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For certain classes of relativistic plasma problems, performing numerical calculations in a Lorentz
boosted frame can be even more advantageous for gridded momentum-space-time (e.g. Vlasov)
problems than has been demonstrated for position space-time problems and result in a potential
reduction in the number of calculations needed by a factor ∼ γ6

b . In this study, the Lorentz boosted
frame technique was applied to the problem of warm wavebreaking limits of plasma waves with
relativistic phase velocity. The numerical results are consistent with analytic conclusions. By
appropriate normalization and for sufficiently warm plasma, the dynamics for the Vlasov equation
in different Lorentz frames were found to be independent of γp.

I. INTRODUCTION

Plasma based accelerators [1–5] show much promise as
an advanced accelerator concept due to their very high
acceleration gradients. Low-noise Eulerian-Vlasov sim-
ulations may be of interest for understanding the effect
of the initial thermal distribution on particle trapping
and wave amplitude [6]. Simulations of relativistic phase
velocity waves in thermal laboratory plasmas, such as
those relating to laser or beam driven plasma wakefield
accelerator experiments [7–9], are, however, constrained
by the fact that the maximum and minimum momenta
that need to be resolved, in the direction of propagation,
have a large difference in magnitude.

For a non-evolving driver, the maximum possible for-
ward momentum gain in a plasma accelerator scales as
the Lorentz factor associated with the phase velocity of
the plasma wave, γp, squared, pmax ∝ γ2

pmc whereas
the initial momentum spread, pth, corresponding to the
square root of the plasma temperature, is extremely
small, pth � mc. Even if initially the unperturbed
plasma is relatively warm, a 100 eV plasma for exam-
ple, then the momentum spread is pth ∼ 10−2mc, which
is very small compared with the maximum momentum,
pmax � mc. This means to resolve the smallest and
largest scales, for a numerical solution on a mesh, the
number of grid points required in momentum space, Np
is enormous. For example, consider laser wakefield accel-
eration [10] in a 100 eV plasma with a 1 GeV energy gain;
the minimum number of momentum grid points required
to minimally resolve these disparate scales is Np ∼ 105,
which is computationally intensive when combined with
spatiotemporal dependence, even in 1D1P geometry. For
a beam driven plasma wakefield, due to drive beam lim-
itations the maximum energy does not scale as γ2

p , but
the energy of the accelerated particles is typically very
large compared with the thermal spread anyway.

In this paper, we investigate the use of Eulerian-Vlasov

simulations using a Fourier based code in a Lorentz
boosted frame for studies of relativistic phase veloc-
ity perturbations in thermal plasma. In section II we
discuss how, because of the noninvariance of energy-
momentum scales in Eulerian-Vlasov finite-difference-
time-domain simulations, performing the simulation in
a boosted frame can lead to dramatic speed-ups in cal-
culation time, as an extension of the space-time consid-
erations of Vay [11]. Then, in section III, we make use
of this technique to allow a numerical investigation into
the maximum electric field achievable in a plasma wave
with relativistic phase velocity (the “warm wavebreaking
threshold”). This is compared with the results of a recent
analytic study. Finally, several appendices describe the
numerical scheme for the Vlasov code used in this study
and its verification.

Unless otherwise stated, a system of units normalized
to laboratory frame reference plasma quantities appropri-
ate to relativistic plasma is used throughout; v → v/c,
x → xωp/c, t → ωpt, p → p/mc, E → qE/mcωp,

ρ→ ρ/ρ0 etc., where ωp =
√
qρ0/mε0 is the plasma fre-

quency for a neutralized species of charge q, mass m and
charge density ρ0. The fact that all variables (i.e. even
those in the boosted frame) are normalized to laboratory
frame quantities is important later on when discussing
the similarity of solutions in the boosted frame.

II. VLASOV COMPUTATION IN A BOOSTED
FRAME

The use of a Lorentz boosted frame to speed up plasma
based wakefield acceleration calculations in particle-in-
cell simulations is well known in the literature [11–13].
The advantage in this approach is that by boosting to
a frame co-propagating with the relativistically moving
object at wake phase Lorentz factor γp, the smallest
time/space scales that need to be resolved (e.g. the laser
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period) become larger since they copropagate with the
boost, but the plasma length that needs to be integrated
over shrinks due to Lorentz contraction. Hence, the num-
ber of calculations needed to resolve the simulation is
greatly reduced. A Lorentz boosted frame has also been
applied in the direction perpendicular to one dimensional
(in space) Eulerian-Vlasov simulations to enable the sim-
ulation of a laser pulse with oblique incidence [14].

The covariant form of the Vlasov equation is [15](
pµ

∂

∂xµ
+ Fαµpµ

∂

∂pα

)
f4(x, p) = 0 , (1)

where pν is the four-momentum, xν the four-position,
field tensor Fαµ = ∂αAµ − ∂µAα and f4(x, p) the parti-
cle distribution in d4x d4p. For numerical solutions of the
relativistic Vlasov equation, due to desiring a fixed labo-
ratory time interval for a time-stepping algorithm and the
computational inefficiency of calculating the eight dimen-
sional covariant form of the Vlasov equation, it is more
convenient to use a numerical form of the non-invariant
form of the Vlasov equation for distribution f(x,p, t),

∂f

∂t
+

p√
1 + |p|2

· ∂f
∂x

+

(
E +

p√
1 + |p|2

×B

)
· ∂f
∂p

= 0 ,

(2)
obtained by integrating Eqn. 1 with respect to p0 us-
ing the relativistic energy-momentum relation and dis-
cretize in time, space and momentum space with fixed
time/space/momentum step sizes ∆t/∆x/∆p. It is also
more typical to solve for fields E and B than Aµ in nu-
merical calculations.

A. Vlasov simulations in a Lorentz-boosted frame

We start with the resolution required to resolve a func-
tion of x and t only, calculated on a regular Cartesian grid
in different inertial frames. Consider the inertial frame O
in which the number of grid points required to resolve all
phenomena of interest in space and time are Nx and Nt
respectively and are the minimum required in any inertial
frame of reference. By assuming that there is a frame of
reference in which the number of calculations required is
minimized, we will then demonstrate that, by boosting to
a different frame of reference, the number of calculations
required to resolve the same physics is always increased.

We can relate the number of grid points to the extent
of the simulation Lx = x2−x1 and duration Lt = t2− t1
that encompasses all phenomena of interest occuring be-
tween positions x1 and x2 and times t1 and t2. Define the
uniform grid spacings ∆x and ∆t through ∆x = Lx/Nx
and ∆t = Lt/Nt. The total number of calculations over
the whole space-time mesh is of order N = NxNt.

In a new frameO′, related toO by a boost with Lorentz
factor γp, we can find the new number of calculations
N ′, assuming a uniform grid, through N ′ = N ′xN

′
t , with

N ′x = L′x/∆x
′ and N ′t = L′t/∆t

′ .

The new extents of the simulation in the frame O′, L′x
and L′t and the new grid spacings, ∆x′ and ∆t′, can be
related to extents and spacings in the frame O as fol-
lows. The left hand figure of Fig. 1 shows a bounded
sinusoidal function in x− t space representing some par-
ticular system of interest. The right hand figure shows
the same system boosted with γp = 1.25. Note that
the coordinate system is chosen so that the origin is at
the center of the domain. When the system is sheared,
assuming it is now modeled using a regular rectangular
mesh, the new size of the simulation (maximum extent)
must be L′x = γp (1 + vp/vL)Lx, where vL = Lx/Lt, by
L′t = γp (1 + vLvp)Lt, in size, for a boost with velocity
±vp.

To determine the resolution required in a new frame
of reference, consider the Fourier decomposition of the
function by wavenumber kj and frequency ωn, from
−kmax → kmax and −ωmax → ωmax. The limits of
the Fourier-space can be related to the grid spacings
by the Nyquist frequencies, ∆x < π/kmax and ∆t <
π/ωmax. Using the transforms k′ = γp(k − vpω) and
ω′ = γp(ω − vpk), in a new frame of reference there will
be a new set of waves with wavenumbers k′ and frequen-
cies ω′ representing the same physical behavior of inter-
est. Therefore, in the new frame the largest wavenumber
is k′max = γp(kmax + vpωmax) and the largest frequency
is ω′max = γp(ωmax + vpkmax). By again relating the
Nyquist frequencies to the grid spacings, ∆x′ < π/k′max

and ∆t′ < π/ω′max, in the new frame of reference, we can
relate ∆x and ∆t to ∆x′ and ∆t′ by

∆x′ =
∆x

γp (1 + vpv∆)

and

∆t′ =
∆t

γp (1 + vp/v∆)
,

where v∆ = ∆x/∆t. Hence,

N ′x = γ2
p (1 + vp/vL) (1 + vpv∆)Nx

and

N ′t = γ2
p (1 + vpvL) (1 + vp/v∆)Nt .

To perform the same calculation on a regular grid in
the boosted frame, we must use the grid shown in the
right hand panel of Fig. 1 as red dash-dot lines. If we
additionally used a rectangular boundary, it would need
to encompass the whole region including parts outside of
the the domain of interest (black dashed line), since it
is sheared in time and space. Clearly, the actual num-
ber of calculations can be reduced in this frame of refer-
ence, even for this regular rectangular mesh, by having
a non-rectangular boundary. One example of this is the
“moving box” technique in accelerator simulations [16].
Nevertheless, in general there is a substantial decrease
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FIG. 1: (Left) A sinusoidal Lorentz scalar function in x − t
space. (Right) The same function in the frame boosted with
γp = 1.25. The dashed black line indicates the domain of
interest and grid required for resolving the function in the
laboratory frame. The red dot-dashed lines indicate the rect-
angular grid required to resolve the function in the boosted
frame.

in the number of calculations required in frame O com-
pared with O′. For example, if we take vL = 1, v∆ = 1,
i.e. ∆x = ∆t and Lx = Lt, then

N ′ = N ′xN
′
t = γ4

p(1 + vp)
2N .

That is to say, it is ∼ γ2
p times faster to perform the

calculation in the frame O. The analysis described above
is basically equivalent to that described by Vay [11].

It turns out that there is a similarly beneficial effect
for codes with a gridded momentum space. An example
of this is solving the relativistic Vlasov equation, Eqn.
2, on a regular cuboid mesh. Consider a simulation with
a uniform gridded momentum space in a Vlasov code in
the frame O from pmin = −p0 to pmax = +p0, with
grid step size ∆p, that completely bounds the particle
distribution. Note that this is the frame in which the
momentum limits are symmetric, which will normally
be the frame with the minimum number of calculations
required (but not always). Similar to the spatial grid,
the number of points on the momentum grid will be
Np = Lp/∆p, where Lp = 2p0. In a new frame O′, the

momentum limits will be p′min = γp

(
−p0 − vp

√
1 + p2

0

)
and p′max = γp

(
p0 − vp

√
1 + p2

0

)
, which means the ex-

tent of the momentum space increases by a factor of γp,
i.e. L′p = γpLp.

After transformation, the required grid spacing in
the new frame will depend on velocity, ∆p′ =
γp (∆p− vp∆E) ' γp (1− vpv) ∆p. Assuming that to
perform the simulation we still want to choose a uniform
grid in the frame O′, then the new grid spacing should
be given by the smallest transformed grid cell,

∆p′ = γp

(
1− vpp0√

1 + p2
0

)
∆p .

Hence,

N ′p =
Np(

1− vpp0√
1+p20

) .

If we consider a highly relativistic simulation,
p0/
√

1 + p2
0 ' 1, then N ′p ' Np/(1−vp) ' γ2

p(1 +vp)Np.

For a full (1D1P) Vlasov simulation, the total num-
ber of calculations required is of order N = NxNpNt. In
general, the frame that minimizes the number of grid-
points NxNt is not necessarily the same as the center
of momentum frame O. However, for problems involv-
ing the crossing of two objects such as in plasma based
accelerator schemes, free electron lasers etc., they do co-
incide [11]. This means that for such problems, the num-
ber of calculations required for a Vlasov simulation in a
frame boosted in any direction with respect to the opti-
mum frame O, i.e. O′, scales as N ′ ' γ6

p(1 + vp)
3N .

Hence, if a simulation is performed in an optimum frame
relative to, for example, a laboratory frame simulation,
there may be an up-to γ6

p reduction in the number of
calculations required depending on the situation. Fig. 2
illustrates this idea graphically. This result means that
Vlasov simulations for plasma based accelerators under
realistic conditions may be feasible.
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FIG. 2: (Left) A region of interest in {x, p, t} space indicated
by contours. (Right) The same region of interest in the frame
boosted with γp = 2. The dotted lines on the walls indicate a
characteristic grid size required for resolving the same physics
in both boxes.

One other point of view is that instead of a Vlasov sim-
ulation, one may consider a simulation of wavefunctions
of x, t but where there is a spread in k, ω. By an identical
argument, the frame in which the frequency/wavenumber
limits are symmetric will usually be optimal (since p,E
can be replaced with k, ω).
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FIG. 3: Contour plots of the natural logarithm of distribution function f (with x− vpt/x′ and p/p′ scales cropped) for plasma
wave simulations with a driver with γp =

√
7.25 in a plasma of normalized temperature θ = 0.04. The driver is similar to

that described in section III. All calculations are shown close to a laboratory frame time tf = 20π. (a) Performed in a frame
moving at vp at slightly later than tf . (b) shows the same calculation as (a), but displayed with transformed coordinates p′ → p
and x′ → x − vpt. (c) The laboratory frame calculation at tf . (d) The same boosted frame calculation as (a) but on a mesh
with 64× fewer gridpoints. (e) The same boosted frame calculation as (a) but on a courser mesh and transformed in x, t (as
described in the main text) to t = tf in the laboratory frame. (f) Same as (e) but fully Lorentz transformed to the laboratory
frame. The calculations were performed on different grids of Nx ×Np as indicated in the figure panels.

B. Thermal effects in plasma-based accelerators

Consideration of thermal effects are important in
plasma-based accelerators [6] and an Eulerian-Vlasov
method may be preferable to particle-based methods due
to decreased noise. However, the former are very com-
putationally intensive due to inefficient representation of
the particle distribution. In a simulation of a laser wake-
field accelerator in particular, the largest momentum that
needs to be included on the momentum grid is the max-
imum forward momentum at dephasing pmax ∝ γ2

p [10].
The minimum scale length to be resolved is the plasma
momentum spread pth, which is related to the plasma
“temperature” θmec

2 = kBT (in real units). The diffi-
culty is that θ ≪ 1 in any realistic scenario, such that the
approximate number of grid points required is huge and
scales unfavorably with γp, pmax/

√
2θ ∝ γ2

p ≫ 1. For
example, consider a laser wakefield driver with Lorentz

factor γp = 30 and a plasma temperature in real units
of 100 eV ' 2 × 10−4mec

2. In this case, the minimum
number of gridpoints required for a Vlasov simulation in
the laboratory frame would be O

(
105
)
.

In a frame boosted in the forward direction by γp, how-
ever, the new maximum momentum is

p′max '
[

1

(1 + vp)γp
− γpvp
p2
max

]
pmax ,

i.e., pmax is reduced by a factor of O (γp). By contrast,

the momentum spread ∼
√
θ of the plasma is increased.

Consider a symmetric distribution that has a charac-
teristic width pth, from p− = −pth/2 to p+ = +pth/2.
The new momentum limits in the boosted frame are

p′− = γp (p− − vpE−) ,

p′+ = γp (p+ − vpE+) .
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Since the width in the boosted frame is p′th = p′+−p′−, the
energy terms cancel (for the symmetric limits considered)
and hence

p′th = γppth .

Therefore, in the boosted frame the ratio of the small-
est momentum (the width) and the largest momentum
(maximum forward momentum gain) that need to be re-
solved is decreased by a factor of γ2

p , i.e. the number of

momentum grid points can be reduced by a factor of γ2
p ,

making calculations more tractable. For the wakefield
example above, this would mean only O

(
102
)

momen-
tum grid points required to resolve the same physics as
in the laboratory frame.

To illustrate these scalings, Fig. 3 shows boosted frame
and co-moving laboratory frame Vlasov simulations of a
relativistically moving driver, reminiscent of the pondero-
motive force of a laser, generating in its wake a plasma
wave with relativistic phase velocity, in a plasma of nor-
malized temperature θ = 0.04. This driver is an exter-
nal electric field. The precise simulation conditions are
given later in section III and details of the Fourier based
Vlasov code used for these calculations are given in the
Appendices. The figure shows contour plots of the natu-
ral logarithm of distribution function f (x − vpt/x′ and
p/p′ scales cropped) for plasma wave simulations with a

driver with γp =
√

7.25. Contour plots are used here so
that direct comparison of transformed distributions can
be performed. All calculations are shown close to a lab-
oratory frame time tf = 20π. Fig. 3a is performed in
a frame moving at vp at slightly later than tf . Fig. 3b
shows the same calculation as (a), but displayed with
transformed coordinates p′ → p and x′ → x − vpt. Fig.
3c shows the corresponding laboratory frame calculation
at exactly tf .

The time evolution of this structure in the two frames
(boosted and laboratory) should clearly be different due
to non-simultaneity of events. Since the laboratory frame
plasma perturbation can be described in terms of the co-
ordinates ξ = x− vpt and τ = t, boosted frame time can
be expressed as t′ = γp(τ(1−v2

p)−vpξ) = −γpvpξ+τ/γp.
however and the absolute evolution is relatively slow,
∂f/∂τ � ∂f/∂ξ, therefore time in the boosted frame
will be dominated by the functional dependence on phase
ξ. Fig. 3a and b are shown at a time t′ such that at
x′ = −2π, the boosted frame time coincides with the lab-
oratory frame time. Near to this point, when the space
and momentum coordinates are transformed, the distri-
bution function f(x, p, t′) looks similar, but not identical,
to the real laboratory distribution f(x, p, t) (this is not
yet a proper Lorentz transform of the data).

The laboratory frame calculation in Fig. 3c shows er-
rors at the log f = −3 level despite the relatively large
mesh (a-c are all calculated on a 2048 × 2048 grid with
equivalent space/momentum limits). This is because the
distribution is narrow relative to the momentum grid
spacing (pth/∆p ≈ 6) and therefore the steep gradients
cause errors in the Fourier representation. To show how

the use of the boosted frame can speed up calculation,
Fig. 3d shows the same boosted frame calculation as (a)
but on a mesh with 64× fewer gridpoints (a 256×256
mesh). It shows errors at a level comparable with the
fine mesh laboratory frame calculation Fig. 3 c, but the
total simulation for Fig. 3d for tmax = 48π took 42.8 s on
a single 2.67 GHz Intel Xeon X5650 processor, whereas
for Fig. 3a the calculation took ≈ 2617 s on the same
processor. The laboratory frame calculations will not
even complete on such a course mesh, but goes unsta-
ble because of the poor Fourier representation. For even
slightly larger values of γp, it is not even possible to per-
form calculations in the laboratory frame with this serial
code due to memory restrictions.

To properly compare calculations in the two inertial
frames, a full Lorentz transform of f ′(x′, p′, t′) must be
performed. In practice this means recording the entire
f ′(x′, p′, t′) history and transforming the data volume,
which requires a large amount of memory. With avail-
able resources transformation of the full Nx×Np×Nt =
2048× 2048× 757 grid was not possible. However, simu-
lations were also run in the boosted frame at Nx×Np =
512 × 512 with a larger timestep of ∆t′ = 0.5, which al-
lowed storage of the full f ′(x′, p′, t′) data. This was then
transformed by shifting the elements in the data cube in
the time direction by a position vector dependent num-
ber Nshift(x

′) = floor(Ntvpx
′/tmax), which corresponds

to t′ → t′+vpx′, so that the transformed time correspond-
ing to an (x′, p′) slice in the data volume is equivalent to a
time γpt. Combined with Lorentz transformations of the
space and momentum coordinates, the full Lorentz trans-
formed distribution f(x, p, t) can be constructed. Fig. 3e
shows the same boosted frame calculation as (a) but on
a courser mesh (512×512) and transformed in x, t as de-
scribed above to coincide with t = tf in the laboratory
frame. Finally, Fig. 3f shows the same data fully Lorentz
transformed to the laboratory frame. It is now properly
simultaneous to the real laboratory frame calculation Fig.
3c.

III. INVESTIGATION OF WARM
WAVEBREAKING USING A LORENTZ

BOOSTED FRAME

As an application of the technique described in the
previous sections, we will examine the problem of warm
wavebreaking of a wave with relativistic phase velocity
vφ, which has been studied by numerous authors [17–
24] and for detailed discussion the reader is directed
to those references. In particular, Schroeder et al [20]
used relativistic fluid theory closed by neglecting cen-
tered moments of third order and higher, to indicate that
for a thermal distribution in the limit γp → ∞ (with

γp = γφ = 1/
√

1− v2
φ being associated with the phase

velocity of the plasma wave in this case), the maximum
electric field supported by a thermal plasma wave asymp-
totically approached a constant value, the value of which
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they calculated. Here, a relativistic Vlasov numerical cal-
culation in the frame boosted to where the wave phase
velocity is zero will be directly applied to this problem
as a demonstration; for the highest phase velocities in-
vestigated, to have the same effective resolution as the
boosted frame calculations performed here the equivalent
laboratory frame calculations would have to have O(103)
times as many momentum grid points.

A. Similar dynamics of plasma in boosted frame

Before performing the simulations, we note that the
1D Vlasov-Maxwell system relevant to the warm wave-
breaking of a plane wave can be written in the frame co-
moving with the plasma wave phase velocity using new
further normalized coordinates p′ → p′/γp, x′ → x′/γp
and t′ → t′/γp. The resulting 1D Vlasov equation is

∂f ′

∂t′
+

p′√
1
γ2
p

+ p′2
∂f ′

∂x′
+ E′

∂f ′

∂p′
= 0 , (3)

with E′ → E′ for consistency.
Gauss’s law (see appendix VII for discussion of the use

of Gauss’s law / Ampère-Maxwell in 1D) is

∂E′

∂x′
= ρ′ − 1 , (4)

where the charge density must be normalized as ρ′ →
ρ′/γp for consistency with the left hand side. The last
term is 1 because the density is normalized to the labo-
ratory frame reference density ρ0, where the plasma is at
rest. In the boosted frame this transforms to γpρ0 and
therefore the normalized background density is 1. This
definition is also consistent with

ρ′ =

∫ ∞
−∞

f ′dp′ , (5)

with f ′ → f ′, which is satisfactory since the distribution
is an invariant quantity.

Eqns (3–5) describe the self-consistent evolution of a
Vlasov plasma in a frame boosted to velocity vp. A
plasma at rest in the laboratory frame with character-
istic density ρ0 = 1 and temperature θ (i.e. momentum

spread pth =
√

2θ) will appear to be a plasma travel-
ing with momentum pdrift = −γpvp, density ρ′0 = γp
and momentum spread γp

√
2θ in the boosted frame in

terms of the old variables. In the newly normalized
set of variables, this becomes a plasma with momentum
pdrift = −vp ' 1−1/2γ2

p , density ρ′0 = 1 and momentum

spread
√

2θ.
In the limit γ2

p → ∞, there is no dependence on γp
in Eqns (3–5) or the initial conditions. Therefore, the
evolution of the normalized system should display simi-
lar dynamics for any γp � 1 for a given laboratory frame
density ρ0 and temperature θ. This is analogous to the

similarity theory of Ref. [25], but with γp replacing the
role of a0 in that reference. There is a caveat to this;
there will be a small region close to p′ = 0 where the ap-
proximation v′ ' p′/|p′| = ±1 breaks down. The width
of this region is approximately 1/γp. Therefore, provided
the temperature of the plasma θ is such that γ2

pθ � 1,
few particles will be in the region where the similar dy-
namics does not apply.

This analysis implies that the evolution of the warm
plasma wave (with γ2

pθ � 1) should evolve with simi-
lar dynamics for any γp, regardless of any details of the
distribution function shape in the limit γ2

p � 1 and there-
fore the maximum normalized electric field of the wave
should not depend on γp. It does not, however, prescribe
what that field strength is. Since the component of the
electric field in the direction of the boost is invariant and
the normalization of electric field does not depend on γp,
the laboratory frame electric field must not depend on
γp in this limit, but only on the temperature and plasma
density, consistent with the results of Ref. [20].

The more general use of this similarity theory approach
for scaling results from simulations of plasmas perturbed
by relativistic objects will be addressed in a future pub-
lication.
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√
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√
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√
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is truncated at the -9 level (i.e. for f . 10−4, with maximum
f ' 2).
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B. Numerical simulations

To obtain the numerically calculated electric field
strength for comparison with theory, we carried out sim-
ulations in the the frame in which the phase velocity of
the wave is zero. This was necessary so that the ther-
mal distribution with small spread and high energy elec-
tron acceleration were resolvable on a reasonable grid,
as discussed in the previous sections. Simulations were
carried out on a Nx × Np = 2096 × 2096 uniform grid
using the Fourier based Vlasov code described in Ap-
pendix VII. The time step was ω′p∆t

′ = 0.2 and the
simulation proceeded until tmax = 24πγp. The initial
distribution was a one dimensional drifting relativistic
Maxwellian as described in Appendix VI with drifting
momentum −γpvp and thermal spread θ = 0.04. The
domain length in x′ was 14γpπ, defined in the range
xmin = −12πγp ≤ x′ ≤ xmax = 2πγp.

The maximum electric field supportable by the plasma
wave was found by adding an external electric field
(which could represent, for example a particle beam or
the ponderomotive force of a laser driver). This field
was increased slowly (with respect to the plasma period)
in amplitude, monotonically from zero [26]. A plasma
wave with increasing amplitude was consequently gener-
ated. The amplitude of the external field was increased
in amplitude far beyond the point of saturation when the
maximum plasma wave amplitude was reached and had
a precise form;

E′x,ext =

{
E0(t′) cos(x′/γp) for − γpπ < x′ < γpπ
0 otherwise

(6)
where E0(t) = t′/tmax, although other functional forms
were also tried, including a non-adiabatic drive (i.e. step
function switch on), with similar results.

At the ends of the domain, a equilibrating operator of
the form ∂f/∂t′|c = −ν(x′) [f − f0] was added, where f0

is the unperturbed initial distribution. This was because
while the code has several nice properties with respect to
conservation and accuracy, the calculation must be per-
formed in a periodic domain due to the fast Fourier trans-
form algorithm. The relativistic phase velocity waves
generated do not, however, have a well defined period be-
cause their wavelength depends on the wave amplitude.
The spatially dependent “collision frequency”, ν(x′), was
zero within the domain of interest and had a sufficiently
high value at the edges of the domain that the plasma
streaming in from xmax was equal to f0 to near machine
precision before interacting with the externally applied
electric field.

ν(x′) = 2

[
e
−
(
x′−xmax
γpπ

)40

+ e
−
(
x′−xmin
γpπ

)2]
.

Figure 4 shows snapshots in time of the distribution func-
tion at t′ = 12πγp into the simulation for 4 different phase
velocities. The maximum and minimum momentum and

space scales in each figure are deliberately set to multi-
ples of γp to illustrate clearly the similar evolution of the
distribution function as γp becomes large.

Fig. 5 shows various outputs from the code as a func-
tion of time t for a simulation with γb =

√
226. (a)

and (b) show time histories of the density perturbation
δρ′ and electric field E′x. The amplitude of the pertur-
bation grows in time as the driving external electric field
(not shown) increased. After reaching the maximum am-
plitude, the amplitude no longer grows, but instead the
wavelength of the first period where the driver is situated
increases, with the wave structure losing coherence.

Fig. 5 (c) shows the maximum of E′x compared with
the wavebreaking limit in Ref. [20], ESES . The elec-
tric field amplitude grows smoothly until it approaches
the wavebreaking limit, whereapon the field starts to os-
cillate due to fluctuations in the coherent structure of
the wave, but no longer grows in amplitude on average.
(d) shows the Fourier transform of δρ′ as a function of
wavenumber normalized to k′p. As time progresses, we see
the generation of harmonics of kp as the wave becomes
nonlinear and then subsequently the coherent structure
of the wave starts to become lost.

Finally, Fig. 6 shows a comparison of the wavebreaking
threshold from the analytic expression in Ref. [20] with
the maximum electric field calculated by the Vlasov code
for simulations over a range of values of γp for fixed θ.
As can be seen from the figure, there is good agreement
with the analytic expression over the range calculated to
within the limitation of the fluctuations in the maximum
field as the wave reaches maximum amplitude. The only
discrepancy is at the lowest value of γ2

pθ, where the max-
imum field is much higher than the prediction. This is
because so many particles are trapped as the simulation
progresses that the assumptions in deriving the analytic
expression are violated anyway.

IV. CONCLUSIONS

In conclusion, we have shown that using a boosted
frame can be very advantageous for Vlasov simulations
of relativistic thermal plasma waves. In the simula-
tions performed here, at the highest value of γ2

pθ with
θ = 0.04, therefore γp = 50. In the laboratory frame,
trapped particles in the thermal distribution reach ∼ γ2

p

energy. Therefore the requirement on a uniform momen-
tum grid minimally resolving the thermal distribution
and overall dynamics would scale as ∼ γ2

p/θ ∼ 105 grid
points, although for an accurate simulation it would be
much higher than this. In the boosted frame with max-
imum/minimum momentum ∼ γp we require ∼ γp/θ ∼
250 grid points to minimally resolve the thermal distribu-
tion and overall dynamics (although an order of magni-
tude more than this were used for accurate results). The
use of a boosted frame allowed the running of these sim-
ulations on a single processor in a relatively short time
(a few hours for the longest).
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FIG. 5: Various outputs from the code as a function of time
t for a simulation with γb =

√
226. (a) Density perturbation

δρ′, (b) electric field Ex, (c) maximum of Ex compared with
the wavebreaking limit in Ref. [20], ESES and (d) Fourier
transform of δρ′ as a function of wavenumber normalized to
k′p.

The use of a Lorentz boosted frame for Eulerian-
Vlasov calculations should also be applicable to methods
other than the Fourier solver used here. It should be
noted, however, that numerical instabilities have been
observed in particle-in-cell simulations using Lorentz
boosted frames and various methods have been devel-
oped to mitigate them ([13] and references therein). For
Eulerian-Vlasov calculations not using Fourier methods,
as in this paper, similar methods would probably need to
be applied also.

These simulations support the maximum electric field

10−1 100 101 102 103
0

0.5

1

1.5

2

γp
2θ

E m
ax
/E
0

 

 

(a)
(b)

FIG. 6: Comparison of wavebreaking thresholds from (a) the
analytic expression in Ref. [20] and (b) the maximum electric
field calculated by the Vlasov code.

achievable calculated in Ref. [20], even under non-
stationary conditions. When trapping of particles was
sufficient to lead to a distribution with momentum spread
that violated the assumptions in that model, the simu-
lation results did not agree with the maximum electric
field. The results of this paper also demonstrate evidence
for the feasibility of Vlasov simulation for plasma based
accelerator applications.
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VI. APPENDIX: 1D RELATIVISTIC DRIFTING
MAXWELLIAN

For all the simulations performed in the boosted frame
we must use a correctly initialized drifting relativistic
Maxwellian (“Maxwell-Juttner”) distribution in terms of
only one momentum coordinate. In its rest frame, the
relativistic Maxwellian with normalized temperature θ is
[15]

f(p⊥, p) =
1

4πθK2(1/θ)
exp

[
−1

θ

√
1 + p2

⊥ + p2

]
,

where p⊥ are the perpendicular (to the domain) compo-
nents of the momentum and K2(x) is a modified Bessel
function of the second kind. Since f is an invariant, we
can express the distribution in the frame moving at vp by
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simply invoking the transform γ = γp (γ′ + vpp
′). The

1D distribution can therefore be found by integrating
over the transverse coordinates

f(p′) =
1

4πθK2(1/θ)
exp

[
−γpvpp

′

θ

]
×
∫

exp

[
−γp
θ

√
1 + p2

⊥ + p′2
]
d2p⊥ , (7)

such that

f(p′) =
1

2γ2
pK2(1/θ)

(
γp
√

1 + p′2 + θ
)

× exp
[
−γp
θ

(√
1 + p′2 + vpp

′
)]

. (8)

This distribution was used as the initial condition for
the results in the main text. Note that in the limit that
θ → 0, this expression reduces to

f(p′) =
γ2
p√

2πθ
exp

[
− (p′ + γpvp)

2

2γ2
pθ

]
,

which is a non-relativistic Maxwellian with a temperature
γ2
p higher than in the plasma rest frame and shifted to

a drifting momentum of −γpvp (and with density ρ′ =∫
f(p′)dp′ = γpρ).

VII. APPENDIX: RELATIVISTIC SPECTRAL
1D1P VLASOV CODE

This appendix describes tests of the relativistic Fourier
based 1D1P relativistic Vlasov code used in the studies in
the previous sections, for verification and to demonstrate
its numerical accuracy. Because it uses a Fourier based
spectral method, it is ideal for studying periodic struc-
tures with high fidelity. There have been a number of
different implementations of spectral and Fourier based
schemes related to the one we develop here [27–32]. These
often use Hermite polynomials for the expansion in mo-
mentum or velocity space, since the lowest order term is a
Gaussian. Here, straightforward Fourier modes are used
in both momentum and position space representations of
the distribution f(x, p, t). The Fourier-based method de-
scribed here does not ensure positivity of the distribution
f . Negative f can occur when gradients get sufficiently
steep (insufficiently represented in Fourier space) that
Gibbs phenomena occurs. A non-linear numerical diffu-
sion operator is introduced in section VII A that preserves
the steepness of gradients larger than a grid spacing but
acts to smooth out ripples that would eventually lead to
negative f . In all the tests here and the investigations
in the rest of the manuscript the positivity of the distri-
bution is monitored and numerical convergence checked.
Here, we use the same dimensionless system of units as
in the main section, t → ωpt, x → xωp/c, v → v/c,
φ → qφ/mc2, p → p/mc etc. The Fourier Vlasov code

used solves the two dimensional Vlasov equation (one
spatial coordinate, one momentum coordinate)

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂p
= 0 ,

where f is the smooth one dimensional plasma distribu-
tion f =

∫∫
f3Ddpydpz ,

v =
p√

1 + p2

and E is the electric field arising from the scalar poten-
tial, which is solved for using Poisson’s equation

−∇2φ = ρ− ρ0 .

Note that the Vlasov-Poisson description that we use
is not generally identical to the Vlasov-Maxwell, even
in 1D, since the latter allows for a time dependent elec-
tric field E0(t) that is not constrained by the Poisson
equation (Ampère-Maxwell being the time derivative of
Poisson’s equation in 1D, when combined with the con-
tinuity equation). This field is of the form E0(t) =
(u0 − U) sin t + E0(0) cos t [33], where u0 is the initial
drift velocity of electrons, U is the drift velocity of the
ions and E0(0) is the initial value of this time dependent
only electric field. Since for all the problems we tackle,
the initial electron and ion drift velocities are equal (the
plasma is initially at rest in the laboratory frame), the
plasma is initially exactly neutral and the initial exter-
nal field is zero, E0(t) = 0 for all times and therefore the
Vlasov-Poisson and Vlasov-Maxwell systems are equiva-
lent in 1D.

The distribution is represented by the gridded function
fij where i denotes the index position on the x-grid span-
ning Nx points, xi and j denotes the index of the p grid
spanning Np points, pj . ∆p is uniform, hence the differ-
ence between velocity cells, ∆v, is not. To numerically
solve this system of equations, the code uses an algo-
rithm that splits the transport in the x and p directions
[34, 35] to give overall second order accuracy in time. It
uses discrete Fourier representations, given by

f̃ij =

Nx−1∑
i′=0

fi′j exp

[
iC2πii′

Nx

]
and

f̂ij =
1

Np

Np−1∑
j′=0

fij′ exp

[
− iC2πjj′

Np

]

and their respective inverse transforms, where iC =
√
−1

and spaces ki and κj , reciprocal to xi and pj . These are
calculated using fast Fourier transforms. We use n to
denote time step index via t = n∆t with constant time
step ∆t.

There are four main steps:
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1. The algorithm starts with the distribution function
in reciprocal x space, f̃ij . The algorithm pushes for
a half step spatial advection via

f̃
n+1/2?
ij = f̃nij exp

[
−iCkivj

∆t

2

]
.

which is the solution to the oscillator (advection in
real space) equation

∂f̃

∂t
+ iCkvf̃ = 0 .

2. Solve Poisson’s equation to find the potential using
the transformed charge density

ρ̃
n+1/2
i =

Np−1∑
j=0

f̃
n+1/2?
ij ∆v

The numerical forms of Poisson’s equation is

φ̃
n+1/2
i =

ρ̃

k2
i

.

The transformed force is calculated from F̃
n+1/2
x,i =

ikφn+1/2.

3. Perform a full two dimensional inverse transform
Fourier transform f̃ij → f̂ij , i.e.

f̂ij =
1

NxNp

Np−1∑
j′=0

Nx−1∑
i′=0

f̃i′j exp

[
−2πiC

(
jj′

Np
+
ii′

Nx

)]
,

which returns the distribution to x space and trans-
forms to reciprocal p space. Push for a full momen-
tum space advection via

f̂
n+1/2
ij = f̂

n+1/2?
ij exp

[
−iCκjFn+1/2

i ∆t
]
.

4. Perform a full two dimensional forward transform
f̂ij → f̃ij and finish with a half step spatial advec-
tion

f̃n+1
ij = f̃

n+1/2
ij exp

[
−iCkivj

∆t

2

]
.

This algorithm is overall second order accurate with
respect to the time step ∆t, but exact with respect
to the momentum and position space grids provided
the Fourier representation of the function is accu-
rate, i.e. system energy conservation, momentum
conservation etc. does not depend on the ∆p or
∆x grid sizes. The stability condition is that of a
standard second order scheme.

a

b

lo
g 

f
lo

g 
f

FIG. 7: Demonstration of the effect of nonlinear diffusion
on the calculations described in the main text in section III.
Calculations performed are on a Np ×Nx = 2048× 2048 grid
in the boosted frame. Both panels (a) and (b) show ln(f)
under identical conditions except that in panel (a) a nonlinear
diffusion operator with D0 = 0.5 was applied.

A. Non-linear diffusion

The Fourier method for solving the Vlasov-Poisson
equation detailed above may be inferior to other meth-
ods due to the steep gradients that lead to characteristic
oscillating artifacts appearing. To mitigate this, intro-
duction of numerical diffusion can smooth out ripples,
but will also introduce diffusion of real sharp features in
the distribution function. Instead, a nonlinear diffusion
operator [36] was included in the calculations to smooth
ripples but maintain steep gradients

f smooth
ij = fij +∇N · (Dij∇Nfij) ∆t ,

where ∇N is the numerical representation of the gradient
operator, taken here to be standard second order center
differenced and Dij is a non-linear diffusion coefficient
given by

Dij =
D0

1 +
||∇Nfij ||2

fij2

,

where D0 is a chosen linear diffusion coefficient.
The use of this is illustrated in Fig. 7, which shows

calculations performed on a Np×Nx = 2048× 2048 grid
in the boosted frame as described in the main text in
section III. Both panels (a) and (b) show ln(f) under
identical conditions except that in panel (a) a nonlinear
diffusion operator with D0 = 0.5 was applied. We can see
that without the nonlinear diffusion filter, spectral errors
start to appear starting at 10−3 of the maximum of f
(which is actually quite reasonable anyway). However,
with the nonlinear diffusion filter, panel (a), the spectral
errors are negligible above 10−4 of the maximum of f and
moreover the steep gradients in f are preserved.



11

B. Verification

A number of different tests and comparisons with code
results from the literature were made with this code for
verification. In this section just a couple of those per-
formed are described, to demonstrate that the scheme
has performance comparable to high-order schemes in the
literature.
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|Σ
i E

i2 /2
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|1/
2

 

 
N=2048
N=1024
Linear analytic

FIG. 8: Electric field energy |
∑

iE
2
i ∆x/2|1/2 in the Landau

damping problem described in the text for N = 2048 cells
and N = 1024 cells.

1. Landau damping

This example simply demonstrates the accuracy of the
method generally, for a nonrelativistic problem. The test
problem is a standard Landau damping test [31], using a
thermal plasma with an initial distribution specified as

f(x, p, t0) =
1√
2π

exp

(
−p

2

2

)[
1 + 0.01 cos

(x
2

)]
,

with x ∈ [0, 4π] and v ∈ [−8, 8]. The code is used in
non-relativistic mode, so in this case v = p instead of√

1 + p2. The analytic damping rate is δ = 0.1533. Fig. 8
shows the electric field energy as a function of time for
Nv = Nx = N = 2048 cells and N = 1024 cells along
with the linear decay solution. ∆t = 0.1. The results in
Fig. 8 are similar to those in reference [31], including the
relatively large oscillations in electric field at late times.

2. Relativistic two-stream instability

The relativistic two stream instability is to verify the
relativistic algorithm. The code is used in relativistic
mode, so in this case v = p/

√
1 + p2. The test is a two

stream instability, with an initial distribution function

f(x, p, t0) =
1√
π

exp
(
−(|p| − p0)2

) [
1 + 10−10 cos (kTSx)

]
,

with p0 = 3,

kTS =

√
3γ

2p0

the wavenumber of the fastest growing mode, with
growth-rate δ = ωp/2

√
γ. The calculation was performed

with Nv = Nx = 2048 and a time step of ∆t = 0.1. Fig-
ure 9 shows the distribution at t = 80.
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FIG. 9: Distribution function for the relativistic two stream
instability.

Figure 10 shows the electric field energy as a function
of time for the two stream instability cells along with
the linear growth solution. Note that due to the initial
perturbation being so small (10−10) and the overall accu-
racy of the code, the growth is linear over approximately
8 orders of magnitude before saturating.
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