF 2013 30/05/2015 10 4.60 2.54 18.20 18.70 25 

PF 2014 16/04/2014 1 6.51 3.94 60.00 21.75 26 

PF 2014 16/04/2014 2 6.31 3.49 41.00 16.32 25 

PF 2014 16/04/2014 3 5.71 3.15 33.00 17.73 25 

PF 2014 16/04/2014 4 8.86 4.17 84.00 12.08 25 

PF 2014 16/04/2014 5 6.40 3.50 44.00 16.78 26 

PF 2014 16/04/2014 6 5.23 3.04 36.00 25.17 25 

PF 2014 16/04/2014 7 6.67 3.44 55.00 18.53 25 

PF 2014 16/04/2014 8 5.69 2.98 38.00 20.63 25 

PF 2014 16/04/2014 9 5.40 2.91 26.00 16.51 25 

PF 2014 16/04/2014 10 6.54 3.19 35.00 12.51 25 

WH 2012 18/04/2012 1 8.09 4.26 84.70 16.00 28 

WH 2012 18/04/2012 2 7.59 4.16 80.60 18.43 28 

WH 2012 18/04/2012 3 6.33 3.65 41.00 16.16 26 

WH 2012 18/04/2012 4 7.31 4.03 74.20 19.00 27 

WH 2012 18/04/2012 5 6.65 3.35 52.70 17.92 27 

WH 2012 18/04/2012 6 7.71 4.46 68.40 14.92 26 

WH 2012 18/04/2012 7 6.95 3.70 66.40 19.78 28 

WH 2012 18/04/2012 8 7.17 3.74 61.50 16.68 27 

WH 2012 18/04/2012 9 6.37 3.29 44.00 17.02 26 

WH 2012 18/04/2012 10 7.65 4.15 68.40 15.28 26 

WH 2013 31/05/2013 1 6.79 4.33 50.20 16.04 27 

WH 2013 31/05/2013 2 7.21 4.56 59.00 15.74 26 

WH 2013 31/05/2013 3 6.99 3.93 52.00 15.23 27 

WH 2013 31/05/2013 4 6.66 3.92 51.40 17.38 26 

WH 2013 31/05/2013 5 4.54 4.37 66.90 71.49 26 

WH 2013 31/05/2013 6 7.03 4.66 68.00 19.57 28 

WH 2013 31/05/2013 7 6.92 4.24 73.60 22.21 27 

WH 2013 31/05/2013 8 5.63 3.39 36.00 20.17 28 

WH 2013 31/05/2013 9 6.75 4.08 52.40 17.04 26 

WH 2013 31/05/2013 10 6.24 3.70 42.00 17.29 26 

WH 2014 11/04/2014 1 6.18 3.16 26.00 11.02 25 

WH 2014 11/04/2014 2 6.47 3.63 40.00 14.77 25 

WH 2014 11/04/2014 3 4.23 2.39 11.00 14.53 25 

WH 2014 11/04/2014 4 6.94 3.66 54.00 16.16 25 

WH 2014 11/04/2014 5 4.33 2.11 9.00 11.09 25 

WH 2014 11/04/2014 6 6.25 3.67 39.00 15.97 25 

WH 2014 11/04/2014 7 5.43 3.05 28.00 17.49 25 

WH 2014 11/04/2014 8 6.88 3.86 47.00 14.43 25 

WH 2014 11/04/2014 9 4.92 2.78 20.00 16.79 25 

WH 2014 11/04/2014 10 5.32 2.98 19.00 12.62 25 
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Table S3. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria spawn with ATR-FTIR spectroscopy following analysis 

with PCA. The five largest loadings values for the PCs which best separated the data 

are shown. Comparisons were made between sites for each year (2012, 2013, 2014) as 

follows: CT: a pond minimally impacted by pollutants; WH: a pond impacted by 

agricultural pollutants and PF: a pond impacted by urban pollutants. 

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Differences ≠ 

Spawn 2012    

PC4 1755 Lipid fatty acids CT a 

PF ab 

WH b 

1732 Fatty acid esters 

1462 CH2 acyl chain of lipid 

1624 Amide I, β-sheet 

1169 Asymmetric stretching CO-O-C 

 

PC6 1640 Amide I protein CT a 

PF b 

WH ab 

1609 Adenine vibration DNA 

1096 Phosphate II stretching (asymmetric) in 

RNA 

1034 Collagen 

995 Stretching of phosphate groups in RNA  

Spawn 2013    

PC1 1744 C=O stretching mode of lipids CT ab 

PF a 

WH b 

1628 Amide I 

1605 Asymmetric stretch polysaccharides/pectin 

1516 Amide II 

1466 CH2 scissoring mode of the lipid acyl chain 

 

PC2 

  

1728 C=O band CT a 

PF b 

WH b 

1620 Peak of nucleic acids due to the base 

carbonyl stretching and ring breathing mode 

1184 Amide III 

1100 Stretching PO2
- symmetric (phosphate II) 

1072 Nucleic acid band 

 

Spawn 2014    

PC1 1744 C=O stretching mode of lipids CT a 

PF a 

WH b 

1721 C=O stretching 

1628 Amide I 

1096 Asymmetric PO2
- stretching in RNA 

1026 Glycogen 

 

 

 

CT a 

PF b 

WH b 

PC3 1771 Fatty acid esters 

1694 Amide I vibration 

1647 Amide I 

1589 Ring C-C stretch of phenyl 

1516 Amide II 
¥ (Movasaghi et al., 2008; Naumann, 2001; Podrabsky et al., 2001) 
≠ Different letters denote a significant difference at the P < 0.05 level following one-

way ANOVA and Tukey’s multiple comparison tests. 
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Table S4. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria spawn with ATR-FTIR spectroscopy following analysis 

with PCA. The five largest loadings values for the two most discriminating PCs are 

shown. Comparisons were made between years for each site sampled. Sites are as 

follows: CT: a pond minimally impacted by pollutants; WH: a pond impacted by 

agricultural pollutants and PF: a pond impacted by urban pollutants. 

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Differences ≠ 

CT Spawn    

PC1 1744 C=O stretching of lipids 2012 a 

2013 b 

2014 b 

1705 C=O  stretching (bases) 

1624 Amide I, β-sheet 

1597 C=N, NH2 adenine 

1516 Amide II 

PC2 1659 Amide I 2012 a 

2013 b 

2014 a 

1612 Amide I 

1589 Ring C-C stretch of phenyl 

1539 Amide II 

1512 Amide II 

PF Spawn    

PC1 1744 C=O stretching of lipids 2012 a 

2013 b 

2014 b 

1624 Amide I, β-sheet 

1593 Ring C-C stretch of phenyl 

1516 Amide II 

1485 C-H deformation 

PC4 

  

1709 C=O stretching (bases) 2012 ab 

2013 a 

2014 b 

1659 Amide I 

1612 Amide I (carbonyl stretching vibrations in 

side chains of amino acids) 

1169 C-O bands from glycomaterials and 

proteins 

1069 Stretching C-O ribose 

WH Spawn    

PC1 1744 C=O stretching of lipids 2012 a 

2013 a 

2014 b 

1709 C=O stretching (bases) 

1628 Amide I (Intramolecular β-sheet) 

1605 Asymmetric stretching polysaccharides 

1516 Amide II 

PC2 1616 Amide I 2012 a 

2013 b 

2014 b 

1508 In-plane CH bending vibration from the 

phenyl rings 

1065 C-O stretching of ribose and 

phosphodiester 

991 C-O deoxyribose 

968 Phosphodiester region 
¥ (Movasaghi et al., 2008; Naumann, 2001; Podrabsky et al., 2001)  
≠ Different letters denote a significant difference at the P < 0.05 level following one-

way ANOVA and Tukey’s multiple comparison tests. 
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Table S5. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria tadpoles with ATR-FTIR spectroscopy following 

analysis with PCA. The five largest loadings values for the PCs which best separated 

the data are shown. Comparisons were made between sites for each year (2012, 2013, 

2014) as follows: CT: a pond minimally impacted by pollutants; WH: a pond 

impacted by agricultural pollutants and PF: a pond impacted by urban pollutants. 

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Differences ≠ 

Tadpole 2012    

PC1 1150 C-O stretching of carbohydrates CT a 

PF b 

WH b 

1076 Symmetric phosphate stretching 

1030 Glycogen 

1003 Sugar phosphate chain vibrations in 

nucleic acids 

957 Symmetric stretching vibration of 

phosphate 

 

PC3 1694 Amide I vibration CT a 

PF a 

WH b 

1624 Amide I, β-sheet 

1497 C=C, deformation C-H 

1462 CH2 acyl chain of lipid 

1034 Glycogen/collagen 

 

Tadpole 2013    

PC1 1130 Polysaccharides CT a 

PF b 

WH a 

1057 Stretching C-O deoxyribose 

1030 Glycogen 

999 Ring stretching vibration 

953 Phosphodiester region 

 

PC3 

  

1694 Amide I vibration CT a 

PF b 

WH c 

1497 C=C, deformation C-H 

1119 Symmetric stretching P-O-C 

1072 Nucleic acid band 

1042 Glycogen 

Tadpole 2014    

PC1 1744 C=O stretching mode of lipids CT a 

PF b 

WH a 

1721 C=O 

1643 Amide I band (from C=O stretching) 

1466 CH2 scissoring mode of the acyl chain 

of lipid 

1397 CH3 bending/deformation 

 

PC2 1748 Lipids/fatty acids (C=C) CT a 

PF a 

WH b 

1053 C-O stretching carbohydrates 

1030 Glycogen 

999 Ring stretching vibration 

953 Phosphodiester region 
¥ (Cakmak et al., 2006; Chu et al., 2001; Movasaghi et al., 2008; Palaniappan and 

Vijayasundaram, 2008). 
≠ Different letters denote a significant difference at the P < 0.05 level following one-

way ANOVA and Tukey’s multiple comparison tests. 
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Table S6. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria tadpoles with ATR-FTIR spectroscopy following 

analysis with PCA. The five largest loadings values for the principal components 

which best separated the data are shown. Tadpoles from PF were removed from 

analysis due to body size differences between tadpoles from this site and those from 

CT and WH; the loadings therefore represent the areas of the spectrum attributable to 

differences between CT and WH only. 

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Differences ≠ 

Tadpole 2013    

PC2 1744 C=O stretching mode of lipids CT a 

WH b 1497 C=C, deformation C-H 

1466 CH2 scissoring mode of the acyl 

chain of lipid 

1119 Symmetric stretching P-O-C 

1072 Nucleic acid band 

 

PC3 

  

1744 C=O stretching mode of lipids CT a 

WH b 1667 Amide I 

1636 Amide I 

1119 Symmetric stretching P-O-C 

1072 Nucleic acid band 

Tadpole 2014    

PC2 1744 C=O stretching mode of lipids CT a 

WH b 1115 Symmetric stretching P-O-C 

1053 C-O stretching carbohydrates 

1030 Glycogen 

1003 Sugar phosphate chain vibrations in 

nucleic acids 
¥ (Cakmak et al., 2006; Chu et al., 2001; Movasaghi et al., 2008; Palaniappan and 

Vijayasundaram, 2008). 
≠ Different letters denote a significant difference at the P < 0.05 level following 

analysis with two-sample t-tests. 
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Table S7. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of Rana temporaria tadpoles with ATR-FTIR spectroscopy following 

analysis with PCA. The five largest loadings values for the two most discriminating 

PCs are shown. Comparisons were made between years for each site sampled. Sites 

are as follows: CT: a pond minimally impacted by pollutants; WH: a pond impacted 

by agricultural pollutants and PF: a pond impacted by urban pollutants. 

Comparison Wavenumber 

(cm-1) 

Tentative Assignment ¥ Differences ≠ 

CT Tadpole    

PC2 1763 Lipid 2012 a 

2013 a 

2014 b 

1740 C=O stretching (lipids) 

1501 Amide II bending 

1466 CH2 scissoring mode of the acyl chain of 

lipid 

1173 C-O stretching of protein and carbohydrate 

PC3 1740 C=O stretching (lipids) 2012 a 

2013 b 

2014 ab 

1717 C=O stretching vibration  

1643 Amide I 

1547 Amide II 

1497 C=C, deformation C-H 

PF Tadpole    

PC1 1763 Fatty acid esters 2012 a 

2013 a 

2014 b 

1740 C=O stretching (lipids) 

1717 C=O stretching vibration 

1616 Amide I 

1466 CH2 scissoring mode of the acyl chain of 

lipid 

PC2 1748 Lipids/fatty acids (C=C) 2012 a 

2013 b 

2014 b 

1709 C=O stretching (bases) 

1636 Amide I 

1505 In-plane CH bending vibration from the 

phenyl rings 

1466 CH2 scissoring mode of the acyl chain of 

lipid 

WH Tadpole    

PC1 1744 C=O stretching (lipids) 2012 a 

2013 a 

2014 b 

1628 Amide I 

1462 CH2 scissoring mode of the acyl chain of 

lipid 

1400 Symmetric bending/stretching of methyl 

groups in proteins 

1173 C-O stretching of protein and carbohydrate 

PC2 1640 Amide I 2012 a 

2013 b 

2014 b 

1616 Amide I 

1119 Symmetric stretching P-O-C 

1092 Stretching PO2
- symmetric 

1034 Glycogen 
¥ (Cakmak et al., 2006; Chu et al., 2001; Movasaghi et al., 2008; Palaniappan and 

Vijayasundaram, 2008). 
≠ Different letters denote a significant difference at the P < 0.05 level following one-

way ANOVA and Tukey’s multiple comparison tests. 
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Figure S1. Maximum (A), minimum (B) and average (C) air temperatures collected 

from Hazelrigg Weather station at Lancaster University over two week time periods 

from a month before the beginning of the common frog breeding season to after 

metamorphosis of tadpoles.   
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Figure S2. Rana temporaria tadpoles collected from two different ponds separated 

into year groups and analysed with PCA following interrogation with ATR-FTIR 

spectroscopy. A. Scores and B. Loadings plots of tadpoles collected in 2013; C. 

Scores and D. Loadings plots of tadpoles collected in 2014. Ponds are: CT: a rural 

agricultural pond with minimal pesticide input and WH: an agricultural pond known 

to be impacted by pesticides. Tadpoles from PF were excluded from analysis due to 

body size differences. 
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Abstract 

Amphibians are undergoing large population declines in many regions around the 

world. As environmental pollution from both agricultural and urban sources has been 

implicated in such declines, there is a need for a biomonitoring approach to study 

potential impacts on this vulnerable class of organism. This study assessed the use of 

infrared (IR) spectroscopy as a tool to detect changes in several tissues (liver, muscle, 

kidney, heart and skin) of late-stage common frog (Rana temporaria) tadpoles 

collected from ponds with differing water quality. Small differences in spectral 

signatures were revealed between a rural agricultural pond and an urban pond 

receiving wastewater and landfill run-off; these were limited to the liver and heart, 

although large differences in body size were apparent, surprisingly with tadpoles from 

the urban site larger than those from the rural site. Large differences in liver spectra 

were found between tadpoles from the pesticide and nutrient impacted pond compared 

to the rural agricultural pond, particularly in regions associated with lipids. Liver mass 

and hepatosomatic indices were found to be significantly increased in tadpoles from 

the site impacted by pesticides and trace organic chemicals, suggestive of exposure to 

environmental contamination. Significant alterations were also found in muscle tissue 

between tadpoles from these two ponds in regions associated with glycogen, 

potentially indicative of a stress response. This study highlights the use of IR 

spectroscopy, a low-cost, rapid and reagent-free technique in the biomonitoring of a 

class of organisms susceptible to environmental degradation. 

Keywords: Amphibian declines; Environmental pollution; IR spectroscopy; Liver; 

Tadpoles 

Capsule: Infrared spectroscopy was used as a tool to detect contaminant-induced 

alterations in pro-metamorphic tadpoles of the common frog in a range of tissues.  
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Introduction 

Amphibians are facing large declines globally, with a number of hypotheses proposed 

to explain such declines, including habitat destruction, disease, climate change, UV 

radiation, predation and environmental contamination (Beebee and Griffiths, 2005; 

Blaustein et al., 2003; Mann et al., 2009; Stuart et al., 2004). Whilst no one factor is 

likely to be the sole cause of population decreases (Blaustein et al., 2011), it is known 

that amphibians may be particularly vulnerable to environmental contamination as 

their reproduction and larval development occurs in aquatic habitats, often adjacent to 

surface run-off from agricultural and urban sources (Mann et al., 2009; Ralph and 

Petras, 1997). This coupled with the permeable skin of amphibians, offering little 

protection against toxic contaminants (Blaustein et al., 2003), means that they are 

regarded as indicators of environmental stress (Blaustein and Wake, 1995). 

While amphibians are considered to be most vulnerable to environmental stress 

during early tadpole development (Bridges, 2000; Greulich and Pflugmacher, 2003), 

the effects of such exposure may have consequences in later development (Bridges, 

2000; Orton and Routledge, 2011; Orton and Tyler, 2014). This could include a 

smaller size at metamorphosis, exposing the juvenile amphibian to an increased risk 

of predation, or delayed development and metamorphosis, which could mean that the 

ephemeral ponds dry up before metamorphosis occurs (Altwegg and Reyer, 2003; 

Egea-Serrano et al., 2012; Hayes et al., 2006; Venturino et al., 2003). Thus, it is 

useful to determine the effects in the later stages of development prior to metamorphic 

climax. 

 A technique increasingly being employed to derive detailed information from 

biological samples is Fourier-transform infrared (FTIR) spectroscopy, which is used 

in three major sampling modes: transmission, reflectance or attenuated total reflection 

(ATR) (Kazarian and Chan, 2006). FTIR spectroscopy has been widely used in 

several biological applications including the diagnosis of disease states (Baker et al., 

2014; Bellisola and Sorio, 2012; Ellis and Goodacre, 2006; Kazarian and Chan, 2006; 

Movasaghi et al., 2008; Toyran et al., 2006), imaging of tissue composition (Greve et 

al., 2008; Purna Sai and Babu, 2001), identifying microorganisms (Mariey et al., 

2001; Naumann et al., 1991) and for analysing the effects of environmental 

contaminants at the cellular and tissue level (Abdel-Gawad et al., 2012; Cakmak et 
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al., 2006; Cakmak et al., 2003; Corte et al., 2010; Holman et al., 2000; Llabjani et al., 

2012; Malins et al., 2006; Obinaju et al., 2014; Palaniappan and Vijayasundaram, 

2008, 2009; Palaniappan et al., 2011; Ukpebor et al., 2011). 

The basic principle of FTIR spectroscopy is that when a sample is analysed with an 

IR beam, the functional groups within the sample vibrate in different ways in the mid-

IR region: stretching (asymmetric or symmetric) or deformations (mainly asymmetric 

and symmetric bending) (Bellisola and Sorio, 2012). The absorption can then be 

correlated to particular biochemical entities (e.g., DNA/RNA, carbohydrate, proteins 

and lipids) and the resultant spectrum viewed as an infrared fingerprint (Ellis and 

Goodacre, 2006). Using IR spectroscopy is advantageous as this technique is label-

free, thus allowing samples to be used subsequently for other applications, rapid, 

reagent-free, and cost-effective as minimal sample preparation is required (Baker et 

al., 2014; Kazarian and Chan, 2006). 

FTIR spectroscopy generates large detailed datasets so is often coupled with a 

multivariate approach such as principal component analysis (PCA) or linear 

discriminant analysis (LDA) to extract useful information from the resulting IR 

absorbance spectrum (Ellis and Goodacre, 2006). Used in this manner, FTIR 

spectroscopy is able to distinguish between different groups on the basis of their 

biochemical fingerprint and also identifies which wavenumbers, and therefore which 

chemical bonds are altered between samples (Trevisan et al., 2012). Additionally, use 

of derivative spectra may allow more detailed examination of overlapping peaks in 

the spectrum, thus allowing the quantification of particular biochemical constituents 

(Rieppo et al., 2012). 

The aim of this study was to determine whether tadpoles of the Common frog, Rana 

temporaria, at a pro-metamorphic stage in development, i.e., following the emergence 

and development of hindlimbs [Gosner stage 38-40 (Gosner, 1960)] collected from 

ponds with varying water quality could be distinguished on the basis of their ATR-

FTIR  spectral fingerprint. Detection of underlying differences may suggest the 

possible application of IR spectroscopy as an environmental monitoring tool. Liver 

and muscle samples were taken from individual tadpoles and analysed with ATR-

FTIR spectroscopy; previous studies in amphibians using other techniques have 

demonstrated changes in metabolic constituents such as lipid, protein and glycogen 
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following exposure to environmental contaminants in these tissues (Dornelles and 

Oliveira, 2014; Gendron et al., 1997; Gurushankara et al., 2007; Melvin et al., 2013). 

Other tissues less routinely used in assessing amphibian health (heart, kidney and 

skin) were also analysed in this study, thus providing spectral fingerprints of several 

different tissues of an amphibian species. Although applied to fish in several studies 

(Cakmak et al., 2006; Henczova et al., 2008; Malins et al., 2006; Malins et al., 2004; 

Obinaju et al., 2014), this is the first time to our knowledge that IR spectroscopy has 

been used to characterise amphibian tissue. 

 

Materials and Methods 

Pond Selection 

Sites were selected in order to give a comparison between agricultural and urban 

ponds and were based on site characteristics and information from landowners/land 

managers.  

1. Whinton Hill (WH), Plumpton, Cumbria is a farm consisting primarily of 

arable land, which is routinely sprayed with herbicides and fungicides. The 

pond surveyed was the shallow pond of a pair of deep and shallow ponds (32 

m long × 8 m wide x 0.5 m deep), located in a boggy field, and fed by a field 

drain from approximately 30 ha (3×105 m2) of farmland. 

2. Crake Trees (CT), Crosby Ravensworth is a farm used as beef grazing land 

and marginal arable land, which has been accepted onto Natural England’s 

Higher Level Environmental Stewardship Scheme and uses minimal quantities 

of pesticides, with buffer zones to prevent pesticide run-off into water courses. 

The pond surveyed was the second pond of a pair of shallow ponds (each 17 m 

long × 6 m wide x 0.5 m deep), located in a field corner, and fed by surface 

runoff from approximately 20 ha (2×105 m2) of farmland. 

The ponds surveyed at WH and CT are part of the MOPS2 (Mitigation 

Options for Phosphorus and Sediment) project monitored by Lancaster 

University (http://mops2.diffusepollution.info/). 

http://mops2.diffusepollution.info/
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3. Pennington Flash Country Park (PF) located in Leigh, Lancashire is a site 

managed by Wigan and Leigh Culture Trust. The ‘Flash’ is a large lake 

formed over time by mining subsidence. The southern part of the Flash was 

filled with domestic waste during the 1950s to prevent the regular flooding of 

nearby St Helen’s Road. The pond sampled is adjacent to Westleigh Brook, 

which receives treated wastewater from Leigh wastewater treatment works. 

Water sampling 

Samples of surface water (15-20 cm depth) were collected over the amphibian 

breeding season (March-August) in 2012. Water samples for organics analysis were 

only available from PF for March and April, and March, April and June for nutrient 

analysis. Water samples were collected in methanol-rinsed amber bottles for organics 

analysis and acid-washed bottles for nutrient analysis and then stored at 4°C until 

analysis. 

Chemical analysis 

The concentrations of trace metals (Al, Fe, Mg, Ca, K and Na) were determined in 

filtered acidified water samples (1% HNO3) using ICP-OES (Perkin Elmer DV 7300) 

while concentrations of major anions (Cl, NO3-N, SO4-S) as well as phosphate, 

ammonium and total organic N (TON) were determined using colorimetric methods 

performed by the Centre for Ecology and Hydrology (Lancaster) in a quality-assured, 

previously published method (Neal et al., 2000). For trace organic chemical analysis, 

800 mL of sample water (adjusted to pH 9.5 with borate buffer) underwent liquid-

liquid (1:1) extraction using dichloromethane (DCM) on a laboratory shaker 

(Gerhardt Shaker LS-500) followed by separation and evaporation of the DCM on a 

rotary evaporator (rotavapor Büchi R-210). The concentrated DCM extracts (700 μL) 

underwent initial qualitative screening using GC-MS (Agilent 6890N GC and Agilent 

5973 single quad MS) operated by ChemStation software (D.02.00.275) with 

subsequent mass spectral identification using Mass Hunter software and comparison 

to the NIST spectral library. The following chemicals were detected: aniline, 

metazachlor, acetochlor, dimetachlor, triethylphosphate, tributylphosphate, tris(2-

chloroethyl)phosphate, tris(1-chloro-2-propyl)phosphate and flusilazole. These 

compounds were quantitatively analysed using authentic standards using a 7-point 
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calibration, with standards ranging from 0-2000 ng/L for each analyte. Internal 

standards comprising of 13C-labelled aniline, acetochlor and metalochlor were added 

to sample extracts and calibration standards prior to analysis. Limits of quantification 

(LOQ) ranged from 5-10 ng/L (aniline 200 ng/L) with recoveries based on spiked 

water samples ranging from 80-120%. Water samples were also analysed for more 

polar, water-soluble compounds. For this analysis, 10 mL of a water sample was 

filtered (using a 0.2 µm RC syringe filter), spiked with internal standards and analysis 

performed on a Waters Acquity Binary Ultra Performance Liquid Chromatograph 

(UPLC) (Waters Corporation, Milford, USA) coupled to a Waters Premier XE triple 

quadrupole mass spectrometer (LC-MS/MS) operated by MassLynx software V 

4.1.The MS was operated in electrospray positive (ESI+) ionisation mode with 

multiple reaction monitoring (MRM). A 250 μL aliquot was injected via an 

autosampler, with analyte separation performed under a MeOH/H2O (with 5 mmol/L 

ammonium acetate added to both phases) mobile gradient eluted through an Acquity 

BEH C18 column (1.7 µm, 2.1 mm × 50 mm) fitted with a VanGuard Acquity 

precolumn. The following compounds, including pesticides and pharmaceuticals, 

were qualified/quantified: chlorotoluron, isproturon, caffeine, tebuconazole, 

prochloraz, carbendazim, gabapentin, acetaminophen, benzotriazole, benzotriazole-

methyl, ketoprofen, dimethyl-chlorotoluron, metconazole, spiroxamine, boscalid, and 

erythromycin. Samples were analysed separately for glyphosate and its degradation 

by-product, aminomethylphosphonic acid (AMPA), using LC-MS/MS. For the 

analysis of glyphosate and AMPA, 8 mL of a water sample was acidified to pH 1 

(addition of 160 μL of 6 M HCl) and subject to derivatisation using 9-fluorenylmethyl 

chloroformate using a previously published method (Ibáñez et al., 2006). Analytes 

were separated using the same LC-MS/MS instrument and method above. Internal 

standards comprised of 1,2-13C2 15N Glyphosate and 13C 15N AMPA with a 7-point 

calibration with standards ranging from 0 to 2000 ng/L. Ionisation was through ESI+ 

(precursor ions) and MRM (product ions). LOQs were 10 ng/L for both glyphosate 

and AMPA with recoveries ranging from 70-130% (water spiked with internal 

standards). 
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Tadpole collection 

Tadpoles of R. temporaria were collected over a two-year period. In 2012, tadpoles 

were collected from CT and PF (five from each pond), and in 2013 tadpoles were 

collected from CT and WH (ten from each pond). Tadpoles were collected at Gosner 

stage 38-40, when hindlimbs were fully emerged and toes developed. Stages 30-40 

are considered to be relatively stable regarding key traits, before the more dramatic 

changes in metamorphosis occur after stage 41 (Gosner, 1960). Tadpoles were caught 

using dip nets, euthanized using a solution of MS-222 (400 mg/L) buffered with 

sodium bicarbonate (both from Sigma Aldrich, Poole, Dorset UK) in accordance with 

Schedule 1 of the British Home Office Animals (Scientific Procedures) Act 1986. 

Tadpoles were then rinsed in distilled water and fixed immediately in the field in 70% 

ethanol (Fisher Scientific, UK). A small slit was made into the abdomen of each 

tadpole to allow the fixative to penetrate all of the tissues adequately. Ethanol was 

replaced after 24 hours with fresh solution. Measurements were taken of snout-to-vent 

length (SVL), head width (HW), body mass and tail length for all tadpoles; liver 

weights were also taken for tadpoles collected from CT and WH in 2013. After 

fixation, the following organs were excised: liver, kidney, heart, muscle, and skin, and 

slices (~0.5 mm thick) taken using a Stadie-Riggs tissue slicer; a technique previously 

employed for preparing tissue samples for spectroscopy studies (Maher et al., 2014; 

Obinaju et al., 2014; Taylor et al., 2011). Slices of each organ were mounted onto 

Low-E reflective glass slides (Kevley Technologies, Chesterland, OH, USA), dried 

overnight and stored in a desiccator before subsequent interrogation with ATR-FTIR 

spectroscopy. 

ATR-FTIR spectroscopy 

Spectra of each sample were obtained using a Tensor 27 FTIR spectrometer with 

Helios ATR attachment (Bruker Optics Ltd, Coventry, UK) containing a diamond 

crystal (≈250 μm × 250 μm sampling area). Spectra were acquired at 8 cm-1 resolution 

with 2× zero-filling, giving a data-spacing of 4 cm-1 over the range 400-4000 cm-1. 

Ten-25 spectra were acquired from each sample; these were averaged in order to give 

a representative spectrum per organ/tadpole. Distilled water was used to clean the 

crystal in between analysis of each sample. A new background reading was taken 
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prior to the analysis of each sample in order to account for changes in atmospheric 

conditions. 

Spectral pre-processing 

Spectra were cut at the biochemical cell fingerprint region (1800-900 cm-1), baseline 

corrected using Savitzky-Golay (SG) 2nd order differentiation (2nd order polynomial 

and 9 filter coefficients), and vector normalised. Processing the data with second 

derivative spectroscopy allows overlapping peaks in the absorbance spectrum to be 

resolved, thus allowing more detailed analysis of particular peaks. By taking second 

derivatives, constant and linear components of baseline errors are also removed 

(Rieppo et al., 2012). For broad spectra the derivative intensity decreases with 

increasing derivative order, whereas for sharp spectra, the reverse is true. Therefore 

the underlying shape of the spectrum determines the intensity of the derivative 

spectrum, with flat peaks decreasing in intensity with each derivative order, and sharp 

peaks increasing in intensity, thus allowing small sharp peaks overlapped by broad 

flat peaks to be exposed (Kus et al.). 

 SG derivation is applied by fitting a simple polynomial to a small section of given 

size to the spectrum and calculates the derivative of the polynomial in the centre point 

of this section (Rinnan et al., 2009). In this study, a 2nd order polynomial and nine 

smoothing points were employed in the SG algorithm. This resulted in the loss of 4 

wavenumbers from each end of the spectrum as a symmetric window smoothing is 

used requiring the number of data points on each side of the centre point to be the 

same, and the number of wavenumbers lost equals the number of smoothing points 

minus one (Rinnan et al., 2009). The polynomial order and number of smoothing 

points was selected based upon a compromise between noise removal and signal 

distortion as no method exists which is able to eliminate all noise without losing 

important information. A small number of smoothing points and a high polynomial 

degree can give a noisy spectrum, whereas a large number of smoothing points and a 

low polynomial degree can distort the spectrum (Vivó-Truyols and Schoenmakers, 

2006). 
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Multivariate analysis 

Principal component analysis (PCA) 

Spectral data for each tissue were analysed using principal components analysis 

(PCA) for exploratory analysis. PCA is a technique, which allows the large amount of 

data generated by IR spectroscopy to be reduced into a smaller number of principal 

components while retaining the majority of the variance in the dataset. PCA is an 

unsupervised technique which looks for inherent similarities in the data and groups 

them the way the data ‘naturally’ cluster and is useful for small data sets (Ellis and 

Goodacre, 2006). PCA generates scores and loadings: scores represent each spectrum 

as a single data point and allow one to see if the points cluster together, suggesting 

similarity, or away from each other, suggesting differences. Corresponding loadings 

from PCA demonstrate which wavenumbers are responsible for the separation of the 

scores in a dataset (Trevisan et al., 2012). 

After the data were mean-centred, PCA was employed to reduce the 227 absorbance 

values into 10 principal components (PCs), which represented >95% of the variance 

in the datasets. The most statistically significant PCs were retained, as these 

represented the best separation in the data (see Table S1 in Electronic Supplementary 

Information [ESI] for P-values of scores for each PC for each tissue) (Malins et al., 

2006; Malins et al., 2004). Loadings from the most significant PCs were used to 

identify wavenumbers accounting for the separation between ponds. A peak detecting 

algorithm was employed to determine the five largest loadings values (constrained by 

a minimum of 20 cm-1 spacing between values). 

Linear discriminant analysis (LDA) 

In addition to PCA, linear discriminant analysis (LDA) was also employed to improve 

the discrimination between the spectra of tissues between ponds. LDA is a supervised 

technique (the class groupings are known a priori) which maximises the differences 

between classes, while minimising within-class heterogeneity (Martínez and Kak, 

2001). For small datasets, like the ones in this study, LDA alone can over-fit the data, 

resulting in good data separation by chance, as the number of variables 

(wavenumbers) are much larger than the number of samples, therefore a data 
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reduction technique is necessary to overcome this (Gromski et al., 2015). In this case, 

PCA was used prior to LDA to reduce the variables to a smaller number of PCs, 

which still represented ~95% of the variance in the data (see SI table S2 for the 

number of PCs selected for each data set). PCA also removes colinearity between 

variables (Gromski et al., 2015). 

Data were standardised prior to the application of PCA-LDA and leave-one-out cross 

validation, where a small portion of the data set is used to train the model was used, 

again to prevent over-fitting and so as to prevent bias in the output (Trevisan et al., 

2012). The output from PCA-LDA again generates scores and loading plots, however 

this technique generates n-1 linear discriminants (LDs), which optimally separate n 

classes; in the case of this study a one-dimensional scores plot and one loading is 

generated per data set. To aid with the interpretation of the scores plots, a linear 

discriminant classifier (LDC) was also employed, which uses the same principle as 

LDA but fits a Gaussian classifier to separate the data and provides a % classification 

rate for each data set (Trevisan et al., 2012). Data were standardised and cross-

validated as before. 

Comparison of absorbance values 

Detailed quantification of differences between samples at specific wavenumbers was 

also implemented using absorbance values from the second derivatives; this has 

previously been used to quantify the biochemical entities in biological samples 

following analysis with vibrational spectroscopy (Rieppo et al., 2012). The second 

derivative has its maximum value at the same wavelength as the underlying 

absorbance peak, but in the opposite (negative) direction (Mark and Workman Jr, 

2010). 

All spectral pre-processing and data analysis was implemented using the IRootLab 

toolbox https://code.google.com/p/irootlab/ (Martin et al., 2010; Trevisan et al., 2013) 

in Matlab (r2012a) (The MathWorks, Inc., USA), unless otherwise stated. 

  

https://code.google.com/p/irootlab/
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Statistical analysis  

Body condition indices (BCI) were calculated for each tadpole as follows: (body 

mass/SVL3) × 100 (Melvin et al., 2013). Hepatosomatic indices (HSI) were also 

calculated for tadpoles collected from CT and WH in 2013 as follows (liver 

mass/body mass) × 100. 

Two-sample t-tests were used in order compare SVL, HW, tail length, body mass, 

BCI, and where indicated, liver mass and HSI between tadpoles collected from the 

two ponds within each year group. Tadpoles were not compared between years in 

order to control for the differences present due to annual factors, rather than factors 

due to the pond itself. Data were tested for normality and homogeneity of variances, 

the results of which indicated that parametric analysis was appropriate. 

Two-sample t-tests were also used to compare absorbance values for each organ from 

second-derivatives between ponds within each year group and to compare the 

statistical significance of the scores for each PC and each LD. All statistical analyses 

were carried out in XL Stat (Addinsoft, Paris, France). 

Results and discussion 

Water quality analysis 

Water samples were collected from March-August to cover the amphibian-breeding period 

and to determine water quality status given the classification of the ponds based on their land-

use data. Data for the major anions and cations are presented in Table 1. Nitrate 

concentrations remained low (<3 mg/L) at all sites throughout the sampling period reaching 

the highest levels in August at CT, March at PF and April at WH. Phosphate concentrations 

were low at all three sites during the March sampling period (<0.08 mg/L) but were higher in 

April at PF and WH, at levels of 0.3 and 0.6 mg/L respectively, which are considered 

relatively high for UK surface waters (UKTAG, 2013; Williams et al., 2004). Phosphate 

levels remained high at WH during June (0.58 mg/L), coinciding with the start of 

metamorphosis, whereas phosphate levels were much lower at both CT and PF during this 

time (0.12 and 0.17 mg/L respectively).  

Results from the analysis of water samples for trace organic chemicals are shown in 

Table 2. Screening of the water samples collected from CT, PF and WH revealed 
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large differences in the organic contaminants detected. CT and PF appeared to be the 

least contaminated sites; xenobiotics detected in water samples from these sites 

included caffeine, several OP flame retardants and the pharmaceutical drugs 

acetaminophen and gabapentin, commonly found in surface waters (Mompelat et al., 

2009). Both sites also had detectable levels of aminomethylphosphonic acid (AMPA), 

the degradation product of glyphosate. Aminomethylphosphonic acid may also form 

following the degradation of other phosphonate compounds including detergents, so is 

not necessarily indicative of glyphosate residue (Botta et al., 2009; Van Stempvoort et 

al., 2014).  However, as glyphosate was also detected at PF and AMPA levels were 

higher here than at CT, this suggests that glyphosate was the likely source. 

Interestingly, relatively high levels of benzotriazole and benzotriazole-methyl were 

detected at CT. These compounds are commonly used as corrosion inhibitors so may 

have leached from farm machinery etc and they were frequently detected in a recent 

European-wide survey of river water (Loos et al., 2009). Water samples collected 

from PF also showed detectable levels of naphthalene, which has previously been 

associated with detrimental effects in aquatic species, although at much higher 

concentrations than those found in this study (Farré et al., 2008; Pillard et al., 2001). 

Water samples collected from WH demonstrated relatively high levels of aniline, a 

compound generated during the degradation of several herbicides and pesticides (Xiao 

et al., 2007) early in the season. In contrast to CT, the other agricultural site, several 

pesticides, particularly fungicides were detected at WH during April and June: these 

included carbendazim, flusilazole, tebuconazole, boscalid, dimethachlor, 

chlorotoluron, metconazole and glyphosate. Carbendazim and flusilazole displayed 

the highest concentrations in April, with much lower levels in June and August. 

Glyphosate and boscalid showed the highest concentrations in June, coinciding with 

tadpole metamorphosis, but with much lower levels by August. Like CT, WH showed 

detectable levels of the corrosion inhibitors benzotriazole and benzotriazole-methyl. 
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Table 1. Analysis of water samples for inorganic anions and cations collected from CT: a rural agricultural pond with no pesticide input; WH: 1 

an agricultural pond known to be impacted by pesticides and PF: an urban pond impacted by wastewater and landfill run-off. Water samples 2 

were collected during the breeding season of Rana temporaria (March-August). Values marked < LD were below limit of detection. 3 

Anion/Cation (mg/L) CT Mar CT Apr CT Jun CT Aug PF Mar PF Apr PF Jun WH Mar WH Apr WH Jun WH Aug 

Al < LD  < LD < LD < LD < LD < LD < LD < LD < LD < LD < LD 

Ca  84.4 77.6 64.8 105 46.3 36.8 30.7 53.2 56.6 33.3 47.9 

Cl  9.06 10.4 2.98 8.44 21.6 11.6 11.4 64.1 47.8 36.1 15.1 

Fe  0.47 0.007 0.019 0.014 0.008 0.76 0.095 0.026 0.03 0.15 0.016 

K  1.97 1.57 0.507 0.811 3.88 4.01 5.27 11.3 18.1 11.5 10.4 

Mg  2.95 4.37 5.09 4.74 10.0 7.99 6.00 9.35 10.7 5.54 8.96 

Na  4.88 4.97 3.03 4.95 15.0 9.82 9.27 38.8 37.2 24.6 12.6 

NH4-N 0.028 0.412 1.47 0.014 0.06 0.128 1.28 0.303 0.282 5.50 0.033 

NO3-N  < 0.001 0.219 0.012 1.62 0.427 1.18 0.016 0.01 2.49 0.017 0.912 

PO4-P  0.029 0.033 0.121 0.15 0.068 0.304 0.17 0.006 0.639 0.584 0.089 

SO4-S 0.706 0.195 0.124 0.225 6.59 2.61 1.30 9.92 12.7 2.70 11.6 
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Table 2. Organic contaminant analysis of water samples collected from CT: a rural agricultural pond with no pesticide input; WH: an 

agricultural pond known to be impacted by pesticides and PF: an urban pond impacted by wastewater and landfill run-off. Water samples were 

collected to coincide with the breeding season of Rana temporaria (March-August). Values marked < LD were below limit of detection. 

Chemical (ng/L) CT Mar CT Apr CT Jun CT Aug PF Mar PF Apr WH Mar WH Apr WH Jun WH Aug 

Naphthalene <LD <LD <LD <LD 10 <LD <LD <LD <LD <LD 
Aniline <LD <LD <LD <LD <LD <LD 1100 <LD <LD <LD 
Dimethachlor <LD <LD <LD <LD <LD <LD <LD 26 49 <LD 

Chlorotoluron <LD <LD <LD <LD <LD <LD <LD 23 52 <LD 

Caffeine <LD 441 <LD <LD <LD 107 <LD <LD 200 103 

Glyphosate <LD <LD <LD <LD 40 <LD <LD 50 2310 50 

AMPA <LD 150 <LD 45 130 658 <LD 1470 1040 39 

Tebuconazole <LD <LD <LD <LD <LD <LD 76 <LD 34 109 

Carbendazim <LD <LD <LD <LD <LD <LD <LD 866 76 <LD 

TEP <LD <LD <LD <LD 11 11 <LD <LD 160 <LD 

TBP <LD 13 <LD <LD <LD <LD <LD <LD <LD <LD 
TCEP <LD 26 <LD <LD 190 12 <LD 7.2 42 5.7 

TCPP 15 125 <LD 20 142 314 25 1600 539 187 

Flusilazole <LD <LD <LD <LD <LD <LD <LD 552 30 26 

Gabapentin <LD <LD 23 25 75 <LD 21 <LD 56 <LD 

Acetaminophen <LD <LD 34 35 20 <LD 50 33 41 29 

Benzotriazole <LD <LD <LD <LD <LD <LD <LD 85 206 47 

Benzotriazole-methyl <LD <LD 1520 53 <LD <LD <LD 268 263 60 

Ketoprofen <LD <LD <LD <LD <LD <LD <LD <LD 13 <LD 

Desmethyl-chlrotoluron <LD <LD <LD 35 <LD <LD <LD <LD <LD <LD 
Metconalzole <LD <LD <LD <LD <LD <LD <LD <LD 14 <LD 

Spiroxamin <LD <LD <LD <LD <LD <LD 30 <LD <LD <LD 
Boscalid <LD <LD <LD <LD <LD <LD <LD <LD 122 19 

Erythromycin <LD <LD <LD <LD <LD <LD <LD 181 24 <LD 
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All three sites showed detectable levels of OP flame retardants, the particular type 

varying between each site: TEP present at PF and WH but absent from CT; TBP only 

present at CT. TCPP and TCEP were detected at all three sites, with TCPP generally 

detected at the highest levels, particularly at WH, where it reached a maximum level 

of 1600 ng/L, which is similar to that found in other studies, where it is the dominant 

OP flame retardant (van der Veen and de Boer, 2012).  These compounds are 

frequently detected in surface waters due to their lack of biodegradability in 

wastewater treatment (Fries and Puttmann, 2003; Regnery and Püttmann, 2010) . As 

PF receives treated wastewater as well as run-off from landfill, this may explain the 

higher levels found here. 

Body measurements 

As shown in Figure 1, tadpoles from PF (2012) were significantly larger than those 

from CT (2012) on all measures of body size (Fig. 1A-D); tadpoles from PF also had 

a significantly higher BCI (Fig. 1E), as determined by two sample t-tests (SVL: t8 

=4.02, P =0.004; HW: t8 =2.83, P =0.022; tail length: t8 =4.67, P =0.002; body mass: 

t8 =5.28, P =0.0007; BCI: t8 =3.08, P =0.015). This finding is somewhat unexpected 

considering that CT is regarded as the pond with better water quality. However, there 

were many factors not measured in this study that could account for the differences. 

Such factors include selection pressures such as predation/presence of competing 

species, population density, food availability, abiotic factors (pH, temperature and 

dissolved oxygen), and changes in pond depth. 



 

172 
 

Figure 1. Comparison of body size parameters of pro-metamorphic Rana temporaria 

tadpoles collected in 2012 from CT: a rural agricultural pond with no pesticide input 

and PF: an urban pond impacted by wastewater and landfill run-off. Measurements 

are snout-vent-length (SVL), (A), head width (HW), (B), tail length, (C), body mass, 

(D) and body condition index (BCI), (E). Two-sample t-tests were used to compare 

each body size parameter. Different letters denote a significant difference (P <0.05). 

 

In contrast, tadpoles collected from CT (2013) only differed from those collected 

from WH (2013) on measures of tail length and body mass (Fig. 2A-E); tadpoles from 

CT were significantly larger on these two measures (Two sample t-test: SVL: t18 

=1.41, P =0.17; HW: t18 =0.57, P =0.57; tail length: t18 =2.40, P =0.027; body mass: 

t18 =2.22, P =0.04; BCI: t18 =1.16, P =0.26). Additional measurements were made for 

tadpoles from CT (2013) and those from WH (2013) of liver mass and HSI (Fig. 2F 

and 2G), with the finding that tadpoles from WH had significantly larger values of 

liver mass and HSI than those from CT (Two sample t-test: liver mass: t18 =2.31, P 

=0.033; LSI: t18 =4.23, P =0.0005). Again, the differences in body mass and tail 

length could simply be due to uncontrolled factors such as food availability and pond 

size (Vences et al., 2002). However, the greater liver mass and HSI of tadpoles from 

WH in comparison to those from CT is indicative of liver inflammation or growth 

abnormalities (Olivares et al., 2010). Larger livers may be reflective of biochemical 

changes that occur as an organism attempts to maintain homeostasis and have been 

associated with exposure to environmental contaminants in aquatic species, including 
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amphibians (Edwards et al., 2006; Kim et al., 2013; Lowe-Jinde and Niimi, 1984; 

Melvin et al., 2013; Tetreault et al., 2003). Therefore the larger HSI seen in tadpoles 

from WH, coupled with their smaller mass and tail length is a clear indicator of 

environmental stress most likely attributable to poor water quality and marked by 

environmental contamination through agricultural run-off at this site. 

 

Figure 2. Comparison of body size parameters of pro-metamorphic Rana temporaria 

tadpoles collected in 2013 from a CT: a rural agricultural pond with no pesticide input 

and WH: an agricultural pond known to be impacted by pesticides. Measurements are 

snout-vent-length (SVL), (A), head width (HW), (B), tail length, (C), body mass, (D), 

body condition index (BCI), (E), liver mass (F), and hepatosomatic index (HSI), (G). 

Two-sample t-tests were used to compare each body size parameter. Different letters 

denote a significant difference (P <0.05). 

 

Rana temporaria tadpoles, like other species, are able to show developmental 

plasticity, where developmental rate is adjusted according to environmental 

conditions, producing smaller metamorphs under conditions of low food availability 

and high population density. Food availability and quality may also affect 



 

174 
 

metamorphic performance and body size, with higher protein diets associated with a 

larger size at metamorphosis, (Alvarez and Nicieza, 2002; Audo et al., 1995; Beebee 

and Richard, 2000; Kupferberg, 1997) although this can vary with species (Castañeda 

et al., 2006). Therefore there is uncertainty regarding the effect of these uncontrolled 

factors and their interactions on body size parameters and a future study would aim to 

control such factors. Tadpoles collected in this study were at stages 38-40; a stage of 

development regarded as pro-metamorphic and defined as when the hindlimbs emerge 

and differentiate (Chambers et al., 2011; Gosner, 1960). Whilst slight differences in 

developmental stage can impact on size, the stages between 30-40 are considered to 

be one of stability in the development of key traits (Gosner, 1960). The body size of 

tadpoles peaks in late pro-metamorphosis before forelimb emergence (stage 42) and 

declines during metamorphic climax (Alvarez and Nicieza, 2002). Therefore as the 

tadpoles collected in this study were at a late stage in pro-metamorphosis, but before 

metamorphic climax, the differences in size are unlikely to be due to this factor. 

ATR-FTIR spectroscopy 

Figures 3A-F show the 2-dimensional scores plots and corresponding loadings 

following PCA for tissues which separated significantly in tadpoles collected from CT 

(2012) and PF (2012) (tentative assignments in Table S3 in ESI); 1-dimensional 

scores plots are shown in Figures S1A-E in ESI, with corresponding statistical and 

classifier analysis shown in Tables S4 and S5 respectively with tentative assignments 

in Table S6. Figures 4A-E show the mean spectra for each tissue type following 

second derivative analysis. Figures 5A-E show the 2-dimensional scores plots 

following PCA for tissues analysed from tadpoles collected from CT (2013) and WH 

(2013); corresponding loadings are shown in figure 6A-D (tentative assignments in 

Table S3 in ESI), with 1-dimensional scores plots following analysis with PCA-LDA 

shown in Fig S2A-E in ESI; corresponding statistical and classifier analysis are 

shown in Tables S4 and S5, respectively, with tentative assignments in Table S6. 

Figures 7A-E show the mean spectra for each tissue type following second derivative 

analysis. Table 3 shows a list of all the major second derivative peaks from each 

tissue and their corresponding tentative assignments. Raw spectra are shown in 

Figures S3 and S4 in ESI. 
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Liver samples 

Results from ATR-FTIR spectroscopy demonstrated that the liver was the tissue 

which best-distinguished tadpoles collected from CT or PF in 2012, and also tadpoles 

collected from CT or WH in 2013. This is perhaps expected, as the liver is the organ 

responsible for metabolism of xenobiotics in vertebrates, including amphibians; 

therefore any changes induced by environmental contamination may be detected here 

(Fenoglio et al., 2011). In addition, the liver is an energy store in tadpoles, and lipids, 

protein and glycogen are utilised for the completion of metamorphosis (Sheridan and 

Kao, 1998); thus changes in the levels of these constituents may be reflective of the 

energy status and thus condition of the tadpole (Melvin et al., 2013). However, other 

factors such as food availability and composition and predation may also impact the 

stress status of amphibians in synergy with chemical-insult (Relyea and Mills, 2001). 

This must be taken into account in the interpretation of the results and is a limitation 

of this study. 

Comparison of liver samples from tadpoles collected from CT (2012) and those from 

PF (2012) demonstrated significant separation along PC1 (Fig. 3A), following PCA 

which was associated with alterations in C-O ribose (991 cm-1), carbohydrate (1153 

cm-1), Amide II (1516 cm-1), C=N cytosine (1601 cm-1) and Amide I β-sheets (1624 

cm-1) as seen in the loadings plot in Figure 3B and Table S3 (see ESI). Further 

analysis with PCA-LDA led to improved separation in the scores plot (see ESI Fig. 

S1A), with a correct classification rate of 99 and 90% for CT and PF respectively (see 

Tables S4 and S5 in ESI). Loadings were in regions associated with carbohydrates 

and proteins as before, as well as some lipid contribution (Table S6 in ESI). Analysis 

of the second derivative peak heights also showed significant differences between 

tadpole livers from CT (2012) and those from PF (2012) in regions associated with 

protein (Amide I and II), with the finding that peak heights in these regions were 

larger in tadpole livers from PF (2012) in comparison to those from CT (2012) (Table 

3, Fig. 4A). 



 

176 
 

 

Figure 3. Two-dimensional scores plots and significant loadings following principal 

components analysis (PCA) of ATR-FTIR spectra obtained from several different 

tissues taken from Rana temporaria pro-metamorphic tadpoles. Tissues are liver (A: 

scores, B: loadings), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were 

collected in 2012 from CT: a rural agricultural pond with no pesticide input or PF: an 

urban pond impacted by wastewater and landfill run-off (n = 10). Two sample t-tests 

were employed to detect differences in the PC scores between ponds within each year. 

Asterisks indicate a P-value of <0.05 (*) or <0.01 (**). Values in parentheses show 

the contribution of each principal component to the overall variance. 
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 Figure 4. Second derivative mean spectra of tissues taken from Rana temporaria 

pro-metamorphic tadpoles. Spectra were cut at the biochemical fingerprint region 

(1800-900 cm-1), processed with Savitzky-Golay second-order differentiation and 

vector-normalised.  Tissues are liver (A), muscle (B), heart (C), kidney (D) and skin 

(E). Tadpoles were collected in 2012, from CT: a rural agricultural pond with no 

pesticide input or PF: an urban pond impacted by wastewater and landfill run-off 

(n=10). Peaks are labelled with the corresponding wavenumbers. Two sample t-tests 

were employed to detect differences in the second derivative peak height at each 

labelled peak between ponds within each year.  Asterisks indicate a P-value of <0.05 

(*) or <0.01 (**). 
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Results from PCA demonstrated that tadpole livers from CT (2013) segregated from 

tadpole livers from WH (2013) along PCs 1 and 4 (Fig. 5A); the major loadings 

accounting for this separation were in regions assigned as C-O ribose, (988-991 cm-1), 

glycogen (1022 cm-1), symmetric phosphate stretching vibrations  (1080 cm-1), Amide 

I (1616, 1624, 1639 and 1697 cm-1) and stretching of triglycerides (1744 cm-1), as 

shown in Fig. 6A and Table S3 (see ESI). Supervised analysis with PCA-LDA 

showed an improvement in the separation of the data in the scores plot with a high 

classification accuracy of 98% and 100% for CT and WH respectively, as shown in 

Fig. S2A and Table S4 in ESI. Loadings associated with this separation were again in 

regions assigned as carbohydrates, proteins and lipids (Table S6 in ESI). Analysis of 

the second derivative peak heights showed larger peak heights in regions associated 

with proteins (both Amide I and II) and symmetric phosphate stretching vibrations in 

tadpole livers from WH (2013) in comparison to CT (2013); however, in regions 

associated with lipids, peak heights were larger in tadpole livers from CT (2013) 

(Table 3 and Fig. 7A). 

Lipid levels are generally low in pre-metamorphic tadpoles, rising during pro-

metamorphosis, as lipids are the main energy source metabolised during metamorphic 

climax (Sheridan and Kao, 1998). As the tadpoles in this study were at the pro-

metamorphic stage of development (emergence of hindlimbs), it was expected that a 

clear lipid peak would be present in the liver (Figs. 4A and 7A, see ESI Figs. S3A and 

S4A). Previous studies have demonstrated changes in lipid levels in the livers of 

tadpoles and adult amphibians exposed to pesticides, with some reporting a decrease 

(Dornelles and Oliveira, 2014; Gurushankara et al., 2007), while others report an 

increase (Melvin et al., 2013) or no change (Zaya et al., 2011). Although no 

differences in hepatic lipid levels were detected between tadpoles collected in 2012 

from CT and PF, tadpoles collected in 2013 from WH had significantly lower levels 

of hepatic lipid than those from CT in the same year. This coupled with the finding 

that tadpoles from WH had significantly larger livers than those from CT is 

suggestive of exposure to an environmental stressor, which may have resulted in the 

tadpoles using the lipid stored in the liver as an energy source to overcome the 

noxious stimuli and maintain homeostasis. 
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 Figure 5. Two-dimensional scores plots following principal components analysis 

(PCA) of ATR-FTIR spectra obtained from several different tissues taken from Rana 

temporaria pro-metamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), 

kidney (D) and skin (E). Tadpoles were collected in 2013 from CT: a rural 

agricultural pond with no pesticide input or WH: an agricultural pond known to be 

impacted by pesticides (n=20). Two sample t-tests were employed to detect 

differences in the PC scores between ponds within each year. Asterisks indicate a P 

value of <0.05 (*) or <0.01 (**). Values in parentheses show the contribution of each 

principal component to the overall variance. 
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Glycogen levels may be altered in amphibian livers exposed to environmental stress 

due to contaminant exposure or hypoxia (Gendron et al., 1997; Loumbourdis and 

Kyriakopoulou-Sklavounou, 1991); levels may decrease as the organism utilises this 

energy source in order to overcome the stressful situation. Results from PCA 

demonstrated separation between tadpole livers from CT (2012) and those from PF 

(2012) along PC1, with one of the largest identified loadings associated with 

carbohydrates including glycogen (1153 cm-1). Separation along PC4 between 

tadpoles from CT (2013) and those from WH (2013) also had some contribution from 

glycogen (1022 cm-1). 

Protein levels were also found to be altered in tadpole livers collected from CT (2012) 

in comparison to those from PF (2012), and between tadpole livers from CT (2013) 

and those from WH (2013), with the finding that tadpoles from CT had lower protein 

levels than those from the other two sites. This is unexpected as CT is considered to 

have the best water quality based on the analysis conducted in this study. Reduced 

protein levels have previously been associated with pesticide exposure/hypoxia in 

amphibian livers (Dornelles and Oliveira, 2014). However, increased protein levels 

have also been associated with pesticide exposure in the livers of fish, with the 

suggestion that higher protein synthesis is initiated to compensate for protein loss, 

leading to a higher protein turnover (Oruç and Üner, 1999). 

Muscle samples 

No significant differences were detected between tadpole muscle samples from CT 

(2012) and those from PF (2012) following analysis with either PCA or PCA-LDA 

(Figs. 3C, 4B and S1B in ESI). In contrast, the comparison of muscle tissue from 

tadpoles collected from CT (2013) and WH (2013) with PCA demonstrated separation 

along PC1 (Fig. 5B) in regions associated with the OCH3 band of polysaccharides 

(972 cm-1) glycogen (1022 cm-1), C-O stretching of the phosphodiester and ribose 

(1065 cm-1), carbohydrates (1154 cm-1) and Amide II (1501 cm-1), as shown in the 

loadings plot in Figure 6B and Table S3 (see ESI). Analysis with PCA-LDA led to 

some improvement in the separation of the data in the scores plot, with a reasonable 

classification accuracy of 71% and 80% for tadpoles from CT and WH respectively 

(Fig. S2B and Tables S4 and S5 in ESI). Loadings confirmed separation based upon 

changes in the phosphodiester and protein regions, with additional contributions from 
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lipids (Table S6 in ESI). Second derivative peak heights show greater absorbance in 

muscle samples from CT (2013) in regions associated with glycogen, carbohydrates, 

symmetric phosphate and Amide I and II; in regions associated with asymmetric 

phosphate stretching vibrations, and Amide III, peaks heights were larger in tadpole 

muscle samples from WH (2013) (Fig. 7B, Table 3). 

 Figure 6. Loadings plots following PCA of ATR-FTIR spectra obtained from several 

different tissues taken from Rana temporaria pro-metamorphic tadpoles. A: Liver; B: 

Muscle; C: Kidney; D: Skin.  Ponds are as follows: CT: a rural agricultural pond with 

no pesticide input; WH: an agricultural pond known to be impacted by pesticides. 

 

Lower levels of both glycogen and protein have previously been found in muscle 

samples from tadpoles exposed to pesticides (Dornelles and Oliveira, 2014). Reduced 

glycogen levels in muscle tissues have also been associated with pesticide-induced 

stress in several species of fish, where glycogenolysis and glycolysis occur in order to 

provide more energy so that the organism can overcome stressful stimuli (Ferrando 

and Andreu-Moliner, 1991; Gluth and Hanke, 1985; Oruç and Üner, 1999). 

Other Tissues: heart, kidney and skin 

Differences between the other tissues analysed: heart, kidney and skin were small in 

comparison to the differences in liver and muscle tissue. Whilst analysis with PCA 
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showed no significant differences between hearts from tadpoles collected from CT 

(2012) and those from PF (2012) (Fig. 3D), the use of PCA-LDA led to an 

improvement in data separation, as shown in Fig. S1C, and Tables S4 and S5 in the 

ESI. The largest loadings values accounting for the separation were in regions 

associated with symmetric phosphate stretching vibrations (1088 cm-1) as well as 

carbohydrates (1138 cm-1) and collagen (1196 cm-1), as shown in Table S6 (see ESI). 

Analysis of the second derivative peak heights revealed a significant difference at the 

peak associated with asymmetric phosphate stretching; where it was larger at CT 

(2012) than PF (2012) as shown in Figure 4C. Tadpole hearts collected from CT 

(2013) and WH (2013) demonstrated some separation along PC3 following PCA (Fig. 

5C), but this was not statistically significant (P =0.06); however a significant 

improvement in data separation was seen when PCA-LDA was employed, with a 

classification accuracy of 76% and 71% for tadpoles from CT and WH respectively 

(Fig S2C and Table S4 and S5 in ESI) Loadings values confirmed the separation in 

regions assigned as collagen and protein (Amide I) as shown in Table S6 (see ESI). 

Analysis of the second derivative peak heights demonstrated significant differences 

between CT (2013) and WH (2013) in the region associated with CH3 bending of 

lipids, where peak height was smaller at CT than WH, and in the Amide I region, 

where the peak height was larger at CT in comparison to WH (Fig 7C, Table 3). 

Previous work in fish has also shown differences in heart tissue in fish collected from 

polluted rivers, in regions associated with Amide I and lipids, as measured with ATR-

FTIR spectroscopy (Obinaju et al., 2014). Whilst no previous spectroscopic 

measurements of tadpole hearts have been published, it is known that cardiac output 

in tadpoles may be altered in response to stressful situations induced by xenobiotics 

(Costa et al., 2008). Future work could attempt to correlate differences in cardiac 

output with the spectral signature. 

No significant differences were found in the spectral signature of tadpole kidney 

samples collected from CT (2012) or PF (2012) when analysed with either PCA or 

PCA-LDA (Figs. 3E and 4D, Fig. S1D in ESI). However, PCA revealed significant 

separation between kidney samples from tadpoles from CT (2013) and those from 

WH (2013) as shown in Fig. 5D. Loadings from PCA revealed that these differences 

were attributable to protein (Amide I and II) and lipid alterations (Fig. 6C, see ESI 

Table S2).  
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 Figure 7. Second derivative mean spectra of tissues taken from Rana temporaria 

pro-metamorphic tadpoles. Spectra were cut at the biochemical fingerprint region 

(1800-900 cm-1), processed with Savitzky-Golay second-order differentiation and 

vector-normalised.  Tissues are liver (A), muscle (B), heart (C), kidney (D) and skin 

(E). Tadpoles were collected in 2013, from CT: a rural agricultural pond with no 

pesticide input or WH: an agricultural pond known to be impacted by pesticides 

(n=20). Peaks are labelled with the corresponding wavenumbers. Two sample t-tests 

were employed to detect differences in the second derivative peak height at each 

labelled peak between ponds within each year.  Asterisks indicate a P-value of <0.05 

(*) or <0.01 (**). 
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Analysis with PCA-LDA actually led to poorer data separation, as shown in Fig S2D 

and Tables S4 and S4 in ESI, which may occur when working with small datasets, as 

in this study (Martínez and Kak, 2001). Second derivative peak analysis also 

confirmed alterations associated with Amide I/stretching of fatty acids at 1670 cm-1, 

with kidney samples from CT having a larger peak height than those from WH (Fig 

7D, Table 3). The kidney, like the liver is susceptible to the effects of several 

toxicants, with a previous study in amphibians finding differences in the structure and 

histochemistry of kidney samples from adult frogs collected from polluted compared 

to unpolluted sites (Fenoglio et al., 2011). Alterations in the kidneys of fish from 

polluted sites have previously been detected using ATR-FTIR spectroscopy; these 

were also in regions associated with Amide I and II of proteins, as in this study; 

however, no alterations in lipids were detected, in contrast to that found in this study 

(Obinaju et al., 2014). 

There were no differences detected in the tadpole skin samples from CT (2012) in 

comparison to those from PF (2012) when the data were analysed with PCA, PCA-

LDA or using the peak absorbances (Fig. 3F and 4E, Table 3, Fig. S1E; Tables S4 and 

S5 in ESI). In contrast, skin samples taken from tadpoles from CT (2013) and WH 

(2013) showed some separation along PC3 following PCA (Fig. 5E); this was mainly 

in regions associated with Amide I (1616, 1640 cm-1), with some contribution from 

lipids (1497, 1694 cm-1), as shown in the loadings plot in Fig. 6D and Table S3 (see 

ESI). The use of PCA-LDA led to improved data separation as shown in the scores 

plot in Fig. S2E and Tables S4 and S5, associated with Amide I proteins as before, 

with some contributions from collagen and C-O stretching of carbohydrates (Table S6 

in ESI). Analysis of second derivative peak heights showed no significant differences 

between skin samples from CT (2013) and WH (2013) (Fig. 7E, Table 3). That some 

separation was apparent between skin samples is of note, given that the skin is the 

first organ that environmental contaminants come into contact with in amphibian 

species. The skin of amphibians is permeable to water, where it plays a vital role in 

respiration and osmoregulation; therefore the skin provides a significant exposure 

route to chemicals in addition to that from ingestion and has previously been proposed 

as a bioindicator of deleterious environmental conditions, with structural changes 

detected following exposure to environmental contaminants (Bernabò et al., 2013; 

Fenoglio et al., 2009; Fenoglio et al., 2006; Haslam et al., 2014). The skin of larval 
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amphibians may also be more susceptible to chemical insult than that of adults due to 

the lack of specialised cells and many of the detoxifying enzymes, which are present 

in adults (Fenoglio et al., 2009). 

Table 3. Wavenumbers and assigned bands of infrared peaks following ATR-FTIR 

analysis of several organs of pro-metamorphic Rana temporaria tadpoles. Absorbance 

values of second derivatives were compared between CT: a rural agricultural pond 

with no pesticide input and PF: an urban pond impacted by wastewater and landfill 

run-off in 2012 and between CT and WH: an agricultural pond known to be impacted 

by pesticides in 2013.  

Tissue Wavenumber 

(cm-1) 

Proposed Assignment a CT vs. PF 

(2012) 

CT vs. WH 

(2013) 

Liver 991 C-O ribose1 NS CT < WH * 

1018 Glycogen1 NS NS 

1080 PO2− symmetric stretching: nucleic 

acids and phospholipids 2, 3 

C-O stretch: glycogen 2, 3 

NS CT < WH ** 

1111 v(CO), v(CC) ring 

(polysaccharides, cellulose) 1 

NS NS 

1150 CO-O-C asymmetric stretching: 

glycogen and nucleic acids 2, 3 

NS NS 

1238 PO2- asymmetric stretch: mainly 

nucleic acids with the little 

contribution from phospholipids 2, 3 

NS CT < WH * 

1335 δ(CH), ring (polysaccharides, 

pectin) 

NS CT < WH ** 

1373 Deformation N-H, C-H 1 NS CT > WH ** 

1412 COO symmetric stretch: fatty acids 

and amino acids 4 

NS NS 

1462 CH2 bending of lipids 2, 3 NS CT > WH ** 

1516 Amide II 1 NS CT < WH ** 

1531 Amide II 1 CT < PF ** CT < WH ** 

1624 Amide I β-sheets 5 CT < PF ** CT < WH ** 

1651 Amide I protein α-helix 2, 3, 5 CT < PF * NS 

1744 Ester C-O stretch: triglycerides, 

cholesterol esters 2, 3 

 

NS CT > WH ** 

Muscle 995 C-O ribose, C-C 1 NS CT > WH** 

 1026 Glycogen 1 NS CT > WH ** 

 1080 PO2
- symmetric stretch: nucleic 

acids and phospholipids C–O 

stretch: glycogen 6 

NS CT > WH ** 

 1115 Symmetric stretching P-O-C 1 NS NS 

 1157 C-O stretching of protein and 

carbohydrates 1 

NS CT > WH ** 

 1235 PO2
- asymmetric stretch: mainly 

nucleic acids with little 

contribution from phospholipids 6 

NS CT < WH * 

 1312 Amide III of proteins 1 NS CT < WH * 

 1393 COO- symmetric stretch: fatty 

acids and amino acids 6 

NS CT < WH * 
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 1447 CH2 bending mainly lipids 6  NS NS 

 1512 Amide II, C-H bending 1 NS CT < WH * 

 1532 Amide II stretching C=N, C=C 1 NS CT > WH * 

 1624 Amide I β-sheets 5 NS NS 

 1647 Amide I 1 NS CT > WH * 

 1670 Amide I (anti-parallel β-sheet)  

v(C=C) trans, lipids, fatty acids 1 

NS NS 

 1690 Peak of nucleic acid due to ring 

breathing mode and base carbonyl 

stretching 1 

NS NS 

 1744 C=O stretching lipids 1, 4 

 

NS NS 

Heart 

 

964 C-O deoxyribose, C-C 1 NS NS 

1026 Glycogen 1 NS NS 

1053 V C-O and δ C-O of carbohydrates 
1 

NS NS 

1080 PO2− symmetric stretching: nucleic 

acids and phospholipids  7 

C-O stretch: glycogen 2, 3 

NS NS 

1115 Symmetric stretching P-O-C 1 NS NS 

1161 C-O asymmetric stretching of 

glycogen 7, 8 

NS NS 

1231 PO2
- asymmetric stretching: 

phospholipids, nucleic acids 2 

CT > PF * NS 

1312 Amide III band of proteins 1 NS NS 

1389 CH3 bending: lipids 7 NS CT < WH ** 

1447 CH2 bending mainly lipids 6 NS NS 

1512 Amide II, C-H bending 1 NS NS 

1624 Amide I β-sheets 5 NS NS 

1643 Amide I, C=O stretching vibrations 
1 

NS NS 

1670 Amide I (anti-parallel β-sheet)  

v(C=C) trans, lipids, fatty acids 1 

NS CT > WH ** 

1690 Peak of nucleic acid due to ring 

breathing mode and base carbonyl 

stretching 1 

NS NS 

1744 C=O stretching lipids 1, 4 

 

NS NS 

Kidney 964 C-O deoxyribose, C-C 1 NS NS 

 1026 Glycogen 1 NS NS 

 1057 C-O stretching, polysaccharides 8 NS NS 

 1080 PO2- symmetric stretching of 

nucleic acids 

NS NS 

 1115 Symmetric stretching P-O-C 1 NS NS 

 1161 C-O asymmetric stretching of 

glycogen 8 

NS NS 

 1231 PO2- asymmetric stretching of 

mainly phospholipids 8 

NS NS 

 1312 Amide III band of proteins 1 NS NS 

 1393 COO- symmetric stretch of fatty 

acids and amino acids 8 

NS NS 

 1447 Asymmetric CH3 bending of the 

methyl groups of proteins 1 

NS NS 

 1516 Amide II 1 NS NS 

 1532 Amide II stretching C=N, C=C NS NS 
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 1624 Amide I β-sheets 5 NS NS 

 1647 Amide I 1 NS NS 

 1670 Amide I (anti-parallel β-sheet)  

v(C=C) trans, lipids, fatty acids 1 

NS CT > WH * 

 1690 Peak of nucleic acid due to ring 

breathing mode and base carbonyl 

stretching 1 

NS NS 

 1744 C=O stretching of lipids 1 

 

NS NS 

Skin 964 C-O deoxyribose, C-C 1 NS NS 

 1030 Collagen 1 

v(CC), lipid cis 9 

NS NS 

 1080 v(CC), lipid trans 9 NS NS 

 1119 v(CC), lipid trans 9 NS NS 

 1165 ν(CC), δ(COH) 9 NS NS 

 1231 Amide III protein 1, 10 NS NS 

 1312 Amide II protein 1 NS NS 

 1393 δ[C(CH3)2] symmetric 1,9 NS NS 

 1447 δ[C(CH3)2] symmetric 1 NS NS 

 1512 Amide II1 1 NS NS 

 1543 Amide II 1 NS NS 

 1624 ν(C=O), amide I, β 9 NS NS 

 1643 Collagen 10 

ν(C=O), amide I, α 9 

NS NS 

 1690 Amide I1 1 NS NS 

 1744 Lipid 1 NS NS 

v: stretching; δ: deformation  
a Sources 1. Movasaghi et al. (2008) 2. Cakmak et al. (2003) 3. Cakmak et al. (2006) 4. 

Abdel-Gawad et al. (2012) 5. Palaniappan et al. (2011) 6. Palaniappan et al. (2008) 7. Toyran 

et al. (2006) 8. Palaniappan et al. (2009). 9. Greve et al. 2008 10. Purna Sai et al. (2001). 

Asterisks denote significance at the P <0.05 level (*), and P <0.01 level (**). NS = not 

significant. 

 

Conclusions 

ATR-FTIR spectroscopy is capable of detecting differences in a range of tissue 

samples from tadpoles of the Common frog collected from ponds with varying water 

quality and different types of environmental contamination. Interestingly, despite the 

unexpected finding that tadpoles from the urban pond were on average larger than 

those from the rural pesticide-free agricultural pond, the differences in tissues 

detected by ATR-FTIR spectroscopy were relatively small and mainly found in the 

liver. In contrast, the differences between tadpoles from the rural pesticide-free 

agricultural and pesticide-impacted agricultural pond were detected in multiple 

tissues, most notably the liver and muscle. 

The liver was the organ that consistently distinguished tadpoles collected from the 

relatively unpolluted agricultural pond, and ponds with pollutants associated with 
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urban and agricultural activity. Tadpoles collected from the pesticide-impacted 

agricultural pond also had relatively larger livers and reduced lipid levels; a finding 

associated with exposure to environmental contaminants such as pesticides and other 

trace organic pollutants, although the effect of raised nutrient levels (such as nitrate 

and phosphate), possibly in synergy with other pollutants, needs to be investigated. 

Interactions with other factors such as food availability and predation may also affect 

these parameters; therefore any future study should attempt to control these 

conditions. Clear differences were also apparent in the muscle tissue of tadpoles from 

a pond with no pesticide input and those from a pond impacted by several pesticides. 

This finding was also apparent to a lesser extent in the kidney, heart and skin of these 

tadpoles. 

This study is the first to characterise a range of tissues from an amphibian species 

with ATR-FTIR spectroscopy. Additionally, this study demonstrates the possible use 

of this technique as a rapid and cost-effective environmental monitoring tool. This 

technology could be of great promise as an early warning for assessing the health of 

amphibian populations exposed to varying or diminished water quality. 
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Table S1. Results from two-sample t-tests of the scores generated from principal 

component analysis for the first ten principal components following ATR-FTIR 

spectrochemical analysis of several tissues of Rana temporaria tadpoles. Significant 

results are highlighted in bold. 

PC Liver P-value Muscle P-

value 

Heart P-value Kidney P-

value 

Skin P-value 

CT 

vs. 

PF 

CT vs. 

WH 

CT 

vs. 

PF 

CT vs. 

WH 

CT 

vs. PF 

CT vs. 

WH 

CT 

vs. PF 

CT vs. 

WH 

CT 

vs. PF 

CT vs. 

WH 

1 < 

0.01 < 0.01 0.25 < 0.01 0.20 0.10 0.18 0.17 0.62 0.51 

2 0.89 0.38 0.31 0.33 0.15 0.25 0.65 0.36 0.49 0.25 

3 0.20 0.61 0.86 0.55 0.58 0.06 0.20 0.15 0.21 0.03 

4 0.95 0.04 0.29 0.69 0.81 0.59 0.98 0.64 0.40 0.26 

5 0.51 0.08 0.19 0.19 0.22 0.15 0.18 0.99 0.57 0.18 

6 0.77 0.58 0.32 0.71 0.82 0.70 0.66 0.28 0.08 0.36 

7 0.61 0.87 0.19 0.22 0.95 0.95 0.21 0.02 0.70 0.71 

8 1.00 0.26 0.94 0.87 0.95 0.75 0.39 0.23 0.17 0.12 

9 0.83 0.63 0.56 0.93 0.51 0.18 0.58 0.21 0.78 0.76 

10 0.87 0.50 0.50 0.61 0.70 0.78 0.50 0.89 0.41 0.57 

 

 

 

 

 

 

 

Table S2. Number of principal components (PCs) retained for input into a cross-

validated linear discriminant analysis (LDA) model for optimum discrimination and 

classification. The Pareto tool function in Matlab was used to determine the number 

of PCs that represented 95% of the variance in each data set. 

Tissue Number of PCs 

CT vs. PF 2012 CT vs. WH 2013 

Heart 14 17 

Kidney 9 16 

Liver 6 11 

Muscle 11 16 

Skin 11 18 

 

 

 

 



198 
 

Table S3. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of several organs of pro-metamorphic Rana temporaria tadpoles with ATR-

FTIR spectroscopy following analysis with principal component analysis (PCA). The 

five largest loadings values for the most discriminating principal components are 

shown. Comparisons were made between tadpoles from CT: a rural agricultural pond 

with no pesticide input and PF: an urban pond impacted by wastewater and landfill 

run-off in 2012 and between tadpoles from CT and those from WH: an agricultural 

pond known to be impacted by pesticides in 2013. Sources: (Abdel-Gawad et al., 

2012; Cakmak et al., 2006; Cakmak et al., 2003; Greve et al., 2008; Movasaghi et al., 

2008; Palaniappan and Vijayasundaram, 2008, 2009; Palaniappan et al., 2011; Purna 

Sai and Babu, 2001; Toyran et al., 2006). 

Site 

Comparison 

Organ Wavenumber (cm-1) Proposed Assignment 

CT vs. PF 

2012 PC1 

Liver 991 C-O ribose 

1153 CO-O-C asymmetric stretching: 

glycogen and nucleic acids 

1516 Amide II 

1601 C=N cytosine 

1624 Amide I β-sheets 

 

CT vs. WH 

2013 PC1 

Liver 968 C-O deoxyribose, C-C 

991 C-O ribose 

1080 PO2
− symmetric stretching: nucleic acids 

and phospholipids 

1624 Amide I β-sheets 

1744 Ester C-O stretch: triglycerides, 

cholesterol ester 

CT vs. WH 

2013 PC4 

988 C-O ribose 

1022 Glycogen 

1616 Amide I  

1639 Amide I 

1697 Base region 

    

CT vs. WH 

2013 PC1 

Muscle 972 OCH3 band of polysaccharides 

1022 Glycogen 

1065 C-O stretching of the phosphodiester and 

ribose 

1154 Carbohydrates 

1501 Amide II 

CT vs. WH 

2013 PC7 

Kidney 1535 Amide II stretching 

1613 Amide I 

1643 Amide I 

1682 Amide I random coils 

1751 

 

Lipid 

CT vs. WH 

2013 PC3 

Skin 1497 Lipid 

1616 Amide I 

1640 Amide I 

1670 Amide I (antiparallel β-sheet)  

v(C=C) trans, lipids, fatty acids 

1694 Amide I (antiparallel β-sheet) 
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Table S4. Results from two-sample t-tests of the scores generated from principal 

component analysis-linear discriminant analysis (PCA-LDA) for the first linear 

discriminant (LD1) following ATR-FTIR spectrochemical analysis of several tissues 

of Rana temporaria tadpoles. Significant results are highlighted in bold. 

Tissue P value 

CT vs. PF 2012 CT vs. WH 2013 

Heart 0.03 < 0.001 

Kidney 0.57 0.39 

Liver 0.02 < 0.001 

Muscle 0.81 < 0.001 

Skin 0.54 0.01 

 

 

 

 

 

 

Table S5. Results of classification accuracy (± standard deviation) for ATR-FTIR 

spectra of several tissues of Rana temporaria tadpoles with principal component 

analysis-linear discriminant classifier (PCA-LDC). 

Tissue Classification Rate (%) 

CT (2012) PF (2012) CT (2013) WH (2013) 

Heart 68.40 ± 22.20 64.40 ± 32.81 76.00 ± 26.33 71.11 ± 36.89 

Kidney 60.40 ± 37.41 44.00 ± 37.84 68.00 ± 31.20 51.11 ± 38.73 

Liver  99.20 ± 1.79 90.00 ± 15.14 98.00 ± 6.32 100 ± 0 

Muscle 34.98 ± 24.97 64.80 ± 39.44 71.00 ± 34.79 80.00 ± 25.39 

Skin 55.20 ± 16.83 54.40 ± 23.60 66.00 ± 26.33 66.67 ± 34.64   
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Table S6. Distinguishing wavenumbers and proposed assignments obtained from 

analysis of several organs of pro-metamorphic Rana temporaria tadpoles with ATR-

FTIR spectroscopy following analysis with principal component analysis-linear 

discriminant analysis (PCA-LDA). The five largest loadings values are shown. 

Comparisons were made between tadpoles from CT: a rural agricultural pond with no 

pesticide input and PF: an urban pond impacted by wastewater and landfill run-off in 

2012 and between tadpoles from CT and those from WH: an agricultural pond known 

to be impacted by pesticides in 2013. Sources: (Abdel-Gawad et al., 2012; Cakmak et 

al., 2006; Cakmak et al., 2003; Greve et al., 2008; Movasaghi et al., 2008; 

Palaniappan and Vijayasundaram, 2008, 2009; Palaniappan et al., 2011; Purna Sai and 

Babu, 2001; Toyran et al., 2006). 

Site 

comparison 

Organ Wavenumber (cm-1) Proposed Assignment 

CT vs. PF 

2012 

Liver 1115 Symmetric stretching P-O-C 

1138 Carbohydrates 

1192 Phosphodiester stretching 

1624 Amide I β-sheets 

1732 

 

C=O stretch lipids 

CT vs. PF 

2012 

Heart 941 Phosphodiester region 

  1088 Symmetric phosphate stretching vibrations 

  1138 Carbohydrates 

  1196 Collagen 

  1273 CH rocking 

CT vs. WH 

2013 

Liver 1161 Stretching vibrations of hydrogen-bonding 

C-OH groups 

1454 CH2 bending of lipids with some protein 

contribution 

1651 Amide I 

1690 Peak of nucleic acids due to carbonyl 

stretching 

1724 

 

C=O stretching of fatty acid esters 

CT vs. WH 

2013 

Muscle 988 Phosphodiester region 

1111 Symmetric stretching P-O-C 

1605 DNA vibration 

1651 Amide I 

1755 

 

C=C lipids 

CT vs. WH 

2013 

Heart 1161 Stretching vibrations of hydrogen-bonding 

C-OH groups 

1339 Collagen 

1624 Amide I β-sheets 

1647 Amide I 

1697 

 

Base region 

CT vs. WH 

2013 

Skin 1165 C-O stretching of proteins and carbohydrates 

1327 Collagen 

1354 C-O stretching 

1578 Base stretching  

1667 Amide I (antiparallel β-sheet)  

v(C=C) trans, lipids, fatty acids 
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Figure S1. One dimensional scores plots following principal components analysis-

linear discriminant analysis (PCA-LDA) of ATR-FTIR spectra obtained from several 

different tissues taken from Rana temporaria pro-metamorphic tadpoles. Tissues are 

liver (A), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were collected in 

2012 from CT: a rural agricultural pond with no pesticide input or PF: an urban pond 

impacted by wastewater and landfill run-off (n=10). Two sample t-tests were 

employed to detect differences in the scores between ponds within each year. 

Asterisks indicate a P-value of <0.05 (*) or <0.01 (**). 
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Figure S2. One dimensional scores plots following principal components analysis-

linear discriminant analysis (PCA-LDA) of ATR-FTIR spectra obtained from several 

different tissues taken from Rana temporaria pro-metamorphic tadpoles. Tissues are 

liver (A), muscle (B), heart (C), kidney (D) and skin (E). Tadpoles were collected in 

2013 from CT: a rural agricultural pond with no pesticide input or WH: an 

agricultural pond known to be impacted by pesticides (n=20). Two sample t-tests 

were employed to detect differences in the scores between ponds within each year. 

Asterisks indicate a P-value of <0.05 (*) or <0.01 (**). 
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Figure S3. Raw mean ATR-FTIR spectra of tissue samples taken from Rana 

temporaria pro-metamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), 

kidney (D) and skin (E). Tadpoles were collected in 2012, from CT: a rural 

agricultural pond with no pesticide input or PF: an urban pond impacted by 

wastewater and landfill run-off (n=10). 
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Figure S4. Raw mean ATR-FTIR spectra of tissue samples taken from Rana 

temporaria pro-metamorphic tadpoles. Tissues are liver (A), muscle (B), heart (C), 

kidney (D) and skin (E). Tadpoles were collected in 2013, from CT: a rural 

agricultural pond with no pesticide input or WH: an agricultural pond known to be 

impacted by pesticides (n=20). 
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Highlights 

 IR spectroscopy applied to analyse the Xenopus laevis (A6) cell line. 

 Effects of low concentrations of carbendazim or flusilazole determined. 

 Alterations identified following single or binary exposures. 

 A sensitive technique for examining environmentally-relevant levels of 

fungicides. 

 A6 cells could be a useful model to identify agents that threaten amphibian 

health. 
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Abstract 

Amphibians are regarded as sensitive sentinels of environmental pollution due to their 

highly permeable skin and life cycle, which usually involves reproduction and 

development in the aquatic environment. Fungicides are widely applied agrichemicals 

and have been associated with developmental defects in amphibians, thus it is 

important to determine chronic effects of environmentally-relevant concentrations of 

such contaminants in target cells. Infrared (IR) spectroscopy has been employed to 

signature the biological effects of environmental contaminants through extracting key 

features in IR spectra with chemometric methods. Herein, the Xenopus laevis (A6) 

cell line was exposed to low concentrations of carbendazim (a benzimidazole 

fungicide) or flusilazole (a triazole fungicide) either singly or as a binary mixture. 

Cells were then examined using attenuated total reflection Fourier-transform IR 

(ATR-FTIR) spectroscopy coupled with multivariate analysis. Results indicated 

significant changes in the IR spectra of cells induced by both agents at all 

concentrations following single exposures, primarily in regions associated with 

protein and phospholipids. Distinct differences were apparent in the IR spectra of cells 

exposed to carbendazim and those exposed to flusilazole, confirming the different 

mechanisms of action. Exposure to binary mixtures of carbendazim and flusilazole 

also induced significant alterations in the IR spectra of cells, again in regions 

associated with phospholipids and proteins, but also in regions associated with DNA 

and carbohydrates, suggesting different alterations to the IR spectra of cells when the 

two agents are combined. Overall these findings demonstrate that IR spectroscopy is a 

sensitive technique for examining the effects of environmentally-relevant levels of 

fungicides at the cellular level. The combination of IR spectroscopy with the A6 cell 

line could serve as a useful model to identify agents that might threaten amphibian 

health in a rapid and high throughput manner.  

Keywords: ATR-FTIR spectroscopy; carbendazim; flusilazole; Xenopus laevis; A6 

cells 
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Introduction 

Large declines in amphibian populations have been reported since the 1990s 

(Houlahan et al., 2000; Stuart et al., 2004), with environmental pollution reported as a 

significant factor in these declines (Sparling et al., 2001). The life cycle of amphibians 

usually encompasses reproduction and early development in the aquatic environment, 

meaning that this group of organisms may be susceptible to run-off from agricultural 

sources, such as pesticide application, which is often coincident with this sensitive 

period of development (Hanlon and Parris, 2014; Hayes et al., 2006; Mann et al., 

2009). These factors, in addition to the highly permeable skin of amphibians 

(Quaranta et al., 2009), mean that this group is considered to be a sentinel organism, 

indicative of early deterioration in environmental quality (Sparling et al., 2010). 

Fungicides are widely used in agriculture in order to prevent and treat diseases in 

commercial crops such as wheat and soybean (Belden et al., 2010; McMullen et al., 

2012). Two classes of fungicide frequently used in agricultural practice, either singly 

or in combination are the benzimidazole and triazole fungicides. Benzimidazole 

fungicides exert their toxic effect on fungal spores through inhibition of microtubule 

assembly, by binding to tubulin; the major component of microtubules (Berg et al., 

1986; Davidse, 1986; Wolff, 2009). Triazole fungicides, in contrast, interfere with 

steroid biosynthesis and therefore formation of fungal cell walls through inhibition of 

sterol-14α-demethylase (CYP51), an enzyme present in all eukaryotes (Bossche et al., 

1995; Zarn et al., 2003). As a consequence, the structure of the plasma membrane is 

disrupted, making it prone to further damage (Georgopapadakou, 1998; Lorito et al., 

1996). Both benzimidazole and triazole fungicides have been associated with negative 

effects in non-target organisms, including amphibians. Such effects include endocrine 

disruption in adult amphibians (Poulsen et al., 2015), and developmental defects such 

as craniofacial abnormalities in the case of triazole fungicides (Di Renzo et al., 2011; 

Groppelli et al., 2005; Papis et al., 2006), or inhibition of the differentiation of neural 

tissues and organ dysplasia following exposure to benzimidazole fungicides (Yoon et 

al., 2003; Yoon et al., 2008). 

Investigating the effects of environmental pollutants at the cellular level is of 

importance in ecotoxicological research because the key interaction between chemical 

contaminants and organisms initially occurs within cells (Fent, 2001). In addition, the 
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use of an in vitro cell culture model reduces the number of vertebrates used in 

environmental risk assessment, thus reducing ethical concerns (Scholz et al., 2013). 

Infrared spectroscopy is being increasingly applied in cell-based assays in order to 

determine molecular modifications caused by chemical stressors, based on changes in 

the IR absorbance spectra (Holman et al., 2000a). Exposure of a sample to IR 

radiation will cause the functional groups within the sample to absorb the IR radiation 

and vibrate in several ways, including stretching, bending and deformation. These 

absorptions and vibrations can then be directly correlated to biochemical molecules, 

with peaks in the spectrum corresponding to the chemical structure of a particular 

entity e.g. lipid ~ 1740 cm-1, DNA ~ 1080 cm-1, Amide I and II ~ 1650 and 1550 cm-1 

respectively, thus providing a ‘biomolecular fingerprint’ in the form of an IR 

spectrum (Ellis and Goodacre, 2006; Kelly et al., 2011; Martin et al., 2010). . 

Previous studies have found a high concordance between traditional toxicological 

endpoints and those measured by FTIR spectroscopy. For example in HEPG2 cells 

exposed to TCDD, there was a positive correlation between CYP1A1 expression and 

IR absorption of the phosphate band (Holman et al., 2000b). MCF-7 cells exposed to 

17β-estradiol showed comparable EC-50 values when assessed with either the E-

screen assay or FTIR spectroscopy, with the results from FTIR spectroscopy obtained 

in a much shorter time; a key advantage of this technique (Johnson et al., 2014). As 

IR spectroscopy is able to analyse lipids, carbohydrates, proteins and nucleic acids 

concurrently, it is valuable technique for metabolic fingerprinting (Ellis and 

Goodacre, 2006). The resulting fingerprint is highly complex and information rich, 

comprising hundreds of features (wavenumbers), therefore multivariate techniques 

such as principal component analysis (PCA) or linear discriminant analysis (LDA) are 

often applied in order to reduce the complexity of the data sets into a small number of 

factors (scores). The application of chemometric methods like PCA and LDA allows 

the extraction of key features from the IR spectrum in the form of loadings and cluster 

vectors, which denote which regions of the IR spectrum are responsible for 

segregation between control and treated cells when viewed alongside the scores plots 

(Baker et al., 2014; Martin et al., 2010; Trevisan et al., 2012). The combination of IR 

spectroscopy and multivariate techniques for feature extraction has previously been 

applied in human, algal and bacterial cell types in order to distinguish between treated 

and control cells and generate potential biomarkers based upon the loadings and 
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cluster vectors generated (Heys et al., 2014; Johnson et al., 2014; Llabjani et al., 2010, 

2011; Mecozzi et al., 2007; Riding et al., 2012a; Ukpebor et al., 2011)   .  

In this study, ATR-FTIR spectroscopy coupled with multivariate feature-extraction 

techniques was employed in order to detect the effects of two commonly used 

fungicides: carbendazim, a benzimidazole fungicide, and flusilazole, a triazole-

derived fungicide at low, environmentally relevant concentrations (Chatupote and 

Panapitukkul, 2005; Palma et al., 2004) ranging from 0.05-5 nM in A6 cells, a 

continuous epithelial cell line derived from the kidney of the African clawed frog, 

Xenopus laevis. A6 cells are a well characterised cell line, having previously been 

used in toxicity studies (Gorrochategui et al., 2016) measuring responses such as heat 

shock proteins (HSPs), intracellular calcium and cell cycle progression after exposure 

to a variety of environmental contaminants (Bjerregaard, 2007; Bjerregaard et al., 

2001; Darasch et al., 1988; Faurskov and Bjerregaard, 1997; Faurskov and 

Bjerregaard, 2000; Faurskov and Bjerregaard, 2002; Heikkila et al., 1987; Khamis 

and Heikkila, 2013; Music et al., 2014; Thit et al., 2013; Woolfson and Heikkila, 

2009; Yu et al., 2007). Additionally, as amphibians are exposed to multiple chemical 

stressors in the environment (Hua and Relyea, 2014; Relyea, 2009), cells were also 

exposed to mixtures of carbendazim and flusilazole.. The aims of the study were as 

follows: 1) To determine if ATR-FTIR spectroscopy coupled with multivariate 

feature-extraction techniques could detect changes induced to cellular biomolecules 

by carbendazim and flusilazole across a concentration range in the A6 cell line; 2) To 

determine differences in the mechanism of action of each agent through direct 

comparison of the features extracted from their IR spectra; and 3) To determine the 

combined effects of carbendazim and flusilazole on cells in binary mixtures in 

comparison to single agent effects through comparison of the features extracted from 

their IR spectra.  
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Materials and Methods 

Cell Culture 

Xenopus laevis A6 kidney epithelial cells were purchased from Sigma Aldrich 

(Dorset, UK) and grown at 22°C in T75 tissue culture flasks in 70% (diluted with 

distilled water to adjust to amphibian osmolarity) Leibovitz’s (L15) media 

supplemented with 10% v/v  fetal bovine serum (FBS) and 1%  

penicillin/streptomycin (100 U/mL/100 µg/mL). Cells were routinely subcultured 

every 7 days by partial digestion in 0.25% trypsin-EDTA and prior to incorporation 

into experiments. Media was replaced every 72 hours. Flasks that had reached 80-

90% confluency were used for experiments. All cell culture consumables were 

purchased from Gibco Life Technologies (Paisley, UK) unless otherwise stated. 

Test Agents 

Flusilazole (product no. 45753) and carbendazim (product no. 45368) were purchased 

as PESTANAL® analytical standards from Sigma Aldrich (Poole, Dorset) and made 

up to 10 µM stocks solutions in dimethylsulfoxide (DMSO) (also from Sigma 

Aldrich). Serial dilutions of the stock solutions were made to give the appropriate 

concentrations in the treatment flasks. Test agent/vehicle control solutions did not 

exceed 1% v/v in the treatment flasks. 

Cell Treatments 

Routinely cultured A6 cells were trypsin-disaggregated, resuspended in complete 

media and seeded in T25 flasks at a density of 5 x 104 cells/ml. Cells attached for 24 

hours before treatment with the test agents as either single concentrations or binary 

mixtures for a further 24 hours. This treatment time is optimal for IR spectroscopy 

studies as it allows the recording of distinct spectral variations, whilst avoiding large 

amounts of damage from apoptosis and necrosis to the cells (Derenne et al., 2012). 

For the single concentrations, cells were treated with 5 nM, 1 nM, 0.5 nM, 0.1 nM and 

0.05 nM of carbendazim or flusilazole, plus a vehicle control (DMSO). For the binary 

mixtures, cells were treated with 5 nM and 0.05 nM of flusilazole and carbendazim in 

the following combinations: 0.05 nM carbendazim, 0.05 nM flusilazole; 5 nM 

carbendazim, 5 nM flusilazole; 0.05 nM carbendazim, 5 nM flusilazole; 5 nM 
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carbendazim, 0.05 nM flusilazole. Cells were treated with single concentrations of 

carbendazim or flusilazole (5 nM and 0.05 nM) together with an equivalent volume of 

DMSO in order to account for any effects of volume when comparing with the 

mixtures. For each treatment, nine independent replicates were carried out. 

Following treatments, cells were again disaggregated and the cell suspensions 

immediately fixed in 70% ethanol and stored at 4°C until use. Fixed cell suspensions 

were transferred onto 1 cm x 1cm Low-E reflective glass slides (Kevley 

Technologies, Chesterland, OH, USA), dried overnight and stored in a desiccator until 

analysis. 

ATR-FTIR Spectroscopy 

Five spectra per slide were acquired using a Tensor 27 FTIR spectrometer with Helios 

ATR attachment (Bruker Optics Ltd, Coventry, UK) containing a diamond crystal 

(≈250 μm×250 μm sampling area). Spectra were acquired at 8 cm-1 resolution with 2x 

zero-filling, giving a data-spacing of 4 cm-1 over the range 400-4000 cm-1. Distilled 

water was used to clean the crystal in between analysis of each sample. A new 

background reading was taken prior to the analysis of each sample in order to account 

for changes in atmospheric conditions.  

Data Processing and Analysis 

Single treatments 

Spectra were cut at the biochemical cell fingerprint region (1800-900 cm-1), baseline 

corrected using Savitzky-Golay 2nd order differentiation (2nd order polynomial and 9 

filter coefficients), and vector normalised. Data were mean-centred before the 

application of principal component analysis-linear discriminant analysis (PCA-LDA) 

with leave-one-out cross validation; this method uses a small portion of the dataset to 

train the model in order to prevent LDA overfitting. PCA reduces the spectra (227 

wavenumbers) into a smaller number of principal components for input into LDA. In 

this case 14 PCs were picked for flusilazole and 15 PCs for carbendazim as this 

represented ~95% of the variance in the data and represented where the variance 

began to plateau, thus preventing noise being inputted into further analysis with LDA. 

LDA maximises the differences between classes and minimises the heterogeneity 
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within classes. The data can then be viewed as scores, to determine how the different 

treatments separate from the control class (Trevisan et al., 2012). The wavenumbers 

responsible for the separation of the scores were determined using the cluster vector 

(CV) approach. Cluster vectors generate ‘pseudo-spectra’; which have a direct 

relation to the original absorbance spectra and are used to reveal biochemical 

alterations specific to each data class relative to the control, which is set at the origin 

(Trevisan et al., 2012). A peak detecting algorithm with a data-spacing of 20 cm-1 was 

then employed to select the seven most prominent wavenumbers in the CVs that 

contributed to the segregation between control and treated cells. 

Comparison of cells treated with carbendazim vs. cells treated with flusilazole 

In addition, a direct comparison was made of the spectral signature of cells treated 

with carbendazim in comparison to those treated with flusilazole. As no significant 

differences were found between the individual concentrations of flusilazole and 

carbendazim (see results) direct comparisons between these two agents were assessed 

by compiling spectra of all concentrations of the data. Two approaches were taken to 

compare cells treated with carbendazim to those with flusilazole: cross validated 

PCA-LDA and forward feature selection (FFS). For both approaches, difference 

spectra were first calculated (following pre-processing), where the mean spectra of the 

vehicle control was subtracted from the mean spectra of the treated cells for each test 

agent giving the actual metabolic modifications caused by each test agent (Derenne et 

al., 2012). Cross-validated PCA-LDA was used as before, with 18 PCs incorporated 

into the LDA model, generating scores and a CV plot (flusilazole-treated cells at the 

origin) as before, with a peak detection algorithm employed as detailed previously. 

FFS incorporates sub-sets of wavenumbers into a dataset, ranking them based on how 

they contribute to the correct classification of each labelled data set. It is a useful 

technique for comparison with PCA-LDA, as the biomarkers generated from this 

approach may be more discriminatory than those generated by PCA-LDA (Trevisan et 

al., 2014). This approach generates a feature selection histogram (FSH) that provides 

a count of the frequency (number of hits) each wavenumber was selected (Trevisan et 

al., 2012). The FSH was produced using a Gaussian-fit classifier with random sub-

sampling, repeated 100 times to randomise training and test data (90% training, 10% 
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data). Five variables were used to improve the stability of biomarker identification 

(Trevisan et al., 2014). 

Comparison of binary mixtures with single treatments 

Cells exposed to the combination treatments of carbendazim and flusilazole were also 

pre-processed as before and analysed with PCA-LDA (9-10 PCs), generating scores 

and loadings plots in order to pinpoint biochemical alterations induced by each binary 

mixture for comparison with single-agent effects. 

All spectral pre-processing and data analysis was implemented using the IRootLab 

toolbox https://code.google.com/p/irootlab/ (Martin et al., 2010; Trevisan et al., 2013) 

in Matlab (r2012a) (The MathWorks, Inc., USA), unless otherwise stated. 

Statistical Analysis 

Scores generated from PCA-LDA were averaged to give one score per replicate (9 per 

treatment) and either two-sample t-tests or one-way ANOVA followed by Tukey’s 

post-hoc tests was applied to calculate differences between the scores generated from 

PCA-LDA analysis. Analysis was carried out in GraphPad Prism 6 software 

(GraphPad Software Inc, CA, USA). 

 

Results  

Single Treatments 

A representative second derivative spectrum of A6 cells in the 1800-900 cm-1 region 

is shown in Figure 1, with the characteristic frequency values and spectral 

assignments of these bands given in Table 1. 

Multivariate analysis with PCA-LDA was carried out on cells treated with increasing 

concentrations of the fungicides carbendazim and flusilazole over the concentration 

range 0.05-5 nM. One-dimensional PCA-LDA scores plots and corresponding cluster 

vector plots representing the major biochemical alterations for cells treated with 

carbendazim are shown in Figures 2A and 2B respectively. Scores and cluster vector 

https://code.google.com/p/irootlab/
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plots for cells treated with flusilazole are shown in Figures 3A and 3B respectively. It 

is clear from the scores plots in Figures 2A and 3A that cells treated with all 

concentrations of both carbendazim and flusilazole  segregate away from the vehicle 

control along LD1; this was confirmed by one-way ANOVA followed by Tukey’s 

post-hoc comparison tests, which revealed that the scores generated from PCA-LDA 

analysis were significantly different from those of the vehicle control (Carbendazim: 

One-way ANOVA:  F5,48   = 8.63, P <0.0001; Tukey’s post-hoc tests: P <0.01 for all 

concentrations; Flusilazole: F5,48   = 7.12, P <0.0001; Tukey’s post-hoc tests: P <0.01 

for all concentrations). However, no significant differences were found between 

individual concentrations for either test agent (Tukey’s multiple comparison test, P 

>0.05).  

 

Figure 1. Typical mean second derivative spectrum of untreated Xenopus laevis 

kidney epithelial (A6) cells in the 1800-900 cm-1 region following analysis with ATR-

FTIR spectroscopy. Corresponding wavenumber assignments are shown in Table 1. 

 



217 

 

Table 1. Band assignments of major absorptions in the second derivative IR spectra 

of untreated Xenopus laevis kidney epithelial (A6) cells in the 1800-900 cm-1 cell 

fingerprint region based on the literature.  

Peak 

Number 

Wavenumber 

(cm-1) 

Proposed Spectral Assignment 

1 1736 C=O stretching of esters/phospholipids 

2 1690 Peak of nucleic acids due to base carbonyl 

stretching and ring breathing mode 

3 1670 Amide I (anti-parallel β-sheet) 

4 1639 Amide I 

5 1624 Amide I (β-sheet) 

6 1543 Amide II (N-H bending, C-N stretching) 

7 1531 Amide II 

8 1512 CH bending from phenyl rings 

9 1447 Asymmetric CH3 bending of the methyl groups of 

proteins 

10 1393 Symmetric CH3 bending of the methyl groups of 

proteins 

11 1312 Amide III 

12 1234 Asymmetric phosphate stretching  overlapped with 

amide III of proteins 

13 1119 C-O stretching mode/deformations of 

carbohydrates 

14 1080 Symmetric phosphate stretching 

15 1034 Glycogen 

16 964 C-O deoxyribose 

Sources: (Movasaghi et al., 2008; Naumann, 2001). 

The cluster vector plot for carbendazim shown in Fig. 2B revealed that the main 

wavenumbers associated with the segregation were very similar for each 

concentration. All concentrations tested revealed alterations in regions associated with 

C=O stretching and CH2 bending of lipids (1744 and 1454 cm-1 respectively), as well 

as significant contributions from the Amide II protein region. Alterations induced by 

particular concentrations included those associated with the anti-parallel β-sheet 

conformation of Amide I and the base region (5 nM and 0.5 nM respectively, Table 

2).  
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Figure 2. Cross-validated one-dimensional PCA-LDA scores plot (A) and 

corresponding cluster vectors plot (B) of A6 cells treated with increasing 

concentrations of carbendazim following analysis with ATR-FTIR spectroscopy. The 

vehicle control is set at the origin of the cluster vectors plot. Asterisks indicate a 

significant difference from the DMSO vehicle control (VC) at the P <0.01 level as 

determined by One-Way ANOVA followed by Tukey’s post-hoc test carried out on 

averages of each experimental replicate (n = 9). Wavenumber assignments from 

cluster vector plots are shown in Table 2. 

 

 Figure 3. Cross-validated one-dimensional PCA-LDA scores plot (A) and 

corresponding cluster vectors plot (B) of A6 cells treated with increasing 

concentrations of flusilazole following analysis with ATR-FTIR spectroscopy. The 

vehicle control is set at the origin of the cluster vectors plot. Asterisks indicate a 

significant difference from the DMSO vehicle control (VC) at the P <0.01 level as 

determined by One-Way ANOVA followed by Tukey’s post-hoc test carried out on 

averages of each experimental replicate (n = 9). Wavenumber assignments from 

cluster vector plots are shown in Table 2. 
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Cells treated with flusilazole showed some similarities to those treated with 

carbendazim in the cluster vector plot; however regions associated with the Amide I 

and II region of proteins were more dominant (see Fig. 3B). Wavenumbers associated 

with the Amide I and II regions of proteins (1663 and 1562 cm-1) were identified as 

common to all concentrations tested; however, there was a greater variability in the 

other segregating wavenumbers between concentrations in comparison to cells treated 

with carbendazim, with some concentrations also associated with C=O stretching of 

lipids (0.5 nM) and fatty acids (0.05, 0.5, 1, and 5 nM, Table 2). 

Table 2. Distinguishing wavenumbers and proposed assignments generated from the 

cluster vector plots of A6 cells analysed with ATR-FTIR spectroscopy after treatment 

with increasing concentrations of either carbendazim or flusilazole.  

Treatment Wavenumber 

(cm-1) 

Tentative Assignment Concentration 

(nM) 

Carbendazim 1744 C=O stretching of phospholipids, 

triglycerides, cholesterol esters 

All 

 1701 Fatty acid esters 0.05, 0.1, 1  

 1697  Base region 0.5 

 1693  Anti-parallel β-sheet of Amide I 5 

 1666 C=O stretching of pyrimidine bases All 

 1605 Amide I 0.05, 0.5, 1 

 1601 C=N cytosine, N-H adenine 0.1, 5 

 1516 Amide II All 

 1477 Proteins All 

 1454 CH2 bending of lipids, with some 

contribution from proteins 

All 

    

Flusilazole 1732  C=O stretching (phospholipids)/fatty 

acid esters 

0.5 

 1705 Fatty acid esters  0.05, 0.5, 1, 5 

 1690  Peak of nucleic acids due to base 

carbonyl stretching and ring breathing 

mode 

0.1 

 1663 Amide I  All 

 1636 Β-sheet structure of amide I 0.05, 0.5, 1 

 1624 Amide I (β-sheet)  0.1, 5 

 1605  Asymmetric stretch of 

polysaccharides/pectins 

0.05, 0.5, 1 

 1562 Amide II region  All 

 1504 In-plane CH bending from phenyl 

rings 

 0.05, 0.1 

 1481 Amide II  0.05, 0.1, 1, 5 

 1439 Protein 5 

 1339 In-plane C-O stretching vibration 

combined with the ring stretch of 

phenyl 

 0.1, 0.5, 1, 5 

Sources: (Movasaghi et al., 2008; Naumann, 2001). 
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Comparison of cells treated with carbendazim vs. cells treated with flusilazole 

As no significant differences were found between the individual concentrations of 

flusilazole and carbendazim, direct comparisons between these two agents were 

assessed by compiling spectra of all concentrations of the data. After subtraction of 

the vehicle control spectra, spectra of flusilazole and carbendazim-exposed cells were 

compared using cross-validated PCA-LDA followed by two sample t-test to assess the 

significance of the resulting scores, with the finding that cells treated with flusilazole 

were significantly different to those treated with carbendazim (see Fig. 4A). The 

cluster vector plot shown in Fig. 4B denotes where these differences were most 

apparent, with the seven most segregating wavenumbers in regions associated with 

C=C stretching of lipids and fatty acids (1755 cm-1), nucleic acids (1690 cm-1), 

proteins (1477, 1562, 1601 cm-1) and glycogen (1018 cm-1), as shown in Table 3. 

  

Figure 4. Cross-validated one dimensional PCA-LDA scores plot (A) and 

corresponding cluster vectors plot (B) directly comparing cells treated with either 

carbendazim or flusilazole following analysis with ATR-FTIR spectroscopy. 

Flusilazole is set at the origin for direct comparison with carbendazim in the cluster 

vectors plot. For a comparison with PCA-LDA, figures C and D show the 

classification of cells treated with either flusilazole or carbendazim into their 

respective categories and the feature histogram generated following forward feature 

selection respectively. Wavenumber assignments are shown in Table 3. 
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As well as PCA-LDA, FFS was also used as a technique to identify discriminating 

wavenumbers. The high classification rate (~97%) generated by FFS is shown in Fig. 

4C, and the FSH with key discriminating wavenumbers marked is shown in Fig. 4D. 

Wavenumbers responsible for the segregation of cells treated with flusilazole from 

those treated with carbendazim were also associated with lipid/fatty acid regions 

(1782, 1705, 1474 cm-1), with some protein contribution (Amide III) and again 

significant contribution from carbohydrates/glycogen (1126, 1049 cm-1; see Table 3). 

 

Table 3. Distinguishing wavenumbers and proposed assignments generated from 

cluster vectors and feature histograms following a direct comparison of A6 cells 

treated with either carbendazim or flusilazole after analysis with ATR-FTIR 

spectroscopy. Vehicle control spectra were first subtracted from treated spectra to 

directly compare the difference in alterations induced by each agent. All 

concentrations were combined as there were no significant differences between 

concentrations for each agent.  

Analysis Type Wavenumber 

(cm-1) 

Tentative Assignment 

Cluster 

Vectors 

1755 Stretching C=C, phospholipids fatty acids 

1717 C=O stretching of carbonic acid 

1690 Peak of nucleic acids due to base carbonyl 

stretching and ring breathing mode1 

1601 C=N cytosine, N-H adenine 

1562 Amide II 

1477 Proteins 

1018 Glycogen 

 

Feature 

Histograms 

1782 Fatty acid esters 

1705 Fatty acid esters 

1474 Protein/CH2 bending of lipids 

1427 CH2 bending 

1319 Amide III 

1126 C-O stretching, disaccharides/sucrose 

1049 Glycogen/carbohydrates 

Sources: (Movasaghi et al., 2008; Naumann, 2001). 
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Comparison of binary mixtures with single treatments 

Cells were also treated with a mixture of carbendazim and flusilazole in the following 

combinations 0.05 nM carbendazim + 0.05 nM flusilazole; 0.05 nM carbendazim + 5 

nM flusilazole; 5 nM carbendazim + 0.05 nM flusilazole; and 5 nM carbendazim + 5 

nM flusilazole to determine if this generated any different alterations detectable by 

ATR-FTIR spectroscopy. All treatment combinations segregated significantly away 

from the control (see supplementary information Figs. S1A-D). Cluster vectors of 

cells treated with 0.05 nM and 5 nM of either carbendazim or flusilazole are shown in 

Figs. 5A and 5B respectively for comparison with mixtures of these agents in 

different combinations (shown in Figs. 5C-F, with wavenumber assignments in Table 

4). Comparison of the single agent cluster vectors and the binary mixture cluster 

vectors reveals some similarities and some differences. With the binary mixtures, 

again there was a dominance of lipid and protein alterations, as seen with the single 

treatments. However the alterations in the phospholipid region (~1750-1730 cm-1) 

induced by the binary mixtures indicated a more pronounced effect in comparison to 

the single agent treatments, which was consistently seen for all treatment 

combinations. 

Other parts of the spectrum were also highlighted as contributing towards the 

segregation in cells treated with binary mixtures, including those associated with 

DNA (1057, 1080 and 964 cm-1). The peak at 1169 cm-1 (asymmetric stretching of 

CO-O-C in carbohydrates) was highlighted as a wavenumber consistently associated 

with treatment with binary mixtures in 3 out of 4 treatment combinations (Figs. 5C, D 

and F). From the cluster vector plot of cells treated with single concentrations of 

flusilazole (Fig. 5B), there is also a small peak at 1169 cm-1, which becomes more 

prominent and is highlighted by the peak detector when the agents are combined in a 

binary mixture, suggesting that when in combination there is a greater effect in this 

region. 
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Figure 5. Cluster vector plots generated from single treatments of A6 cells with 

carbendazim (A) and flusilazole (B) for comparison with loadings plots generated 

following treatment of A6 cells with binary mixtures of a combination of carbendazim 

and flusilazole at different concentrations (C-F). Wavenumber assignments are shown 

in Table 4. 
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Table 4. Distinguishing wavenumbers and proposed assignments generated from 

loadings plots following treatment of A6 cells with binary mixtures of carbendazim 

and flusilazole after analysis with ATR-FTIR spectroscopy.  

Treatment Wavenumber  

(cm-1) 

Tentative Assignment 

0.05 nM Carbendazim + 

0.05 nM Flusilazole 

1732 Fatty acid esters/C=O stretching of 

phospholipids 

1659 Amide I 

1551 Amide II 

1454 CH2 bending of lipids, with some 

contribution from proteins 

1400 Symmetric stretching of methyl groups 

in proteins/COO- vibration of fatty 

acids 

1169 Asymmetric stretching of CO-O-C in 

carbohydrates 

1057 C-O-C stretching of nucleic acids and 

phospholipids 

   

0.05 nM Carbendazim +  

5 nM Flusilazole 

1736 C=O stretching of phospholipids 

1701 Fatty acid esters 

1663 Amide I 

1493 In-plane CH bending vibration 

1450 Methylene deformation 

1404 CH3 asymmetric deformation 

1169 Asymmetric stretching of CO-O-C in 

carbohydrates 

   

5 nM Carbendazim +  

0.05 nM Flusilazole 

1736 C=O stretching of phospholipids 

1686 Amide I (disordered structure) 

1551 Amide II 

1497 C=C deformation, C-H 

1389 Stretching C-O, C-H deformation  

1080 Symmetric phosphate stretching 

964 C-O deoxyribose, C-C 

   

5 nM Carbendazim +  

5 nM Flusilazole 

1736 C=O stretching of phospholipids 

1697 Base region 

1655 Amide I of proteins (α-helix) 

1609 Adenine vibration in DNA 

1512 CH bending from phenyl rings 

1466 CH2 scissoring mode of the acyl  chain 

of lipid 

1169 Asymmetric stretching of CO-O-C in 

carbohydrates 

Sources: (Movasaghi et al., 2008; Naumann, 2001). 
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Discussion 

This study determined the application of ATR-FTIR spectroscopy coupled with 

multivariate feature extraction techniques in assessing the effects of environmentally-

relevant concentrations of two differently acting agricultural fungicides in an 

amphibian cell line. The results confirmed distinct differences in cellular constituents 

treated with flusilazole or carbendazim, as may be expected from agents with different 

molecular targets (Derenne et al., 2011; Derenne et al., 2012). Cells treated with all 

concentrations of either flusilazole or carbendazim segregated significantly away from 

the vehicle control, demonstrating that ATR-FTIR spectroscopy is a sensitive 

technique capable of detecting cellular alterations even at very low concentrations, as 

has been recorded with other test agents (Johnson et al., 2014; Llabjani et al., 2011; 

Ukpebor et al., 2011). This result is significant as the concentration range used for 

each test agent was similar to that found in the aquatic environment (Chatupote and 

Panapitukkul, 2005; Palma et al., 2004) including areas in which amphibians are 

typically present (Strong et al., 2016). These results suggest that the combination of 

IR spectroscopy and chemometric analysis with the A6 cell line  could serve as a 

useful model in identifying agents that might threaten amphibian health, however 

extrapolation from the cellular to the whole organism and population level needs to be 

interpreted with caution, as there are differences in how chemical interact with whole 

organisms in comparison to individual cells (Schirmer, 2006). 

IR spectroscopy, as well as being able to detect differences between control and 

treated cell populations in a rapid and high-throughput manner, provides detailed 

information about how particular agents affect cellular biochemistry through 

interpretation of the generated IR spectra (Jamin et al., 1998; Movasaghi et al., 2008). 

The use of chemometric methods such as PCA-LDA allows key features of the IR 

spectrum to be extracted in the form of loadings and cluster vectors; the largest values 

corresponding to the most important wavenumbers responsible for segregation 

between control and treated cells, and can thus be considered biomarkers (Llabjani et 

al., 2010; Martin et al., 2010; Trevisan et al., 2012). Cell exposed to carbendazim 

revealed alterations in regions associated with C=O stretching and CH2 bending of 

lipids, with some protein contributions, indicative of a significant effect on cell 

membranes including the phospholipid bilayer. Lipids and Amide proteins are 
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principally associated with the outer cell membrane, and the large spectral alterations 

seen in these regions are suggestive of disruption to membrane structure and integrity, 

indicative of lipid peroxidation (Gasper et al., 2009; Riding et al., 2012a). Lipid 

peroxidation is the initial step in damage to cell membranes caused by pesticides and 

other contaminants following the generation of reactive oxygen species (Costa et al., 

2008), and may be detectable using FTIR due to changes in the band assigned as C=O 

stretching of lipids at ~ 1740 cm-1 (Lamba et al., 1994; Riding et al., 2012a; Riding et 

al., 2012b), as seen here. The generation of reaction oxygen species by environmental 

contaminants and subsequent oxidative damage may negatively affect tadpole  

reproduction and development and is related to amphibian population declines (Costa 

et al., 2008), therefore there may be population-level consequences of these low-dose 

exposures. Carbendazim has previously been associated with lipid peroxidation in 

milk fish (Palanikumar et al., 2014) and in rats (Rajeswary et al., 2007), although only 

developmental and genotoxic effects have been measured thus far in amphibians 

(Yoon et al., 2008; Zoll-Moreux and Ferrier, 1999), despite the wide usage and 

detection of carbendazim in surface waters at low concentrations (Palma et al., 2004). 

With flusilazole, the effects elicited in cells were mainly in the regions associated 

with Amide I and II proteins, with some lipid contribution. This again may be related 

to the cellular membranes as the functional properties of the plasma membrane are 

determined principally by the orientation of proteins within the membranes, which are 

readily detected by IR spectroscopy (Gasper et al., 2009; Kong and Yu, 2007; 

Naumann, 2001). Flusilazole, like other triazole fungicides acts by interrupting the 

formation of fungal cell walls through inhibition of sterol-14α-demethylase (CYP51), 

which is highly conserved across taxa including animals, where it is utilised in the 

pathway to cholesterol formation; thus effects on cell membranes may not be 

restricted to the target species (Bossche et al., 1995; Zarn et al., 2003). The hazards 

posed by triazoles to wildlife is because their effects may not be limited to CYP51, 

and there is emerging evidence that they may accumulate in the tissues of amphibians, 

(Hansen et al., 2014; Poulsen et al., 2015; Smalling et al., 2013), although this may 

vary depending on the levels found in the environment (Smalling et al., 2015). At low 

levels of exposure, triazole fungicides have been associated with endocrine disruption, 

disrupting steroidogenesis in adult male frogs at concentrations as low as 1 µg/L 

(Poulsen et al., 2015), as well as developmental defects in tadpoles and embryos 
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(Bernabò et al., 2016; Di Renzo et al., 2011; Groppelli et al., 2005; Papis et al., 2006). 

The changes in IR spectra elicited by flusilazole at similarly low concentrations in this 

study suggest that triazole fungicides are capable of generating responses in non-

target organisms at environmentally-relevant concentrations. The possible endocrine 

disrupting effects of triazole fungicides have the potential to elicit population-level 

effects in amphibians by affecting sex ratios and disrupting normal reproductive 

behaviour (Kloas and Lutz, 2006).  

High concentrations of agrichemicals are not typically measured in environmental 

compartments and instead much lower concentrations, often in complex mixtures tend 

to be detected, therefore amphibians are likely to be exposed to multiple agents in the 

environment (Khamis and Heikkila, 2013; Relyea, 2009; Smalling et al., 2015). Thus, 

in order to represent a more environmentally-realistic scenario, cells were also 

exposed to binary mixtures of flusilazole and carbendazim. Results from the cluster 

vector plots demonstrated a dominance of lipid and protein alterations, as seen with 

the single treatments; however the alterations in the phospholipid region (~1730-40 

cm-1) induced by the binary mixtures indicated a more pronounced effect in 

comparison to the single agent treatments, which was consistently seen for all 

treatment combinations, suggestive of further effects on the lipid bilayer when 

flusilazole and carbendazim were combined (Gasper et al., 2009). Other parts of the 

spectrum were also highlighted as contributing towards the segregation in cells treated 

with binary mixtures, including those associated with DNA (1057, 1080 and 964 cm-

1). Although carbendazim is not a direct-acting DNA damaging agent, it is a mitotic 

spindle poison and aneuploidogen which may secondarily affect DNA synthesis 

through the blocking of nuclear division (Davidse, 1986; McCarroll et al., 2002) and 

has been previously associated with genotoxicity in X.laevis tadpoles, although at 

higher concentrations than those used here (Zoll-Moreux and Ferrier, 1999). 

Instability of cell membranes may make cells more susceptible to further damage 

(Georgopapadakou, 1998; Lorito et al., 1996). As the phospholipid region of the 

spectrum showed consistent alterations following exposure to all mixtures, this 

suggests lipid peroxidation (Lamba et al., 1994; Riding et al., 2012a; Riding et al., 

2012b). If this was indeed the case, the effects induced in other areas of the spectrum 

associated with DNA and carbohydrates could be caused indirectly by the products 

generated following the oxidation of lipids within the cell membrane (Burcham, 1998; 
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Riding et al., 2012b); if the two agents are acting together and destabilising cell 

membranes the effects seen on other parts on the spectrum may be more pronounced.  

Conclusions 

 Amphibians are at risk of exposure to pesticides in the environment and there 

is emerging evidence that certain fungicides may accumulate in tissues, 

causing deleterious effects at low levels of exposure. 

 This study presents the use of ATR-FTIR spectroscopy coupled with 

multivariate analysis to detect changes induced by environmentally-relevant 

concentrations of two mechanistically distinct fungicides in an amphibian cell 

line, both singly and in binary mixtures. 

 Results suggested effects on cell membranes, as determined by alterations in 

the lipid and protein regions of the IR spectrum likely to be as a result of lipid 

peroxidation. 

 Binary mixtures of flusilazole and carbendazim demonstrated consistent 

effects on areas of the spectrum associated with lipids, with alterations to other 

cell constituents including DNA also noted, suggestive of destabilisation of 

cell membranes, thus allowing further damage to subcellular moieties. 

 Future work could aim to determine the effects of other common water 

constituents, such as nitrate/phosphate and metal ions in cell culture with these 

agents. Amphibians are known to be exposed to multiple stressors in the 

environment and creation of a more environmentally realistic scenario is key 

to understanding the effects at a cellular level. 
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Appendix A: Supplementary Information 

 

Figure S1. Cross-validated one-dimensional PCA-LDA scores plots of A6 cells 

treated with binary mixtures of flusilazole and carbendazim following analysis with 

ATR-FTIR spectroscopy. Asterisks indicate a significant difference from the vehicle 

control (DMSO) at the P <0.01 level as determined by two-sample t-tests. 
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Chapter 6. General Discussion 

Amphibians as a group are facing threats to their health and survival, with 

environmental pollution regarded as a significant factor in population declines 

(Davidson, 2004; Mann et al., 2009). The common frog is a widely distributed species 

in the UK and Europe and as such may be a useful sentinel organism. Although 

numbers are not generally declining, local extinctions may occur due to habitat 

destruction, pollution sources and disease (Beebee, 2014). While there has been 

previous research conducted in the UK using native amphibians, the number of studies 

remain low and many were conducted decades ago (Cooke, 1972, 1973, 1977, 1981; 

Oldham et al., 1997; Orton and Routledge, 2011; Orton and Tyler, 2014). Therefore 

there are a lack of recent data regarding the impact of current-use pesticides on native 

amphibian populations (Beebee, 2014).  

There are a variety of approaches for assessing the impacts of environmental pollution 

on amphibian health both in the field and in the laboratory, including for example, 

measurement of enzymes, endocrine disruption, growth, mortality and genotoxicity 

(Mann et al., 2009; Venturino et al., 2003). Although these approaches are highly 

useful, some of them may be time-consuming, expensive and involve the use of 

reagents. Another technology being utilised in environmental toxicology is IR 

spectroscopy, which has already been implemented both in the laboratory and in the 

field in other taxa at risk of harm from environmental pollutants including algae, fish 

and birds (Cakmak et al., 2006; Cakmak et al., 2003; Llabjani et al., 2012; Malins et 

al., 2006; Malins et al., 2004; Mecozzi et al., 2007). However, no studies to date have 

examined its use in assessing the health of amphibian populations at risk from the 

effects of environmental pollutants from different sources. IR spectroscopy identifies 

and quantifies cellular constituents and characterises differences in macromolecular 

composition, thus it is a useful technique for identifying biomarkers of environmental 

quality (Mecozzi et al., 2007). Measurements of carbohydrates, proteins, lipids and 

nucleic acids can be taken simultaneously, thus providing an integrated metabolic 

fingerprint of the sample (Ellis and Goodacre, 2006). The application of IR 

spectroscopy in ecotoxicology offers an approach that can rapidly and cost-effectively 

detect changes in the biochemical composition of a sample as a result of exposure to 

chemical agents at sub-lethal levels of exposure (Cakmak et al., 2006). Alterations in 
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the spectral fingerprint of the samples can thus be used as biomarkers, which can 

identify the biological effects of environmental contamination in sentinel species 

(Llabjani et al., 2012; Malins et al., 2006; Malins et al., 2004; Obinaju et al., 2014; 

Obinaju et al., 2015).  

The aim of this thesis was to explore the application of ATR-FTIR spectroscopy 

coupled with multivariate analysis as a novel method to assess amphibian health. This 

was achieved by sampling several aquatic life stages of the common frog in the field 

exposed to pollutants from both agricultural and urban sources, and through the use of 

a continuous cell line derived from X.laevis exposed to specific pollutants associated 

with agriculture. Below are highlighted key findings from each experimental chapter 

that contribute to the overall rationale for employing IR spectroscopy as a sensitive 

technique in determining the effects of environmental pollutants from both 

agricultural and urban sources in amphibians; thus raising the potential for its wider 

use in environmental monitoring. 

6.1. Initial assessment of biospectroscopy in amphibian 

environmental monitoring. 

Chapter two was a pilot study which aimed to assess if it was possible to distinguish 

between embryos and early-stage tadpoles of R.temporaria collected from ponds with 

differing water quality in using ATR-FTIR spectroscopy. R.temporaria is a habitat 

generalist and as such is able to tolerate wide-ranging environmental conditions, 

exploiting habitats both in agricultural and urban settings (Carrier and Beebee, 2003; 

Hamer and McDonnell, 2008). However, this also means that as a consequence, such 

species may be exposed to sub-lethal levels of pollutants associated with these 

environments during the sensitive stages of breeding and development, potentially 

having a deleterious impact on their future health and survival (Ruiz et al., 2010; 

Smalling et al., 2015). Therefore ATR-FTIR spectroscopy was used to distinguish 

between embryos and early-stage tadpoles of R.temporaria collected from ponds 

impacted by both urban and agricultural water contaminants in comparison to a 

relatively pristine pond, and the resulting outputs from multivariate analysis used to 

ascertain which areas of the spectrum were responsible for the differences between 

samples.  
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Results revealed smaller differences between embryos collected from the different 

ponds in comparison to tadpoles, which is in agreement with previous studies where 

the jelly coat surrounding the embryos has been proposed as offering protection 

against particular water contaminants (Berrill et al., 1994; Brodeur et al., 2009; 

Wagner et al., 2015). Tadpoles however, showed distinct differences in the spectral 

fingerprint generated, depending on which pond they were collected from, which was 

despite no significant differences in body size measurements being recorded. The 

areas of the spectrum attributed to the differences between ponds were primarily in 

regions associated with glycogen and carbohydrates, with tadpoles collected from the 

ponds impacted by pesticides and other water contaminants showing reduced 

absorbance in this region, indicative of a reduction in glycogen levels. Reduced 

glycogen levels have previously been noted in amphibians exposed to a range of water 

contaminants and may be indicative of a stress response, as energy is diverted away 

from processes such as growth and development and instead towards detoxification as 

the organism attempts to restore homeostasis (Dornelles and Oliveira, 2014; Gendron 

et al., 1997; Melvin et al., 2013).  

This study demonstrated that it was possible to distinguish between tadpoles, and to a 

lesser extent, embryos from ponds with differing water quality using ATR-FTIR 

spectroscopy. However, as the results were from a single year of sampling (2012), this 

may not be representative of the effects of long term contaminant exposure. Therefore 

this initial study paved the way for a longer-term monitoring study of the same ponds 

over a three year period, which was the basis for Chapter 3. 

6.2. Monitoring amphibian populations over time with 

biospectroscopy 

Ideally in any environmental monitoring study, the same areas should be studied over 

time in order to build up a clearer picture of risks from environmental contamination 

to populations, and long-term and multi-generational studies which monitor 

amphibian populations over different developmental stages are needed, as 

transgenerational effects may become apparent (Bergeron et al., 2010; Sparling et al., 

2010). Therefore, building on the data collected in Chapter 2, embryos and early-stage 

tadpoles of R.temporaria were collected in 2013 and 2014 from the same study areas, 

giving a three year data collection period, which is presented in Chapter 3. The overall 
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aim was to determine whether ATR-FTIR spectroscopy coupled with multivariate data 

analysis and classification techniques was still capable of distinguishing between 

embryos and tadpoles collected from ponds with different water quality, despite 

expected inter-annual differences from factors which could not be controlled for in a 

field study of this nature (e.g. spawning date, temperature, rainfall etc). If 

biospectroscopy alongside multivariate analysis is to be implemented as a tool in 

environmental monitoring, it must be specific enough to distinguish between 

embryos/tadpoles from ponds based upon water quality. This is analogous to the 

application of biospectroscopy in medical research, where although there is case-

matching of patients on factors such as age, all sources of inter-individual variation 

cannot be removed, and thus the combination of spectroscopy plus data analysis 

techniques must be able to distinguish individuals on the basis of disease state rather 

than another factor (Wood et al., 1998). 

Tadpoles could be distinguished based upon pond of origin with a high degree of 

accuracy (a classification rate of up to 94%), despite annual differences. Taken 

together over the whole study period, tadpoles did not vary markedly in measures of 

body size between ponds, and therefore this is unlikely to account for the differences 

seen in the spectra of tadpoles. However, there also were significant differences in the 

spectra of tadpoles between years within each pond, but this annual variation was 

generally confined to different areas of the spectrum compared to those observed 

between ponds, and may be related to body size differences, which also showed 

annual differences. Embryos in contrast showed much poorer classification and 

seemed to be more affected by annual variations than differences between ponds, 

possibly as a result of temperature variation which is known to affect egg 

development markedly (Neveu, 2009). Therefore, results from this study suggest that 

tadpoles are a more appropriate life stage to use in an environmental monitoring study 

and where possible should be matched on the basis of their body size and 

developmental stage so as to control any factors that may affect biochemical 

parameters, as in studies where biospectroscopy has been applied in disease diagnosis 

(Theophilou et al., 2015). 
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6.3. Using biospectroscopy to distinguish between tissues of pro-

metamorphic common frog tadpoles 

In this chapter (Chapter 4), late-stage pro-metamorphic tadpoles of the common frog 

were collected from the same ponds previously sampled in 2012 and 2013, and 

individual tissues: liver, muscle, heart, kidney and skin excised for comparison 

between ponds with ATR-FTIR spectroscopy. This study was implemented because 

although earlier life stages of tadpole are considered to be more sensitive to 

environmental pollution, sub lethal effects may manifest themselves later in 

development (Bridges, 2000; Orton and Routledge, 2011) and some studies also point 

to later developmental stages being more sensitive to particular contaminants (Howe 

et al., 1998). 

 This study found that the liver consistently distinguished between tadpoles collected 

from ponds with differing water quality; liver size was also found to be increased in 

tadpoles from the pond with pesticide exposure. This is in agreement with other 

studies and  is likely to be due to the fact that the liver is responsible for the 

metabolism of xenobiotics in amphibians as in other verebrates, thus differences due 

to environmental contamination may manifest here (Fenoglio et al., 2005; Melvin et 

al., 2013). There were also significant differences in other tissues, mainly between 

tadpoles collected from the pond impacted by pesticides and the relatively clean pond, 

where all tissues showed some differences between ponds, suggesting that the effects 

detectable by IR spectroscopy were not limited to the liver. Perhaps most 

interestingly, the skin samples distinguished between tadpoles collected from the 

minimally-impacted pond and the pond impacted by agricultural pesticides. The skin 

of amphibians is highly permeable and plays a vital role in osmoregulation and 

respiration and thus provides a significant exposure route to chemicals, with previous 

studies also noting significant structural changes in the epidermis following exposure 

to environmental contaminants (Bernabò et al., 2013; Fenoglio et al., 2009). As the 

skin is the first organ that environmental contaminants come into contact with, it may 

be useful as an early indicator of deteriorating environmental quality. In addition, the 

sensitivity of skin may allow for the development of non-destructive methods to 

assess responses to environmental pollution in larval amphibians. Tail-tip clipping has 

previously been used successfully for non-destructive DNA analysis in tadpoles (Snell 

and Evans, 2006), and in reptiles and salamanders for assessing exposure to 
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environmental contaminants (Hopkins et al., 2001; Townsend and Driscoll, 2013); it 

would be interesting to explore the use of IR spectroscopy to assess the effects of 

environmental pollution on this non-destructive measure.   

 While previous studies in fish have documented the effects of environmental 

contaminants in several tissues using spectroscopy (Cakmak et al., 2006; Obinaju et 

al., 2014; Palaniappan and Vijayasundaram, 2008, 2009), this study is the first of its 

kind to report such effects in the tissues of amphibians (Strong et al., 2016).  

6.4. Application of biospectroscopy in elucidating the effects of low-

dose fungicides in amphibian cells 

Infrared spectroscopy has been shown to be a sensitive technique for assessing the 

effects of low, environmentally-relevant levels of chemicals in a variety of cell types 

(Johnson et al., 2014; Li et al., 2016; Riding et al., 2012a; Ukpebor et al., 2011). In 

vitro studies provide useful mechanistic information regarding the interaction of 

particular chemicals with cells, and biospectroscopy, as well detecting differences 

between treated and untreated cell populations, gives detailed information regarding 

the effects on cellular biochemistry through the IR spectrum produced (Jamin et al., 

1998).  

In this study (Chapter 5), a cell-line derived from X.laevis kidney epithelia was 

exposed to concentrations of two fungicides used in agriculture with different 

mechanisms of action: carbendazim, a benzimidazole fungicide, and flusilazole, a 

triazole fungicide. Cells were exposed to agents singly or as a binary mixture at 

environmentally-relevant concentrations, in order to add more environmental realism 

as amphibians are typically exposed to multiple agents in the environment (Khamis 

and Heikkila, 2013; Relyea, 2009). All concentrations induced alterations in cells, 

which led to cells segregating away from the control when analysed with PCA-LDA. 

The areas of the spectrum attributable to the separation in treated cells were in regions 

primarily associated with lipids and Amide proteins, which is likely due to effects on 

the cell membrane (Riding et al., 2012b). Mixture effects also induced effects in 

regions associated with DNA, potentially due to increased lipid peroxidation of the 

cell membrane leading to the damage of sub cellular components from the products 

generated through oxidation of the lipids detected at ~1740 cm-1 in the cell membrane 

(Burcham, 1998). Benzimidazole fungicides are frequently detected in surface waters 
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and associated with lipid peroxidation in fish, and developmental defects in 

amphibians although there are very few studies examining their effects in non-target 

species (Palanikumar et al., 2014; Palma et al., 2004; Yoon et al., 2008). Likewise, 

despite their wide usage and emerging evidence of accumulation and detrimental 

effects at low concentrations in amphibians triazole fungicides are poorly studied 

(Poulsen et al., 2015; Smalling et al., 2013).  

This study provided evidence that ATR-FTIR spectroscopy is capable of detecting 

alterations induced in target cell populations at low levels of exposure using 

commonly found, yet poorly studied environmental contaminants.  

6.5. Conclusions and future research 

Implementation of IR spectroscopy in environmental research is a growing area, 

which is proving to be a useful technique in assessing the effects of environmental 

pollutants in a variety of taxa. This technique provides quantitative information about 

functional groups in the analysed samples and is a highly sensitive technique capable 

of detecting small alterations in vibrational modes.  In this thesis, ATR-FTIR 

spectroscopy coupled with multivariate analysis and classification techniques has been 

shown to be a sensitive technique for assessing the impact of differing water quality 

on multiple life stages of R.temporaria, as well as the specific effects of low-dose 

exposure to fungicides in vitro in a X.laevis cell line. A summary of the conclusions 

and future research needs is provided in Figure 14.  

While this study provides a useful starting point for the application of spectroscopy in 

assessing the effects of pollutants on amphibian populations, there are limitations that 

must be highlighted. Infrared spectroscopy was able to detect differences in X.laevis 

cells exposed to fungicides, however there may be issues in extrapolating cell-based 

studies to higher levels of organisation (Schirmer, 2006); future work should look at 

3D cell culture systems (Baron et al., 2012), possibly in co-culture with other cell 

lines. In addition, other markers of water quality such as nitrate and phosphate in 

concert with environmental contaminants could be explored. Although attempts were 

made to reduce sources of variability by sampling tadpoles and embryos of around the 

same developmental stage for comparison, other factors than those measured in the 

study may have impacted the results, which are difficult to control in a field study. 

These include the effect of other stressors on amphibian health such as food 
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availability, food content, predation, population density and abiotic factors such as 

temperature and pH. Tadpoles are known to show developmental plasticity, speeding 

up or slowing down metamorphosis depending on the environmental conditions 

(Alvarez and Nicieza, 2002). Future research could look at attempting to control some 

of these factors by the use of complementary laboratory and outdoor mesocosm 

studies. In addition, the results reported are from a small number of ponds; a bigger 

study sampling more ponds would potentially allow the correlation of different types 

of pollutants in the aquatic environment with the spectral measurements from tadpoles 

and embryos. While there are several studies in fish that have utilised IR spectroscopy 

in ecotoxicogical research (e.g. Malins et al., 2004, 2006, Obinaju et al., 2014) the 

data presented in this thesis are the first to apply this technique in amphibians, 

therefore ideally future work would seek to further validate the observed changes in 

the spectral data with that from more conventional approaches. For example, the 

decreases seen in the absorbance bands of glycogen and lipid in whole tadpoles 

(chapters 2 and 3) and tadpole tissues (chapter 4) could be correlated to results 

obtained from the direct quantification of these constituents and markers of oxidative 

stress and detoxification enzymes such as glutathione-S-transferase and superoxide 

dismutase, as has been measured in other studies in amphibians (Attademo et al., 

2007; Dornelles and Oliveira, 2014; Dornelles and Oliveira, 2016; Melvin, 2015; 

Melvin et al., 2013; Melvin et al., 2016).  

At the onset of the PhD it was envisaged that one or more ponds could be selected to 

serve as a ‘control’ i.e. sites that have minimal anthropogenic perturbations. However, 

this is unlikely to be achieved in such a small survey and further to this; other factors 

such as pH, temperature, food availability etc can play a role as demonstrated by the 

longitudinal (multi-year) study, most notably on frog embryos. While the focus of this 

study was on water pollution and thus employed aquatic life stages of R.temporaria, 

terrestrial amphibians could be sampled in a future study as exposure to environmental 

contaminants at the terrestrial stage may be an important and overlooked area of 

research (Brühl et al., 2013). 

The wider application of studying amphibian populations with IR spectroscopy could 

involve sampling of a non-destructive nature, of both larval and metamorphosed 

amphibians. There is a growing field of biofluid analysis using IR spectroscopy in 
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medical diagnostics using samples such as blood, urine and sputum (Krafft et al., 

2009; Lewis et al., 2010; Ollesch et al., 2013). This has the potential to be applied in 

amphibians (and other groups of sentinel organisms), as currently blood, urine 

samples and buccal and skin swabs are used as non-destructive indices in assessing 

responses to pollution, and in DNA, disease and hormone analysis in adult and larval 

amphibians (Berubé et al., 2005; Graham et al., 2013; Kindermann et al., 2012; 

Pidancier et al., 2003). The implementation of IR spectroscopy in a non-destructive 

manner could be of great benefit in the many species of amphibian vulnerable to 

extinction, where collection of organisms would be detrimental to the species. 

 

Figure 14. Flow diagram of conclusions, limitations and future research needs of the 

thesis. 
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