
Modelling Financial Volatility Using Bayesian

and Conventional methods

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Xuguang Li

Department of Economics

Lancaster University

September 2016



Acknowledgements

I am indebted to many people for their help and support. First I would like to thank

my supervisor Professor Mike Tsionas for his encouragement, support and guidance. I

must also thank Dr Marwan Izzeldin who has given me a lot of help during my period of

study. Without their consistent and illuminating instruction, this thesis could not have

reached its present form.

I would like to thank Gerald Steele for his kindness in helping go through mistakes

in my English. I am grateful to the staff at the faculty and staff of the Department of

Economics for their help to support my research in many different ways.

I gratefully acknowledge the funding from the Economic and Social Research Council

(ESRC) that made my PhD work possible.

Lastly and most importantly, I would like to thank my beloved family for all their

love, encouragement and understanding through all these years. To my parents, who

raised me with a love of science and have been a constant source of support, and to my

girlfriend, who always stands by me and encourages me with her love. I dedicate this

thesis.

2



Declaration of Authorship

I hereby declare that this thesis is my own work and has not been submitted for the award

of a higher degree elsewhere. This thesis contains no material previously published or

written by any other person except where references have been made in the thesis.

Xuguang Li

September 2016

3



Abstract

This thesis investigates different volatility measures and models, including parametric

and non-parametric volatility measurement. Both conventional and Bayesian methods

are used to estimate volatility models.

Chapter 1: We model and forecast intraday return volatility based on an extended

stochastic volatility (SV) specification. Compared with the standard SV, we incorporate

the trading duration information which includes both actual and expected durations. We

use the Autoregressive Conditional Duration (ACD) model to calculate the expected

duration that can be used to measure the surprise in durations. We find that the effect of

surprise in durations on intraday volatility is highly significant. If there is an unexpected

increase for the lag actual duration, the current volatility tends to decrease, and vice

versa. We also take into account the duration and volatility intraday patterns. Our

empirical results is based on the SPDR S&P 500 (SPY) and Microsoft Corporation

(MSFT) data. According to the in-sample and out-of-sample empirical results, the

extend SV model outperforms the GARCH and GARCH augmented with duration

information.

Chapter 2: We examine contagion effects resulting from the US subprime crisis

on a sample of EU countries (UK, Switzerland, Netherlands, Germany and France)

using a Multivariate Stochastic Volatility (MSV) framework augmented with implied

volatilities. The MSV framework is estimated using Bayesian techniques. We compare

the the MSV framework with the Multivariate GARCH (M-GARCH) framework and

find the contagion effect is more significant under MSV framework. Moreover,

augmenting the MSV framework with implied volatilities further increases model fit.

Compared with the original MSV framework, we find that the contagion effect becomes

more significant when we incorporate implied volatilities. Therefore, implied volatility

information is useful for detecting financial contagion, or double checking some cases

4



of market interdependence (strong linkages but insignificant increase in correlations).

Chapter 3: We extend the Heterogeneous AR (HAR) model to allow the autoregressive

parameter of daily realized volatility (RV) to be time varying (TV-HAR). The daily

lag weights are adjusted according to the fluctuations of RV around its longer time

average level (monthly RV). We compare the TV-HAR model with the HAR model

and the recently introduced HARQ model. We observe a regular pattern of RV which

the HAR and HARQ models do not fully capture: if there is an increase in the lag

daily RV compared with its longer-term average level (monthly RV), the current RV

tends to decrease rapidly to its long term level; conversely, if there is a decrease in the

lag daily RV compared with its longer-term average level (monthly RV), that reversion

takes longer. The TV-HAR model can capture this RV pattern. We find that the TV-

HAR model performs better than the benchmark HAR model and the HARQ model for

both simulated and empirical data. Our empirical analysis is based on the S&P 500

equity index, SPY index and ten series of stocks data from 2000 to 2010.

5



Table of Contents

Abstract 4

Introduction 8

1 A Stochastic Volatility Model for Modelling the Impact of Duration Infor-
mation on Volatility 11

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Intraday Return Volatility . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Volatility and Duration . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Data Description and Analysis . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Trade Duration . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.2 Intraday Returns . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Intraday SV Model with Duration . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Intraday Pattern Adjustment for Duration and Volatility . . . . . 29

1.4.2 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Intraday SV Model Estimation . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Empirical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6.1 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6.2 Competing Models . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6.3 The In-sample Fit . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.6.4 Forecasting Results . . . . . . . . . . . . . . . . . . . . . . . . 44

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2 Measuring financial contagion: A multivariate stochastic volatility ap-
proach 68

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.1 Financial Contagion . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.2 Detecting Financial Contagion . . . . . . . . . . . . . . . . . . 75

2.2.3 Dynamic Correlation-Multivariate Models . . . . . . . . . . . 77

2.2.4 Crisis Period Identification . . . . . . . . . . . . . . . . . . . . 79

6



2.3 Data and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . 81

2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.4.1 The Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . 85

2.4.3 Regime changes and Markov-Switching models . . . . . . . . . 88

2.4.4 Testing for Contagion . . . . . . . . . . . . . . . . . . . . . . 90

2.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.5.1 Dynamic Correlations with Different Models . . . . . . . . . . 92

2.5.2 DC-MSV augmented with Implied Volatility . . . . . . . . . . 93

2.5.3 Dynamic Correlations and Contagion Analysis . . . . . . . . . 95

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3 A time varying HAR model for realized volatility forecasting 114

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.3 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.4.1 The HAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.4.2 The HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.4.3 The TV-HAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.5.1 Design and settings . . . . . . . . . . . . . . . . . . . . . . . . 129

3.5.2 Monte Carlo Results . . . . . . . . . . . . . . . . . . . . . . . 132

3.6 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.7 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.7.1 In-sample estimation results . . . . . . . . . . . . . . . . . . . 135

3.7.2 Out-of-sample forecasting results . . . . . . . . . . . . . . . . 138

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Concluding Remarks 179

References 181

7



Introduction

Volatility is a way of measuring the dispersion of returns of a certain security, asset

class or market index. Volatility plays a crucial role in asset pricing, risk management,

and portfolio allocations, and has been one of the most active areas of research in

empirical finance and time series econometrics during the past decade. This thesis focus

on financial return volatility measures and models.

Volatility measurement can be classified under parametric approaches and nonpara-

metric approaches. The parametric approaches are based on explicit functional form

assumptions regarding the expected and/or instantaneous volatility. The nonparametric

approaches are generally free from such functional form assumptions and treat volatility

as an ex post observable variable. In this case we can model and forecast volatility

directly. In Chapter 1 and Chapter 2, we use parametric approach and model volatility

based on both stochastic volatility (SV) and GARCH specifications. In Chapter 3, we

rely on non-parametric approach and introduce a Time Varying Heterogeneous Auto-

Regressive (TV-HAR) to forecast volatility.

There are different frequencies of financial time series. The early financial studies

mainly investigate the daily data. With the rapid development in computing power,

storage capacity and trading recoding technology, data now are available at higher

frequencies. Various financial practitioners prefer different frequencies. For example,

high-frequency traders and risk managers need analysis intraday return volatility rather

than only focus on the daily volatility. On the other hand, long term investors adjust their

positions infrequently. In Chapter 1, we use the high-frequency data. We directly model

and forecast intraday return volatility rather than aggregate into daily realized volatility.

In Chapter 2, we employ the lower frequency, daily financial data, to investigate the

financial contagion based on multivariate volatility models. In Chapter 3, we aggregate

the intraday returns to generate realized volatility.
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We use both the conventional and Bayesian methods to estimate models: although

GARCH models can be easily estimated by the maximum likelihood estimation method,

SV models belong to the family of nonlinear non-Gaussian state space models and

the maximum likelihood estimation method cannot be used directly. So we consider

the quasi-maximum likelihood method (Chapter 1) and Bayesian Markov chain Monte

Carlo method (Chapter 2) to estimate SV models. In Chapter 3, we extend the standard

Heterogeneous Auto-Regressive (HAR) model. The HAR model is popular because it

is simpler to estimate than fractionally integrated processes. Our extension retains this

advantage and we can use the OLS method to estimate the model.

In Chapter 1, we extend the standard SV model by incorporating the duration infor-

mation to model and forecast the intraday return volatility. The duration information

is calculated from the Autoregressive Conditional Duration (ACD) model. We first

generate the expected duration from the ACD model. Then we transform the irregular

space duration to a regular space duration. The effect of surprise in durations can

be measured by combining the actual and expected durations. According to the

empirical results for SPY and MSFT data, the duration information is highly significant

for modeling intraday return volatility. An unexpected increase in duration tends to

decrease the intraday volatility, whereas an unexpected decrease in duration tends to

increase the intraday volatility. The extended intraday SV model outperforms the

GARCH and GARCH augmented with duration information.

In Chapter 2, we use the multivariate volatility models to investigate the contagion

effects resulting from the US subprime crisis on a sample of EU countries (UK,

Switzerland, Netherlands, Germany and France). The existence of financial contagion

can be supported by a significant change of cross-market correlation. In financial

contagion topic, the assumption of constant correlation should be relaxed, so the

dynamic correlation models are widely used by literature. Unlike most of the existing

studies, we use the Multivariate SV (MSV) rather than the Multivariate GARCH

specification to obtain correlation estimates. We directly compare the contagion effects
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detected by the Dynamic Correlation-MSV (DC-MSV) and Dynamic Conditional

Correlation-GARCH (DCC-GARCH) models. The contagion effect is more significant

under the DC-MSV model. We also extend the DC-MSV model by incorporating

implied volatility information into the volatility equations (DC-MSV-IV). The DC-

MSV-IV fits the data better than the DC-MSV model so that we can get more accurate

estimations for the dynamic correlations. Compared with the DC-MSV model, the

contagion effect under the DC-MSV-IV model is more significant. We provide the

evidence of contagion effects from USA to the investigated EU countries.

In Chapter 3, we model and forecast the realized volatility using an extended HAR

model. Long-range dependence is a well documented stylized fact of RV. Fractionally

integrated ARFIMA models are widely used to characterize this strong dependency.

However, recent studies treat the simple and easy-to-estimate approximate long-

memory HAR model as the preferred specification for RV based forecasting. We

extend the HAR model to allow the autocorrelation parameter of daily lags to be time

varying(TV-HAR). We observe a regular pattern of RV which is captured by the TV-

HAR model: if there is an increase in the lag daily RV compared with its longer-term

average level (monthly RV), the current RV tends to decrease rapidly to its long term

level; conversely, if there is a decrease in the lag daily RV compared with its longer-

term average level (monthly RV), that reversion takes longer. We compare the TV-HAR

model with the standard HAR and HARQ models. The better performance of the TV-

HAR model can be supported by both the simulation and empirical data.
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Chapter 1

A Stochastic Volatility Model for Modelling the Impact

of Duration Information on Volatility
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1.1 Introduction

During recent decades, the rapid development of algorithmic trading systems has

boosted the high-frequency trading. How fast an order can be sent to the market and

how volatile the market is at that time, are important factors in capturing price and

managing risk. By implication, the daily variance and daily volatility model is unable

to meet the increasing demand by high-frequency traders and risk managers. Therefore,

it is meaningful to study intraday volatility model. Owing to the technological process

in trade recording and the growing dominance of electronic trading, it is possible to

obtain higher frequencies with fewer recorded errors. For example, the identification

problem in the matching process of trade data and quote data has been alleviated. For

the data during the 1990s and early 2000s, the Lee and Ready (1991) ‘five-seconds

rules’ is applicable (but not for the later years’ data). A trade is linked to the quote

posted at least 5s before the corresponding transaction. Because of the development of

trade recording, Henker and Wang (2006) argue that the time delay is 1s rather than

5s. After that, the most recent study of Hautsch (2012) find that perfect matching is

available nowadays. This is another reason that has inspired the recent high-frequency

research.

Most studies tend to aggregate high frequency data into a daily ‘realized volatility’

(RV) measure to avoid directly modeling intraday returns and volatility (for reviews,

see Andersen and Teräsvirta, 2009 and McAleer and Medeiros, 2008). RV methods

are a popular volatility forecasting approach. ARFIMA and HAR processes tend to be

used for RV as they capture the long memory of RV. However, RV is not appropriate
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for studying higher frequency variance than daily level. More detail and the relevant

literature for studying the intraday volatility model rather than only to focus on RV can

be found in Section 1.2.1: Intraday Return Volatility.

Compared with RV, the persistence in autocorrelation on an intraday level is lower

than realized volatility, so ARFIMA processes are not appropriate (Hautsch, 2012).

GARCH and SV models have been used for modeling intraday volatility. This chapter

introduces a new SV model for intraday return volatility. We consider two sampling

frequencies: 5 minutes and 10 minutes. Compared with traditional SV model, the

intraday SV model incorporates duration information in the variance equation. Duration

is defined as the difference between successive transaction times. The relationship

between duration and intraday volatility has been identified in the literature, such as

Gerhard and Pohlmeier (2002) and Renault and Werker (2011). They illustrate that a

considerable proportion of intraday price volatility is caused by duration dynamics. We

fit duration with Autoregressive Conditional Duration (ACD) model to obtain expected

duration, we then find the average of every 5-minute and 10-minute expected duration

as an input for the intraday SV model. We are not the first to use the expected duration

for intraday volatility model, but there is no study that attempts to link the SV model

with expected duration. With the actual duration and expected duration, we can obtain

unexpected duration as a explanation variable of the volatility equation.

Based on the empirical results for the SPY and MSFT intraday data, our main findings

and contributions can be summarized as follows: We offer a new model for the

intraday return volatility. Unlike Engle (2000)’s ACD-GARCH model, we use the SV

specification rather than GARCH to link the duration and volatility, and we transform
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the irregular space of ACD expected duration to a regular space duration information in

order to model the regular space intraday return volatility. Many studies try to model

the regular space intraday return volatility but most focus on GARCH specification and

do not link duration and volatility. Some recent examples are Darrat et al. (2007),

McMillan and Garcia (2009) and Engle and Sokalska (2012). We extend the traditional

volatility models by incorporating duration as one factor of the volatility equation. It

is important to consider duration because it is directly linked with traders’ activity and

habits, which can influence return volatility. The relationship between duration and

volatility has been discussed by literature (see Section 1.2.2). From the estimation

results for SPY and MSFT data, we find that the duration information is highly

significant for modeling intraday return volatility. In order to see whether or not the

intraday SV model offers a better forecasting result, we compare its out-of-the-sample

forecasting performance with both the GARCH model and the GARCH duration model

based on Mean Absolute Error (MAE). We find that the MAE of intraday SV model is

smaller than other models. The different forecasting accuracy is also highlighted by the

Diebold-Mariano test.

The rest of the chapter is organized in the following way. Section 1.2 reviews relevant

literature. Section 1.3 presents the data description and analysis. Section 1.4 gives

details of the intraday SV model. Section 1.5 discusses the estimation method for the

intraday SV model. Section 1.6 shows the empirical results, including the in-sample

empirical results of the intraday SV model based on different horizons for SPY, S&

P 500 and MSFT data, and the out-sample forecasting performance compared with

GARCH and GARCH duration models. Section 1.7 concludes.
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1.2 Literature Review

In Section 1.2.1, we discuss the reasons for our focus directly the intraday return

volatility rather than on the aggregated RV. Section 1.2.2 discusses the intraday return

volatility and durations. We first review the SV models for volatility and ACD models

for duration, then discuss the links between the volatility and duration based on existing

literature.

1.2.1 Intraday Return Volatility

Theoretically supported by Andersen and Bollerslev (1998), Barndorff-Nielsen and

Shephard (2001) and Comte and Renault (1998), ex-post nonparametric RV has been

widely used in the high-frequency finance area. They show that in a frictionless market

the sum of intraday squared returns over a fixed time interval achieves consistency

for the underlying squared volatility for that period, when returns are sampled at

increasingly higher frequency. RV that incorporates the intraday return information has

proven to be extremely useful for studying the daily level volatility, and it has become

the natural benchmark against which to gauge daily volatility forecasts (This point is

further supported by Andersen et al. (1999), Andersen et al. (2003) and Andersen et al.

(2004)).

However, if we want to study and forecast intraday level volatility directly, RV is not

appropriate. As mentioned by Andreou and Ghysels (2002) and Oomen (2004), if the

fixed time interval of RV changes from daily to higher intraday level, the contamination

by microstructure noise causes RV to be a biased and inconsistent estimator of the
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integrated volatlity. Therefore, Tran (2006) argues that the only way to study the

intraday level volatility is to model volatility directly by a parametric method. Daily

volatility has been studied in the financial area for a long time but as mentioned

by Bauwens and Giot (2001), Beltratti and Morana (1999) and Giot (2005), active

market participants are more interested in higher frequency volatility than daily level

and the daily volatility cannot meet the demand by the high-frequency traders and risk

managers. Hautsch (2012) points out that the development of trading systems together

with technology has speeded up trade execution and allows traders to automatize trading

strategies, so the ability to capture the best price and manage the risk now strongly

depends on how fast you can send your order to the market and how volatile the market

is at that specific time. The intraday volatility should be carefully considered rather than

only focus on daily volatility.

Some studies try to model the intraday return volatility directly by GARCH or SV

models rather than aggregate to realized volatility. Chan et al. (1991) use GARCH

model to fit 5-minute return volatility and to incorporate dummy variables for the initial

5-minute of every trading days to catch the intraday pattern of volatility. Ederington

and Lee (2001) use the GARCH model to fit the intraday return volatility and study the

impact of recent past volatilities on predicting intraday volatility. They also use dummy

variables to model the intraday volatility pattern. Martens et al. (2002) model the

intraday return volatility by the GARCH model and investigate the relationship between

the intraday seasonal pattern and forecasting performance. Darrat et al. (2003) model

the 5-minute intraday return volatility by the exponential GARCH (EGARCH) model

and try to find the relationship between trading volume and intraday volatility. Similarly,

Darrat et al. (2007) also use the EGARCH model to study the intraday return volatility.
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Giot (2005) applies GARCH, student GARCH for intraday return volatility and focus on

the market risk. Engle and Sokalska (2012) specify the conditional variance of intraday

return to be a multiplicative product of daily, diurnal, and stochastic intraday volatility,

then they use GARCH model to fit the intraday volatility. Tran (2006) model the

intraday return volatility by SV model and take account of market microstructure noise.

Stroud and Johannes (2014) model the 5-minute intraday return by a two-factor SV

model and incorporate the component of intraday pattern in the volatility specification.

1.2.2 Volatility and Duration

A. SV models for Volatility

There are two main streams of modeling the volatility in the financial area: GARCH and

SV models. Both can explain the major stylized facts of asset returns. Unlike GARCH

models, maximum likelihood estimation (MLE) is difficult for SV models, which is a

reason for that the GARCH model is more commonly used by the literature.

The earliest SV model dealing with volatility clustering is introduced by Taylor (1982).

It catches unscheduled news by an unpredictable component in volatility terms. Hull

and White (1987) is a well known paper in the use of continuous-time SV models for

option pricing. The smiles and skews in option implied volatilities can be caught by

SV models. It is further confirmed by Renault (1997) who find that smiles and smirks

emerge naturally from SV models via leverage effects. Harvey et al. (1994) change the

distribution of return error term in the standard SV model from normal distribution to t-

distribution (t-SV model). The main motivation for the t-SV model is that the kurtosis in

many daily financial series is greater than the kurtosis which results from incorporating
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conditional heteroscedasticity into a Gaussian process. Harvey and Shephard (1996)

offer an asymmetric SV model that incorporates the leverage effect in the standard SV

model. The leverage effect is first introduced by Black (1976): the volatility of stocks

tends to increase as the price drops. Based on the asymmetric SV model Harvey and

Shephard (1996) find that the leverage effect is significant for equity markets but is less

significant for currency market. Eraker et al. (2003) extend the standard SV models

by adding jumps to the price process, which can catch significant discontinuities of the

price process. The two factor stochastic volatility has also been considered in models

of return volatility (e.g. Bollerslev and Zhou, 2002; Alizadeh et al., 2002). One of the

two volatility factors is strongly mean-reverting, and close to independent; the other is

highly persistent, and close to non-stationary. The two factors can capture both the jump

process and the persistence of the volatility. The model structure is shown in Section

3.5.1. As mentioned by Shephard and Andersen (2009), specifying the (log) volatility

process via a sum of first-order autoregressive components, leading to multi-factor SV

models, can approximate the long memory feature of volatility. It is also possible

to directly incorporate the longer run volatility dependencies. For example, Harvey

(2002) introduce a long memory SV model and model the log volatility as a fractionally

integrated process. Jacquier and Miller (2010) incorporate RV in the standard SV model,

where they find the technically simple addition of exogenous variables to the volatility

equation is potentially very useful extension of the SV model.

Due to the difficulty of using MLE to estimate the SV model, the early SV paper by

Taylor (1982) calibrated the discrete-time model using the method of moments (MM).

Harvey et al. (1994) suggest a quasi-maximum likelihood (QML) method that is based

on the Kalman-filtering approach. Jacquier et al. (1994) introduce a likelihood-based
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Bayesian Markov Chain Monte Carlo (MCMC) method for SV model. Jacquier et al.

(2004) further extend the SV model by incorporating fat-tails and correlated errors. Kim

et al. (1998) introduce a mixture sampler method for the SV model. It is a more efficient

algorithm that overcomes the slow convergence of the Jacquier et al. (1994) MCMC

algorithm. Chib et al. (2002) extend the method for SV-jumps and SV-t models, and

Omori et al. (2007) extend the method for the SV-leverage model.

Similar to GARCH models, SV models can be applied to intraday level volatilities (e.g.

Tran, 2006; Stroud and Johannes, 2014). But the impact of duration information on

volatility has not previously been incorporated into the volatility equation of SV models.

So in this chapter we incorporate the duration information to study the intraday return

volatility. We use the unexpected duration as a component of the volatility equation.

B. ACD Models for Duration

In order to model the time between every two successive trades, Engle and Russell

(1998) introduce the ACD model. Similar to the GARCH model for volatility, the ACD

model catches duration clustering and is widely used for calculating expected duration.

As mentioned by Hautsch (2012), the model can be directly applied to any other positive

valued (continuous) process, such as trading volumes (Manganelli, 2005) , market

depth, bid-ask spreads or the number of trades (if they are sufficiently continuous). The

basic idea is to (dynamically) parameterize the conditional duration mean rather than

the intensity function itself.

Engle and Russell (1998) introduce the most popular ACD model that assumes that the

error term follows the standard exponential distribution; it is also called EACD. They

19



also use the standard Weibull distribution as the error term of ACD model and the model

is so called WACD model. The generalized gamma distribution (Lunde, 1999) and the

Burr distribution (Grammig and Maurer, 2000) also have been used for ACD model.

Bauwens and Giot (2000) propose a logarithmic ACD (LACD) model that allows the

introduction of additional variables without sign restrictions on their coefficients, as

the LACD ensures the non-negativity of durations. Fernandes and Grammig (2006)

develop a family of augmented ACD (AACD) models that encompasses the standard

ACD model, the Log-ACD model and other ACD models inspired by the GARCH

literature. Some extended ACD models allow for regime-dependence of the conditional

mean function. Zhang et al. (2001) propose a threshold ACD (TACD) model to allow

the expected duration to depend nonlinearly on past information variables. Unlike the

TACD model, where the transition between states follows a jump process, Meitz and

Teräsvirta (2006) introduce a smooth transition ACD (STACD) model. Based on the

strong persistence of the trading duration, some long memory ACD models have been

introduced. Based on the Ding and Granger (1996) two-component model for volatility,

Engle (2000) applies the two-component model for duration. This allows for a slower

decay autocorrelation function compared to the corresponding standard model. Jasiak

(1999) introduces a fractionally integrated ACD (FIACD) model which is based on a

fractionally integrated process for the expected duration. The FIACD model is closely

linked with the fractionally integrated GARCH model proposed by Baillie et al. (1996).

The FIACD model is not covariance stationary and implies infinite first and second

unconditional moments of the duration. Karanasos (2004) provides an alternative long

memory ACD model which is analogous to the long-memory GARCH introduced

by Robinson and Henry (1999). Drost and Werker (2004) develop a semiparametric
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ACD model that can relax the assumption of independently, identically distributed

innovations of the standard ACD model. Like the similarity between the ACD and

GARCH models, and based on the idea of SV model, Bauwens and Veredas (2004)

propose the stochastic conditional duration (SCD) model for duration. The SCD model

is based on the assumption that the durations are generated by a dynamic stochastic

latent variable.

The estimation methods for ACD models are dependent upon the assumptions of the

error terms. A nature choice is that the error terms follow the exponential distribution,

because it is the central distribution for stochastic processes defined on positive support

and can be seen as the counterpart to the normal distribution for random variables

defined on R (Hautsch, 2012; Pacurar, 2008). A considerable advantage of error terms

in this form is that it allows QML estimator for the ACD parameters (Engle and Russell,

1998). The estimators are consistent and asymptotically normal as discussed by Engle

(2002b), building on results by Lee and Hansen (1994). Drost and Werker (2004) also

discuss that consistent estimates are obtained when the QML estimation is based on the

standard gamma family, hence including the exponential. For more general distributions

of the error terms, the ACD model is not estimated by QML but by standard ML.

Allen et al. (2008) point out that the exponential QML properties of the linear ACD

model cannot be straightforwardly carried over to the Log-ACD model. They propose

estimating the Log-ACD model based on the log-normal distribution.

Most literature relating to ACD models focus on modelling the duration itself. Few

studies try to incorporate the duration information calculated from the ACD models

into the intraday volatility models, and even fewer consider SV models. In this chapter,
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we calculate the expected duration based on the ACD model, and then transform them

to regularly 5-minute duration information as a component of volatility equation. In the

next subsection we discuss the links between intraday volatility and duration that have

been identified in the literature.

C. The Links between Volatility and Duration

An intuitive sense of the links between intraday volatility and duration is gained from

the intraday pattern of duration and volatility. We first discuss intraday patterns for

financial modelling, before showing show the links behind the intraday patterns. Within

a trading day financial markets are subject to significant seasonality patterns. Before

the appearance of ACD models, intraday financial studies were mainly focused on

the behavior of volatility. According to Andersen and Bollerslev (1997), the intraday

volatility pattern should be considered when we model the intraday return volatility.

Similarly, in the context of duration data, Engle and Russell (1998) also remove the

intraday pattern of duration before estimate ACD models.

We can find the links between the intraday patterns of volatility and duration from

literature. The intraday volatility has a clear U-shape that has been reported by many

studies, such as Wood et al. (1985), Andersen and Bollerslev (1997), Areal and Taylor

(2002) and Taylor (2005). The intraday pattern of duration has an inverted-U-shape,

see Bauwens and Giot (2003), Bauwens and Veredas (2004) and Giot (2005). The

regular patterns of intraday financial markets can be explained by the habits of traders.

According to Taylor (2005), the volatility pattern has a U-shape because traders tend

to be very active at the opening and closing of every trading days. On the other hand,
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lunchtime is naturally associated with less trading activity. As trades are more frequent,

their duration will be shorter; and vice versa.

In addition to the links that can be found from intraday patterns, duration can offer

useful information for studying the intraday volatility. For example, Hautsch (2012)

points out that, since a trade reflects demand for liquidity, a trade duration is associated

with the intensity of liquidity demand. Liquidity and volatility tend to be positively

correlated. Giot (1999) argues that a market featuring short durations is usually

associated with possible informed trading. As mentioned by Admati and Pfleiderer

(1988), a higher proportion of informed traders leads to higher adverse selection cost

and higher volatility. So short duration indicates high volatility. Easley and O’HARA

(1992) point out that short trade durations signify news arrival in the market that

increases information-based trading. News and volatility tend to be positively correlated

because the market maker needs to adjust his prices to reflect the increased uncertainty

and risk of trading with informed traders. Engle (2000) supports the their idea based on

empirical tests. He introduces an intraday GARCH model and incorporates the duration

information in the model. He applies the model to IBM data and finds a statistically

negative relation between duration and volatility. Zhang et al. (2001) introduce a

TACD model and apply the model to IBM data. They find that fast trading regime is

characterized by higher volatility, larger volume and wider spreads. Feng et al. (2004)

examine the relationship between duration and volatility by regressing the realized

volatility against the forecast of trade duration based on the SCD models. Using IBM,

Boeing, and Coca Cola stocks data, they find a significantly negative relation between

trade durations and volatility. Russell and Engle (2005) introduce an Autoregressive

Conditional MultinomialAutoregressive Conditional Duration (ACM-ACD) model with
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three lags for the ACM model and two lags for the ACD model to investigate the

relationship between duration and volatility, using Airgas stock traded on NYSE, they

find that volatility per unit time is highest for short durations. That is consistent with

the predictions of Easley and O’HARA (1992). Spierdijk (2004) extend the Dufour and

Engle (2000) VAR model for five stocks using five NYSE stocks and find that volatility

is higher when durations are short.

1.3 Data Description and Analysis

We use SPY and MSFT intraday data. The “Trade and Quote” (TAQ) database released

by the NYSE is widely used. It consists of two parts: the quote database and the trade

database. The trade database offers the transaction price, trading volumes, the exact

time stamp used to calculate duration, and attribute information on the validity of the

transaction. The quote database presents time stamped (best) bid and ask quotes, the

volume for which the particular quote is valid (market depth), as well as additional

information on the validity of the quotes.

As ACD models are based on tick data, researchers tend to use three months or less

intraday data, such as Engle and Russell (1998), Bauwens and Giot (2000), Grammig

and Maurer (2000) and Fernandes and Grammig (2006). Our intraday SV model with

expected duration calculated from the ACD model is applied to SPY and MSFT from 4

Jan 2010 to 30 Apr 2010: a total of 17 weeks intraday data. Trades before 9:30 AM and

after 4:00 PM are discarded. Estimation and comparison with the GARCH and GARCH

duration models are based on different (rolling) forecasting horizons:
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(1) in-sample: 1-13 weeks, out-of-sample: 14th week

(2) in-sample: 2-14 weeks, out-of-sample: 15th week

(3) in-sample: 3-15 weeks, out-of-sample: 16th week

(4) in-sample: 4-16 weeks, out-of-sample: 17th week

High frequency data tend to have recording errors and the same time stamp always has

several records. Therefore, we follow the procedure for data clean offered by Barndorff-

Nielsen et al. (2009). Sections 1.3.1 and 1.3.2 discusses the properties of the trade

duration and intraday return series respectively.

1.3.1 Trade Duration

The trade duration, defined as the time between successive transactions, is incorporated

as a component of our intraday SV model. Intraday financial data are irregularly time

spaced as trades and quotes are recorded as soon as they are reported. As listed in the

literature review, the intraday volatility models, either GARCH family or SV family,

tend to be performed to an aggregated regularly spaced data, such as the 5-minute

returns. If we focus only on the aggregated 5-minute return data and ignore the exact

time stamp offered by the original TAQ data, information on trade duration is lost.

Therefore, in order to incorporate the duration information that is most closely linked

with intraday volatility, we use the tick data and consider the duration models before

aggregating to the 5-minute data for volatility models. Following Hautsch (2012) we

present statistical tables and histograms for trade duration. The properties of durations
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based on the table and figures are in line with Hautsch (2012)’s findings.

[Table 1.1 around here]

[Figure 1.1 around here]

Table 1.1 shows duration statistics of SPY and MSFT. We can find that the mean

duration is relatively short. Compared with the SPY, MSFT trades occur less frequent

with higher mean duration. It also can be reflected from the number of observations, as

for the same length of sample time, SPY has more observations than MSFT. Both SPY

and MSFT have high Kurtosis and positive skewness. Most of durations are around or

less than the mean of them. Even though there exist much longer duration than the mean

duration, they happen only very infrequently. Figure 1.1 shows the time plots of SPY

and MSFT transaction durations.

[Figure 1.2 around here]

As the ACD model is proposed as a model for intertemporally correlated trading arrival

times, we examine the dependence of duration by calculating its autocorrelations and

partial autocorrelations. Figure 1.2 shows Autocorrelation functions of durations for the

SPY and MSFT respectively. Both have significant positive autocorrelations revealing

a strong persistence of the process. As mentioned by Engle and Russell (1998),

intraday seasonality partly contributes to the autocorrelations, but the ACD model is

used to fit the intraday seasonally-adjusted duration, so it is necessary to analyse the

autocorrelations for the intraday seasonally-adjusted duration as well. Section 1.4.1

presents the calculations for the intraday seasonal pattern and the intraday seasonally-

adjusted durations.

[Table 1.2 around here]
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[Table 1.3 around here]

Tables 1.2 and 1.3 show the autocorrelations and partial autocorrelations of trade

durations for the SPY and MSFT data respectively. As the four horizons have slightly

different intraday seasonal pattern, we report the intraday pattern adjusted duration

based on the first horizon sample data. The remaining horizons have the same

conclusion for autocorrelations and partial autocorrelations of trade durations. The

sample sizes for SPY and MSFT are 562608 and 125303 respectively. In the two

tables, we can show the autocorrelations and partial autocorrelations are far from zero

and all the signs are positive for both raw durations and intraday seasonally-adjusted

durations (diurnally adjusted duration in tables). The columns “Q-Stat” and “P-value”

are the Ljung-Box Q-statistics and their p-values. The Q-statistic at lag k is a test

statistic for the null hypothesis that there is no autocorrelation up to order k. The

null is very easily rejected with high values of Q-Stat and 0 p-values which further

supports the existence of positive autocorrelations and partial autocorrelations. This

suggests that the large Ljung-Box statistic observed for the raw durations is not a result

of the intraday seasonality alone, which is in line with Engle and Russell (1998) and

supports the existence of duration clustering. The ACD model is designed to capture

the intertemporal autocorrelation.

1.3.2 Intraday Returns

The 5-minute and 10-minute returns are computed as rt = 100 [ln(Pt)− ln(Pt−1)], where

Pt is the mean of stock prices during the t interval of 5 minutes and 10 minutes.

Following Stoll and Whaley (1990) and Rahman et al. (2002), the first two 5-minute
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returns of the day are excluded from the analysis, because prices during these intervals

may reflect the stale closing price of the previous day, and tend to be contaminated by

the record errors.

[Table 1.4 around here]

Table 1.4 shows the intraday return statistics of SPY and MSFT. During the sample

period, the mean of return for the SPY is higher than the MSFT, with lower standard

deviation. Compared with the 5-minute return, the 10-minute return is more volatile

and has a higher peak based on the larger kurtosis.

[Figure 1.3 around here]

Figure 1.3 show the density histograms of intraday returns for SPY and MSFT

respectively. Data are sorted into a specified number of bins and the histogramplots

the counts of observations falling in each bin. The histogram is normalized so that the

area under the bars sums to one (essentially making it into a discrete probability density

function). We also plot normal distributions for comparison. Compared with normal

distributions, the intraday returns of both SPY and MSFT have higher peaks. Especially

important is the fact that the histograms have fatter tails than the normal distribution.

The fat tails should be carefully considered by the risk managers: it means that more

extreme returns possibly to be happen than the normal distribution predicts.

1.4 Intraday SV Model with Duration

This section shows the details of the model structure. Section 1.4.1 shows the intraday

patten adjustment for both duration and volatility and Section 1.4.2 shows the model
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structure of intraday SV.

1.4.1 Intraday Pattern Adjustment for Duration and Volatility

Duration is defined as the difference between successive transaction times ∆xi+1 =

xi+1 − xi. Before applying the ACD model to duration, we should first deal with the

intraday periodicity pattern in duration. We follow the detail for intraday adjustment

for both duration and volatility from Giot (1999). His sequential method is based on

the cubic spline, which is a widely used method for dealing with the intraday seasonal

pattern (see, for example, Engle and Russell, 1998; Giot, 1999; Pacurar, 2008; Bauwens

et al., 2004).

Let sd,i be the intraday seasonal factor of duration at time i, and ∆̃xi be the the diurnally

adjusted duration. Following Engle and Russell (1998), duration can be written as

∆xi = ∆̃xi sd,i (1.1)

For the return series, we consider sampling frequencies: 5-minute and 10-minute,

denoted as rt . We denote the intraday seasonal factor of variance at time t as sv,t . Let r̃t

be the return after intraday pattern adjustment. Then the return can be written as

rt = r̃t
√

sv,t (1.2)

We use √sv,t rather than sv,t in Equation 1.2 is that we use the squared returns to calculate

the intraday volatility pattern rather than using return directly.
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The intraday seasonal components for duration and volatility are calculated as follows

(Giot, 1999):

1. We compute the average duration and average squared return for each 30 minutes

interval, denoted respectively as Dm,n and Vm,n for the m interval on day n.

2. Take accounts of the day of the week. Let Sn be the set of daily time indexes

for the same day of the week as time the index n. Let Nn be the number of time

indexes to be found in Sn. Then we can calculate the crude pattern by

Dm =
1

Nn
∑
Sn

Dm,n V m =
1

Nn
∑
Sn

Vm,n (1.3)

3. The crude pattern is then smoothed by using cubic splines. The durations and

squared returns are sampled with 10 minutes.

1.4.2 Model Structure

We use the information of expected duration calculated from the ACD model, as an

input for the intraday SV model.

With Ψi defined as conditional expected duration, the ACD model is written as

Ψi = E[∆xi|∆xi−1, ...,∆x1] = E[∆̃xi|∆̃xi−1, ..., ∆̃x1] sd,i = Ψ̃i sd,i (1.4)

Ψ̃i+1 = ωd +αd(∆̃xi)+βdΨ̃i (1.5)

The standardized residuals of the ACD model ξi =
∆̃xi
Ψ̃i

are assumed to be i.i.d
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exponential distributed with E(ξi) = 1. The autoregressive structure on the conditional

expectation of the durations implies the duration clustering. Based on Equation 1.5,

we obtain the sequence of deseasonalized expected duration Ψ̃i. We then calculate the

mean of corresponding 5-minute and 10-minute Ψ̃i, noted as Ψt , as an input data for

the intraday SV model for 5-minute and 10-minute returns respectively. We also need

to calculate the mean of every 5-minute and 10-minute deseasonalized durations ∆̃xi,

denoted by X t . We transform the irregularly spaced duration information to regularly

spaced duration information.

The mean of durations divide by the mean of expected durations (X t/Ψt) can be

incorporated in the SV specification. We use this form following the structure of error

terms in the ACD model. It measures the durations for each interval are generally longer

or shorter than the expectation of the durations (the effects of surprises in durations). If

the value of (X t/Ψt) is smaller than 1, then at time t the actual duration is smaller than

the expected duration conditional on the past information, in other words, there is an

unexpected decrease for the actual duration at time t. On the other hand, if the value of

(X t/Ψt) is bigger than 1, then there is an unexpected increase for the actual duration at

time t.

Following Tran (2006), we assume E(rt) = 0 and choose to exclude the instantaneous

expected rate of return. This practice is common when working with high frequency

data (e.g. Bollerslev and Zhou, 2002; Engle and Sokalska, 2012). Merton (1980) firstly

points out that when estimating the variance of asset return it is more accurate when
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leaving out the drift part. So the model is:

r̃t = eht/2εt (1.6)

ht = θ +ϕht−1 +κ
(

X t−1

Ψt−1
−1
)
+σηt (1.7)

where εt ∼ i.i.d.N(0,1), ηt ∼ i.i.d.N(0,1). In order to illustrate the idea of the intraday

SV model more clearly, we firstly use (X t−1/Ψt−1 − 1) rather than (X t−1/Ψt−1) in

Equation (1.6). So when (X t−1/Ψt−1 − 1) > 0, there is an unexpected increase for

actual duration; and when (X t−1/Ψt−1 − 1) < 0, there is an unexpected decrease for

the actual duration. With negative κ , an unexpected increase for the lag duration tends

to have a negative effect on the current volatility, because in that case the value of

(X t−1/Ψt−1−1) is positive which times the negative value of κ , the overall effect then is

negative; whereas an unexpected decrease for the lag actual duration tends to positively

impact the current volatility.

We can rewrite Equation (1.7) as

ht = (θ −κ)+ϕht−1 +κ
X t−1

Ψt−1
+σηt (1.8)

We use γ to replace (θ −κ) which simplifies the model. So the volatility equation can

be written as

ht = γ +ϕht−1 +κ
X t−1

Ψt−1
+σηt (1.9)

We report the empirical results using the Equation (1.9).
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1.5 Intraday SV Model Estimation

We estimate the ACD model following the procedure described in Engle and Russell

(1998). After getting the expected duration based on the estimated ACD model, we

estimate the Intraday SV model following Harvey et al. (1994) QML method.

For the ACD model, the assumption that the error term follows the exponential

distribution has an advantage of leading to a QML estimator for the parameters. The

quasi log likelihood function is given by

lnL(∆∆∆xxx;θθθ ddd) =−
n

∑
i=1

[
lnΨi +

∆xi

Ψi

]
(1.10)

where θθθ ddd is the set of ACD parameters and Ψ1 = ωd/(1−βd). The QML estimator is

based on the theorems introduced by Lee and Hansen (1994) and Lumsdaine (1996). As

mentioned by Engle and Russell (1998), an important implication of the strong analogy

between the Gaussian GARCH model and the Exponential ACD model is that the ACD

model can be estimated with GARCH software by taking
√

∆xi as the dependent variable

and setting the mean to zero.

For the extended SV model, the difficulty in using the maximum likelihood estimation

(MLE) method is that the volatility terms of SV models are latent variables, the

likelihood function is not available in a closed form (it is expressed as an analytically

intractable T-dimensional integral, where T is the number of observations). In order to

overcome this difficulty, other methods have been introduced to estimate SV models,

see the summary of Broto and Ruiz (2004). Here we use the QML method to estimate
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the intraday SV model.

We first transform r̃t = eht/2εt to

ln r̃2
t = ht + lnε2

t (1.11)

where εt ∼ i.i.d.N(0,1), so lnε2
t ∼ i.i.d(−1.27,π/2). Then we rewrite equation (1.11)

as

ln r̃2
t =−1.27+ht +ξt (1.12)

where ξt ∼ i.i.d(0,π/2). We approximate ξt ∼ i.i.d.N(0,π/2), then the linearized

SV model is approximated by a linear Gaussian State Space model. We estimate the

State Space model based on the Kalman filter, see Harvey (1989), Hamilton (1994) and

Koopman et al. (1999). We follow the standard notations of Koopman et al. (1999).

The linear Gaussian State Space model is written as:

αt+1 = dt +Ttαt +Htεt , (1.13)

yt = ct +Ztαt +Gtεt (1.14)

where α1 ∼ N(a,P) and εt ∼ i.i.d. N(0, I), where αt is a vector of unobserved state

variables and yt is an observation vector. ct , dt are exogenous variables. The

deterministic matrices Tt , Zt , Ht and Gt are referred to as system matrices and they

are usually sparse selection matrices. For the intraday SV model, αt = ht , yt = ln r̃2
t ,

ct = 1.27, dt = γ +κ(X t−1/Ψt−1 −1), Tt = ϕ , Zt = 1, Ht =
√

π/2 and Gt = σ .

For initial conditions, we can either use the usual diffuse prior or fix them at appropriate
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values to speed up convergence rate. The diffuse prior can be written as α ∼ N(0,κI),

where κ is large, say κ = 106.

We define the mean and variance matrix of the conditional distribution respectively as

at|s = Es(at) (1.15)

Pt|s = Es[(αt −at|s)(αt −at|s)
′] (1.16)

This allows us to obtain the one-step ahead mean at|t−1 and the one-step ahead variance

Pt|t−1 by setting s = t −1. The one-step ahead prediction error is given by

ε̃t = εt|t−1 = yt −Et−1(yt) = yt −E(yt |at|t−1) = yt − ct −Ztat|t−1 (1.17)

The prediction error variance is defined as

F̃t = Ft|t−1 = var(εt|t−1) = ZtPt|t−1Z′
t +GtG′

t (1.18)

As shown in Koopman et al. (1999), the one-step ahead estimates of the state and the

associated mean square error matrix can be written as

Kt = (TtPtZ′
t +HtG′

t)F
−1

t (1.19)

at+1|t = dt +Ttat|t−1 +Ktεt|t−1 (1.20)

Pt+1|t = TtPt|t−1T ′
t +HtH ′

t −KtFt|t−1K′
t (1.21)

The process of using the sequence of data up to time period T to form expectations at any
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time period up to T is known as fixed-interval smoothing. We use α̂t = at|T = ET (αt)

to denote the smoothed estimates of the state and Vt = varT (αt) to denote the smoothed

estimates of the state variances. We can use the smoothed values to form smoothed

estimates of the signal variables,

ŷt = E(yt |α̂t) = ct +Ztα̂t (1.22)

and to compute the variance of the smoothed signal estimates:

St = var(ŷt|T ) = ZtVtZ′
t (1.23)

We can modify the expressions in (1.15)—(1.18) to get the n-step ahead state condi-

tional mean and variance:

at+n|t = Et(αt+n) (1.24)

Pt+n|t = Et [(αt+n −at+n|t)(αt+n −at+n|t)
′] (1.25)

the n-step ahead forecast,

yt+n|t = Et(yt+n) = ct +Ztat+n|t (1.26)

and the corresponding n-step ahead forecast MAE matrix

Ft+n|t = MSE(yt+n|t) = ZtPt+n|tZ
′
t +GtG′

t (1.27)

Based on one-step-ahead prediction error and the corresponding mean-squared error
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given in Equation (1.17) and Equation (1.18), the likelihood function is given by

lnL(θ) =−nT
2

log2π − 1
2

T

∑
t=1

(
ln |F̃t |+ ε̃ ′t F̃t

−1ε̃t

)
(1.28)

According to Ruiz (1994), the QML estimator is consistent and asymptotically normal.

Jacquier et al. (1994) show that the QML procedure is inefficient as the method does not

rely on the exact likelihood function, and support their argument by simulation results.

However, Sandmann and Koopman (1998) and Breidt and Carriquiry (1996) state that

although the QML is inefficient, it is not as bad as Jacquier et al. (1994) show. They

suggest that the bad results of QML in Jacquier et al. (1994) may be due to an inefficient

implementation of the procedure (such as poor starting values, different convergence

criteria, etc.). Compared with GMM which is another popular nonlikelihood-based

method for SV models, Andersen and Sørensen (1996) find that QML estimator is better

for models with a high degree of persistence. Deo (2002) provides theoretical intuition

for this finding. Despite the limitations, the QML estimator is very flexible and has been

widely used for estimating SV models.

1.6 Empirical Illustration

This section outlines the empirical results. Section 1.6.1 shows the estimation results of

the ACD and intraday SV models. Section 1.6.2 shows the GARCH and the GARCH-D

models that are used to compare with the intraday SV model. Sections 1.6.3 and 1.6.4

respectively discusses the in-sample and out-of-sample forecasting results for different

horizons and sampling frequencies.
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1.6.1 Estimation Results

This subsection shows the in-sample results of the intraday SV model. We firstly see

the results of the ACD model. After that, we list the results of the volatility part for the

intraday SV model.

[Table 1.5 around here]

Table (1.5) shows the estimation results of the ACD models for SPY and MSFT

respectively. The standard errors are given in parentheses. All the parameters of ACD

models are highly significant. From the results of the four different horizons, the sums

of αd and βd for SPY data are 0.9903, 0.9899, 0.9906 and 0.9908 respectively. For

MSFT data, the sums of αd and βd are 0.9956, 0.9954, 0.9958 and 0.9957 respectively.

The results indicate that the duration has a strong persistence. That is in line with Engle

and Russell (1998). As summarized by Pacurar (2008), many studies found evidence

of high persistence of trade durations, the sum of the autoregressive coefficients (i.e.

αd +βd) being close to one while still in the stationary region. It supports the existence

of duration clustering that the long duration tends to be followed by long duration,

and short duration tends to be followed by short duration. Based on the estimated

ACD models, we can get the expected durations. After that, the effects of surprises

in durations for 5-minute and 10-minute returns can be calculated as shown in Section

1.4.2.

[Tables 1.6 and 1.7 around here]

Tables 1.6 and 1.7 shows the estimation results of the intraday SV model for SPY and

MSFT data respectively. Each table contains the estimation results for 5-minute returns
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and 10-minute returns. For 5-minute returns, the estimate values of parameter ϕ for

both SPY and MSFT are around 0.98, indicating the existence of volatility clustering

in the intradaily level and the volatility has strong persistence. For 10-minute returns,

the values of ϕ are slightly lower compared with 5-minute returns. The lower effects of

AR(1) can be partly contributed by the higher effects of surprises in durations.

The κ is the coefficient of the effects of surprises in durations (X t−1/Ψt−1). The

estimate values of κ are negative for SPY and MSFT. From Equation (1.7) we can find

the relationship between the duration information and the unobserved log-volatilities h:

if the duration in time (t −1) is higher than the expectation, in other words, there is an

unexpected increase in the duration, then the effect of duration information for volatility

in time t is negative. On the other hand, if there is an unexpected decrease in the duration

compared with the expectation, the effect of duration information is positive. Compared

with the 5-minute returns, the absolute values of κ are bigger when we fit the model for

10-minute returns, indicating the higher effects of surprises in durations. The negative

relationship between the unexpected duration and volatility is in line with Engle (2000).

The unexpected decrease in duration is closely linked with unexpected news arrival

in the market, which can increase the volatility. The unexpected decrease in duration

indicates the possible informed trading. The higher informed trading leads to higher

adverse selection cost and higher volatility. On the other hand, the unexpected increase

in duration indicates the stable market. In this case, the confidence of investors and

traders to the market increases so that they are more likely to hold their assets rather

than trade.
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1.6.2 Competing Models

This section shows the detail of the GARCH and the GARCH-D models that are used to

compare with the intraday SV model. The GARCH model is introduced by Bollerslev

(1986) based on ARCH (Engle, 1982). The GARCH-D model links the GARCH model

and the expected duration calculated from the ACD model.

The GARCH(1,1) model is defined as follows:

r̃t = c+α r̃t−1 + et (1.29)

Following Giot (1999), Rahman et al. (2002) and Worthington and Higgs (2009), we fit

an AR(1) structure on the intraday returns. The variance equation is written as:

σ2
t = λ +βet−1 + γσ2

t−1 (1.30)

where r̃t is the 5-minute intraday volatility pattern adjusted return at time t. The

GARCH family models have been used for modeling intraday return volatility by many

studies, such as Chan et al. (1991), Giot (1999), Martens et al. (2002), Darrat et al.

(2003) and Darrat et al. (2007). For the method to deal with the intraday pattern of

volatility, Chan et al. (1991) differs from the studies above. They use dummy variables

to catch the intraday pattern of volatility. All others use the sequential method. Here we

follow the general literature and use the sequential method.

We incorporate the duration information for the GARCH-D model which can be written
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as follows:

r̃t = c+α r̃t−1 + et (1.31)

σ2
t = λ +βet−1 + γσ2

t−1 +θ
X t−1

Ψt−1
(1.32)

where X t is the mean of every 5-minute deseasonalized durations and Ψt is the mean

of every 5-minute deseasonalized expected durations. The expected duration can be

calculated from the ACD model listed in Section 1.4.2. The in-sample estimation results

of GARCH and GARCH-D are given in the Appendix.

1.6.3 The In-sample Fit

In this section, we perform diagnostic checks on the fit of the intraday SV, GARCH and

GARCH-D models before discussing the forecasting performances of these models.

Based on the in-sample fit test, we can assess the adequacy of the model and how well

the fitted model accords with the observed data.

When the QML method is used to estimate SV models based on the State Space model

and the Kalman filter, it is common to test the serial correlation of the standardized

prediction residual (Krichene, 2003; Liesenfeld and Richard, 2003; Eratalay, 2012).

The details of calculating the one-step ahead prediction error ε̃t and the prediction error

variance F̃t are shown in Section 1.5. The standardized prediction residual is calculated

as et = ε̃t/F̃t . When the model fits the data, the standardized prediction residuals are

serially uncorrelated. We perform the Ljung-Box test to check whether or not there

exists the autocorrelation up to order 10. For GARCH and GARCH-D models, the

Ljung-Box test on the squared standardized residuals can be used to test for remaining
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ARCH in the variance equation and to check the specification of the variance equation.

If the model fit the data well, the squared standardized residuals should be uncorrelated.

[Tables 1.8 around here]

Table 1.8 shows the results of the Ljung-Box test on 10 lags for 5-minute sampling

frequency and 10-minute sampling frequency respectively. We use 10 lags for the

test following Bauwens and Giot (2000), Krichene (2003). As the observations for

SV models based on QML method are log squared intraday pattern adjusted returns

log(r̃t
2), we also report the Ljung-Box test for log(r̃t

2). The eisv is the standardized

prediction residual of Intraday SV model. r̃t
2 is the squared intraday pattern adjusted

returns. SEgarch is the squared standardized residuals of GARCH model and SEgarchd is

the squared standardized residuals of GARCH-D model. The p-value of the Ljung-Box

Q-statistics are shown in the square brackets.

As the volatility clustering, we can find that the Q-statistics for log(r̃t
2) and r̃t

2 are

highly significant for both 5-minute returns and 10-minute returns. All the p-values of

their Ljung-Box Q-statistics are negative. The Q-statistics are higher when we study

5-minute returns compared with 10-minute returns. For the intraday SV model, the Q-

statistics of standardized prediction residuals et drop significantly compared with the

Q-statistics fitted observations log(r̃t
2). All their p-values are higher than 10%. So

we cannot reject the null hypothesis of the Ljung-Box test that there is autocorrelation

for the standardized prediction residuals. For the GARCH model, similarly, the Q-

statistics of squared standardized residuals SE1 are insignificant for all horizons and

sampling frequency, indicating they are uncorrelated. We obtain the same conclusion

for the GARCH-D model. The Q-statistics for squared standardized residuals support
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the GARCH and GARCH-D models fitted the data well.

However, based on the Ljung-Box test for the standardized prediction residual of

intraday SV model and the squared standardized residuals of GARCH and GARCH-

D models, we cannot directly compare the in-sample fit of the intraday SV model and

GARCH, GARCH-D models, as the observations for the intraday SV model are log(r̃t
2)

but for GARCH models are r̃t . In order to compare their in-sample fit, following Bhar

and Lee (2009), Trolle and Schwartz (2009) Kosapattarapim et al. (2011), we compare

the errors based on the volatilities calculated from fitted models and true values.

[Tables 1.9 around here]

Table 1.9 shows the comparison of in-sample fit for the intraday SV, GARCH and

GARCH-D models based on the mean absolute error (MAE). With ṽt be the variance

of returns calculated from the estimated model at time t, and vt be the actual in-sample

values of variance. The MAE can be written as

MAE =
1
T

T

∑
t=1

|ṽt − vt | (1.33)

We transform the log squared intraday pattern adjusted returns calculated from intraday

SV model to the intraday variance which also incorporates the intraday volatlity pattern

as well. As the intraday volatility pattern is the same for both SV, GARCH, and

GARCH-D models, so it does not influence the in-sample fit comparison. The lower

value of MAE indicates the better in-sample fit. According to the table, the Intraday SV

model fit the data better than the GARCH and GARCH-D models.
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1.6.4 Forecasting Results

Although the good in-sample fits are important, when we choose a model for practical

applications, the out-sample forecasting power should be considered as the ultimate test

for comparing different models. So in this section, we compare the intraday SV model

with the standard GARCH model and the GARCH duration (GARCH-D) model based

on Engle (2000). In order to highlight the difference of forecasting power, we report the

Diebold-Mariano test (DIEBOLD and MARIANO, 1995).

The MAE is a widely used measure to test the forecasting power of a model. Let v̂t be

the one-period-ahead forecasts of return variance at time t, and vt be the actual values

of variance. The MAE for the out-of-sample forecasts can be written as

MAE =
1
T

T

∑
t=1

|v̂t − vt | (1.34)

Table 1.10 shows the forecasting performance of the intraday SV, GARCH, GARCH-

D models based on MAE for 5-minute and 10-minute returns. The results of the four

horizons are reported respectively. In addition, we also calculate the average values of

MAE for the four horizons.

[Tables 1.10 around here]

For both the SPY and MSFT, the intraday SV model provides the lowest MAE’s for

all horizons compared with GARCH and GARCH-D, that supports the intraday SV

model outperforms the GARCH and GARCH-D models. Compared with GARCH and

GARCH-D, we can find that the GARCH-D’s MAE’s for the four horizons are slightly
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lower than the GARCH’s MAE’s, so the duration information is useful for forecasting.

The conclusion is same for both the 5-minute and 10-minute returns. Compared with the

two sampling frequencies, the 5-minute returns have the lower MAE than the 10-minute

returns.

The Diebold-Mariano (DM) test is used to discover whether or not the forecasts of two

models are equally good. Let vt be the actual values of volatility; let v̂1t be the forecasts

of the first model and v̂2t be the forecasts of the second model. The loss function g(v̂it)

of the DM test for model i (i = 1,2) is defined as

g(v̂it) = |v̂it − vt | (1.35)

The loss differential between the two forecasts is defined by

dt = g(v̂1t)−g(v̂2t) (1.36)

The two forecasts have equal accuracy if and only if the loss differential has zero

expectation for all t. So the null hypothesis is

H0 : E(dt) = 0 ∀t (1.37)

against the alternative hypothesis

H0 : E(dt) ̸= 0 (1.38)

In other words, the null hypothesis is that the two forecasts have the same accuracy.
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The alternative hypothesis is that the two forecasts have different levels of accuracy.

Let d be the sample mean of loss differential and µ be the population mean of the loss

differential; that is

d =
T

∑
t=1

dt (1.39)

and

µ = E(dt) (1.40)

The spectral density of the loss differential at frequency 0 is

fd(0) =
1

2π

(
∞

∑
k=−∞

γd(k)

)
(1.41)

where γd(k) is the autocovariance of the loss differential at lag k. Assuming the loss

differential series dt is covariance stationary and short memory, we obtain

√
T (d −µ)→ N(0,2π fd(0)) (1.42)

Therefore, under H0

d
[2π fd(0)/T ]1/2 → N(0,1) (1.43)

For the one-step forecast, the DM test statistic is

DM =
d

[2π f̂d(0)/T ]1/2
(1.44)

where f̂d(0) is a consistent estimate of fd(0) defined by

f̂d(0) =
1

2π
γ̂d(0) (1.45)
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where

γ̂d(0) =
1
T

T

∑
t=1

(dt −d)2 (1.46)

Under the null hypothesis, the test statistics DM is asymptotically N(0,1) distributed.

We can calculate the p-value based on the computed DM statistic. Table 1.11 shows the

results of DM test for the intraday SV model compared with GARCH and GARCH-D

for 5-minute and 10-minute returns respectively.

[Tables1.11 around here]

We find that all the p-values are below 10% for both SPY and MSFT data, therefore

we reject the null hypothesis that the two forecasts have the same accuracy. So

the intraday SV model with lower MAE than GARCH and GARCH-D has better

forecasting performance.

1.7 Conclusion

With the rapid development of algorithmic trading systems, the high-frequency trading

increases the demand for the intraday volatility rather than only the daily volatility

or the aggregated RV. Nowadays, thanks to the advanced trade recording technology,

researchers can get access to the higher frequency data with fewer recorded errors,

which boosts the recent high-frequency research. We extend the SV model for modeling

and forecasting intraday return volatility. Unlike the traditional SV specification, we

incorporate the duration information into the variance equation, because the duration is

closely linked with volatility. As discussed by the literature, a trade duration is associate

with the intensity of liquidity demand which is correlated to volatility. In addition, the
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short trade durations also signify news arrival in the market that increases information-

based trading, which tends to increase the volatility.

The duration information includes both the lag duration and the lag expected duration.

The expected duration is calculated from the ACD model. Although there are some

literature supporting the negative relationship between duration and volatility, few

studies use the expected duration as a component for the intraday volatility modeling.

We consider the expected duration rather than only rely on the actual duration because

the expected duration allows us to investigate the effects of surprises in durations on

intraday return volatility. We transform the irregularly spaced duration information to

regularly spaced duration information by using the mean of durations for a specific

period divided by its corresponding mean of the expected durations. We use the QML

method based on state space model and Kalman filter to estimate the Intraday SV model.

The SPY and MSFT data are used for the empirical analysis.

We find that the parameter of the duration information is highly significant, and there is

a negative relationship between the unexpected duration and volatility. It means that if

there is an unexpected increase for the lag actual duration, the current volatility tends to

decrease, and vice versa. For both the duration and volatility modeling, we adjust the

intraday pattern before fit the model. The empirical results support that the Intraday SV

model fits the data better than the GARCH and GARCH-D models. We also compare

their out-of-sample forecasting performances and the Intraday SV model offers more

accurate forecasts. The difference of forecasting power can be supported by the DM

test. This chapter supports that when we investigate the intraday return volatility, the

duration can offer useful information. The link between duration and volatility model
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might be interesting and useful for the future research.
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Figure 1.1: This figure show the time plots of SPY and MSFT transaction durations on 5th Jan 2010. As the
duration is the irregularly spaced data, we use five minute average durations to show the changes for the whole
trading day.
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Figure 1.2: This figure shows the autocorrelation functions of trade durations for SPY and MSFT respectively
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Figure 1.3: This figure shows the intraday return distribution for the SPY and MSFT. The left pannel shows
the 5-minute returns and the right pannel shows the 10-minute returns.
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Table 1.1: Trade duration: SPY and MSFT

SPY MSFT

observations 748069 167885

Mean 2.54 11.28

Standard dev. 3.13 18.60

Minimum 1 1

Maximum 99 427

Kurtosis 44.2499 40.7683

Skewness 4.8489 4.6627

Notes: The table reports the summary statistics for the duration data from 4 Jan 2010 to 30
April 2010.
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Table 1.2: Autocorrelations and partial autocorrelations of trade durations (SPY)

SPY
Raw Duration Diurnally Adjusted Duration

acf pacf Q-Stat P-value acf pacf Q-Stat P-value

lag 1 0.215 0.215 26022 0.000 0.174 0.174 17012 0.000

lag 2 0.180 0.140 44153 0.000 0.138 0.111 27656 0.000

lag 3 0.166 0.110 59737 0.000 0.123 0.086 36162 0.000

lag 4 0.152 0.085 72678 0.000 0.109 0.066 42857 0.000

lag 5 0.147 0.075 84831 0.000 0.105 0.060 49031 0.000

lag 6 0.142 0.065 96118 0.000 0.100 0.052 54641 0.000

lag 7 0.139 0.059 106916 0.000 0.096 0.047 59859 0.000

lag 8 0.134 0.052 117051 0.000 0.093 0.042 64736 0.000

lag 9 0.132 0.049 126923 0.000 0.091 0.040 69420 0.000

lag 10 0.130 0.045 136402 0.000 0.088 0.035 73745 0.000

lag 11 0.128 0.042 145664 0.000 0.086 0.033 77911 0.000

lag 12 0.131 0.044 155286 0.000 0.088 0.035 82259 0.000

lag 13 0.132 0.043 165083 0.000 0.087 0.033 86541 0.000

lag 14 0.130 0.039 174578 0.000 0.087 0.032 90829 0.000

lag 15 0.129 0.036 183927 0.000 0.085 0.029 94927 0.000

Notes: The table reports autocorrelations and partial autocorrelations of original and
diurnally adjusted trade durations for SPY.
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Table 1.3: Autocorrelations and partial autocorrelations of trade durations (MSFT)

MSFT
Raw Duration Diurnally Adjusted Duration

acf pacf Q-Stat P-value acf pacf Q-Stat P-value

lag 1 0.194 0.194 4716.3 0.000 0.151 0.151 2852 0.000

lag 2 0.165 0.133 8141.8 0.000 0.127 0.107 4874 0.000

lag 3 0.154 0.106 11122 0.000 0.114 0.083 6488 0.000

lag 4 0.143 0.085 13683 0.000 0.102 0.065 7786 0.000

lag 5 0.145 0.083 16334 0.000 0.102 0.063 9098 0.000

lag 6 0.136 0.066 18641 0.000 0.095 0.052 10231 0.000

lag 7 0.141 0.069 21146 0.000 0.099 0.055 11459 0.000

lag 8 0.132 0.054 23323 0.000 0.093 0.046 12544 0.000

lag 9 0.128 0.048 25380 0.000 0.088 0.039 13510 0.000

lag 10 0.127 0.046 27414 0.000 0.085 0.035 14406 0.000

lag 11 0.131 0.048 29550 0.000 0.090 0.041 15426 0.000

lag 12 0.129 0.044 31623 0.000 0.089 0.038 16426 0.000

lag 13 0.128 0.042 33687 0.000 0.085 0.031 17320 0.000

lag 14 0.132 0.044 35861 0.000 0.089 0.035 18305 0.000

lag 15 0.129 0.039 37960 0.000 0.081 0.026 19133 0.000

Notes: The table reports autocorrelations and partial autocorrelations of original and
diurnally adjusted trade durations for MSFT.
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Table 1.4: Statistical table of intraday returns

5-minute 10-minute

SPY MSFT SPY MSFT

Mean 0.0007 -0.0005 0.0018 -0.0007

Standard dev. 0.0676 0.1087 0.1284 0.1906

Minimum -0.5314 -1.0327 -1.0726 -1.8665

Maximum 0.4849 0.7945 1.0932 1.2431

Kurtosis 7.8617 8.5561 21.1235 15.6330

Skewness -0.4160 -0.3885 -0.7280 -0.7225

Notes: The table shows the 5-minute and 10-minute returns’ summary statistics for SPY and
MSFT respectively.
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Table 1.5: The in-sample estimation results of the ACD model

Horizons

(1) (2) (3) (4)

SPY

ωd 0.0095*** 0.0098*** 0.0092*** 0.0090***

(0.0006) (0.0006) (0.0006) (0.0006)

αd 0.0607*** 0.0640*** 0.0639*** 0.0629***

(0.0013) (0.0011) (0.0011) (0.0011)

βd 0.9296*** 0.9260*** 0.9267*** 0.9279***

(0.0015) (0.0015) (0.0015) (0.0015)

MSFT

ωd 0.00468*** 0.0048*** 0.0044*** 0.0045***

(0.0004) (0.0004) (0.0004) (0.0004)

αd 0.0557*** 0.0560*** 0.0546*** 0.0539***

(0.0014) (0.0014) (0.0014) (0.0013)

βd 0.9399*** 0.9394*** 0.9412*** 0.9417***

(0.0014) (0.0015) (0.0014) (0.0014)

Notes: The table provides in-sample parameter estimates for the ACD model based
on different horizons. The standard errors are in parentheses. *, **, *** denote
significance of parameter at 10%, 5% and 1% levels, respectively.
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Table 1.6: The in-sample estimation result of the Intraday SV model (SPY)

Horizons

(1) (2) (3) (4)

5-minute

lnσ2 -5.7627*** -5.6629*** -5.4209*** -5.4421***

(0.4198) (0.4197) (0.3671) (0.3567)

γ 0.3289*** 0.3837*** 0.4063*** 0.3301***

(0.0913) (0.0995) (0.0988) (0.0872)

ϕ 0.9803*** 0.9778*** 0.9772*** 0.9805***

(0.0053) (0.0058) (0.0055) (0.0049)

κ -0.3342*** -0.3904*** -0.4133*** -0.3362***

(0.0928) (0.1012) (0.1005) (0.0886)

10-minute

lnσ2 -5.7411*** -6.9543* -5.7693*** -5.8226***

(1.1903) (3.6209) (1.2009) (0.9069)

γ 0.8730*** 0.9039*** 0.9530*** 0.6663***

(0.2414) (0.2421) (0.2560) (0.2128)

ϕ 0.9494*** 0.9499*** 0.9497*** 0.9633***

(0.0142) (0.0141) (0.0142) (0.0121)

κ -0.8365*** -0.8691*** -0.9181*** -0.6410***

(0.2321) (0.2330) (0.2470) (0.2048)

Notes: The table provides in-sample parameter estimates for the intraday SV model
for SPY. The standard errors are in parentheses. *, **, *** denote significance of
parameter at 10%, 5% and 1% levels, respectively.
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Table 1.7: The in-sample estimation result of the Intraday SV model (MSFT)

Horizons

(1) (2) (3) (4)

5-minute

lnσ2 -3.8879*** -4.1184*** -4.2916*** -4.3342***

(0.3062) (0.3138) (0.3067) (0.3089)

γ 0.08421*** 0.0665*** 0.0509** 0.0493**

(0.0294) (0.0253) (0.0226) (0.0223)

ϕ 0.9673*** 0.9742*** 0.9795*** 0.9792***

(0.0082) (0.0069) (0.0058) (0.0058)

κ -0.0839*** -0.0670*** -0.0512** -0.0503**

(0.0280) (0.0240) (0.0214) (0.0212)

10-minute

lnσ2 -2.9621*** -3.5012*** -3.7703*** -3.92477***

(0.4130) (0.4439) (0.4402) (0.4474)

γ 0.5053*** 0.0499*** 0.1523** 0.1801***

(0.1078) (0.0175) (0.0664) (0.0694)

ϕ 0.8818*** 0.9480*** 0.9625*** 0.9583***

(0.0256) (0.0173) (0.0135) (0.0141)

κ -0.3818*** -0.1447** -0.1153** -0.1389**

(0.0864) (0.0617) (0.0542) (0.0566)

Notes: The table provides in-sample parameter estimates for the Intraday SV model
for MSFT. The standard errors are in parentheses. *, **, *** denote significance of
parameter at 10%, 5% and 1% levels, respectively.
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Table 1.8: The Ljung-Box test on 10 lags for returns and residuals

Horizons

(1) (2) (3) (4)

5-minute SPY

log(r̃t
2) 403.13 [0.000] 326.98 [0.000] 285.88 [0.000] 354.79 [0.000]

eisv 13.955 [0.175] 13.425 [0.201] 11.978 [0.287] 9.3238 [0.502]

r̃t
2 737.05 [0.000] 718.37 [0.000] 577.94 [0.000] 774.88 [0.000]

SEgarch 7.617 [0.666] 11.216 [0.341] 15.773 [0.106] 9.6143 [0.475]

SEgarch-d 6.3257 [0.787] 8.3239 [0.597] 14.062 [0.170] 9.1306 [0.520]

5-minute MSFT

log(r̃t
2) 315.04 [0.000] 343.02 [0.000] 379.77 [0.000] 357.84 [0.000]

eisv 15.876 [0.103] 11.648 [0.309] 15.810 [0.105] 15.667 [0.110]

r̃t
2 729.83 [0.000] 732.68 [0.000] 794.55 [0.000] 910.97 [0.000]

SEgarch 9.2915 [0.505] 10.638 [0.386] 8.3066 [0.599] 8.6939 [0.561]

SEgarch-d 8.0874 [0.620] 8.3207 [0.598] 6.2234 [0.796] 8.4404 [0.586]

10-minute SPY

log(r̃t
2) 119.23 [0.000] 100.27 [0.000] 120.76 [0.000] 110.31 [0.000]

eisv 13.634 [0.190] 15.309 [0.121] 14.976 [0.133] 14.055 [0.170]

r̃t
2 46.840 [0.000] 41.273 [0.000] 44.219[0.000] 46.054 [0.000]

SEgarch 2.7088 [0.987] 2.9275 [0.983] 2.6775 [0.988] 3.2398 [0.975]

SEgarch-d 3.1428 [0.978] 2.5001 [0.991] 2.5808 [0.990] 3.8375 [0.954]

10-minute MSFT

log(r̃t
2) 116.49 [0.000] 133.55 [0.000] 142.12 [0.000] 131.37 [0.000]

eisv 10.071 [0.434] 8.2531 [0.604] 11.334 [ 0.332] 13.064 [0.220]

r̃t
2 245.84 [0.000] 232.08 [0.000] 207.12 [0.000] 228.49 [0.000]

SEgarch 8.8087 [0.550] 8.3790 [0.592] 4.1598 [0.940] 4.1579 [0.940]

SEgarch-d 5.6449 [0.844] 5.7368 [0.837] 2.9719 [0.982] 2.9058 [0.984]

Notes: The table provides the Ljung-Box test on 10 lags for 5-minute and 10-minute sampling frequencies respectively. r̃t
is the intraday pattern adjusted return. The eisv is the standardized prediction residual of Intraday SV model. SEgarch is the
squared standardized residuals of GARCH model and SEgarch-d is the squared standardized residuals of GARCH-D model.
The p-value of the Ljung-Box Q-statistics are shown in the square brackets.
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Table 1.9: The in-sample forecasting results based on the MAE

Horizons

(1) (2) (3) (4) Average

5-minute SPY

GARCH-D 0.0046 0.0048 0.0049 0.0045 0.0047

GARCH 0.0047 0.0048 0.0049 0.0045 0.0048

Intraday SV 0.0042 0.0042 0.0043 0.0040 0.0042

5-minute MSFT

GARCH-D 0.0131 0.0131 0.0127 0.0121 0.0127

GARCH 0.0131 0.0191 0.0128 0.0121 0.0143

Intraday SV 0.0117 0.0117 0.0112 0.0107 0.0113

10-minute SPY

GARCH-D 0.0176 0.0178 0.0179 0.0169 0.0175

GARCH 0.0181 0.0184 0.0186 0.0178 0.0182

Intraday SV 0.0153 0.0155 0.0155 0.0148 0.0153

10-minute MSFT

GARCH-D 0.0444 0.0435 0.0434 0.0414 0.0432

GARCH 0.0443 0.0438 0.0440 0.0415 0.0434

Intraday SV 0.0382 0.0380 0.0373 0.0355 0.0373

Notes: The table shows the comparison of in-sample forecasts for the Intraday SV, GARCH and GARCH-D
models based on the MAE.
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Table 1.10: The out-of-sample forecasting results based on the MAE

Horizons

(1) (2) (3) (4) Average

5-minute SPY

GARCH-D 0.0024 0.0037 0.0039 0.0075 0.0044

GARCH 0.0026 0.0038 0.0041 0.0077 0.0045

Intraday SV 0.0020 0.0032 0.0035 0.0065 0.0038

5-minute MSFT

GARCH-D 0.0079 0.0070 0.0105 0.0112 0.0091

GARCH 0.0079 0.0081 0.0106 0.0115 0.0095

Intraday SV 0.0063 0.0050 0.0094 0.0081 0.0072

10-minute SPY

GARCH-D 0.0104 0.0113 0.0206 0.0273 0.0174

GARCH 0.0109 0.0120 0.0241 0.0303 0.0193

Intraday SV 0.0078 0.0090 0.0180 0.0247 0.0149

10-minute MSFT

GARCH-D 0.0258 0.0343 0.0413 0.0343 0.0339

GARCH 0.0261 0.0363 0.0429 0.0352 0.0351

Intraday SV 0.0196 0.0254 0.0367 0.0250 0.0267

Notes: The table shows the comparison of out-of-sample forecasts for the Intraday SV, GARCH and GARCH-
D models based on the MAE.
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Table 1.11: The Diebold-Mariano Test

Horizons

(1) (2) (3) (4)

5-minute SPY

SV vs GARCH-D -4.6062 -3.0544 -2.2371 -3.9826

(0.0000) (0.0024) (0.0259) (0.0001)

SV vs GARCH -5.4350 -3.3708 -3.2268 -4.2531

(0.0000) (0.0008) (0.0014) (0.0000)

5-minute MSFT

SV vs GARCH-D -5.1137 -7.55 -1.8505 -7.6955

(0.0000) (0.0000) (0.0650) (0.0000)

SV vs GARCH -5.2948 -8.0764 -1.9044 -7.8363

(0.0000) (0.0000) (0.0576) (0.0000)

10-minute SPY

SV vs GARCH-D -5.6539 -4.6807 -5.0384 -4.5838

(0.0000) (0.0000) (0.0000) (0.0000)

SV vs GARCH -4.5166 -4.4038 -3.1358 -2.9324

(0.0000) (0.0000) (0.0020) (0.0038)

10-minute MSFT

SV vs GARCH-D -4.0401 -5.6711 -1.8056 -5.4942

(0.0000) (0.0000) (0.0729) (0.0000)

SV vs GARCH -4.2556 -5.5048 -2.1597 -5.5569

(0.0001) (0.0000) (0.0323) (0.0000)

Notes: The table shows the results of the DM test for the intraday SV model compared with
GARCH and GARCH-D for 5-minute and 10-minute returns respectively. The p-value of the
test is shown in the bracket.
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1.8 Appendix

Table 1.12: The in-sample estimation result of the GARCH model (SPY)

Horizons

(1) (2) (3) (4)

5-minute

c 0.0257** 0.0262** 0.0298** 0.0353***

(0.0122) (0.0123) (0.0121) (0.0122)

α 0.2284*** 0.2326*** 0.2348*** 0.2361***

(0.0144) (0.0144) (0.0149) (0.0149)

λ 0.0069*** 0.0064*** 0.0080*** 0.0083***

(0.0015) (0.0015) (0.0017) (0.0018)

β 0.0455*** 0.0434*** 0.0555*** 0.0526***

(0.0044) (0.0043) (0.0047) (0.0047)

γ 0.9471*** 0.9497*** 0.9363*** 0.9385***

(0.0052) (0.0051) (0.0054) (0.0057)

10-minute

c 0.0600* 0.0593* 0.0628** 0.0891***

(0.0324) (0.0325) (0.0305) (0.0313)

α 0.0435** 0.0450** 0.0480** 0.0485**

(0.0212) (0.0209) (0.0213) (0.0208)

λ 0.0149*** 0.0202*** 0.0343*** 0.0152***

(0.0021) (0.0026) (0.0027) (0.0030)

β 0.0156*** 0.0183*** 0.0268*** 0.0218***

(0.0016) (0.0019) (0.0027) (0.0022)

γ 0.9796*** 0.9749*** 0.9621*** 0.9731***

(0.0019) (0.0022) (0.0026) (0.0022)

Notes: The table provides in-sample parameter estimates for the GARCH model
for SPY. The standard errors are in parentheses. *, **, *** denote significance of
parameter at 10%, 5% and 1% levels, respectively.
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Table 1.13: The in-sample estimation result of the GARCH model (MSFT)

Horizons

(1) (2) (3) (4)

5-minute

c 0.0041 0.0122 0.0111 0.0152

(0.0044) (0.0123) ( 0.0122) (0.0121)

α 0.2312*** 0.2266*** 0.2243*** 0.2222***

(0.0142) (0.0140) (0.0140) (0.0140)

λ 0.0119*** 0.0092*** 0.0087*** 0.0118***

(0.0023) (0.0020) (0.0019) (0.0023)

β 0.0526*** 0.0460*** 0.0464*** 0.0510***

(0.0053) (0.0047) (0.0047) (0.0053)

γ 0.9353*** 0.9442*** 0.9444*** 0.9358***

(0.0063) (0.0058) (0.0057) (0.0067)

10-minute

c 0.0218 0.0455 0.0479 0.0606*

(0.0309) (0.0303) (0.0310) (0.0311)

α 0.0553*** 0.0482** 0.0459** 0.0542***

(0.0206) (0.0203) (0.0207) (0.0207)

λ 0.0562*** 0.0416*** 0.0452*** 0.0557***

(0.0115) (0.0095) (0.0083) (0.0098)

β 0.0502*** 0.0469*** 0.0444*** 0.0431***

(0.0068) (0.0061) (0.0059) (0.0060)

γ 0.9303*** 0.9379*** 0.9392*** 0.9355***

(0.0088) (0.0077) (0.0075) (0.0085)

Notes: The table provides in-sample parameter estimates for the GARCH model for
MSFT. The standard errors are in parentheses. *, **, *** denote significance of
parameter at 10%, 5% and 1% levels, respectively.

65



Table 1.14: The in-sample estimation result of the GARCH-D model (SPY)

Horizons

(1) (2) (3) (4)

5-minute

c 0.0138 0.0129 0.0176 0.0248*

(0.0142) (0.0138) (0.0131) (0.0133)

α 0.2313*** 0.2257*** 0.2264*** 0.2318***

(0.0170) (0.0171) (0.0171) (0.0160)

λ 0.9072*** 1.0307*** 0.9626*** 0.8211***

(0.0046) (0.0425) (0.0547) (0.0189)

β 0.0719*** 0.1089*** 0.1335*** 0.0591***

(0.0117) (0.01467) (0.0156) (0.0098)

γ 0.7931*** 0.6951*** 0.6725*** 0.8220***

(0.0167) (0.0216) (0.0214) (0.0141)

θ -0.7764*** -0.8460*** -0.7841*** -0.7166***

(0.0112) (0.0305) (0.0440) (0.0240)

10-minute

c 0.0484 0.0511 0.0659* 0.0978***

(0.0338) (0.0348) (0.0338) (0.0323)

α 0.0544** 0.0508** 0.0528** 0.0562***

(0.0220) (0.0211) (0.0213) (0.0208)

λ 3.0116*** 3.3340*** 3.0064*** 2.9935***

(0.0107) (0.0132) (0.1383) (0.0070)

β 0.0149*** 0.0069 0.0091*** 0.0150***

(0.0047) (0.0045) (0.0041) (0.0043)

γ 0.8842*** 0.8770*** 0.8967*** 0.8873***

(0.0070) (0.0085) (0.0081) (0.0081)

θ -2.7270*** -3.0063*** -2.7393*** -2.7294***

(0.0006) (0.0030) (0.1219) (0.0139)

Notes: The table provides in-sample parameter estimates for the GARCH-D model
for SPY. The standard errors are in parentheses. *, **, *** denote significance of
parameter at 10%, 5% and 1% levels, respectively.
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Table 1.15: The in-sample estimation result of the GARCH-D model (MSFT)

Horizons

(1) (2) (3) (4)

5-minute

c 0.0051 0.0099 0.0096 0.0149

(0.0124) (0.0123) (0.0126) (0.0122)

α 0.2270*** 0.2218*** 0.2172*** 0.2187***

(0.0144) (0.0154) (0.0155) (0.0142)

λ 0.0550*** 0.1155*** 0.1527*** 0.0407***

(0.0091) (0.0132) (0.0116) (0.0046)

β 0.0535*** 0.1106*** 0.1317*** 0.0504***

(0.0056) (0.0122) (0.0140) (0.0055)

γ 0.9256*** 0.7957*** 0.7315*** 0.9311***

(0.0072) (0.0179) (0.0208) (0.0069)

θ -0.0323*** -0.0276*** -0.0275*** -0.0217***

(0.0061) (0.0063) (0.0002) (0.0025)

10-minute

c 0.0188 0.0330 0.0300* 0.0473

(0.0312) (0.0303) (0.0323) (0.0316)

α 0.0584*** 0.0511** 0.0473** 0.0557***

(0.0218) (0.0217) (0.0224) (0.0216)

λ 0.4999*** 0.4515*** 0.5025*** 0.4490***

(0.0545) (0.0576) (0.0494) (0.0344)

β 0.0788*** 0.0787 0.0788** 0.0519***

(0.0103) (0.0105) (0.0102) (0.0082)

γ 0.8545*** 0.8609*** 0.8483*** 0.8926***

(0.0154) (0.0158) (0.0164) (0.0119)

θ -0.2903*** -0.2638*** -0.2756*** -0.2790***

(0.0300) (0.0329) (0.0273) (0.0220)

Notes: The table provides in-sample parameter estimates for the GARCH-D model
for MSFT. The standard errors are in parentheses. *, **, *** denote significance of
parameter at 10%, 5% and 1% levels, respectively.
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Chapter 2

Measuring financial contagion: A multivariate stochastic

volatility approach
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2.1 Introduction

The study of financial contagion has rapidly become one of the important research topics

in financial economics. Compared with stable periods, the issues of risk management

and asset allocation become more important to practitioners and academics during

crises. Studying financial contagion is useful for these financial management tasks.

The recent Global Financial Crisis in 2007 and the following Eurozone Sovereign Debt

Crisis have once again highlighted the importance of this topic.

In this chapter, we investigate the contagion effects resulting from the US subprime

crisis on a sample of EU countries (UK, Switzerland, Netherlands, Germany and

France). Financial contagion is specified as a significant increase in cross-market

correlations after a shock, so we can investigate the existence of contagion by testing

the change of cross-market correlations1. Forbes and Rigobon (2002) find that the

problem of heteroskedasticity can introduce general upwardly biased in the estimation

of correlation coefficient for early studies, as some part of increased correlation that is

due to an increase in volatility. They offer a method to remove the bias and calculate the

adjusted correlation. Unlike the adjusted correlation approach, Engle (2002a) introduce

the dynamic conditional correlation multivariate GARCH model (DCC-GARCH) which

accounts for heteroskedasticity by estimating the dynamic correlation coefficients of the

standardized residuals rather than the correlation coefficients of returns directly. The

DCC-GARCH allows correlations time varying and is widely used by literature to study

the financial contagion (e.g., Cappiello et al., 2006; Chiang et al., 2007; Dimitriou et al.,

1This definition of financial contagion is widely used and ignores fundamentals. We review more
definitions in Section 2.2.1.
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2013).

Stochastic volatility (SV) models offer powerful alternatives to GARCH type models

in accounting for both the conditional and unconditional properties of volatility2. The

advantages of SV type models compared with GARCH type models have been discussed

by literature. As supported by Kim et al. (1998), the introduction of the additional

error term makes SV models more flexible than the GARCH type models. In addition,

Harvey et al. (1994) argue that SV models are the natural discrete-time versions of the

continuous-time models upon which much of modern finance theory is based. Like

the results of univariate SV and GARCH models, Danıelsson (1998) shows that the

MSV models also outperform the MGARCH models. Based on the same idea of DCC-

GARCH, dynamic correlation multivariate stochastic volatility models (DC-MSV) have

been introduced by Yu and Meyer (2006) and Asai and McAleer (2009).

As mentioned by Yu and Meyer (2006), although the SV type models are considerable,

compared to the multivariate GARCH (MGARCH) literature, the literature on multi-

variate SV (MSV) is rather limited. The main reason for this is that compared with

MGARCH, the MSV models are harder to estimate as the likelihood function of the

MSV has no closed form. To overcome the difficulty of the estimation, the Bayesian

Markov chain Monte Carlo (MCMC) method has been introduced and it is generally

regarded in the literature as the preferred estimation and inference technique (Jacquier

et al., 1994).
2For example, compared with GARCH models, the better performance of univariate SV models

has been supported by Danielsson (1994) and Kim et al. (1998). In terms of multivariate SV models,
Danıelsson (1998) find that the basic multivairate SV is superior to alternative multivairate GARCH
models such as the vector GARCH, diagonal vector GARCH (Bollerslev et al., 1988), Baba-Engle-Kraft-
Kroner (BEKK) model (Engle and Kroner, 1995) and the constant conditional correlation (CCC) model
(Bollerslev, 1990)
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This chapter contributes to the existent literature in the following aspects. First, unlike

most of the existing studies, we use the MSV rather than the MGARCH specification

to obtain correlation estimates. We also directly compare the contagion effects detected

by the DC-MSV and DCC-GARCH models. Although the better performance of the

DC-MSV model compared with the DCC-GARCH model in terms of the in-sample

fits and out-of-sample forecasts has been supported by Asai and McAleer (2009).

However, due to the complicated estimation procedure of the SV specification, few

studies consider the DC-MSV model to study financial contagion. To the best of our

knowledge, only Gebka and Karoglou (2013) apply the DC-MSV model to study the

changes of correlations during different market regimes for this topic. Existing studies

have not directly compared the contagion effects estimated from MSV and MGARCH.

So in this study we consider the DC-MSV model and find that the contagion effect

is more significant based on the DC-MSV model compared with the DCC-GARCH

model. We estimate the DC-MSV model based on Bayesian MCMC method as it is an

efficient estimator compared with other methods for estimating SV models, such as the

generalized method of moments or the quasi-maximum likelihood estimate (QMLE) for

SV models.

Second, we extend the DC-MSV model by incorporating implied volatility information

into the volatility equations. The implied volatility is calculated based on the

corresponding stock option price, so it reflects market expectations regarding future

price movements. It is also known as gauge to measure investors’ fear of market crash.

It has been supported that the implied volatilities are more informative than daily returns

and provide better volatility forecasts, especially during turmoil periods (Fleming et al.,

1995; Fleming, 1998; Christensen and Prabhala, 1998; Blair et al., 2001). Implied
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volatility information has been suggested for univariate stochastic volatility models

by Koopman et al. (2005) and Jacquier and Paulson (2010). As summarized by

Kolb (2011), the investors’ negative expectation during financial crisis is an important

channel for financial contagion, so it might be helpful for considering implied volatility

information to study financial contagion. We compare the extended DC-MSV model

(DC-MSV-IV) with the original DC-MSV model based on the Deviance Information

Criterion (DIC) (Spiegelhalter et al., 2002). The DIC support the better fit of the DC-

MSV-IV model for every country pair, so we can get more accurate estimations for the

dynamic correlations. Compared with the DC-MSV model, the contagion effect under

the DC-MSV-IV model is more significant, so implied volatility information is useful

for detecting financial contagion.

Third, we provide the evidence of contagion effects from USA to the investigated EU

countries. We investigate the correlation changes during both the Global Financial Crisis

(GFC) and the Eurozone Sovereign Debt Crisis (ESDC). We find the correlations are

higher during the ESDC than GFC. For the five EU countries, the UK is most influenced

by the contagion effect whereas Germany is least influenced. The empirical results also

support that the strong contagion effect is not necessary as a result of high correlation.

Although the correlation between Switzerland and USA is lowest among the sample

countries, but it is highly influenced by the financial contagion. On the other hand,

France is highest correlated to the USA but it is not highly influenced by the financial

contagion. We further consider the correlations after financial crisis and find that the

correlations tend to recover to a relatively lower level, but they are still higher than the

pre-crisis correlations. We also investigate the relationship between financial contagion

and crisis intensity, and find that the high contagion effect does not necessarily lead to
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the high crisis intensity.

The remainder of the chapter proceeds as follows. Section 2.2 review the relevant

literature. Section 2.3 presents the data description and analysis. Section 2.4 provides a

detailed description of the methodology, including the models, estimation method and

procedure for testing the financial contagion. Section 2.5 outlines the empirical findings.

Conclusion is provided in Section 2.6.

2.2 Literature Review

2.2.1 Financial Contagion

Generally, financial contagion refers to the spread of financial disturbances from one

country to others. There are several formal definitions of financial contagion in the

literature and the widely used one is based on the notion of “shift contagion”, that

is a statistically significant increase in cross-market correlations during the financial

crisis period (Forbes and Rigobon, 2002): “...if two markets show a high degree of

co-movement during periods of stability, even if the markets continue to be highly

correlated after a shock to one market, this may not constitute contagion.” According to

this definition, the contagion exists if cross-market co-movement increases significantly

after the shock. If the co-movement does not increase significantly, then any continued

high level of market correlation suggests strong linkages between the two economies,

but not contagion. This chapter uses the term interdependence to refer to this situation.

We also use their definition of contagion in this chapter.
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As mentioned by Kolb (2011), contagion is a fairly new concept in the economics

literature-before 1990, it was scarcely mentioned. Earlier studies of this topic stemmed

from international finance, so the financial contagion at the international level has

always had a prominence in discussions of this topic. The recent global financial

crisis of 2007-2009 also offer some evidence at the domestic level. There is no settled

meaning for contagion in finance. In addition to Forbes and Rigobon (2002) definition,

some studies fully embrace the disease metaphor, as mentioned by Allen and Gale

(2000): “One theory is that small shocks which initially affect only a few institutions or a

particular region of the economy, spread by contagion to the rest of the financial sector

and then infect the larger economy.” For others, contagion is merely the diffusion of

financial stress, without connotations of disease. According to Caramazza et al. (2004),

“the spread of financial difficulties from one economy to others in the same region and

beyond in a process that has come to be referred to as ‘contagion’.”

Pericoli and Sbracia (2003) summarize five definitions of contagion that reflect the wide

variety of meanings ascribed to this term: 1, Contagion is a significant increase in the

probability of a crisis in one country, conditional on a crisis occurring in another country.

2, Contagion occurs when volatility of asset prices spills over from the crisis country

to other countries. 3, Contagion occurs when cross-country co-movements of asset

prices cannot be explained by fundamentals. 4, Contagion is a significant increase in

co-movements of prices and quantities across markets, conditional on a crisis occurring

in one market or group of markets. 5, Contagion occurs when the transmission channel

intensifies or, more generally, changes after a shock in one market.

Following the shift contagion definition offered by Forbes and Rigobon (2002), many
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studies regard a change in the correlations among economic variables as a key for the

financial contagion. This is reflected in the third and fourth definitions listed above

by Pericoli and Sbracia (2003). This point also has been stressed by Kaminsky et al.

(2003):“ Only if there is ‘excess comovement’ in financial and economic variables

across countries in response to a common shock do we consider it contagion”. Forbes

and Rigobon (2002) argue that the contagion is reflected by an increase in correlation

among asset returns , after discounting any increased correlation that is due to an

increase in volatility. Bekaert et al. (2005) follow and extend their idea. They assert

that contagion is “excess correlation, that is, correlation over and above what one would

expect from economic fundamentals”, and “Contagion is a level of correlation over what

is expected”.

We use shift contagion in this chapter because it has three main advantages (Forbes

and Rigobon, 2001): First, it is useful in evaluating the effectiveness of international

diversification during a crisis. Second, the existence of financial contagion could justify

multilateral intervention. Third, it provides a useful method of distinguishing between

explanations of how shocks are transmitted across markets. As mentioned by Pericoli

and Sbracia (2003), unlike other definition that set an unrealistically difficult test for

the existence of contagion, this definition is empirically useful since it provides a

straightforward method of testing.

2.2.2 Detecting Financial Contagion

According to the shift contagion, the correlation analysis is the most straightforward

approach to test the existence of contagion. As mentioned by Forbes and Rigobon
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(2002), some early literature directly measure the correlations in returns, and then test

for a significant increase in this correlation coefficient after a shock. For example, King

and Wadhwani (1990) investigate the stock markets of USA, UK and Japan, and find that

cross-market correlations increased significantly after the USA market crash in 1987.

Lee and Kim (1993) further extend this analysis to 12 major markets and also find the

evidence of contagion: the weekly cross-market correlations increased from 0.23 before

the 1987 USA crash to 0.39 afterward. Reinhart and Calvo (1996) study the correlation

changes before and after the 1994 Mexican peso crisis. They find that cross-market

correlations have increased in many emerging markets during the crisis. However, for

the listed studies above and many other earlier studies, Forbes and Rigobon (2002) find

that ignoring heteroskedasticity can introduce general upwardly biased in the estimation

of correlation coefficient, because some part of the increased correlation is caused by

an increase in volatility. They offer a adjusted correlation approach to deal with the

heteroskedasticity problem.

When we consider the heightened correlation not due to an increase in overall volatility

and/or not due to economic fundamentals, many of the early evidence supporting the

existence of contagion is no longer valid. Forbes and Rigobon (2002) find that if taking

the heteroskedasticity of returns into account, there was no contagion during the 1997

Asian crisis and earlier crisis. But according to Corsetti et al. (2005), the conclusion of

‘no contagion’ is a bit too strong. They generalize Forbes and Rigobon (2002) model

to allow for a more general variance structure, nesting the Forbes and Rigobon (2002)

model as a special case. They do find evidence of financial contagion during the 1997

Asian crisis, but their evidence is generally mixed.
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Another method to deal with the bias introduced by the heteroskedasticity is based

on the the dynamic correlation multivariate models. Unlike the adjusted correlation

approach, it accounts for heteroskedasticity by estimating the dynamic correlation

coefficients of the standardized residuals rather than the correlation coefficients of

returns.

2.2.3 Dynamic Correlation-Multivariate Models

Engle (2002a) introduce the dynamic conditional correlation multivariate GARCH

model (DCC-GARCH) which is a commonly used method in the topic of contagion.

The DCC-GARCH model is estimated in two steps. In the first stage, a univariate

GARCH model is fitted for each of the stock market returns. In the second stage, dy-

namic conditional correlation is estimated using the transformed stock-return residuals.

Transformed stock return residuals are estimated by their standard deviations from the

first stage. Based on the DCC-GARCH model, Chiang et al. (2007) find the evidence

of contagion in Asian financial markets between 1996 and 2003.

Cappiello et al. (2006) extend the original DCC-GARCH model and use the asymmetric

generalized dynamic conditional correlation (AG-DCC) specification to investigate

asymmetries in conditional variances and correlation dynamics for three groups of

countries (Europe, Australasia and North America). They find that while equity returns

show strong evidence of asymmetries in conditional volatility, little is found for bond

returns. Kenourgios et al. (2011) apply AG-DCC approach to study the contagion effect

during the period 1995-2006, and find that the emerging BRIC (Brazil, Russia, India,

China) markets are more prone to financial contagion compared with USA and UK.
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As the DCC-GARCH model is based on the two stage estimation and has two parts,

unlike the AG-DCC model, some studies try to make some extension for the GARCH

part. Dimitriou et al. (2013) use Fractionally Integrated Asymmetric Power ARCH

(FIAPARCH) rather than GARCH model to calculate the stock-return residuals, that is

used for the second stage to calculate the dynamic conditional correlation. They study

the contagion of BRICS (BRIC plus South Africa) and USA for the recently global

financial crisis in 2007.

Given the SV models is another main stream for modeling volatility, it is possible to

study the dynamic correlations based on multivariate SV model (MSV). Danıelsson

(1998) fit the standard MSV for foreign exchange rates (Deutschemark/Dollar, Yen/Dollar)

and stock indices (S&P500 and Tokyo stock exchange), and find that the standard

multivairate SV is superior to alternative GARCH models such as the vector GARCH,

diagonal vector GARCH (Bollerslev et al., 1988), Baba-Engle-Kraft-Kroner (BEKK)

model (Engle and Kroner, 1995) and the constant conditional correlation (CCC) model

(Bollerslev, 1990).

A weakness of the standard MSV model is that it has a conditional correlation matrix

that is time-invariant, especially for the financial contagion topic. The additive factor

MSV models accommodate both time-varying volatility and time-varying correlations.

However, the correlation in the factor MSV models depends on the volatility of the

factor, and the same set of parameters determines both the time-varying variance and

time-varying correlation (Asai et al., 2006). Yu and Meyer (2006) introduce a dynamic

correlation MSV (DC-MSV) model. The generalization of this bivariate model to

the higher dimensions is rather cumbersome as it is difficult to ensure the positive
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definiteness of the correlation matrix (Chib et al., 2009). Gebka and Karoglou (2013)

apply the DC-MSV model above to study the correlation dynamics during different time

periods. They investigate the integration of the European peripheral financial markets

GIPSI (Greece, Italy, Portugal, Spain and Ireland) with Germany, France and UK. They

find that compared with other periods, the dynamic correlation is significantly higher

during the 2007 global financial crisis period.

2.2.4 Crisis Period Identification

Before investigate financial contagion, we need to define the crisis period (the date of

the outbreak of a crisis and the duration of a crisis). The identification of the crisis

period is an important issue as tests of contagion are sensitive to the definition of the

crisis period (Dungey et al., 2005; Baur, 2012). In the literature, there are three ways

to determine the crisis period length: a) determining the crisis length ad-hoc based

on major economic and financial events (e.g., Engle, 2002a; Choudhry and Jayasekera,

2014); b) using the statistical approach (Markov Switching models) to identify the crisis

period endogenously (e.g., Boyer et al., 2006; Rodriguez, 2007); c) combining both

the economic and the statistical approach (e.g., Baur, 2012; Dimitriou et al., 2013;

Kenourgios, 2014).

The economic approach relies on all major financial and economic news events

representing the the Global Financial Crisis (GFC) and the Eurozone Sovereign Debt

Crisis (ESDC). For GFC, we follow Baur (2012) that is based on official timelines

provided by Federal Reserve Board of St. Louis (2009) and the Bank for International

Settlements (BIS, 2009) among others. The BIS study separates the timeline in four
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phases from the third quarter in 2007 until the end of 2009. Phase 1 is described as

“initial financial turmoil” and spans from Q3 in 2007 until the mid-September 2008.

Phase 2 is described as “sharp financial market deterioration” and covers the period

from mid-September 2008 until late 2008. Phase 3 is defined as “macroeconomic

deterioration” (Q1 2009) and phase 4 is a phase of “stabilization and tentative signs

of recovery” (from Q2 2009 onwards). Therefore, the GFC can be defined from August

2007 until March 2009 covering the first three phases. For ESDC, we follow Kenourgios

(2014) that the ESDC timeline is constructed by merging two sources (European Central

Bank and Reuters) as follows: Phase 1 spans a period from 5th November 2009 until

22nd April 2010, that begins with the announcement of the Greek budget deficit leading

to a sharp increase of the regional sovereign risk. Phase 2 begins shortly before the

Greek bailout in May 2010, when the Greek Prime Minister announced that the austerity

packages are not enough and requested for a bailout plan from the Eurozone and the

IMF (23rd April 2010 - 14th July 2011). Phase 3 (15 July 2011- 25 July 2012 ) starts

when the European authorities published the banking stress-tests and Italy announced

its first austerity package. Phase 4 is from 26 July 2012 onwards. On that day the

European Central Bank (ECB) president Mario Draghi announced that the ECB was

prepared within its mandate to do whatever it takes to preserve the euro. Shortly after,

on September 6, 2012, the ECB formally announces the Outright Monetary Transactions

(OMT) program although it has been shown that the markets had already anticipated this

after Mr. Draghis announcement.
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2.3 Data and Descriptive Statistics

The data employed consist of stock indices for six countries: USA, UK, Switzerland,

Netherlands, Germany and France (S&P 500, FTSE 100, SMI, AEX, DAX and CAC

40), and their corresponding implied volatility indices: VIX, VFTSE, VSMI, VAEX,

VDAX-NEW, and VCAC. The volatility indices have thirty days to maturity and reflect

the volatility of the respective stock markets. All data are extracted from Bloomberg.

The sample covers a period from 15th May 2003 to 25th November 2014 in order to

study the recent global financial crisis and secure a sufficient number of observations.

We use daily closing prices for our empirical analyses. The stock return is estimated

as rt = 100[log(pt)− log(pt−1)], where pt is the price on date t. There is discrepancy

between the closing times of the European exchanges and the US exchange, because

of the different trading hours and different time zones. To take account the non-

synchronicity issue, we follow Forbes and Rigobon (2002) and Kenourgios (2014), the

stock returns and implied volatility indices are calculated as a two-day moving averages.

[Table 2.1 around here]

Table 2.1 presents the basic statistical features of the index return employed and their

corresponding implied volatility indices. As well-documented in the literature, all

the return series are not normal (higher peak and fatter tails). From the standard

deviation of return series, the sequence from the least volatile to the most volatile is SMI

(Switzerland), FTSE 100 (UK), S&P 500 (USA), AEX (Netherlands), CAC 40 (France),

DAX (Germany). For the mean of implied volatility indices, the sequence from smallest

to largest is VSMI, VFTSE, VIX, VAEX, VCAC, VDAX-NEW. We can find that the
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ranking of implied volatility indices are the same as the ranking of standard deviation of

return series, because the implied volatility is the expectation of future return volatility

which is closely related to the actual return volatility. According to the mean of return

series, the German stock market has the highest returns compared with other markets,

followed by USA and Switzerland. On the other hand, the Netherlands and France

stock markets have lowest returns. We also report the full sample correlations between

USA stock markets and EU countries, for return series and implied volatility series

respectively. The correlations for the implied volatility tend to be higher than the returns.

[Figure 2.1 around here]

Figure 2.1 shows the implied volatilities for these countries. They share a similar pattern

as the most volatile periods are around 2008-2009 and 2011-2012, corresponding to the

Global Financial Crisis and the following Eurozone Sovereign Debt Crisis. The similar

pattern can explain the high correlations for the implied volatilities.

[Figure 2.2 around here]

Figure 2.2 shows the autocorrelations of return series and implied volatilities for these

countries respectively. The autocorrelations of return series are all close to 0. The

absence of linear dependence indicates market efficiency. On the other hand, the implied

volatility shows clearly positive autocorrelations.

2.4 Methodology

Section 2.4.1 outlines the models to be adopted. Section 2.4.2 describes the Bayesian

methods for estimating and comparing the DC-MSV and DC-MSV-IV models. Section
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2.4.3 shows the method for defining the beginning and ending days of crisis periods.

Section 2.4.4 shows the test for financial contagion.

2.4.1 The Models

We firstly show the standard dynamic correlation multivariate models, the DCC-

GARCH and DC-MSV respectively. Then we focus on our extended DC-MSV model

by augmented the implied volatility information.

A. Dynamic Correlation Multivariate Models

The commonly used DCC-GARCH model proposed by Engle (2002a) can be written as

rrrt =CCCxxxt + εεε t , εεε t = HHH1/2
t vvvt (2.1)

HHHt = DDD1/2
t RRRtDDD

1/2
t (2.2)

RRRr = diag(QQQt)
−1/2QQQtdiag(QQQt)

−1/2 (2.3)

QQQt = (1−λ1 −λ2)RRR+λ1ε̃εε t−1ε̃εε ′t−1 +λ2QQQt−1 (2.4)

where rrrt is an m × 1 vector of return series; RRRr is an m × 1 vector of dependent

variables; CCC is an m × k matrix of parameters; xxxt is a k × 1 vector of independent

variables, which may contain lags of RRRr; HHH1/2
t is the Cholesky factor of the time-varying

conditional covariance matrix HHHt ; vvvt is an m× 1 vector of normal, independent and

identically distributed innovations; DDDt is a diagonal matrix of conditional variances,

diag(σ2
1,t ,σ

2
2,t , ...,σ

2
m,t), in which each σ2

i,t is calculated from a univariate GARCH

model; RRRr is a matrix of conditional quasicorrelations; ε̃εε t is an m × 1 vector of

83



standardized residuals, DDD−1/2
t εεε t .

The original DC-MSV model proposed by Yu and Meyer (2006) can be written as

follows

rrrt = Ωtεεε t , εεε t |Ωt ∼ i.i.d. N(000,Σε,t) Σε,t =

(
1 ρt

ρt 1

)
(2.5)

hhht+1 = µµµ +diag(ϕ11,ϕ22)(hhht −µµµ)+ηηη t , (2.6)

ηηη t ∼ i.i.d. N(000,diag(σ2
η1,σ

2
η2)) (2.7)

qt+1 = ψ0 +ψ(qt −ψ0)+σρvt , vt ∼ i.i.d. N(0,1) (2.8)

ρt =
exp(qt)−1
exp(qt)+1

(2.9)

with hhh000 = µµµ and q0 = ψ0; where rrrt = (r1t ,r2t) denotes the vector of return series;

εεε t = (ε1t ,ε2t)
′ is the error term of returns; hhht = (h1t ,h2t)

′ is the vector of unobserved

log-variance; µµµ = (µ1,µ2)
′ is the mean term of log-variance; Ωt = diag(exp(hhht/2)) is a

diagonal matrix of variances. From Equation 2.8, we can find that the current correlation

is effected by previous correlation. From 2.9, the first derivative of ρt with respect to qt

is

dρt

dqt
=

(exp(qt)−1)′(exp(qt)+1)− (exp(qt)−1)(exp(qt)+1)′

(exp(qt)+1)2 =
2exp(qt)

(exp(qt)+1)2

(2.10)

which is positive, so the correlation ρt is monotonically increasing with respect to qt .

Equations 2.8 and 2.9 allow the correlation coefficients to be time varying and ρt to be

bounded by -1 and 1.

B. The DC-MSV-IV Model
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To extend the DC-MSV model by incorporating implied volatility information, we

firstly re-write Equation 2.6 as

hhht+1 = ααα +diag(ϕ11,ϕ22)hhht +ηηη t , (2.11)

where ααα = (α1,α2)
′, so that α1 = µ1 − ϕ11µ1 and α2 = µ2 − ϕ22µ2. Let xxxt =

(logs2
1t , logs2

2t)
′ where s2

it is the implied volatility index of country i at time t. Then

we incorporate implied volatility information xxxt into the variance equation above to get

hhht+1 = ααα +diag(ϕ11,ϕ22)hhht +diag(γ11,γ22)xxxt +ηηη t , (2.12)

Equation 2.12 shows that implied volatility information is used to describe the unob-

served log-variance. As the ht is log-variance and implied volatility index is the market

expected variance, following Koopman et al. (2005) we take the logarithm of implied

volatility indices. So the DC-MSV-IV model replace Equation 2.6 of DC-MSV model

by Equation 2.12.

2.4.2 Bayesian Estimation

Although the better performance of SV type models compared with GARCH type

models has been supported by literature (e.g. Danielsson, 1994; Kim et al., 1998;

Danıelsson, 1998) , the principal disadvantage of SV models is that they are difficult

to estimate by maximum likelihood (Harvey et al., 1994). The SV type models belong

to the family of nonlinear non-Gaussian state space models. The maximum likelihood
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estimation method cannot be used directly, because volatility terms of SV models

are latent variables, the likelihood function is not available in a closed form (it is

expressed as an analytically intractable T-dimensional integral, where T is the number

of observations). In order to overcome this difficulty, some other methods have been

introduced to estimate SV models, such as Generalized Method of Moments (Melino

and Turnbull, 1990), quasi-maximum likelihood method (Harvey et al., 1994), and

Bayesian MCMC method (Jacquier et al., 1994 for the single-move Gibbs sampler;

Kim et al., 1998 for the multi-move Gibbs sampler).

Unlike the Bayesian MCMC method, both GMM and QML methods are found not

to be efficient, and they suffer from some drawbacks as outlined by literature. For

example, the quality of the (finite sample) GMM inference is quite sensitive to both the

choice of the number of moments to include and the exact choice of moments among

the natural candidates (Shephard and Andersen, 2009); for QML method, Harvey et al.

(1994) and Ruiz (1994) point out that the adequacy of the approximation depends

critically on the value of the stochastic process term for volatility, and approximating the

log(χ2) density by a normal density could be rather inappropriate. Jacquier et al. (1994)

compare the GMM, QML and Bayesian methods and find the Bayesian method to be

superior. Therefore, we estimate the DC-MSV-IV model based on Bayesian MCMC

method (the single move Gibbs sampler)3. In the literature of financial contagion, the

commonly used two step quasi-likelihood estimators for DCC-GARCH model is also

not efficient. In addition, it has been found that the two step quasi-likelihood estimators

can introduce the downward bias (Engle and Sheppard, 2001). According to Aielli

(2013), the second step of the DCC estimator can be inconsistent, and it is also shown

3Follow Yu and Meyer (2006), we make use of a freely available Bayesian Software, WinBUGS (Lunn
et al., 2000) , to estimate the model.

86



that the traditional interpretation of the dynamic correlation parameters can result in

misleading conclusions.

Bayesian inference is based on the joint posterior distribution of all unobserved

quantities in the model. So for the DC-MSV-IV model, the unobserved quantities

include the unknown parameter aaa = (α1,α2,ϕ11,ϕ22,γ11,γ22,ψ0,ψ,σ2
η1,σ

2
η2,σ

2
ρ), the

vector of latent log-volatilities, HHH = (hhh000,hhh111, ...,hhhTTT ) and the dynamic correlations

ρρρ = (ρ0,ρ1, ...,ρT ). According to Bayes’ rule, the joint posterior distribution can be

calculated by multiplying prior and likelihood. By successive conditioning, the joint

prior density p(aaa,HHH,ρρρ) can be written as

p(aaa,HHH,ρρρ) = p(aaa)p(hhh0)∏T
t=1 p(hhht |hhht−1,xxxt−1,aaa)p(ρ0)∏T

t=1 p(ρt |qt−1,aaa)
= p(α1)p(α2)p(ϕ11)p(ϕ22)p(γ11)p(γ22)p(ψ0)p(ψ)p(σ2

η1)p(σ2
η2)

p(σ2
ρ)p(hhh000)∏T

t=1 p(hhht |hhht−1,xxxt−1,α1,α2,ϕ11,ϕ22,γ11,γ22,σ2
η1,σ

2
η2)

p(ρ0)∏T
t=1 p(ρt |qt−1,ψ0,ψ,σ2

ρ)
(2.13)

For the prior distributions, we follow Yu and Meyer (2006) and set the new introduced

parameters weakly informative. The prior distributions are listed in the Appendix. We

denote return series RRR = (rrr0,rrr1, ...,rrrT ). The likelihood function is

p(RRR|HHH,ρρρ,aaa) =
T

∏
t=1

p(rrrt |ρt ,hhht ,aaa) (2.14)

So the joint posterior distribution of the unobservables given the data is given by

p(HHH,ρρρ,aaa|RRR) ∝ p(aaa,HHH,ρρρ)p(RRR|HHH,ρρρ,aaa)
∝ p(aaa)p(hhh0)∏T

t=1 p(hhht |hhht−1,xxxt−1,aaa)p(ρ0)

∏T
t=1 p(ρt |qt−1,aaa)∏T

t=1 p(rrrt |ρt ,hhht ,aaa)
(2.15)

If a Markov chain has a ergodic (irreducible and aperiodic) transition kernel P, it will
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have a unique stationary distribution π that can offer reliable estimations and satisfies

π = πP. In this case, the Markov chain will converge to π irrespectively of our starting

points. So if we can devise a Markov chain whose stationary distribution π is our

desired posterior distribution p(HHH,ρρρ,aaa|RRR), then we can run this chain to get draws that

are approximately from p(HHH,ρρρ,aaa|RRR) once the chain has converged. The single-move

Gibbs sampler is used to generate the Markov chain and the detail of the method can be

found in Appendix.

After a burn-in period of 10,000 iterations and a follow-up period of 100,000, we

stored every 20th iteration. We use large number of iterations to allow for the well

documented slow convergence of the single moving Gibbs sampler for SV models

(Chib and Greenberg, 1996; Kim et al., 1998). In case of the DC-MSV and DC-

MSV-IV models, the reason for the slow convergence is driven by that the components

of log variance and dynamic correlations are highly correlated. Then sampling each

component from the full conditional distribution produces little movement in the draws,

and hence slowly decaying autocorrelations.

2.4.3 Regime changes and Markov-Switching models

In this study, we consider both of the Global Financial Crisis (GFC) and the Eurozone

Sovereign Debt Crisis (ESDC) for studying the contagion effects. We follow the c)

method listed in Section 2.2.4 that is combining both an economic and a statistical

approach. Step 1, we define a relatively long crisis period which includes all major

financial and economic news events representing the GFC and ESDC4. Step 2, we

4The period timeline is also listed in Section 2.2.4.
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identify the start date and end date of the GFC and ESDC via Markov Switching

models (Hamilton, 1989), which takes into account endogenous structural breaks and

thus allows the data to determine the beginning and ending of the crisis.

We consider the statistical approach (step 2) rather than only rely on economic approach

(step 1) because the phases as identified by economic approach are treated as distinct

and independent, so the lagged impact of the crisis on financial markets tends to be

ignored by the economic approach. There are two ways in literature for applying

Markov Switching models to identify the crisis regimes: the first one is applying Markov

Switching models to the conditional volatility estimated from GARCH family models

(e.g. Baur, 2012; Dimitriou et al., 2013). In this case only intercept of the conditional

volatilities are regime dependent as we focus on the higher volatility level.

ht = µh(st)+σ2
h εt (2.16)

where εt ∼ N(0,1), ht is the conditional volatility at time t. The Markov Switching

model assumes the existence of two regimes (“stable” i = 0 and “volatile” i = 1) so

that the intercept µh(st) depend on the state variable st which assume two values that

representing the different regimes. It is used to check whether or not all the conditional

volatility in regime st = 1 is allocated within the period based on the economic approach

(Baur, 2012). The second way is applying Markov Switching models to return series

(e.g. , Ahmad et al., 2013). In this case, both the level of returns and its variance are

considered regime dependent, so the model can be written as

rt = µr(st)+σ2
r(st)

εt (2.17)
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where εt ∼ N(0,1), rt is the return series at time t. It can be used to detect the beginning

and ending of the relatively long crisis period based on the economic approach. In

this study, we use this approach and identify the start date and end date of the GFC

and ESDC based on the return series. According to the estimated results, the µr(s0) is

higher than µr(s1), and σ2
r(s0)

is lower than σ2
r(s1)

, which indicates the stable period has

lower volatility and meanwhile has higher return. Figure 2.3 shows the smooth regime

probabilities of returns.

[Figure 2.3 around here]

Following Kenourgios (2014), we ignore the regime with low persistence (below one

week) and use USA data to identify the start date and end date. Based on the results

of the Markov Switching model for return series (regime probabilities above 0.9),

we incorporate the lagged impact of crisis and confirm the crisis period for GFC is

from 26th July 2007 to 16th July 2009, and ESDC is from 5th November 2009 to 1st

December 2011.

2.4.4 Testing for Contagion

Forbes and Rigobon (2002) use t-tests to evaluate if there is a significant increase in

correlations during the turmoil period compared with the full period. They also mention

that some other tests also can be considered, such as comparing the correlations during

the turmoil period with that during the stable period (instead of the full period), which

is also commonly used by the literature. It is straightforward to see that the first test

is stronger for testing the contagion effect compared with the second one, as if the

correlations during the turmoil period are significantly higher compared with full period,

90



the difference of correlations will be even larger compared with stable period rather

than the full period. Following Forbes and Rigobon (2002), we use the first t-test in this

chapter to compare the difference of correlations.

As shown in Section 2.4.2, like the latent volatilities, the dynamic correlations are also

treated as unknown parameters for Bayesian MCMC estimation. Unlike DCC-GARCH

models that is based on the two steps estimation, we can get the posterior mean of

dynamic correlations ρt from t = 1 to T after the estimation of DC-MSV-IV model,

then we can construct the dynamic correlation time series by the posterior mean of ρt .

As identified in Section 2.4.3, the GFC is from 26 July 2007 to 16 July 2009 and ESDC

is from 5 November 2009 to 1 December 2011. The turmoil period should cover the

two crisis so that we use the beginning date of GFC and the ending date of ESDC to

define the turmoil period, and then the remaining sample is stable period 5. Then we

can calculate the mean and standard deviation of the dynamic correlation time series for

each period.

We use ρ f and ρh to denote the mean of correlations during the full period and turmoil

period respectively, the test hypotheses are H0 : ρ f > ρh, H1 : ρ f ≤ ρh. If the null

hypothesis should be rejected according to the test results, then we can confirm the

increase in correlations during the turmoil period which indicates the existence of

financial contagion. We report the rest results in Section 2.5.3.

5We incorporate the time between the GFC and the ESDC into the turmoil period as we need consider
the lagged impact of GFC.
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2.5 Empirical Results

Section 2.5.1 firstly compares the dynamic correlations based on the standard dynamic

correlation multivariate models, then discusses the improvement for the detecting

contagion by incorporating the implied volatility information into the standard DC-

MSV model. Section 2.5.2 shows the estimation results for the DC-MSV-IV model, and

compare its in-sample fit with the standard DV-MSV model. Section 2.5.3 discusses the

financial contagion detected by the DC-MSV-IV model in details.

2.5.1 Dynamic Correlations with Different Models

A. Dynamic Correlation Multivariate Models

The literature documents the superior performance of the DC-MSV compared with

the DCC-GARCH (Asai and McAleer, 2009), but the two models have not been

compared in terms of detecting financial contagion, that is the changes in correlations

during different market regimes, so we investigate the difference in detecting financial

contagion for the two models.

[Table 2.2 around here]

Table 2.2 shows the dynamic correlations estimated from the DCC-GARCH and DC-

MSV models. We calculate the changes in correlations as (ρturmoil −ρ f ull)/ρ f ull . As the

financial contagion is measured by the significant increase in correlations after crisis, if

the changes of correlations are larger, the contagion effect is stronger. The changes of

correlations observed under the DC-MSV model are larger than the changes observed

under the DCC-GARCH model. It indicates the contagion effect is more apparent when
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we estimate the time varying correlations based on the DC-MSV model.

B. DC-MSV vs DC-MSV-IV

We investigate whether or not incorporating the implied volatility can further improve

the significance of financial contagion. We calculate the dynamic correlations based on

the DC-MSV-IV model and compare with the standard DC-MSV model. The results

are shown in Table 2.3

[Table 2.3 around here]

The changes of correlations from the DC-MSV-IV model are larger for all pairs. It

indicates that the contagion effect is more apparent if we incorporate implied volatility

information. The better performance of the DC-MSV-IV model compared with the

standard DC-MSV model can be supported with the DIC, that we report in next section

with estimation details.

2.5.2 DC-MSV augmented with Implied Volatility

[Table 2.4 around here]

Table 2.4 shows estimation results of the DC-MSV-IV model. The posterior mean of ψ

for every pair are closed to 1. It indicates that the correlation processes are reasonably

highly persistent which is in line with Yu and Meyer (2006) for DC-MSV model. We

can find that the coefficients (γ1 and γ2) of implied volatility information for every pairs

of countries are significant and positive, so today’s return volatility can be influenced

by previous market’s expectation for future volatility. This is in line with expectation

because the implied volatility is also known as “the investor fear gauge” and the investor

sentiment is closely linked with the volatility of stock market in the future. Kolb (2011)
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argue that the investors’ negative expectation during financial crisis is an important

channel for financial contagion. The literature also support the implied volatilities are

more informative than daily returns, especially during turmoil periods (Fleming et al.,

1995; Fleming, 1998; Christensen and Prabhala, 1998; Blair et al., 2001).

[Table 2.5 around here]

In order to illustrate the gains obtained from augmenting the DC-MSV with implied

volatility, we compare the DC-MSV-IV model with the original DC-MSV model based

on Deviance Information Criterion (DIC). The DIC is introduced by Spiegelhalter et al.

(2002) as a generalization of the Akaike information criterion (AIC; Akaike, 1973).

The AIC deals with the trade-off between the goodness of fit of the model and the

complexity of the model, measured by the number of free parameters. However, the AIC

is not applicable for comparing SV models (more generally for all complex hierarchical

Bayesian models) because the specification of the dimensionality of the parameter

space is rather arbitrary: as for MSV models, the 2T latent volatilities are dependent,

they cannot be counted as the 2T additional free parameters (Yu and Meyer, 2006).

Therefore, DIC is introduced for comparing hierarchical models, and it also consider

the measures goodness of fit and the penalty term for increasing model complexity.

As the idea of AIC, the DIC consists of two components,

DIC = D+ pD (2.18)

where D measures goodness of fit and pD is a penalty term for increasing model

complexity. Like AIC, the model with lower value of DIC is preferred. The performance
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of DIC relative to two posterior odd approaches (Newton and Raftery, 1994; Chib, 1995)

has been investigated by Berg et al. (2004) in the context of univariate SV models. They

found reasonably consistent performance of these three model comparison methods.

Table 2.5 shows the DIC together with D and pD for DC-MSV-IV and DC-MSV models.

The DC-MSV-IV model has higher pD compared with DC-MSV as the incorporating of

more parameters. After allowing for the the penalty of increasing model complexity, we

find that the DC-MSV-IV model still achieves a lower DIC for every pair of countries

compared with DC-MSV model, indicating the better performance. The results further

highlight the added value of using implied volatility.

2.5.3 Dynamic Correlations and Contagion Analysis

After fitting the DC-MSV-IV model to each country pair, we obtain the dynamic

correlations ρt . Figure 2.4 shows the dynamic correlations for each pair during the

full sample period. According to the figure, we can find that the assumption of constant

correlation is unreasonable.

[Figure 2.4 around here]

[Table 2.6 around here]

Table 2.6 shows the dynamic correlations and t-test based on the changes in correlations

for financial contagion. We calculate the means of dynamic correlations denoted by

ρ and its standard deviations for different sub-periods and full period. As shown in

Section 2.4.4, the null hypothesis is that the cross-market correlations during the full

period are significantly greater than during the turmoil (high volatility) period. It is

clear that we should reject the null hypothesis for each pair, indicating the existence of
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financial contagion.

We discuss the strength of the contagion effect by investigating the extent of changes

in correlations for each country pair. Compared with pre-crisis period, the correlations

between USA and the five European countries increases during the GFC period, and

are even higher during the ESDC period. According to the correlation changes for the

turmoil period compared with pre-crisis period (ρturmoil − ρpre crisis)/ρpre crisis, it can

be seen that the UK is most influenced by the contagion effect compared with other

countries. On the other hand, the least influenced country is Germany which has lowest

increase in correlation compared with pre-crisis period.

A possible reason for this is that the UK has very high ratio of banking sector assets

and liabilities to national income. Compared to other sectors, the banking system is

highly globalized and tends to be highly influenced by the financial crisis. On the other

hand, German has strong economic fundamentals than other countries which makes it

less influenced by contagion.

We should note that the strong contagion effect is not necessary as a result of high

correlation. For example, France is highest correlated to the USA but it is not highly

influenced by the financial contagion. On the other hand, even though the correlation

between Switzerland and USA during the turmoil period is lowest (0.755), but it highly

influenced by the contagion effect. As outlined by Forbes and Rigobon (2002), “...if

two markets show a high degree of co-movement during periods of stability, even if

the markets continue to be highly correlated after a shock to one market, this may

not constitute contagion.” For this reason that we focus on the percentage changes
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of correlation to investigate the contagion effect.

It is natural to consider whether or not the high correlations will continue even after

the turmoil period, so in order to check the further trends of dynamic correlations after

the GFC and ESDC periods, we report the mean of correlations during the post-crisis

period. So far, most studies in this topic consider the last day of their data sample as

the end of the turmoil period, it is partly because the recently financial crises (including

both GFC and ESDC) cover longer periods and in order to incorporate the stable period

we need consider latest data sample. We compare the correlations of post-crisis with the

correlations during turmoil period. From Table 2.6, we can find the correlations of all

pairs decrease after the turmoil period. We calculate the decrease of correlations during

the post crisis period compared with turmoil period as (ρpost crisis − ρturmoil)/ρturmoil .

The largest decrease of correlations is UK with 12.4% followed by Switzerland with

12.3%, whereas the smallest decrease is Germany with 8.6%. The rank of the decreases

in correlations is the same as the increases in correlations. We can confirm that after

financial crisis (from December 2011 to November 2014) the correlations tend to revert

back to a relatively lower level.

[Table 2.7 around here]

As we confirm the beginning of turmoil period (Crisis beginning date) based on Markov

Switching model for return series (we consider both the return level and its volatility).

However, according to BIS (2009), the official date of crisis start is 9 Aug 2007 (main

event on that day: BNP Paribas, Frances largest bank, halts redemptions on three

investment funds). So we further investigate the beginning date of turmoil period and

also calculate the date for the five European countries. Then we compare them with
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the official timeline. From Table 2.7, we can find the crisis beginning dates are 25 or

26 July 2007, almost 2 weeks before the official date of crisis start. According to the

timeline offered by Federal Reserve Board of St. Louis, the main event on July 24,

2007 is “Countrywide Financial Corporation warns of ‘difficult conditions’.” Then the

transition probability increases and raises above 0.9 one or two days later. So the event

on July 24, 2007 should be the real start of the turmoil period according to the data.

As the identified turmoil period covers a relatively long period, apparently not everyday

during that period suffers low return and high volatility. The number of days in turmoil

regime and the number of days in stable regime can be calculated based on the Markov

Switching model. As shown in Pappas et al. (2015), then we can calculate the crisis

intensity according to the identified regimes (days in turmoil regime divided by the

days in turmoil period). From Table 2.7, we can find that USA, UK and Netherlands

have relatively high values of crisis intensity which means they suffer relatively longer

periods for low returns and high volatilities. On the other hand, Germany has lowest

value of crisis intensity (26.94%). As identified before, Germany is also the country

that is least influenced by the contagion effect. But we should note the relationship does

not work for Switzerland. The crisis intensity is relatively low for Switzerland but the

contagion effect has high impact on Switzerland.

2.6 Conclusion

This study examines financial contagion between stock markets of USA and five EU

countries (UK, Switzerland, Netherlands, Germany and France). The sample covers

a period from 2003 to 2014 in order to cover both the recent Global Financial Crisis
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(GFC) and the European Sovereign Debt Crisis (ESDC). We contribute to the literature

in a number of ways.

First, the existing literature have not directly compared the contagion effects estimating

from multivariate GARCH and multivariate SV specifications. We compare the DCC-

GARCH and DC-MSV models of estimating dynamic correlations and outline that the

contagion effect is more significant based on the DC-MSV model.

Second, we extend the DC-MSV model by incorporating the implied volatility (DC-

MSV-IV), and compare the contagion effect with the standard DC-MSV. The contagion

effect is further more significant. Because DIC support the DC-MSV-IV model fits

the data better than the DC-MSV model for every country pair, it offers more accurate

estimations for the dynamic correlations. We confirm the implied volatility information

is useful for detecting financial contagion.

Third, we offer the empirical evidence of the existence of contagion for the countries

under investigation. We consider both GFC and the ESDC. Compared with the

stable market regimes, the correlations are significantly higher during the crisis market

regimes. The dynamic correlations are even higher during ESDC compared with GFC.

For the five EU countries, the UK is most influenced by the financial contagion whereas

Germany is least influenced. The dynamic correlations tend to recover to lower level

after the turmoil period. We investigate the relationship between financial contagion

and long-term correlation with USA, and support that the strong contagion effect is not

necessary as a result of high correlation. In terms of the relationship between financial

contagion and crisis intensity, the high contagion effect does not necessarily lead to the
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high crisis intensity.

The empirical results indicate that, if investors want to reduce their risk by portfolio di-

versification, they should carefully consider the contagion effect, because an investment

strategy relies on the assumption of constant correlation between international markets

might not work or lead to terrible performance during turmoil periods.
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Figure 2.1: This figure show time series of impled volatilities for the sample countries: USA, UK,
Switzerland, Netherlands, Germany and France (S&P 500, FTSE 100, SMI, AEX, DAX and CAC 40).
The sample covers a period from 15th May 2003 to 25th November 2014.
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Figure 2.2: This figure shows autocorrelations of returns and implied volatilities for sample countries
from 15th May 2003 to 25th November 2014. The top panel for each graph is the autocorrelation of
return series, and the bottom panel is the autocorrelation of implied volatility series.
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Figure 2.3: This figure shows Markov Switching regimes of return series for the sample countries from
15th May 2003 to 25th November 2014, the grey area is the regime with low returns and high volatilities.
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Figure 2.4: This figure shows dynamic correlations for each country pair from 15th May 2003 to 25th
November 2014, as the correlations are estimated based on the Bayesian MCMC method, the dotted line
is the 95% credible intervals of the posterior correlation estimation
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Table 2.1: Summary statistics of return and implied volatility (2003-2014)

USA UK Switzerland Netherlands Germany France

Return

S&P 500 FTSE 100 SMI AEX DAX CAC 40

Mean 0.027 0.018 0.024 0.013 0.041 0.013

Std. Dev. 0.821 0.780 0.785 0.929 0.960 0.956

Skewness -0.566 -0.354 -0.328 -0.650 -0.302 -0.230

Kurtosis 11.323 10.501 11.881 9.039 7.511 7.634

Jarque-Bera 8534 6874 9855 4697 2535 2668

Min -6.629 -6.463 -6.368 -6.859 -5.875 -6.581

Median 0.066 0.056 0.065 0.063 0.104 0.068

Max 6.202 5.556 7.882 4.964 6.731 6.652

Correlation (USA) 1.000 0.735 0.687 0.736 0.748 0.745

Implied Volatility

VIX VFTSE VSMI VAEX VDAX-NEW VCAC

Mean 19.607 19.070 18.228 21.676 22.532 21.890

Std. Dev. 9.357 8.623 7.996 9.713 8.877 8.477

Skewness 2.486 2.360 2.793 2.143 2.247 1.986

Kurtosis 11.020 11.061 14.006 9.179 10.284 8.896

Jarque-Bera 10774 10569 18427 6962 8971 6221

Min 9.935 9.300 9.435 10.220 11.830 9.375

Median 16.862 16.692 15.925 18.760 20.045 19.953

Max 79.595 76.589 79.355 77.700 81.060 75.470

Correlation (USA) 1.000 0.972 0.955 0.953 0.936 0.953

Notes: The table shows the summary statistics of daily return and implied volatility of stock indices for

six countries: USA, UK, Switzerland, Netherlands, Germany and France (S&P 500, FTSE 100, SMI,

AEX, DAX and CAC 40). The sample covers a period from 15th May 2003 to 25th November 2014.
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Table 2.2: Dynamic Correlations (DCC-GARCH vs DC-MSV)

DCC-GARCH Dynamic Correlations

USA- Full Stable Turmoil Changes(%)

UK 0.655 0.614 0.721 10.1

Switzerland 0.595 0.570 0.636 6.8

Netherlands 0.668 0.645 0.707 5.8

Germany 0.679 0.651 0.725 6.8

France 0.680 0.653 0.723 6.4

DC-MSV Dynamic Correlations

USA- Full Stable Turmoil Changes(%)

UK 0.668 0.612 0.759 13.5

Switzerland 0.626 0.593 0.681 8.7

Netherlands 0.694 0.663 0.745 7.3

Germany 0.709 0.68 0.757 6.8

France 0.709 0.672 0.769 8.5

Notes: “Full”, “Stable” and “Turmoil” measures the mean of dynamic correlations for different regimes.
The “Changes(%)” under “Dynamic Correlations” measures the increase of correlations during the turmoil
period compared with the full period ((ρTurmoil −ρFull)/ρFull). The GFC is from 26 July 2007 to 16 July
2009 and ESDC is from 5 November 2009 to 1 December 2011. The turmoil period should cover the two
crisis so that we use the beginning date of GFC and the ending date of ESDC to define the turmoil period,
and then the remaining sample is stable period.
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Table 2.3: Dynamic Correlations (DC-MSV vs DC-MSV-IV)

DC-MSV Dynamic Correlations

USA- Full Stable Turmoil Changes(%)

UK 0.668 0.612 0.759 13.5

Switzerland 0.626 0.593 0.681 8.7

Netherlands 0.694 0.663 0.745 7.3

Germany 0.709 0.68 0.757 6.8

France 0.709 0.672 0.769 8.5

DC-MSV-IV Dynamic Correlations

USA- Full Stable Turmoil Changes(%)

UK 0.678 0.621 0.771 13.7

Switzerland 0.636 0.584 0.722 13.4

Netherlands 0.702 0.658 0.775 10.4

Germany 0.711 0.671 0.777 9.3

France 0.715 0.671 0.786 10.0

Notes: “Full”, “Stable” and “Turmoil” measures the mean of dynamic correlations for different regimes.
The “Changes(%)” under “Dynamic Correlations” measures the increase of correlations during the turmoil
period compared with the full period ((ρTurmoil −ρFull)/ρFull). The GFC is from 26 July 2007 to 16 July
2009 and ESDC is from 5 November 2009 to 1 December 2011. The turmoil period should cover the two
crisis so that we use the beginning date of GFC and the ending date of ESDC to define the turmoil period,
and then the remaining sample is stable period.
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Table 2.4: The estimation result of the DC-MSV-IV model for all pairs of countries

USA-UK USA-Switzerland USA-Netherlands USA-Germany USA-France

α1 mean -2.636 -2.454 -2.598 -2.644 -2.691

SD 0.324 0.339 0.322 0.331 0.319

95% CI -3.295, -2.016 -3.131, -2.016 -3.251, -1.971 -3.310, -2.019 -3.310, -2.071

α2 mean -3.045 -2.500 -2.072 -1.736 -2.214

SD 0.362 0.424 0.312 0.303 0.311

95% CI -3.777, -2.373 -3.343, -2.373 -2.707, -1.485 -2.368, -1.185 -2.870, -1.653

γ1 mean 0.790 0.736 0.778 0.792 0.806

SD 0.0973 0.102 0.097 0.010 0.096

95% CI 0.603, 0.984 0.540, 0.984 0.588, 0.975 0.604, 0.993 0.621, 0.993

γ2 mean 0.917 0.756 0.625 0.527 0.678

SD 0.110 0.130 0.095 0.092 0.095

95% CI 0.711, 1.139 0.507, 1.139 0.447, 0.818 0.360, 0.721 0.508, 0.880

ϕ1 mean 0.660 0.684 0.661 0.655 0.650

SD 0.041 0.044 0.042 0.043 0.042

95% CI 0.576, 0.740 0.596, 0.740 0.572, 0.743 0.568, 0.737 0.568, 0.728

ϕ2 mean 0.598 0.647 0.713 0.758 0.707

SD 0.047 0.059 0.042 0.042 0.041

95% CI 0.500, 0.686 0.531, 0.686 0.627, 0.792 0.670, 0.833 0.622, 0.781

ψ mean 0.993 0.980 0.983 0.980 0.980

SD 0.003 0.009 0.009 0.008 0.011

95% CI 0.986, 0.998 0.959, 0.998 0.962, 0.994 0.960, 0.991 0.952, 0.995

ψ0 mean 1.737 1.579 1.844 1.898 1.911

SD 0.157 0.115 0.126 0.119 0.115

95% CI 1.432, 2.043 1.353, 2.043 1.586, 2.091 1.669, 2.138 1.686, 2.152

σρ mean 0.063 0.096 0.095 0.113 0.108

SD 0.008 0.021 0.022 0.021 0.032

95% CI 0.051, 0.081 0.064, 0.145 0.066, 0.145 0.085, 0.166 0.061, 0.174

ση1 mean 0.241 0.245 0.242 0.242 0.234

SD 0.033 0.032 0.035 0.028 0.031

95% CI 0.177, 0.306 0.186, 0.311 0.167, 0.309 0.191, 0.300 0.176, 0.295

ση2 mean 0.299 0.352 0.308 0.270 0.273

SD 0.034 0.033 0.030 0.030 0.031

95% CI 0.229, 0.369 0.290, 0.422 0.248, 0.367 0.218, 0.335 0.212, 0.338

Notes: The table report means, standard errors, and 95% credible intervals of the posterior distributions for the DC-MSV-IV
model among USA and the five European countries (UK, Switzerland, Netherlands, Germany and France). As we investigate the
correlations between USA and the five European countries, for the DC-MSV-IV model r1t is the USA return series and r2t is the
five European countries respectively. “mean” is the mean of the posterior distributions,“SD” is the posterior standard deviations,
and “95% CI” is the 95% credible intervals of the posterior distributions.



Table 2.5: The comparison of the DC-MSV-IV and DC-MSV based on DIC

USA-UK USA-Switzerland USA-Netherlands USA-Germany USA-France

DC-MSV-IV DIC 8739.960 9128.390 9693.670 10003.100 9927.610

D 8323.450 8641.590 9209.160 9528.020 9474.750

pD 416.504 486.797 484.515 475.124 452.862

DC-MSV DIC 8792.520 9138.500 9701.770 10003.700 9965.580

D 8462.070 8734.950 9279.310 9582.140 9570.770

pD 330.452 403.545 422.456 421.518 394.813

Notes: The DIC consists of two components: D measures goodness of fit and pD is a penalty term for increasing model complexity. The model

with lower value of DIC is preferred.
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Table 2.6: The dynamic correlations during different periods and the test for contagion

Pre-crisis GFC ESDC Post-crisis

USA- ρ Std. Dev. ρ Std. Dev. ρ Std. Dev. ρ Std. Dev.
UK 0.583 0.076 0.698 0.083 0.825 0.023 0.675 0.073
Switzerland 0.550 0.094 0.676 0.057 0.755 0.040 0.633 0.097
Netherlands 0.630 0.085 0.721 0.058 0.811 0.044 0.697 0.086
Germany 0.643 0.088 0.717 0.081 0.816 0.041 0.710 0.094
France 0.646 0.078 0.737 0.078 0.817 0.038 0.708 0.086

Turmoil Stable Full

USA- ρ Std. Dev. ρ Std. Dev. ρ Std. Dev. T-test Changes(%)
UK 0.771 0.089 0.621 0.087 0.678 0.114 -26.914 32.3, -12.4
Switzerland 0.722 0.064 0.584 0.104 0.636 0.113 -29.787 31.3, -12.3
Netherlands 0.775 0.072 0.658 0.091 0.702 0.102 -25.222 23.0, -10.1
Germany 0.777 0.084 0.671 0.096 0.711 0.105 -20.426 20.9, -8.6
France 0.786 0.077 0.671 0.087 0.715 0.100 -23.902 21.7, -9.9

Notes: ρ is the means of dynamic correlations and σ is its standard deviations. The test statistics are for one-sided t-tests examining if
the cross-market correlations during the full period are significantly greater than during the turmoil (high volatility) period. “Changes(%)”
measures the changes of ρ: the first number is the changes of ρ during the turmoil period compared with the pre-crisis period ((ρTurmoil −
ρPre Crisis)/ρPre Crisis), and the second number is the changes of ρ during the post-crisis compared with the turmoil period ((ρPost Crisis −
ρTurmoil)/ρTurmoil). The GFC is from 26 July 2007 to 16 July 2009 and ESDC is from 5 November 2009 to 1 December 2011. The turmoil
period should cover the two crisis so that we use the beginning date of GFC and the ending date of ESDC to define the turmoil period, and
then the remaining sample is stable period.
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Table 2.7: Crisis Transition Dates, Duration and Intensity measures

Crisis beginning date Lead/Lag Days in turmoil regime Days in stable regime Crisis intensity(%)

USA 26/07/2007 -10 495 604 45.0

UK 25/07/2007 -11 533 567 48.5

Switzerland 25/07/2007 -11 348 750 31.7

Netherlands 26/07/2007 -10 515 602 46.1

Germany 26/07/2007 -10 299 811 26.9

France 25/07/2007 -11 471 627 42.9

Notes: The Lead/Lag column reports the difference between the crisis beginning date (identified by Markov Switching model for return data) and the official date 9
Aug 2007 offered by BIS (2009). The negative number means the number of working days before the official date.
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2.7 Appendix

The Prior Distribution

We follow Yu and Meyer (2006) and set the new introduced parameters weakly
informative:

• α1 ∼ N(0,25); α2 ∼ N(0,25);

• ϕ∗
11 ∼ beta(20,1.5),where ϕ∗

11 = (ϕ11 +1)/2;

• ϕ∗
22 ∼ beta(20,1.5),where ϕ∗

22 = (ϕ22 +1)/2;

• γ11 ∼ N(0,25); γ22 ∼ N(0,25)

• ψ0 ∼ N(0.7,10)

• ψ∗ ∼ beta(20,1.5),where ψ∗ = (ψ +1)/2;

• σ2
η1 ∼ Inverse-gamma(2.5,0.025)

• σ2
η2 ∼ Inverse-gamma(2.5,0.025)

• σ2
ρ ∼ Inverse-gamma(2.5,0.025)

Kim et al. (1998) discuss the choice of priors for autocorrelation parameters (here,
ϕ11, ϕ22 and ψ). They use the same prior as listed above, and mention that: the flat
prior π(ϕ) ∝ 1 is attractive in that it leads to an analytically tractable full conditional
density, but this prior can cause problems when the data are close to being non-stationary
(Phillips, 1991; Schotman and Van Dijk, 1991). They argue that it is important from a
data-analytic view to impose stationarity in the SV models.

The Gibbs Sampler

The Gibbs sampler is very useful when the joint posterior distribution does not take
a convenient form, however, the full conditionals of the posterior for each parameter
are relatively simple to draw from. The Gibbs sampler begins with the initialization of
(HHH(0),ρρρ(0),aaa(0))6, and then it draws from each of the following distributions:

For s = 1, ...,S:

6We use superscripts to indicate draws, 0 draw means the initialization. We use a1 ... ak to represent
the parameters of DC-MSV-IV model, and the data sample is t = 1...T .
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Take a random draw, a(s)1 from p(a1|a
(s−1)
2 ,a(s−1)

3 , ...,a(s−1)
k ,HHH(s−1),ρρρ(s−1),RRR).

Take a random draw, a(s)2 from p(a2|a
(s−1)
1 ,a(s−1)

3 , ...,a(s−1)
k ,HHH(s−1),ρρρ(s−1),RRR).

...

Take a random draw, a(s)k from p(ak|a
(s−1)
1 ,a(s−1)

2 , ...,a(s−1)
k−1 ,HHH(s−1),ρρρ(s−1),RRR).

Take a random draw, h(s)1 from p(h1|aaa(s−1),h(s−1)
2 ,h(s−1)

3 , ...,h(s−1)
2T ,ρρρ(s−1),RRR).

Take a random draw, h(s)2 from p(h2|aaa(s−1),h(s−1)
1 ,h(s−1)

3 , ...,h(s−1)
2T ,ρρρ(s−1),RRR).

...

Take a random draw, h(s)2T from p(h2|aaa(s−1),h(s−1)
1 ,h(s−1)

2 , ...,h(s−1)
2T−1,ρρρ

(s−1),RRR)7.

Take a random draw, ρ(s)
1 from p(ρ1|aaa(s−1),HHH(s−1),ρ(s−1)

2 ,ρ(s−1)
3 , ...,ρ(s−1)

T ,RRR)

Take a random draw, ρ(s)
2 from p(ρ2|aaa(s−1),HHH(s−1),ρ(s−1)

1 ,ρ(s−1)
3 , ...,ρ(s−1)

T ,RRR)

...

Take a random draw, ρ(s)
T from p(ρT |aaa(s−1),HHH(s−1),ρ(s−1)

1 ,ρ(s−1)
2 , ...,ρ(s−1)

T−1 ,RRR)

Following these steps will yield a set of S draws. After dropping the first S0 of a set of S
draws to eliminate the effect of initialization (HHH(0),ρρρ(0),aaa(0)), the remaining S1 draws
can be averaged to create estimates of posterior features of interest. Dropping the first
S0 known as the burn-in. The reason to do this is that we need the draws from converged
distribution and less dependent on the starting point. The posterior mean of aaa can be
estimated by

âaa =
1
S1

S

∑
s=S0+1

aaa(s) (2.19)

This is because under reasonably general conditions, the conditional density used in
Gibbs sampling converges to the true marginal density as S → ∞ (Casella and George,
1992).

7As the hhht includes h1t and h2t , so we have 2T for the latent volatility term.
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Chapter 3

A time varying HAR model for realized volatility

forecasting
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3.1 Introduction

As a measure of the risk of financial assets, volatility plays an important role in many

practical financial management decisions. For example, volatility is a key parameter

for pricing financial derivatives. Volatility is also pivotal for asset allocation and risk

management. Therefore, accurately measuring and forecasting financial volatility is of

crucial importance for financial market participants.

Volatility measures and models are classified under parametric approaches ( e.g.,

GARCH or stochastic volatility) and nonparametric approaches (e.g., Realized volatil-

ity). As discussed by Andersen et al. (2001), Barndorff-Nielsen and Shephard (2001,

2002a), by the theory of quadratic variation and under suitable conditions, realized

volatility (RV) is an unbiased and highly efficient estimator of return volatility. RV

is defined as the sum of squared intra-day returns. Andersen et al. (2003) and Andersen

et al. (2004) find that simple models of RV outperform the popular GARCH and

related stochastic volatility models in out-of-sample forecasting. The availability of high

quality intra-day data has raised the popularity of RV, which is now widely investigated.

In this chapter, we focus on modelling and forecasting RV.

Long-range dependence is a well documented stylized fact of RV. Fractionally in-

tegrated ARFIMA models are shown by Andersen et al. (2003) to characterize this

strong dependency. Early studies have employed ARFIMA models for modelling and

forecasting RV (e.g. Koopman et al., 2005; Martens and Zein, 2004; Pong et al.,

2004). Despite the success, the ARFIMA models are difficult to extend to multivariate

processes. In addition, they lack a clear economic interpretation. Fractionally integrated
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models are also difficult to estimate and forecast. Recent studies treat the simple and

easy-to-estimate approximate long-memory Heterogeneous AR (HAR) model of Corsi

(2009) as the preferred specification for RV based forecasting (e.g. Chen and Ghysels,

2011; Duong and Swanson, 2015; Liu et al., 2015). Andersen et al. (2007) and Corsi

et al. (2010) extend the HAR model by considering jumps. Busch et al. (2011) introduce

a Vector-HAR model and consider the implied volatility information for forecasting RV.

Patton and Sheppard (2015) introduce a Semivariance-HAR model. Bollerslev et al.

(2016) propose a HARQ model which uses the estimated degree of measurement error

to adjust the weight of daily lags.

In this chapter, we extend the HAR model to allow the autocorrelation parameter of daily

lags to be time varying (TV-HAR). We observe a regular pattern of RV which is captured

by the TV-HAR model: if there is an increase in the lag daily RV compared with its

longer-term average level (monthly RV), the current RV tends to decrease rapidly to its

long term level; conversely, if there is a decrease in the lag daily RV compared with

its longer-term average level (monthly RV), that reversion takes longer. The pattern

can be supported by the data summary statistics. The observations of RVd,t > RVm,t

are significantly fewer than the RVd,t > RVm,t , where RVd,t is the daily RV and RVm,t

is its long-term moving average monthly RV. Our model can capture this pattern: the

magnitude of changes for the daily lags is based on the absolute difference between

the long-term (monthly) RV and the short-term (daily) RV. The weight of daily lags

is highest when the RV is equal to its longer-term level. The lower weight can make

the forecasts quickly mean reverting when daily RV is bigger than its monthly RV, and

slowly mean reverting when daily RV is smaller than its monthly RV.
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To highlight the significance of forecasting improvements, we use simulation and

empirical data to investigate the performance of the TV-HAR model. The simulation

uses the two-factor stochastic volatility model to generate the intraday log price. The

empirical analysis relies on high-frequency data of the S&P 500, SPY indices and ten

individual stocks from 2000 to 2010. We consider different sampling frequencies of

RV: 150, 300, 450 and 900 seconds. We also investigate the model performance over

different sub-sample periods: the pre-crisis period from 2000 to 2006, and the crisis

period from 2007 to 2010. We compare the TV-HAR model with the standard HAR

and HARQ models. We find that for the in-sample fits, the TV-HAR and HARQ have

similar gains compared with the HAR model. For the out-of-sample forecasts, the TV-

HAR model generally outperforms the HAR and HARQ models for both the full sample

and sub-sample periods based on the S&P 500, SPY and ten stocks.

The rest of chapter is organized as follows. Section 2 provides the theoretical framework

of RV. Section 3 discuss the HAR, HARQ and TV-HAR models. Section 4 shows a

simulation study for the performance of the TV-HAR model. Section 5 describes the

data set employed in the empirical study. Section 6 reports the empirical results and

Section 7 concludes.

3.2 Literature Review

Volatility has been one of the most active research areas in both theoretical and empirical

finance during the past decade. Approaches to the measurement and estimation

of volatility can be classified into parametric and non-parametric approaches. The

parametric approach relates to the estimation of parametric models, where there are
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two main model streams: one is ARCH (GARCH) models (Engle, 1982; Bollerslev,

1986); the other is Stochastic Volatility models (Taylor, 1986; Hull and White, 1987).

Volatility is considered as an unobserved variable under the parametric approach. On

the other hand, the non-parametric approach treats volatility as an observable variable,

which allows us to directly analyze, model and forecast volatility itself. In this study,

we focus on the RV which belongs to the non-parametric approach.

Some very early studies based on the non-parametric approach use price change or

absolute price change to measure volatility (e.g. Ying, 1966; Clark, 1973). Later studies

use historical, ex-post sample variances computed from higher frequency return data as

lower frequency volatility measures. For example, Poterba and Summers (1984), French

et al. (1987), Pagan and Schwert (1990), and Schwert (1989) calculate monthly sample

variances from daily returns. Thanks to the technological process in trade recording, the

available of high-frequency data allow the calculation of daily variance from intraday

returns (e.g., Schwert, 1990; Hsieh, 1991; Taylor and Xu, 1997). Andersen and

Bollerslev (1998), Andersen et al. (2001) Barndorff-Nielsen and Shephard (2002a,

2002b) and Comte and Renault (1998) discuss the theoretical properties of RV. They

show that under general conditions, as the number of intraday returns increases, the sum

of intraday squared returns converges to the relevant notion of volatility of the interval.

Therefore, RV provides us, in principle, with a consistent nonparametric measure of

volatility.

Since the RV is calculated from the high-frequency data, there is a trade-off between

accuracy and microstructure bias. On one hand, efficiency considerations suggest the

use of a very high number of intraday return observations to reduce the stochastic error
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of volatility estimation. On the other hand, a bias introduced by market microstructure

grows as the sampling frequency increases. Aı̈t-Sahalia et al. (2005) and Bandi

and Russell (2006, 2008) introduce techniques for determining the optimal sampling

frequencies. They find that the 5-minute RV is an empirically satisfactory frequency.

Liu et al. (2015) compare different sampling frequencies and realized measures. They

use 5-minute RV as their benchmark and find little evidence that it is outperformed by

any other measures.

The long-range dependence is an important stylized fact of RV. It displays significant

autocorrelations even at very long lags. This stylized fact can be captured by long

memory models. Andersen et al. (2003) introduce the ARFIMA model to model and

forecast the RV of Deutschemark/Dollar and Yen/Dollar exchange rates. There are many

applications and extensions of ARFIMA models to RV and other realized measures.

For example, Li (2002) show that the forecasting performance of the ARFIMA model

is better than that of implied volatility from options on currencies. Martens and

Zein (2004) find that the ARFIMA model outperforms the daily GARCH model for

three separate asset classes, equity, foreign exchange, and commodities. Koopman

et al. (2005) compare the forecasting power of RV based on the ARFIMA model,

daily volatility based on GARCH and SV models, and implied volatility calculated

from option price. They find that the ARFIMA model performs best. Based on

three exchange rates, Pong et al. (2004) compare the forecasts from a short memory

ARMA model, a long memory ARFIMA model, a GARCH model and option implied

volatilities. They find intraday rates provide the most accurate forecasts for the one-day

and one-week forecast horizons while implied volatilities are at least as accurate as the

historical forecasts for the one-month and three-month horizons.
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Corsi et al. (2012) argue that the long-range dependence stylized fact might be due to a

genuine long-memory data generating process or, alternatively, that it can be explained

as a combination of different short-memory processes. Although Granger (1980) shows

that a true long-memory process requires the aggregation of an infinite number of

short-memory process, LeBaron et al. (2001) find that an approximated long-memory

process can be obtained by aggregating only a few heterogeneous timescales, that offers

the econometric foundation of the HAR model. On the other hand, the theoretical

foundation of the HAR model is motivated by the heterogenous market hypothesis of

Müller et al. (1993). The need for multiple components in the volatility process has also

been advocated by Engle and Lee (1993), Müller et al. (1997), Bollerslev and Wright

(2001), Calvet and Fisher (2004).

Most recent literature tends to use the HAR model and its extensions for forecasting

RV, treating them as the benchmark model. For example, Chen and Ghysels (2011)

treat the HAR family models as the benchmark model to investigate whether or not

news can differently influence future volatility. They find that moderately good news

reduces volatility, while both very good news and bad news increase volatility, with the

latter having a more severe impact. The asymmetries disappear over longer horizons.

Andersen et al. (2011) augment the HAR-J model with a GARCH(1,1)-t error structure

to describe the dynamic dependencies in the daily continuous sample path variability,

while they model the overnight returns by an augmented GARCH type structure. Duong

and Swanson (2015) use the HAR model to investigate the impact of different jumps on

volatility. They find that past large jump power variations help less in the prediction

of future realized volatility, than past small jump power variations. In addition,

incorporation of downside and upside jump power variations can improve volatility
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forecasting. Liu et al. (2015) study the accuracy of a variety of estimators of asset price

variation constructed from high-frequency data, and compare them with the simple RV

measure. For volatility forecasting, they also rely on the HAR model.

3.3 Theoretical Framework

Let us start by considering an asset for which the return process st is determined by the

stochastic differential equation:

dst = µtdt +σtdWt + ktdqt (3.1)

where µt and σt represent the drift and the instantaneous volatility processes respec-

tively, Wt is a standard Brown motion which is assumed to be independent of σt , q(t) is

a pure jump process with time varying intensity and kt is the jump size.

To simplify the notation, we normalize the unit time interval to a day, the quadratic

return variation process (QV) can be written as the sum of the diffusive intergrated

variance (IV) and the cumulative squared jumps:

QVt =
∫ t

t−1
σ2

s ds + ∑
t−1≤s≤t

J2
s = IVt,k + ∑

t−1≤s≤t
J2

s (3.2)

where Jt = ktdqt is non-zero only if there is a jump at time t. The RVt provides

a consistent estimator of the QVt as the number of intraday observation increases,

according to a series of seminal papers by Andersen and Bollerslev (1998), Andersen

et al. (2001) Barndorff-Nielsen and Shephard (2002a, 2002b) and Comte and Renault
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(1998). The RVt is defined by the summation of high-frequency returns,

RVt =
M

∑
i=1

r2
t,i (3.3)

where M = 1/∆, and the ∆-period intraday return is defined by rt,i = log(Pt−1+i∆)−

log(Pt−1+(i−1)∆), so for ∆ → 0, RVt → QVt . It means that RVt approximates QVt

arbitrarily well as the sampling frequency increases. However, as summarized by

Andersen and Teräsvirta (2009), there are two issues complicating the application of

this result. First, even for the most liquid assets a continuous price record is unavailable.

We should recognize the presence of a measurement error because this limitation

introduces an inevitable discretization error in the RV measures. Second, spurious

autocorrelations in the ultra-high frequency return series can be induced by a wide array

of microstructure effects. Such ”spurious” autocorrelations can inflate the RV measures

and then generate a traditional type of bias-variance trade off. Therefore, in this chapter,

we consider different sampling frequencies to investigate the model performances.

3.4 Models

3.4.1 The HAR

The standard HAR model introduced by Corsi (2009) has arguably emerged as the most

popular model for daily realized volatility based forecasting. The HAR model uses the

autoregressive processes of realized volatility on three volatility components (the daily

RV, weekly RV and monthly RV) to model the long-memory behavior of volatility. The

weekly RV and monthly RV are moving averages of daily RV. Thus, the weekly realized
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volatility (RVw) at time t is

RVw, t =
1
5
(RVt +RVt−1 + ...+RVt−4) (3.4)

and the monthly realized volatility (RVm) at time t is can be written as

RVm, t =
1

22
(RVt +RVt−1 + ...+RVt−21) (3.5)

Based on the weekly and monthly RV as calculated above, the HAR model is defined as

RVd, t = β +βdRVd, t−1 +βwRVw, t−1 +βmRVw, t−1 +ut (3.6)

where RVd, t is the daily RV at day t, so that RVd, t = RVt . The HAR model can be easily

estimated by simple OLS.

The choice of daily, weekly and monthly lags can conveniently capture the approximate

long-memory dynamic dependencies observed in most RV series. The simple additive

model defined as the sum of only three different AR(1) processes displays a decaying

memory pattern, as discussed by LeBaron et al. (2001). Based on the HAR model, the

appearance of long-memory of RV might be due to a combination of different short-

memory processes rather than a genuine long-memory data-generating process.

The motivating idea of the HAR model stems from the heterogenous market hypothesis

(Müller et al., 1993). Participants in financial markets have different trading frequencies

that may influence volatility differently, so the HAR model uses different autoregressive

parameters for daily, weekly and monthly RVs respectively.
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The autocorrelation parameters are assumed to be constant over time in the standard

HAR model. However, this assumption is suboptimal from a forecasting perspective.

For example, when lag daily RV significantly increases, we should put less weight on

it, otherwise the forecast for the current RV tends to exceed the true value.

3.4.2 The HARQ

As the constant weight of daily lags is suboptimal, Bollerslev et al. (2016) introduce

the HARQ model which allows the weight to be time varying. The model is based on

the idea that RV is equal to the sum of two components: the true latent IV and a time

varying measurement error. It allows the autocorrelation parameter to vary with the

estimated degree of measurement error. The model is defined as

RVd, t = β +(γ +βqRQ1/2
t−1)︸ ︷︷ ︸

βd,t

RVd, t−1 +βwRVw, t−1 +βmRVm, t−1 +ut (3.7)

where the Realized Quarticity (RQ) is used to consistently estimate the Integrated

Quarticity (IQ). The RQ can be calculated as

RQ =
M
3

M

∑
i=1

r4
t,i (3.8)

Unlike the HAR model with constant βd and which assumes that the variance of the

measurement error is constant, the HARQ model considers heteroskedasticity in the

error, by allowing for the βd,t is high when the variance of the measurement error is

low, and adjusted downward on days when the variance of measurement error is high.

The βq is assumed to be negative. According to Equation 3.7, the measurement error is

124



measured by RQ1/2
t−1. Therefore, the HARQ model places more weight on the daily lags

when the RQ is low, and less weight on the daily lags when the RQ is high. Bollerslev

et al. (2016) argue that theoretically when IQ is low, daily lag RV provides a strong

signal about the true IV, and when IQ is high, the signal is weak.

According to Equation 3.8, the level of RQ is positively related to the level of RV.

Therefore, the HARQ model tends to place more weight on daily lags RV when RQ is

lower, and less weight on daily lags RV when RQ is higher. In this case, the theoretical

maximum βd,t happens when the RQ is equal to 0 (if so RV is also equal to 0), and then

βd,t = γ .

As the monthly RV is the long-term moving average of daily RV, theoretically, the

number of observations that daily RV (RVd, t) is higher than its moving average monthly

RV (RVm, t) should approximately equal to the number of observations that daily RV is

lower than its moving average monthly RV. However, according to the data summary

statistics shown in Section 3.6, the the number of observations for RVd, t < RVm, t is

significantly higher than the number of observations for RVd, t > RVm, t . This regular

pattern holds for S&P 500, SPY and all ten individual stocks. It means that if there is

an increase in lag RV compared with its longer-term average level monthly RV, current

RV tends to quickly revert back, in this case, the autoregressive parameter for RVd, t−1

should be low and the model quickly mean reverting. On the other hand, if there is a

decrease in lag RV compared with lag monthly RV, current RV tends to take longer to

revert back. However, according to the HARQ model structure, when the daily lags is

low, it tends to put more weight on daily lags and might not be able to catch the regular

pattern very well.
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3.4.3 The TV-HAR

Motivated by the regular pattern of RV discussed above, which indicates that (i) the

HAR model should put less weight when the daily lag is greater than the monthly lag

and (ii) the HARQ model should put less weight when the daily lag is lower than the

montly lag. We introduce a TV-HAR model which allow the weight of daily lag to

be time varying. The HAR model is popular because it is simpler to estimate than

fractionally integrated processes (Corsi, 2009; Liu et al., 2015). Our extension retains

this advantage and we can use the OLS method to estimate the model. Compared with

the HARQ model, the weight changes of daily lags depends on the absolute difference

between daily RV and monthly RV rather than the level of RQ. The TV-HAR model

structure can be written as

RVd, t = β +(γ +α|RVd, t−1 −RVm, t−1|)︸ ︷︷ ︸
βd,t

RVd, t−1 +βwRVw, t−1 +βmRVm, t−1 +ut

(3.9)

As the monthly RV is the moving average of daily RV, the monthly RV is the long-term

trend and smoothed version of daily RV. So the absolute difference between daily RV

and monthly RV is the short-term changes in daily RV. With negative α , the theoretical

maximum βd,t occurs when the RVd, t−1 =RVm, t−1, and then βd,t = γ . The lower weight

on daily lags can produce lower forecasts for the current RV. Therefore, when RVd, t−1 >

RVm, t−1, the lower weight on the higher RVd, t−1 can lead to the current RV reverting

rapidly to its long-term average level. In this scenario, the TV-HAR model is similar

to the HARQ model because the high RV tends to come with high RQ which also

decreases the weight of daily lags. However, when RVd, t−1 < RVm, t−1, the TV-HAR
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model works differently because the lower weight on the smaller RVd, t−1 can further

cause the current RV reverting more slowly to its long-term average level.

To better illustrate the inner workings of the TV-HAR model, Figures 3.1 and 3.2 for

S&P 500 and SPY respectively show the time varying autoregressive parameter of daily

RV in the TV-HAR model (βd,t), along with the daily and monthly realized volatilities.

We also compare the resulting one-day-ahead RV forecasts for the TV-HAR model with

the HAR and the HARQ models.

[Figure 3.1 around here]

Figure 1 shows the two model estimates for the S&P 500 for ten successive trading days

. We first compare the TV-HAR model with the HAR model based on the left panel (a).

The top (a1) shows daily and monthly RVs. The middle (a2) shows the autocorrelation

parameter for the daily lags. Unlike the constant autoregressive parameter of daily RV

in the standard HAR model βd , the value of βd,t in the TV-HAR model is time varying,

as shown in the figure. It is apparently from middle panel that on day 6, the value of βd,t

drops to a relatively low level, below 0.15, from around 0.45 on the previous trading

day. According to the model structure, this is caused by the wider gap between the

lagged daily RV and the lagged monthly RV, which can be supported by the daily and

monthly RV from the top panel (a1) on day 5. If there is a big increase in one day’s RV,

the RV for the next day tends to quickly revert back to the longer-term average level.

This is not inconsistent with volatility clustering theory. For example, during a high

volatility period, the longer-term average level of RV (monthly RV) is higher, although

the short-term fluctuations of RV still exist. The RV for day 5 is far above its monthly

average level, the RV for the next trading day 6 is more likely to be lower. Therefore,
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for the HAR model, less weight should be placed on the daily RV on day 5 when we

forecast the daily RV on day 6. The TV-HAR model can decrease the weight of daily

RV on day 6 with the negative estimated value of α . We can compare the one-day-

ahead forecasting results of the standard HAR model and the TV-HAR model based on

the bottom panel (a3). Due to the constant βd of the standard HAR model, the high RV

on day 5 leads to an increase in the fitted value for the next day. On the other hand, the

decreased βd,t of the TV-HAR model puts less weight on the high RV on day 5, then

the forecast RV on day 6 is lower and closer to the true value which is shown in the top

panel. It is also the case for the forecasts of RV on day 10.

The right panel (b) of Figure 3.1 compares the inner workings of the TV-HAR model

with those of the HARQ model. Unlike panel (a), for panel (b), the RVd < RVm. As

shown in the top (b1), although from day 1 to day 2, the daily RV decrease significantly,

it reverts back slowly and on day 3 it remains almost same level. In order to capture

the slowly meaning reverting in this scenario, we should still put less weight on the

daily lags which can lead to lower forecasts. The TV-HAR can capture the pattern

as the theoretical maximum βd,t happens when the RVd, t−1 = RVm, t−1, the absolute

difference between RVd, t−1 and RVm, t−1 still decreases the weight of daily lags. On the

other hand, the HARQ model tends to put more weight in this scenario as the RQ also

tends to be lower when the RV is lower. In order to investigate the weight of daily lags

for the two models, we compare the weight changes based on the percentage of their

theoretical maximum βd,t = γ . The (b2) shows the weight changes of daily lags for the

TV-HAR and HARQ models. We find that the weight of daily lags for the HARQ model

is higher than for the TV-HAR model. On day 3 and day 4, the βd,t of the HARQ model

is very close to its theoretical maximum level, because the RV one day 2 and day 3 is

128



close to 0, so the level of RQ on that two days also tends to be very low. In this case,

the HARQ model puts more weight on the daily lags which leads to a higher forecast

level. For the TV-HAR model, the weight of daily lags is much lower than its theoretical

maximum level as the different model inner working. Due to the difference in daily lag

weights, the fitted value of RV is also different. As shown in (b3), the TV-HAR model

forecasts a lower value than the HARQ model, and the fitted value of TV-HAR is closer

to the actual RV.

[Figure 3.2 around here]

The inner workings of the TV-HAR model compared with the HAR and HARQ models

for the SPY are shown in Figure 3.2. It shares the same analysis process and conclusion

as we discussed for the S&P 500 above. As a summary, when RVd, t−1 > RVm, t−1

the TV-HAR model can let the forecasts quickly mean reverting that the HAR model

cannot, and when RVd, t−1 < RVm, t−1 the TV-HAR model can let forecasts slowly mean

reverting that the HARQ cannot.

3.5 Simulation study

3.5.1 Design and settings

This section presents a simulation study to further investigate the performance of the

TV-HAR model. Our simulations are based on a two-factor stochastic volatility model

that is commonly used in the literature to generate intraday returns (e.g. Huang and

Tauchen, 2005; Barndorff-Nielsen et al., 2008; Gonçalves and Meddahi, 2009; Patton,

2011; Bollerslev et al., 2016). Following Bollerslev et al. (2016), we also consider the
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intraday pattern and noise for the two-factor stochastic volatility model. The model can

be written as

d logPt = µdt +σutvt(ρ1dW1t +ρ2dW2t +
√

1−ρ2
1 −ρ2

2 dW3t) (3.10)

v2
t = s-exp(β0 +β1v1t +β2v2t) (3.11)

dv1t = α1v1tdt +dW1t (3.12)

dv2t = α2v2tdt +(1+ϕv2t)dW2t (3.13)

σut =C+Aexp(−at∗)+Bexp(−b(1− t∗)) (3.14)

where W1t , W2t , and W3t are standard Brownian motions, s-exp denotes the exponential

function with a polynomial splined at high values to avoid explosive behavior. The

function is defined as

s-exp(x) =


1.5
√

1− log(1.5)+ x2/ log(1.5), if x > 1.5.

exp(x), otherwise.

(3.15)

The process v1t is the persistent factor and the process v2t is the strongly mean-reverting

factor. Following Huang and Tauchen (2005), we set µ = 0.03, β0 = −1.2, β1 = 0.04,

β2 = 1.5, α1 = −0.00137, α2 = −1.386, ϕ = 0.25, and ρ1 = ρ2 = −0.3, where the

parameters are expressed in daily units. The σut is the diurnal U-shape function and

it can model the intraday volatility pattern. Following Andersen et al. (2012), we set

A = 0.75, B = 0.25, C = 0.88929198 and a = b = 10, respectively. The simulations are
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generated based on the Euler scheme. Therefore, Equation 3.10 can be transform to

logPt = logPt−1 +µ∆t +σutvt(ρ1Z1
√

∆t +ρ2Z2
√

∆t +
√

1−ρ2
1 −ρ2

2 Z3
√

∆t) (3.16)

And Equations 3.12 and 3.13 can be transformed to

v1, t = v1, t−1 +α1v1, t−1∆t +Z1
√

∆t (3.17)

v2, t = v2, t−1 +α2v2, t−1∆t +(1+ϕv2, t−1)Z2
√

∆t (3.18)

We simulate data for the unit interval [0, 1] and normalize 1 second to be 1/23400

(∆t = 1/23400), so that [0, 1] is to span 6.5 hours. The t∗ in the intraday pattern equation

means that, at the start of each interval, we initialize the ∆t = 1/23400, so that the

intraday pattern is the same for every day. The empirical evidence of the noise term

has been discussed by Bandi and Russell (2006) and Hansen and Lunde (2006). We

mirror the design of Barndorff-Nielsen et al. (2008) and generate an i.i.d. noise term

ut,i ∼ N(0,ω2
t ) with ω2

t = ξ 2 ∫ t
t−1 v2

s ds. The ξ 2 = 0.01 following Bandi and Russell

(2006). According to the noise equations, the variance of noise is constant throughout

the day, but changes from day to day. The noise is then added to the log price process

to obtain the series of actual high-frequency simulated prices.

We initialized the persistent factor v1 by drawing v1,0 ∼N(0, −1
2α1

) from its unconditional

distribution. The strongly mean-reverting factor v2 is initialized at 0. We consider

the T = 2000 days for the simulation study. Then the two-factor stochastic volatility

generates 23400×2000 second log price observations. Then we aggregate these prices

to sparsely sampled 390, 156, 78, 52, 26 and 13 observations per day, corresponding
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to 60 seconds, 150 seconds, 300 seconds, 450 seconds, 900 seconds and 1800 seconds

returns respectively. The simulation is based on 100 replications for every sampling

frequency.

3.5.2 Monte Carlo Results

We use the simulated RV to compare the forecasting performances of the HAR, HARQ

an TV-HAR models. The comparison is based on the MSE and different sampling

frequencies. We consider one-day-ahead rolling forecasting and the rolling window is

the previous 1000 days. Thus the forecasting period is from 1001 to 2000 days.

[Table 3.1 around here]

Table 3.1 shows the simulation results for different sampling frequencies and the

average value across these frequencies. The numbers in bold represent the model with

best forecasting performance. The relative MSE means the ratio of the losses for the

different models relative to the losses of the HAR model. We also calculate the gains

of the forecasting accuracy based on the loss function. For example, the MSE gains of

the HARQ model compared with the HAR model is reported as ”HAR, HARQ” and

calculated as (MSEHAR −MSEHARQ)/MSEHAR. Therefore, the positive number means

the HARQ model offers better forecasting performance than the HAR model by a certain

percent. According to the simulated data, for all frequencies, the TV-HAR model offers

better forecasts than the standard HAR model and the HARQ model. The HARQ model

outperforms the HAR model. Compared with the HAR model, the gains for the HARQ

model are lower at the very low frequencies and very high frequencies, which is in line

with the results offered by Bollerslev et al. (2016). Similarly the TV-HAR model also
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offers lower improvement compared with the HAR model for the very low and very

high sampling frequencies.

3.6 Data Description

The empirical analysis relies on the S&P 500 equity index, SPY and ten stocks data

from different sectors. The sample period is from January 3, 2000 to December 31,

2010, giving 2767 observations of daily RV. In this chapter, we use four different

sampling frequencies of RV, (150, 300, 450 and 900 seconds) to investigate the model

performance. We also extract the two subsample periods from the full sample to further

investigate the model performance: the pre-crisis is from 2000 to 2006 and the crisis

period is from 2007 to 2010. The S&P 500 equity index and ten stocks data come

from Tick Data which provides data on a commercial basis for futures, indices and

equity markets. The Tick database is sourced from the NYSE’s TAQ (Trade and Quote)

database. Tick adjusts TAQ for ticker mapping, code filtering, price splits and dividend

payments. We did not consider any adjustments beyond that provided by the database.

The SPY data come from the TAQ data. The trading day is from 9:30am to 16:00pm,

which amounts to 23000 seconds.

[Tables 2.1 to 2.4 around here]

Tables 2.1 to 2.4 show the summary statistics of RV for the four sampling frequencies.

We report the number of observations, mean, standard deviation, minimum and

maximum values for daily, weekly and monthly RVs. As we use the absolute difference

of daily and month lags to adjust the weight of daily lags, we also report the summary

statistics for the absolute difference. In order to show the regular pattern of RV discussed
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above, we also compare the summary statistics of (RVd −RVm) when (RVd −RVm)> 0

represented by (RVd −RVm)
+, and (RVd −RVm) when (RVd −RVm)< 0 represented by

(RVd −RVm)
−.

[Figure 3.3 around here]

The weekly and monthly RVs are the moving average of daily RV. Although the daily,

weekly and monthly RVs have similar averages for every sampling frequency, the

standard deviations are significantly different. The standard deviation of daily RV is

higher than the standard deviations of weekly RV and monthly RV. The weekly RV

and monthly RV are less volatile because the short-term fluctuations are removed by

smoothing out the daily RV. We use the 300 seconds RV for S&P 500 as an example:

the means are 0.8660 (daily), 0.8669 (weekly) and 0.8695 (monthly) which are similar.

The standard deviations decrease from 1.9010 (daily) to 1.6228 (weekly) and 1.4620

(monthly). Compared with the four sampling frequencies, we find that, with the increase

of the sampling frequencies, the standard deviations for daily, weekly and monthly RVs

generally tend to decrease. Figure 3.3 shows the autocorrelations for daily, weekly and

monthly RVs. For the weekly and monthly RVs, as the short term fluctuations have been

removed to some extent, they have longer memory than the daily RV.

Although the monthly RV is the moving average of daily RV, we find that the

observations of (RVd −RVm)
+ are significantly lower than the observations of (RVd −

RVm)
− for all the S&P 500, SPY indices and the ten stocks. The observations of

(RVd −RVm)
+ are around 1000 whereas the observations of (RVd −RVm)

+ are around

1700 for all sampling frequencies and indices or stocks. The absolute mean of

(RVd −RVm)
+ is also higher compared with (RVd − RVm)

− for all data. We use the
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300 seconds RV for S&P 500 as an example: the observations of (RVd −RVm)
+ are

1036 and the absolute mean is 0.5962, whereas the observations of (RVd −RVm)
− are

1710 and the absolute mean is 0.3668. This indicates the different pattern for the daily

RV reverting back to its long term average level.

3.7 Empirical Results

3.7.1 In-sample estimation results

In this section, we show the estimation results and also investigate the model perfor-

mance for in-sample fits. Like the standard HAR model, the TV-HAR model can be

easily estimated by the standard OLS method.

[Tables 3.3 to 3.5 around here]

Tables 3.3 and 3.4 show the parameter estimates, with standard errors in parentheses,

of the standard HAR, the HARQ and the TV-HAR models for the S&P 500 and SPY

indices. The adjusted R-squared values and Akaike information criterion (AIC) are

followed by the estimated parameters in the table to compare the in-sample fit. The

in-sample estimation results for the ten stocks are shown in the Appendix. Table 3.5

summaries and compares the in-sample fits of different models for the ten stocks. We

discuss the in-sample estimation results for the HAR, HARQ and TV-HAR models as

follows.

A. The HAR

We begin with the in-sample estimates for the HAR model. For the S&P 500, the
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HAR model places more weight on the weekly lags according to the full sample period

estimates. Compared with other sampling frequencies, the HAR model fits the data

better with the 300 seconds RV. In terms of different market regimes, according to the

estimations for the HAR model, because the pre-crisis period is less volatile, the daily

lags seems more informative than them in the crisis period, the HAR model tends to put

more weight on the daily lags for the pre-crisis period than the crisis period. It seems

that the market microstructure noise is greater for the crisis period as the HAR model

fits the data best for the 150 seconds RV during pre-crisis period but for the crisis period

the best fits sampling frequency is 300 seconds RV. For SPY, the estimation results share

similar pattern compared with the S&P 500. The difference is that the HAR model does

not place largest weight on the daily lags for the pre-crisis period.

B. The HARQ

Next we discuss the in-sample estimation results of the HARQ model. Compared with

other sampling frequencies, the HARQ model fits the data better with the 150 seconds

RV for both indices. In line with Bollerslev et al. (2016), the values of βq are all negative

and significant. This indicates that the uninformative days with large measurement

errors have a smaller impact on the forecasts than days where RV is estimated precisely.

The value of γ is the theoretical maximum weight of daily lags, which are higher for the

crisis period than the pre-crisis period, because the crisis period has some days which

the daily lags tend to be very uninformative and requires larger adjustment for their

weights. Compared with the HAR model, the HARQ model tends to allocate lower

weight on the weekly and monthly lags, but a greater average weight on the daily lags,

so the HARQ model generally allows for a more rapid response, except when the signal
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is poor.

C. The TV-HAR

In this section we focus on the in-sample estimation results of the TV-HAR model.

Similar to the HARQ model, the TV-HAR model fits the data better with the 150 seconds

RV for both indices. As expected, the value of α of the TV-HAR model is negative and

strongly significant for all sampling frequencies and subsample periods. Therefore,

the absolute difference of daily and monthly lags is negatively related to the weight of

daily lags, which is consistent with the inner working of the TV-HAR model. Like the

HARQ model, the theoretical maximum weight of daily lags measured by γ is larger

for the crisis period than the pre-crisis period. Compared with the HAR model, the

TV-HAR model allocates lower weight to the weekly and monthly lags, but a greater

average weight to the daily lags. One possible explanation for this is that the TV-HAR

model allows the weight of daily lags to change according to the different scenarios,

so the daily lags can offer more accurate information for forecasting future RV. The

theoretical maximum weight of daily lags is generally larger for the TV-HAR model

compared with the HARQ model.

D. Comparison

Finally, we compare the in-sample fits of the HAR, HARQ and TV-HAR models. For

the S&P 500, the TV-HAR model generally performs better than the HAR and HARQ

models. It fits the data best for the 150, 450 and 900 seconds RV. The HARQ model

performs best for the 300 seconds RV. Both the HARQ and TV-HAR model outperform

the HAR model. In order to better compare these models, we calculate the average
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R-square and AIC across different sampling frequencies. Based on the average values,

the TV-HAR model performs best for the S&P 500. In terms of SPY, the HARQ model

generally performs better than the HAR and TV-HAR models according to the average

level. The TV-HAR model performs best for the 900 seconds RV. Then we compare

the average in-sample fits for the 10 stocks shown in Table 3.5. There are five stocks

support the TV-HAR model and five stocks support the HARQ model. The HARQ

model generally fits the data better for the pre-crisis period, and the TV-HAR model

fits the data better for the crisis period. Therefore, in terms of the in-sample fits, the

TV-HAR and HARQ models obtain similar gains compared with the HAR model. As

the financial market participants care more about the out-of-sample forecasting, in order

to further compare the TV-HAR and HARQ models, in the next section we investigate

the forecasting performances.

3.7.2 Out-of-sample forecasting results

This section shows the out-of-sample forecasting results for the HAR, HARQ and

TV-HAR models. The models are re-estimated daily on a moving window of 1000

observations. We then perform the one-day-ahead forecasts.

[Tables 3.6 to 3.8 around here]

Tables 3.6 and 3.8 show the forecasting results for the S&P 500 and SPY respectively.

Table 3.8 shows the forecasting results based on the loss functions averaged the ten

stocks. We calculate the commonly used loss functions, the MAE and MSE, as the

performance measures. To make the comparison of different models more clearly, we

calculate the Relative MAE and MSE, and Gains(%). The details of these measures are
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the same as shown in Section 3.5.2. As the MAE and MSE have different level for the

ten stocks, in order to put the same weight on the different stocks, in Table 3.8 we use

the average values of relative losses rather than the original losses for comparing the

model performances. The detailed forecasting results for every stock are given in the

Appendix.

[Figure 3.4 around here]

For both indices, the losses are much lower for the pre-crisis period compared with the

crisis period, especially for the MSE. We compare the forecasting performances of the

HAR, HARQ and TV-HAR models for different sample frequencies and sub-sample

periods. We calculate the average losses of the different sampling frequencies in order

to compare the overall forecasting performances. As shown in Tables 3.6 and 3.7, for

both S&P 500 and SPY, the MAE and MSE show that the TV-HAR model outperforms

the HAR and the HARQ models for the full sample periods. For the sub-sample period

performance, only the MSE for S&P 500 favours the HAR for the pre-crisis period, all

other losses of the S&P 500 and SPY sub-sample periods support the better performance

of the TV-HAR model. Compared with the HARQ and HAR models, for S&P 500,

both MAE and MSE show that the HARQ model gives more accurate forecasts for

full sample and sub-sample periods except the MSE for the pre-crisis period. In terms

of SPY, the HARQ model has lower MAE compared with the HAR model for full

sample and sub-sample periods. The original MSE indicates that the HARQ model only

outperform the HAR model for the pre-crisis period, but according to the relative MSE,

the HARQ model still outperform the HAR model for the full sample and sub-samples.

The difference is due to that the averages of the relative measures allocate same weight

for every sampling frequencies compared with the original losses. In order to investigate
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the model performances more clearly, Figure 3.4 shows the forecasting accuracy gains

of the HARQ and TV-HAR models compared with the standard HAR model. The gains

for the TV-HAR model is larger compared with the HARQ model and almost all the

gains are positive for the TV-HAR model. For the average of ten stocks, the TV-HAR

model also outperform the HAR and HARQ models for the full period and crisis period,

and the HARQ model performs better for the pre-crisis period.

3.8 Conclusions

In this chapter, we focus on modeling and forecasting the RV which is an unbiased

and highly efficient estimator of return volatility. The HAR model and its variants

are commonly used by most recently studies to forecast the RV. The standard HAR

model assumes that the autocorrelation parameters are constant over time. However, this

assumption is suboptimal from a forecasting perspective because if there is an increase

in lag RV compared with its longer-term average level monthly RV, current RV tends to

quickly revert back. Another scenario is that, if there is a decrease in lag RV compared

with its longer-term average level monthly RV, the current RV tends to slowly revert

back. The recently introduced HARQ model does not capture this scenario very well

because it tends to allocate greater weight to the daily lags when the RV is low. In this

chapter, we introduce the TV-HAR model which allows the autocorrelation parameter of

daily RV time varying according to the absolute difference between the lagged daily and

lagged monthly RVs. The TV-HAR model can successfully capture the two scenarios.

When RVd is above RVm, the RVd tends to be more fluctuated. Large increases in RVd

tend to be followed by large decreases. The increases of RVd lead to higher difference

between RVd and RVm, so that the TV-HAR assigns a lower weight on the daily lags
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which generates lower forecast, which makes the model quickly mean reversion. On the

other hand, when RVd is below RVm, the RVd takes a long duration to recover back to

its long term average level, RVm. As the difference between RVd and RVm is above 0

which leads to a lower weight on daily lags, therefore the TV-HAR can still generate a

lower forecast, which makes the model slower mean reversion. The economic intuition

for the pattern is that the extreme values or jumps of volatility increase the long term

average level of realized volatility, so the volatility during stable periods tends to below

the long term average level.

We use simulations to investigate the model performances. The simulation is based

on a two factor stochastic volatility model which is used to generate the intraday log

prices. The simulation results show that the TV-HAR model performs better than the

HAR and HARQ models. This also holds true for the empirical data. Our empirical

analysis is based on the S&P 500, SPY and ten stocks data. We consider different

sampling frequencies and sub-sample periods. We find that both the TV-HAR and

HARQ models fit the data better than the standard HAR model. The TV-HAR model

fits the data best for the S&P 500; and the HARQ model fits the data best for the SPY.

For the out-of-sample forecasts,the TV-HAR model generally outperforms the HAR and

HARQ models. According to the average losses across different sampling frequencies,

for the S&P 500 and SPY, the TV-HAR model offers most accurate forecasts for both

the full sample period and sub-sample periods. In terms of the ten stocks, the TV-HAR

model performs best for the full sample period and crisis period, and the HARQ model

performs best for the pre-crisis period. The TV-HAR model is very easy to implement,

and can be useful for forecasting the RV.
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Figure 3.1: The left panel compares the TV-HAR model and the HAR model for ten successive trading days begin
from 6 October 2008. The right panel compares the TV-HAR model and the HARQ model for ten successive trading
days begin from 23 December 2008. The top shows daily and monthly realized volatilities. The middle left shows
the time varying AR of daily RV (βd,t ) estimates from the TV-HAR model and the AR of daily RV (βd) estimates
from the HAR model. The middle right shows the time varying AR of daily RV estimates from the TV-HAR model
and the HARQ model in percentage (βd,t/γ , where the γ is the theoretical maximum value of time varying βd,t , so we
compare the percentage weights of daily lags of the two models). The bottom left compares the resulting one-day-
ahead RV forecasts from the TV-HAR and the HAR models. The bottom right compares the resulting one-day-ahead
RV forecasts from the TV-HAR and the HAR models.
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Figure 3.2: The left panel compares the TV-HAR model and the HAR model for ten successive trading days begin
from 6 October 2008. The right panel compares the TV-HAR model and the HARQ model for ten successive trading
days begin from 9 December 2008. The top shows daily and monthly realized volatilities. The middle left shows the
time varying AR of daily RV (βd,t ) estimates from the TV-HAR model and the AR of daily RV (βd) estimates from
the HAR model. The middle right shows the time varying AR of daily RV estimates from the TV-HAR model and
the HARQ model in percentage (βd,t/γ , where the γ is the theoretical maximum value of time varying βd,t , so we
compare the percentage weights of daily lags of the two models). The bottom left compares the resulting one-day-
ahead RV forecasts from the TV-HAR and the HAR models. The bottom right compares the resulting one-day-ahead
RV forecasts from the TV-HAR and the HAR models.
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Figure 3.3: This figure shows the daily, weekly and monthly RVs and their autocorrelations for S&P 500 and
SPY respectively. The left shows the daily RV and its autocorrelations. The middle shows the weekly RV and its
autocorrelations. The right shows the monthly RV and its autocorrelations.
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Figure 3.4: This figure shows that compared with the HAR model, the gains of forecasting accuracy for the HARQ model and TV-HAR model respectively. For example,
the gains of the HARQ model compared with the HAR model based on the MAE is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR. The top panel shows the
gains for MAE and MSE for S&P 500 and the bottom shows the gains for MAE and MSE for SPY
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Table 3.1: Simulation results

Sampling frequencies (seconds)

MSE 60 150 300 450 900 1800 average

HAR 25.1468 6.3087 2.6586 1.6990 1.0161 0.7911 6.2701

HARQ 25.1437 6.3053 2.6486 1.6914 1.0105 0.7886 6.2647

TVHAR 25.1252 6.2932 2.6483 1.6906 1.0103 0.7885 6.2594

Sampling frequencies (seconds)

Relative MSE 60 150 300 450 900 1800 average

HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HARQ 0.9999 0.9995 0.9963 0.9955 0.9944 0.9969 0.9991

TVHAR 0.9991 0.9975 0.9961 0.9951 0.9943 0.9967 0.9983

Sampling frequencies (seconds)

MSE Gains(%) 60 150 300 450 900 1800 average

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HARQ 0.0123 0.0542 0.3746 0.4481 0.5588 0.3127 0.0857

TV-HAR 0.0857 0.2460 0.3867 0.4933 0.5714 0.3333 0.1706

Notes: The table reports the simulation results for the HAR, HARQ and TV-HAR models. The relative MSE means the ratio of the losses for the different

models relative to the losses of the HAR model. The numbers in bold represent the model with best forecasting performance. The MSE Gains(%) measure

the difference of losses, for example, the MSE gains of HAR, HARQ is calculated as follows: (MSEHAR −MSEHARQ)/MSEHAR.
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Table 2.1: Summary statistics (150 seconds)

RVd RVw RVm

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.8298 1.8864 0.0192 44.5257 2746 0.8305 1.6018 0.0337 19.9711 2746 0.8327 1.4344 0.1055 13.0667

SPY 2746 1.3559 2.8131 0.0398 80.6724 2746 1.3578 2.3060 0.0643 31.2816 2746 1.3629 2.0182 2.0182 18.6772

3M Company MMM 2746 2.5019 5.3743 0.1294 197.6791 2746 2.5047 3.6327 0.3255 43.2008 2746 2.5160 2.9100 0.5957 25.6036

Amazon.com Inc AMZN 2746 11.6188 16.9863 0.3606 167.7904 2746 11.6389 15.1712 0.8045 104.4095 2746 11.7096 14.1227 1.4835 73.9042

Merck MRK 2746 3.2313 6.3881 0.1691 181.5483 2746 3.2351 4.4129 0.3757 61.7866 2746 3.2462 3.4567 0.6619 30.4799

Boeing BA 2746 3.7285 4.5454 0.1414 70.2961 2746 3.7317 3.9830 0.4075 37.8564 2746 3.7444 3.5741 0.7007 27.9544

Microsoft MSFT 2746 3.4308 4.3918 0.0855 79.7645 2746 3.4355 3.8481 0.4273 38.3609 2746 3.4575 3.4708 0.6045 25.4920

Coca-Cola KO 2746 2.1226 4.0702 0.0941 138.6231 2746 2.1271 2.7682 0.1348 32.5139 2746 2.1410 2.2683 0.3276 16.5752

ExxonMobil XOM 2746 2.5736 5.8451 0.1653 233.7847 2746 2.5773 4.4088 0.2234 78.8877 2746 2.5863 3.6723 0.4280 39.3795

DuPont DD 2746 3.6263 5.0896 0.1405 126.5660 2746 3.6319 4.2535 0.4023 52.3977 2746 3.6502 3.7527 0.6675 31.5986

Verizon VZ 2746 3.2280 4.9357 0.2481 136.0271 2746 3.2320 4.0685 0.3662 50.1012 2746 3.2414 3.6030 0.5159 29.6507

Pfizer PFE 2746 3.0701 4.0909 0.3235 113.5654 2746 3.0762 3.1847 0.4662 39.3571 2746 3.1023 2.7950 0.6454 21.3392

|RVd −RVm| (RVd −RVm)
+ (RVd −RVm)

−

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.4215 1.2599 0.0001 36.5218 1073 0.5356 1.7543 0.0002 36.5218 1673 -0.3483 0.7867 -11.0856 -0.0001

SPY 2746 0.6570 1.9995 0.0000 69.1197 1074 0.8310 2.8664 0.0000 69.1197 1672 -0.5453 1.1225 -15.4049 -0.0001

3M Company MMM 2746 1.1929 4.5098 0.0004 187.5184 1082 1.4958 6.8508 0.0004 187.5184 1664 -0.9959 1.7216 -20.5558 -0.0037

Amazon.com Inc AMZN 2746 4.7069 9.1394 0.0016 128.7462 1090 5.8146 12.3386 0.0016 128.7462 1656 -3.9777 6.0849 -42.8295 -0.0043

Merck MRK 2746 1.6850 5.3006 0.0002 159.4901 970 2.3640 8.4435 0.0002 159.4901 1776 -1.3141 2.0349 -24.8230 -0.0009

Boeing BA 2746 1.4785 2.7213 0.0001 53.1779 1098 1.8289 3.7321 0.0024 53.1779 1648 -1.2450 1.7114 -19.1706 -0.0001

Microsoft MSFT 2746 1.3762 2.6690 0.0002 63.6499 1130 1.6397 3.5415 0.0024 63.6499 1616 -1.1920 1.8048 -20.1835 -0.0002

Coca-Cola KO 2746 0.9252 3.3400 0.0001 131.1389 1021 1.2194 5.2235 0.0035 131.1389 1725 -0.7510 1.2400 -13.3346 -0.0001

ExxonMobil XOM 2746 1.1805 4.6954 0.0001 207.1188 1094 1.4656 6.9244 0.0002 207.1188 1652 -0.9917 2.1963 -31.8499 -0.0001

DuPont DD 2746 1.4873 3.3876 0.0002 107.3862 1041 1.9301 4.9258 0.0003 107.3862 1705 -1.2169 1.8668 -23.5736 -0.0002

Verizon VZ 2746 1.3705 3.3221 0.0002 117.4352 1062 1.7545 4.7826 0.0005 117.4352 1684 -1.1283 1.8519 -22.5424 -0.0002

Pfizer PFE 2746 1.2565 2.8938 0.0001 97.7100 1016 1.6545 4.3885 0.0001 97.7100 1730 -1.0228 1.3569 -16.7589 -0.0001

Notes: The table provides summary statistics for the 150 seconds sampling frequency RV, including the number of observations, mean, standard deviation, minimum and maximum values. RVd represents the daily realized

volatility, RVw represents the weekly realized volatility, and RVm represents the monthly realized volatility. (RVd −RVm)
+ stands for the (RVd −RVm) when RVd > RVm. (RVd −RVm)

− stands for the (RVd −RVm) when

RVd < RVm.



Table 2.2: Summary statistics (300 seconds)

RVd RVw RVm

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.8660 1.9010 0.0164 34.1518 2746 0.8669 1.6228 0.0307 19.0655 2746 0.8695 1.4620 0.1050 13.3710

SPY 2746 1.3072 2.6876 0.0425 60.3263 2746 1.3089 2.2070 0.0637 27.5883 2746 1.3136 2.2070 0.0637 27.5883

3M Company MMM 2746 2.3778 3.8086 0.0824 91.9551 2746 2.3811 3.1315 0.3433 41.0810 2746 2.3923 2.7347 0.5929 25.0027

Amazon.com Inc AMZN 2746 11.3270 17.5638 0.2919 229.2436 2746 11.3437 15.1668 0.7527 118.0673 2746 11.4164 13.8925 1.4008 73.1124

Merck MRK 2746 3.1508 6.3411 0.1370 223.2551 2746 3.1549 4.2504 0.2908 56.3544 2746 3.1659 3.2979 0.6123 27.0872

Boeing BA 2746 3.5787 3.5787 0.1666 55.5697 2746 3.5812 3.8709 0.3986 40.5371 2746 3.5931 3.4316 0.6588 27.2926

Microsoft MSFT 2746 3.3363 4.4776 0.0829 62.3858 2746 3.3416 3.8549 0.3717 35.4059 2746 3.3644 3.4701 0.5104 23.9948

Coca-Cola KO 2746 1.9882 2.9940 0.0456 58.8085 2746 1.9928 2.4589 0.1388 29.7524 2746 2.0056 2.1695 0.3345 16.2009

ExxonMobil XOM 2746 2.4521 4.7536 0.1548 141.1297 2746 2.4564 3.9508 0.2067 65.3502 2746 2.4665 3.4004 0.3866 36.3412

DuPont DD 2746 3.4952 4.7785 0.1003 83.4874 2746 3.5010 4.0800 0.3443 47.6385 2746 3.5188 3.6145 0.6402 29.7545

Verizon VZ 2746 3.1083 4.5549 0.1580 102.2209 2746 3.1127 3.8113 0.3230 39.6343 2746 3.1220 3.4037 0.4827 26.5760

Pfizer PFE 2746 2.8742 3.7083 0.2247 62.6970 2746 2.8797 2.9314 0.3945 28.6037 2746 2.9028 2.5597 0.5987 18.3445

|RVd −RVm| (RVd −RVm)
+ (RVd −RVm)

−

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.4534 1.2324 0.0001 26.6613 1036 0.5962 1.7116 0.0001 26.6613 1710 -0.3668 0.8034 -11.7608 -0.0008

SPY 2746 0.6714 1.8814 0.0001 49.9368 1058 0.8629 2.6903 0.0001 49.9368 1688 -0.5514 1.0897 -15.0502 -0.0002

3M Company MMM 2746 1.1011 2.6544 0.0002 79.1980 1066 1.3996 3.8222 0.0011 79.1980 1680 -0.9117 1.4698 -20.4248 -0.0002

Amazon.com Inc AMZN 2746 5.0587 10.3262 0.0008 190.8051 1059 6.4428 14.3813 0.0036 190.8051 1687 -4.1898 6.4702 -43.6638 -0.0008

Merck MRK 2746 1.7140 5.3111 0.0001 208.5760 978 2.3852 8.4320 0.0001 208.5760 1768 -1.3428 2.0304 -21.1981 -0.0008

Boeing BA 2746 1.5633 2.7799 0.0001 41.1240 1089 1.9528 3.8149 0.0016 41.1240 1657 -1.3073 1.7557 -19.6321 -0.0001

Microsoft MSFT 2746 1.4488 2.7747 0.0001 48.7349 1111 1.7558 3.7125 0.0001 48.7349 1635 -1.2403 1.8609 -19.4535 -0.0003

Coca-Cola KO 2746 0.8556 2.0219 0.0000 50.9593 1035 1.1119 2.9604 0.0000 50.9593 1711 -0.7005 1.0952 -12.8000 -0.0006

ExxonMobil XOM 2746 1.1713 3.4696 0.0004 119.3460 1071 1.4831 4.9281 0.0038 119.3460 1675 -0.9719 2.0286 -29.0863 -0.0004

DuPont DD 2746 1.5101 3.0533 0.0002 66.7032 1054 1.9364 4.3229 0.0004 66.7032 1692 -1.2445 1.8202 -22.8639 -0.0002

Verizon VZ 2746 1.3859 2.9105 0.0006 86.9591 1065 1.7690 4.1098 0.0025 86.9591 1681 -1.1432 1.7295 -20.4593 -0.0006

Pfizer PFE 2746 1.3024 2.5298 0.0001 56.3627 985 1.7755 3.8080 0.0014 56.3627 1761 -1.0378 1.2959 -13.5763 -0.0001

Notes: The table provides summary statistics for the 300 seconds sampling frequency RV, including the number of observations, mean, standard deviation, minimum and maximum values. RVd represents the daily realized

volatility, RVw represents the weekly realized volatility, and RVm represents the monthly realized volatility. (RVd −RVm)
+ stands for the (RVd −RVm) when RVd > RVm. (RVd −RVm)

− stands for the (RVd −RVm) when

RVd < RVm.



Table 2.3: Summary statistics (450 seconds)

RVd RVw RVm

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.8659 1.9218 0.0175 43.4451 2746 0.8669 1.6301 0.0319 20.0766 2746 0.8695 1.4523 0.1085 13.4844

SPY 2746 1.2907 3.1320 0.0405 108.7012 2746 1.2924 2.3798 0.0577 36.7878 2746 1.2967 2.0213 0.1659 19.5537

3M Company MMM 2746 2.2930 3.9736 0.1277 117.9914 2746 2.2965 3.0737 0.3033 43.8363 2746 2.3079 2.6165 0.5571 23.6597

Amazon.com Inc AMZN 2746 11.2594 18.5054 0.2991 249.3781 2746 11.2772 15.5552 0.7695 125.6467 2746 11.3467 14.1081 1.3815 74.7395

Merck MRK 2746 3.0077 3.0077 0.1127 179.9697 2746 3.0114 3.9643 0.6148 29.6327 2746 3.0222 3.1861 0.6148 29.6327

Boeing BA 2746 3.4954 4.5448 0.1699 63.6756 2746 3.4980 3.8274 0.4091 38.7852 2746 3.5109 3.3394 0.6585 27.3585

Microsoft MSFT 2746 3.2855 4.7170 0.1010 89.4953 2746 3.2901 3.9709 0.3263 40.7815 2746 3.3131 3.5151 0.4618 24.8051

Coca-Cola KO 2746 1.9177 3.0113 0.0430 76.2785 2746 1.9226 2.4736 0.1513 35.0772 2746 1.9356 2.1265 0.3159 16.5425

ExxonMobil XOM 2746 2.3771 5.5754 0.1079 220.1092 2746 2.3817 4.2628 0.1874 80.2940 2746 2.3921 3.4951 0.3701 38.3663

DuPont DD 2746 3.4200 5.0460 0.0805 125.7009 2746 3.4257 4.1305 0.3043 53.8371 2746 3.4446 3.6049 0.5655 30.1586

Verizon VZ 2746 2.9596 4.9298 0.1418 155.1925 2746 2.9636 3.8385 0.2901 49.5433 2746 2.9727 3.3356 0.4092 27.8103

Pfizer PFE 2746 2.7686 3.9975 0.1495 106.2600 2746 2.7754 2.9934 0.3918 38.0877 2746 2.7972 2.5419 0.5918 19.9804

|RVd −RVm| (RVd −RVm)
+ (RVd −RVm)

−

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.4669 1.2847 0.0000 35.7030 1045 0.6087 1.7838 0.0006 35.7030 1701 -0.3797 0.8313 -12.3374 0.0000

SPY 2746 0.6871 2.4286 0.0000 96.7746 1058 0.8839 3.5849 0.0004 96.7746 1688 -0.5637 1.2270 -17.4268 0.0000

3M Company MMM 2746 1.1226 2.9782 0.0000 105.8665 1068 1.4241 4.3778 0.0000 105.8665 1678 -0.9307 1.4932 -20.0271 -0.0001

Amazon.com Inc AMZN 2746 5.3549 11.5260 0.0007 210.7692 1072 6.7466 16.1111 0.0007 210.7692 1674 -4.4637 7.0548 -49.8341 -0.0061

Merck MRK 2746 1.6388 4.4651 0.0001 161.6738 965 2.3109 7.0666 0.0002 161.6738 1781 -1.2746 1.8232 -23.8343 -0.0001

Boeing BA 2746 1.6168 2.9715 0.0002 50.4956 1064 2.0664 4.1606 0.0002 50.4956 1682 -1.3324 1.8065 -21.5007 -0.0010

Microsoft MSFT 2746 1.5069 3.1033 0.0001 75.0796 1089 1.8651 4.2615 0.0009 75.0796 1657 -1.2715 1.9729 -21.2653 -0.0001

Coca-Cola KO 2746 0.8810 2.1310 0.0001 67.0539 1023 1.1583 3.1233 0.0001 67.0539 1723 -0.7163 1.1735 -13.3672 -0.0002

ExxonMobil XOM 2746 1.1822 4.5013 0.0003 196.2076 1051 1.5248 6.7155 0.0003 196.2076 1695 -0.9699 2.1820 -30.7417 -0.0016

DuPont DD 2746 1.5452 3.4594 0.0007 108.8356 1064 1.9622 5.0096 0.0007 108.8356 1682 -1.2814 1.8689 -22.1796 -0.0022

Verizon VZ 2746 1.3834 3.5524 0.0001 138.6766 1059 1.7765 5.2161 0.0001 138.6766 1687 -1.1366 1.8204 -22.4782 -0.0003

Pfizer PFE 2746 1.3524 2.9382 0.0001 92.2066 986 1.8434 4.4892 0.0002 92.2066 1760 -1.0773 1.4059 -16.4218 -0.0001

Notes: The table provides summary statistics for the 450 seconds sampling frequency RV, including the number of observations, mean, standard deviation, minimum and maximum values. RVd represents the daily realized

volatility, RVw represents the weekly realized volatility, and RVm represents the monthly realized volatility. (RVd −RVm)
+ stands for the (RVd −RVm) when RVd > RVm. (RVd −RVm)

− stands for the (RVd −RVm) when

RVd < RVm.



Table 2.4: Summary statistics (900 seconds)

RVd RVw RVm

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.8781 2.0887 0.0140 41.8510 2746 0.8791 1.7426 0.0345 20.5337 2746 0.8818 1.5344 0.1059 14.4925

SPY 2746 1.2255 2.6870 0.0367 59.2785 2746 1.2269 1.2269 0.0618 28.6059 2746 1.2310 1.9302 0.1489 18.1126

3M Company MMM 2746 2.2072 3.6356 0.0611 88.6850 2746 2.2107 2.8471 0.3218 35.4077 2746 2.2229 2.4357 0.5146 21.0156

Amazon.com Inc AMZN 2746 11.0905 19.9610 0.2073 291.4926 2746 11.1077 16.2089 0.6757 148.2630 2746 11.1847 14.3540 1.3587 79.8037

Merck MRK 2746 2.9190 4.7473 0.1151 85.6970 2746 2.9230 3.6077 0.3264 42.7294 2746 2.9339 3.0060 0.5844 26.2185

Boeing BA 2746 3.3975 4.6908 0.1864 67.9505 2746 3.4003 3.7923 0.3584 39.2561 2746 3.4123 3.2980 0.5610 27.9624

Microsoft MSFT 2746 3.1391 4.4819 0.0790 59.6027 2746 3.1436 3.7531 0.2769 36.2599 2746 3.1654 3.3578 0.3824 22.7149

Coca-Cola KO 2746 1.8520 2.8907 0.0284 46.0981 2746 1.8560 2.3556 2.3556 26.3453 2746 1.8673 2.0434 0.3026 15.1583

ExxonMobil XOM 2746 2.2504 4.4821 0.0788 120.9934 2746 2.2554 3.7853 0.1838 63.8851 2746 2.2650 3.1951 0.3742 34.5925

DuPont DD 2746 3.2896 4.8409 0.0250 99.3736 2746 3.2955 3.9380 0.2908 49.1450 2746 3.3132 3.4209 0.5594 27.7393

Verizon VZ 2746 2.8471 4.5800 0.0984 127.9788 2746 2.8515 3.5960 0.2508 43.0768 2746 2.8610 3.1164 0.4026 24.6481

Pfizer PFE 2746 2.6249 3.6972 0.1197 57.8745 2746 2.6295 2.7396 0.3726 24.4129 2746 2.6484 2.3208 0.5722 16.7887

|RVd −RVm| (RVd −RVm)
+ (RVd −RVm)

−

Company Symbol obs mean std min max obs mean std min max obs mean std min max

S&P 500 2746 0.5090 1.4397 0.0002 33.8892 1039 0.6678 1.9936 0.0002 33.8892 1707 -0.4124 -0.4124 -13.3537 -0.0002

SPY 2746 0.6691 1.9058 0.0001 49.0296 1066 0.8546 2.6723 0.0001 49.0296 1680 -0.5513 1.1716 -16.1721 -0.0001

3M Company MMM 2746 1.1678 2.6348 0.0001 78.1059 1027 1.5403 3.8740 0.0001 78.1059 1719 -0.9452 1.4131 -18.6131 -0.0004

Amazon.com Inc AMZN 2746 5.9822 13.3558 0.0016 247.8109 1026 7.8793 19.1979 0.0016 247.8109 1720 -4.8506 7.8516 -54.5427 -0.0027

Merck MRK 2746 1.6819 3.4669 0.0006 70.8920 976 2.3452 5.2537 0.0025 70.8920 1770 -1.3162 1.7497 -21.3200 -0.0006

Boeing BA 2746 1.7493 3.1314 0.0008 62.8438 1009 2.3603 4.4978 0.0011 62.8438 1737 -1.3945 1.8481 -21.7729 -0.0008

Microsoft MSFT 2746 1.5425 2.8532 0.0005 42.3295 1088 1.9134 3.8250 0.0005 42.3295 1658 -1.2991 1.9336 -19.9975 -0.0008

Coca-Cola KO 2746 0.9234 1.9836 0.0000 37.8275 1040 1.1990 2.8410 0.0005 37.8275 1706 -0.7554 1.1583 -13.0521 0.0000

ExxonMobil XOM 2746 1.1877 3.2817 0.0005 101.5293 1059 1.5210 4.6463 0.0005 101.5293 1687 -0.9785 1.9682 -27.7955 -0.0031

DuPont DD 2746 1.5963 3.2868 0.0004 84.6653 1030 2.0964 4.7819 0.0004 84.6653 1716 -1.2961 1.8252 -22.2100 -0.0007

Verizon VZ 2746 1.4642 3.2123 0.0010 114.4350 1034 1.9258 4.7082 0.0018 114.4350 1712 -1.1855 1.7218 -18.4093 -0.0010

Pfizer PFE 2746 1.4008 2.6595 0.0017 52.9311 991 1.9082 4.0186 0.0018 52.9311 1755 -1.1143 1.3139 -14.8587 -0.0017

Notes: The table provides summary statistics for the 900 seconds sampling frequency RV, including the number of observations, mean, standard deviation, minimum and maximum values. RVd represents the daily realized

volatility, RVw represents the weekly realized volatility, and RVm represents the monthly realized volatility. (RVd −RVm)
+ stands for the (RVd −RVm) when RVd > RVm. (RVd −RVm)

− stands for the (RVd −RVm) when

RVd < RVm..



Table 3.3: In-sample estimation (S&P 500)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.0668 0.2407 0.4909 0.1864 0.5701 3.2649 0.0453 0.3662 0.2959 0.2480 0.5513 1.1159 0.1203 0.2295 0.5075 0.1740 0.5500 4.1932

(0.0273) (0.0228) (0.0382) (0.0334) (0.0153) (0.0280) (0.0463) (0.0417) (0.0728) (0.0377) (0.0633) (0.0557)
300 sec 0.0645 0.2585 0.4703 0.1951 0.5865 3.2415 0.0624 0.3258 0.2651 0.2987 0.4608 1.7613 0.1055 0.2454 0.5044 0.1719 0.5849 4.0902

(0.0272) (0.0227) (0.0383) (0.0334) (0.0206) (0.0279) (0.0483) (0.0460) (0.0688) (0.0375) (0.0632) (0.0549)
450 sec 0.0720 0.2390 0.4989 0.1773 0.5660 3.3115 0.0772 0.2758 0.2659 0.3248 0.3849 2.1107 0.1128 0.2270 0.5455 0.1423 0.5790 4.1026

(0.0282) (0.0230) (0.0383) (0.0332) (0.0242) (0.0280) (0.0501) (0.0497) (0.0691) (0.0382) (0.0628) (0.0535)
900 sec 0.0810 0.2309 0.4501 0.2249 0.5213 3.5761 0.0954 0.1988 0.2666 0.3725 0.2930 2.5061 0.1239 0.2383 0.4809 0.1885 0.5467 4.3331

(0.0318) (0.0230) (0.0389) (0.0348) (0.0291) (0.0281) (0.0533) (0.0554) (0.0767) (0.0382) (0.0631) (0.0552)
average 0.0711 0.2423 0.4775 0.1959 0.5610 3.3485 0.0701 0.2916 0.2734 0.3110 0.4225 1.8735 0.1156 0.2351 0.5096 0.1692 0.5652 4.1798

(0.0286) (0.0229) (0.0384) (0.0337) (0.0223) (0.0280) (0.0495) (0.0482) (0.0719) (0.0379) (0.0631) (0.0548)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec −0.0608 0.7854 −0.0143 0.3591 0.0231 0.6126 3.1611 0.0162 0.5836 −0.0267 0.2354 0.1926 0.5659 1.0833 −0.0787 0.9110 −0.0168 0.3420 −0.0272 0.6041 4.0661

(0.0270) (0.0381) (0.0008) (0.0371) (0.0331) (0.0155) (0.0394) (0.0035) (0.0462) (0.0416) (0.0704) (0.0679) (0.0014) (0.0610) (0.0550)
300 sec −0.0703 0.6628 −0.0141 0.3934 0.1110 0.6106 3.1817 0.0307 0.5620 −0.0197 0.1887 0.2363 0.4853 1.7154 −0.1287 0.8168 −0.0181 0.3919 0.0533 0.6184 4.0072

(0.0283) (0.0379) (0.0011) (0.0376) (0.0331) (0.0204) (0.0376) (0.0022) (0.0479) (0.0454) (0.0705) (0.0705) (0.0019) (0.0617) (0.0541)
450 sec −0.0692 0.6660 −0.0131 0.4518 0.0457 0.6070 3.2127 0.0404 0.5364 −0.0183 0.1914 0.2451 0.4128 2.0649 −0.1317 0.8362 −0.0165 0.4612 −0.0403 0.6382 3.9520

(0.0281) (0.0334) (0.0008) (0.0365) (0.0325) (0.0240) (0.0396) (0.0020) (0.0496) (0.0493) (0.0669) (0.0592) (0.0013) (0.0586) (0.0516)
900 sec −0.0633 0.6403 −0.0125 0.4059 0.1145 0.5564 3.5004 0.0646 0.4494 −0.0116 0.1871 0.2867 0.3225 2.4639 −0.1231 0.8066 −0.0158 0.4126 0.0386 0.5963 4.2181

(0.0322) (0.0355) (0.0008) (0.0376) (0.0344) (0.0287) (0.0397) (0.0013) (0.0530) (0.0551) (0.0757) (0.0624) (0.0014) (0.0599) (0.0538)
average −0.0659 0.6886 −0.0135 0.4025 0.0735 0.5966 3.2640 0.0380 0.5328 −0.0190 0.2007 0.2402 0.4466 1.8319 −0.1156 0.8427 −0.0168 0.4019 0.0061 0.6142 4.0609

(0.0289) (0.0362) (0.0009) (0.0372) (0.0333) (0.0222) (0.0391) (0.0022) (0.0492) (0.0479) (0.0708) (0.0650) (0.0015) (0.0603) (0.0536)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec −0.0131 0.6421 −0.0188 0.3801 0.0458 0.6137 3.1584 0.0252 0.5153 −0.0402 0.2629 0.1953 0.5569 1.1040 0.0025 0.6915 −0.0203 0.3789 0.0149 0.6016 4.0724

(0.0263) (0.0314) (0.0011) (0.0368) (0.0327) (0.0158) (0.0418) (0.0084) (0.0466) (0.0429) (0.0693) (0.0537) (0.0018) (0.0606) (0.0542)
300 sec −0.0236 0.5955 −0.0211 0.3578 0.1304 0.6092 3.1852 0.0187 0.6195 −0.0515 0.1910 0.2014 0.4818 1.7221 −0.0276 0.6712 −0.0240 0.3543 0.0933 0.6136 4.0197

(0.0273) (0.0345) (0.0017) (0.0382) (0.0329) (0.0208) (0.0443) (0.0061) (0.0481) (0.0465) (0.0682) (0.0609) (0.0028) (0.0633) (0.0537)
450 sec −0.0155 0.6171 −0.0199 0.4186 0.0374 0.6134 3.1961 0.0188 0.6445 −0.0491 0.1766 0.1999 0.4194 2.0535 −0.0199 0.7121 −0.0222 0.4240 −0.0292 0.6408 3.9447

(0.0270) (0.0299) (0.0011) (0.0364) (0.0323) (0.0242) (0.0453) (0.0048) (0.0495) (0.0498) (0.0646) (0.0510) (0.0017) (0.0587) (0.0511)
900 sec −0.0222 0.6230 −0.0214 0.3554 0.1167 0.5628 3.4857 0.0403 0.5975 −0.0362 0.1531 0.2326 0.3352 2.4450 −0.0265 0.7191 −0.0235 0.3494 0.0631 0.5991 4.2111

(0.0311) (0.0327) (0.0013) (0.0376) (0.0340) (0.0287) (0.0466) (0.0034) (0.0528) (0.0553) (0.0733) (0.0551) (0.0020) (0.0604) (0.0531)
average −0.0186 0.6194 −0.0203 0.3780 0.0826 0.5998 3.2564 0.0257 0.5942 −0.0442 0.1959 0.2073 0.4483 1.8312 −0.0179 0.6985 −0.0225 0.3767 0.0356 0.6138 4.0620

(0.0279) (0.0321) (0.0013) (0.0373) (0.0330) (0.0224) (0.0445) (0.0057) (0.0492) (0.0486) (0.0688) (0.0552) (0.0021) (0.0608) (0.0530)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.4: In-sample estimation (SPY)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec −0.1357 0.1623 0.5257 0.2096 0.4896 4.2356 0.1073 0.2044 0.3894 0.2986 0.4438 2.9826 0.2015 0.1521 0.5537 0.1874 0.4858 5.0418

(0.0463) (0.0233) (0.0399) (0.0359) (0.0375) (0.0288) (0.0514) (0.0480) (0.1120) (0.0386) (0.0656) (0.0588)
300 sec 0.1247 0.2045 0.4791 0.2189 0.5002 4.1233 0.1392 0.1979 0.3116 0.3482 0.3372 3.3602 0.1681 0.2055 0.5306 0.1711 0.5363 4.7754

(0.0438) (0.0230) (0.0395) (0.0356) (0.0447) (0.0285) (0.0528) (0.0528) (0.0982) (0.0381) (0.0638) (0.0561)
450 sec 0.1710 0.0853 0.5157 0.2644 0.3665 4.6666 0.1173 0.2588 0.2806 0.3361 0.3968 3.0667 0.2620 0.0572 0.5550 0.2445 0.3505 5.5324

(0.0566) (0.0232) (0.0428) (0.0411) (0.0387) (0.0282) (0.0511) (0.0498) (0.1415) (0.0385) (0.0712) (0.0686)
900 sec 0.1257 0.1729 0.5167 0.2060 0.4909 4.1413 0.1219 0.2458 0.2802 0.3359 0.3619 3.0501 0.1858 0.1491 0.5748 0.1709 0.5045 4.9048

(0.0434) (0.0233) (0.0394) (0.0352) (0.0384) (0.0281) (0.0515) (0.0513) (0.1037) (0.0389) (0.0645) (0.0566)
average 0.1393 0.1563 0.5093 0.2247 0.4618 4.2917 0.1214 0.2267 0.3155 0.3297 0.3849 3.1149 0.2043 0.1410 0.5535 0.1935 0.4693 5.0636

(0.0475) (0.0232) (0.0404) (0.0369) (0.0398) (0.0284) (0.0517) (0.0505) (0.1139) (0.0385) (0.0663) (0.0600)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec −0.0330 0.7033 −0.0064 0.3808 0.0041 0.5579 4.0925 0.0544 0.5673 −0.0078 0.1982 0.2196 0.4852 2.9057 −0.0523 0.8244 −0.0072 0.3810 −0.0705 0.5725 4.8581

(0.0439) (0.0341) (0.0003) (0.0378) (0.0348) (0.0364) (0.0413) (0.0007) (0.0520) (0.0467) (0.1037) (0.0587) (0.0005) (0.0610) (0.0565)
300 sec −0.0219 0.6601 −0.0076 0.3334 0.0916 0.5452 4.0294 0.0918 0.4952 −0.0051 0.1655 0.2747 0.3753 3.3015 −0.0793 0.8125 −0.0100 0.3652 −0.0099 0.5942 4.6430

(0.0428) (0.0353) (0.0005) (0.0387) (0.0349) (0.0437) (0.0399) (0.0005) (0.0531) (0.0517) (0.0941) (0.0618) (0.0008) (0.0613) (0.0546)
450 sec 0.0375 0.5448 −0.0032 0.3752 0.0902 0.4189 4.5806 0.0659 0.5193 −0.0105 0.1770 0.2742 0.4248 3.0198 0.0458 0.6745 −0.0038 0.3628 0.0166 0.4165 5.4262

(0.0548) (0.0367) (0.0002) (0.0420) (0.0409) (0.0382) (0.0394) (0.0011) (0.0512) (0.0491) (0.1357) (0.0682) (0.0004) (0.0698) (0.0684)
900 sec −0.0640 0.6086 −0.0108 0.4560 0.0737 0.5254 4.0716 0.0345 0.6306 −0.0217 0.1881 0.2136 0.3950 2.9974 −0.1414 0.8274 −0.0145 0.4543 −0.0245 0.5568 4.7941

(0.0440) (0.0381) (0.0008) (0.0382) (0.0353) (0.0385) (0.0479) (0.0022) (0.0510) (0.0515) (0.1026) (0.0721) (0.0013) (0.0619) (0.0564)
average −0.0203 0.6292 −0.0070 0.3864 0.0649 0.5118 4.1935 0.0616 0.5531 −0.0113 0.1822 0.2455 000...444222000111 333...000555666111 −0.0568 0.7847 −0.0089 0.3908 −0.0220 0.5350 4.9303

(0.0464) (0.0360) (0.0004) (0.0392) (0.0365) (0.0392) (0.0421) (0.0011) (0.0518) (0.0497) (0.1090) (0.0652) (0.0008) (0.0635) (0.0590)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.0111 0.5947 −0.0099 0.3987 0.0384 0.5469 4.1169 0.0349 0.6500 −0.0332 0.2094 0.1585 0.4830 2.9101 0.0051 0.7382 −0.0115 0.3731 −0.0376 0.5651 4.8753

(0.0442) (0.0319) (0.0005) (0.0382) (0.0350) (0.0367) (0.0477) (0.0029) (0.0520) (0.0479) (0.1040) (0.0559) (0.0009) (0.0618) (0.0565)
300 sec 0.0067 0.5759 −0.0130 0.3621 0.1070 0.5370 4.0473 0.0516 0.6782 −0.0255 0.1208 0.2027 0.3887 3.2799 0.0046 0.6578 −0.0138 0.3806 0.0375 0.5815 4.6739

(0.0429) (0.0335) (0.0009) (0.0388) (0.0351) (0.0436) (0.0482) (0.0021) (0.0530) (0.0521) (0.0946) (0.0564) (0.0013) (0.0623) (0.0548)
450 sec 0.0500 0.5260 −0.0062 0.3770 0.0934 0.4170 4.5839 0.0428 0.5961 −0.0273 0.1712 0.2353 0.4238 3.0216 0.0698 0.6388 −0.0072 0.3674 0.0251 0.4134 5.4315

(0.0548) (0.0362) (0.0004) (0.0421) (0.0409) (0.0387) (0.0464) (0.0030) (0.0514) (0.0500) (0.1358) (0.0667) (0.0007) (0.0700) (0.0685)
900 sec 0.0147 0.5224 −0.0128 0.4338 0.0835 0.5272 4.0677 0.0615 0.5220 −0.0224 0.2072 0.2408 0.3851 3.0137 0.0272 0.6035 −0.0144 0.4489 0.0207 0.5512 4.8068

(0.0426) (0.0329) (0.0009) (0.0383) (0.0350) (0.0384) (0.0437) (0.0028) (0.0513) (0.0517) (0.0999) (0.0577) (0.0014) (0.0626) (0.0558)
average 0.0206 0.5547 −0.0105 0.3929 0.0806 0.5070 4.2039 0.0477 0.6116 −0.0271 0.1772 0.2093 0.4201 3.0563 0.0267 0.6596 −0.0117 0.3925 0.0114 0.5278 4.9469

(0.0461) (0.0336) (0.0007) (0.0394) (0.0365) (0.0394) (0.0465) (0.0027) (0.0519) (0.0504) (0.1086) (0.0592) (0.0011) (0.0642) (0.0589)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.5: In-sample fits

Full Pre-Crisis Crisis

R2 HAQ HARQ TV-HAR HAQ HARQ TV-HAR HAQ HARQ TV-HAR

MMM 0.3792 0.4038 0.4061 0.4718 0.4886 0.4760 0.3639 0.3934 0.3954

AMZN 0.5879 0.5950 0.5890 0.5849 0.5915 0.5851 0.5235 0.5544 0.5661

MRK 0.2679 0.3060 0.3099 0.2503 0.2649 0.2615 0.2714 0.3266 0.3368

BA 0.5611 0.5710 0.5685 0.5307 0.5436 0.5326 0.5821 0.5914 0.5959

MSFT 0.5885 0.6045 0.6080 0.5991 0.6125 0.6139 0.5852 0.6059 0.6091

KO 0.6025 0.6108 0.6103 0.5784 0.5887 0.5821 0.6288 0.6426 0.6453

XOM 0.6961 0.6970 0.6979 0.6099 0.6101 0.6102 0.7119 0.7139 0.7149

DD 0.5082 0.5324 0.5281 0.5353 0.5510 0.5490 0.4824 0.5196 0.5115

VZ 0.6199 0.6206 0.6213 0.5738 0.5758 0.5744 0.6602 0.6643 0.6674

PFE 0.4050 0.4402 0.4356 0.3456 0.3707 0.3655 0.4754 0.5356 0.5246

Average 0.5216 0.5381 0.5375 0.5080 0.5197 0.5150 0.5285 0.5548 0.5567

S&P500 0.5610 0.5966 0.5998 0.4225 0.4466 0.4483 0.5652 0.6142 0.6138

SPY 0.4618 0.5118 0.5070 0.3849 0.4201 0.4201 0.4693 0.5350 0.5278

Full Pre-Crisis Crisis

AIC HAQ HARQ TV-HAR HAQ HARQ TV-HAR HAQ HARQ TV-HAR

MMM 5.1951 5.1540 5.1515 4.0171 3.9846 4.0102 5.9305 5.8806 5.8798

AMZN 7.7431 7.7250 7.7404 8.0170 8.0011 8.0172 6.9606 6.8902 6.8628

MRK 6.0127 5.9611 5.9554 4.9495 4.9300 4.9346 6.7281 6.6523 6.6374

BA 5.0457 5.0216 5.0277 4.7019 4.6722 4.6981 5.4504 5.4276 5.4159

MSFT 4.9335 4.8925 4.8840 4.7815 4.7470 4.7436 5.1174 5.0667 5.0588

KO 3.7936 3.7747 3.7755 3.5837 3.5621 3.5776 4.0620 4.0275 4.0190

XOM 4.1938 4.1910 4.1879 3.1905 3.1905 3.1902 4.9174 4.9119 4.9087

DD 5.3200 5.2689 5.2785 4.4125 4.3772 4.3829 6.0256 5.7928 5.9685

VZ 4.5845 4.5828 4.5811 4.2844 4.2803 4.2839 4.9322 4.9209 4.9115

PFE 4.9572 4.8964 4.9045 4.7919 4.7532 4.7614 5.1522 5.0326 5.0563

Average 5.1779 5.1468 5.1486 4.6730 4.6498 4.6600 5.5277 5.4603 5.4719

S&P500 3.3485 3.2640 3.2564 1.8735 1.8319 1.8312 4.1798 4.0609 4.0620

SPY 4.2917 4.1935 4.2039 3.1149 3.0561 3.0563 5.0636 4.9303 4.9469

Notes: The table provides the in-sample fit averaged across different sampling frequencies for the standard HAR, the HARQ and the TV-HAR
models. R2 stands for the adjusted R-squared. AIC denotes the Akaike information criterion. The sub-sample of the pre-crisis period is from
2000 to 2006. The sub-sample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than
the other two models for the average of different frequencies. The Average means the mean of R2 and AIC for the ten stocks.



Table 3.6: Out-of-sample forecasts (S&P 500)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.4356 0.4328 0.4442 0.4980 0.4526 0.0938 0.1067 0.1192 0.1268 0.1116 0.6930 0.6783 0.6890 0.7775 0.7094
HARQ 0.4280 0.4337 0.4394 0.4850 0.4465 0.0918 0.1042 0.1151 0.1218 0.1082 0.6812 0.6818 0.6837 0.7585 0.7013
TV-HAR 0.4173 0.4265 0.4238 0.4825 0.4375 0.0930 0.1027 0.1122 0.1200 0.1070 0.6615 0.6704 0.6585 0.7554 0.6864

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 2.8848 2.3424 2.6749 3.1065 2.7522 0.0160 0.0207 0.0256 0.0281 0.0226 5.0450 4.0906 4.6698 5.4245 4.8075
HARQ 2.5549 2.1625 2.3989 2.8925 2.5022 0.0165 0.0219 0.0276 0.0284 0.0236 4.4663 3.7743 4.1844 5.0492 4.3685
TV-HAR 2.4401 2.1579 2.1629 2.8967 2.4144 0.0160 0.0206 0.0265 0.0281 0.0228 4.2654 3.7673 3.7715 5.0567 4.2152

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9826 1.0021 0.9892 0.9739 0.9870 0.9786 0.9764 0.9656 0.9607 0.9703 0.9830 1.0051 0.9923 0.9755 0.9890
TV-HAR 0.9579 0.9856 0.9542 0.9688 0.9666 0.9915 0.9623 0.9414 0.9463 0.9604 0.9545 0.9884 0.9558 0.9715 0.9675

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.8856 0.9232 0.8968 0.9311 0.9092 1.0300 1.0564 1.0779 1.0110 1.0438 0.8853 0.9227 0.8961 0.9308 0.9087
TV-HAR 0.8458 0.9212 0.8086 0.9325 0.8770 0.9991 0.9947 1.0362 0.9991 1.0073 0.8455 0.9210 0.8076 0.9322 0.8766

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 1.7401 -0.2103 1.0781 2.6104 1.3046 2.1446 2.3609 3.4399 3.9268 2.9681 1.6984 -0.5145 0.7705 2.4501 1.1011
TV-HAR 4.2057 1.4396 4.5846 3.1224 3.3381 0.8489 3.7662 5.8564 5.3698 3.9603 4.5484 1.1647 4.4189 2.8499 3.2455

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 11.4358 7.6802 10.3191 6.8888 9.0810 -2.9988 -5.6357 -7.7929 -1.0997 -4.3818 11.4708 7.7324 10.3938 6.9186 9.1289
TV-HAR 15.4153 7.8765 19.1432 6.7536 12.2971 0.0939 0.5259 -3.6181 0.0890 -0.7273 15.4529 7.9035 19.2371 6.7791 12.3432

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The Relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.7: Out-of-sample forecasts (SPY)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.6288 0.5883 0.7077 0.6266 0.6379 0.1505 0.1658 0.1591 0.1616 0.1593 0.9889 0.9064 1.1209 0.9767 0.9982
HARQ 0.5977 0.5518 0.6841 0.6113 0.6113 0.1374 0.1499 0.1499 0.1504 0.1469 0.9444 0.8545 1.0864 0.9584 0.9609
TV-HAR 0.5792 0.5664 0.6333 0.6017 0.5951 0.1348 0.1438 0.1442 0.1499 0.1432 0.9137 0.8845 1.0016 0.9420 0.9354

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 8.5777 5.1910 15.1145 5.5846 8.6170 0.0539 0.0528 0.0444 0.0698 0.0552 14.9972 9.0616 26.4620 9.7395 15.0651
HARQ 8.0552 4.1260 17.5343 4.8303 8.6365 0.0415 0.0628 0.0458 0.0632 0.0533 14.0901 7.1872 30.7027 8.4214 15.1004
TV-HAR 5.9376 5.0233 11.0824 4.9967 6.7600 0.0341 0.0374 0.0430 0.0488 0.0408 10.3830 8.7781 19.3948 8.7231 11.8197

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9506 0.9380 0.9667 0.9756 0.9577 0.9128 0.9041 0.9423 0.9308 0.9225 0.9550 0.9427 0.9693 0.9812 0.9620
TV-HAR 0.9211 0.9627 0.8949 0.9603 0.9347 0.8958 0.8674 0.9067 0.9273 0.8993 0.9240 0.9758 0.8936 0.9644 0.9395

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9397 0.7936 1.1601 0.8650 0.9396 0.9359 0.9059 1.0314 0.9486 0.9555 0.9397 0.7932 1.1603 0.8647 0.9395
TV-HAR 0.6927 0.9683 0.7332 0.8959 0.8225 0.8892 0.8436 0.9672 0.9518 0.9129 0.6924 0.9688 0.7329 0.8957 0.8224

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 4.9365 6.1976 3.3337 2.4370 4.2262 8.7159 9.5947 5.7711 6.9183 7.7500 4.5030 5.7303 3.0728 1.8807 3.7967
TV-HAR 7.8931 3.7295 10.5125 3.9706 6.5264 10.4232 13.2614 9.3258 7.2710 10.0703 7.6035 2.4183 10.6389 3.5588 6.0549

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 6.0317 20.6414 -16.0096 13.5010 6.0411 6.4070 9.4103 -3.1409 5.1386 4.4538 6.0312 20.6831 -16.0258 13.5297 6.0546
TV-HAR 30.7266 3.1685 26.6774 10.4101 17.7457 11.0845 15.6373 3.2793 4.8213 8.7056 30.7637 3.1231 26.7070 10.4307 17.7561

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.8: Out-of-sample forecasts (average stock)

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average

HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HARQ 0.9689 0.9950 0.9945 0.9931 0.9878 0.9616 0.9700 0.9614 0.9731 0.9665 0.9719 1.0021 1.0052 0.9992 0.9946

TV-HAR 0.9706 0.9935 0.9934 0.9923 0.9874 0.9738 0.9777 0.9734 0.9816 0.9766 0.9705 0.9979 1.0001 0.9956 0.9910

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average

HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HARQ 0.9481 0.9693 1.0551 0.9940 0.9916 0.9782 0.9829 0.9729 0.9822 0.9790 0.9459 0.9693 1.0589 0.9920 0.9915

TV-HAR 0.9073 0.9418 0.9846 0.9788 0.9531 0.9853 0.9836 0.9805 0.9848 0.9836 0.9029 0.9393 0.9865 0.9769 0.9514

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HARQ 3.1132 0.5039 0.5496 0.6934 1.2150 3.8384 3.0005 3.8624 2.6902 3.3479 2.8137 -0.2125 -0.5191 0.0800 0.5405

TV-HAR 2.9399 0.6471 0.6638 0.7714 1.2556 2.6228 2.2258 2.6625 1.8355 2.3367 2.9471 0.2146 -0.0090 0.4379 0.8977

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HARQ 5.1853 3.0715 -5.5065 0.5971 0.8369 2.1839 1.7130 2.7086 1.7848 2.0976 5.4118 3.0674 -5.8876 0.7962 0.8469

TV-HAR 9.2722 5.8231 1.5368 2.1216 4.6884 1.4714 1.6390 1.9508 1.5152 1.6441 9.7085 6.0654 1.3488 2.3135 4.8591

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE averaged across the individual

stocks. The numbers in bold represent the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010.

The relative MAE and MSE means the ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared

with the HAR model, for example, the MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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3.9 Appendix

Individual stocks in-sample estimation results
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Table 3.9: In-sample estimation (MMM)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.4628 0.0817 0.3442 0.3862 0.2211 5.9531 0.1989 0.3947 0.2628 0.2461 0.5312 3.8071 0.6770 0.0555 0.3340 0.3934 0.1768 6.8735

(0.1198) (0.0226) (0.0455) (0.0490) (0.0628) (0.0277) (0.0457) (0.0418) (0.2954) (0.0372) (0.0769) (0.0856)
300 sec 0.2432 0.1743 0.5505 0.1707 0.4990 4.8230 0.2024 0.3309 0.3004 0.2692 0.4979 3.9655 0.3063 0.1081 0.6542 0.1289 0.4988 5.5064

(0.0685) (0.0232) (0.0389) (0.0346) (0.0663) (0.0279) (0.0477) (0.0442) (0.1484) (0.0387) (0.0646) (0.0567)
450 sec 0.2924 0.1027 0.5397 0.2275 0.3927 5.1003 0.2101 0.3042 0.3137 0.2756 0.4729 4.0097 0.3803 0.0428 0.6117 0.2042 0.3674 5.8576

(0.0789) (0.0232) (0.0414) (0.0391) (0.0674) (0.0282) (0.0483) (0.0451) (0.1772) (0.0385) (0.0696) (0.0662)
900 sec 0.2716 0.1090 0.5192 0.2456 0.4038 4.9040 0.2352 0.2205 0.3120 0.3440 0.3854 4.2861 0.3336 0.0432 0.6335 0.1927 0.4128 5.4845

(0.0726) (0.0232) (0.0410) (0.0386) (0.0764) (0.0282) (0.0516) (0.0506) (0.1496) (0.0388) (0.0676) (0.0624)
average 0.3175 0.1170 0.4884 0.2575 0.3792 5.1951 0.2116 0.3126 0.2972 0.2837 0.4718 4.0171 0.4243 0.0624 0.5584 0.2298 0.3639 5.9305

(0.0849) (0.0230) (0.0417) (0.0403) (0.0682) (0.0280) (0.0483) (0.0454) (0.1926) (0.0383) (0.0697) (0.0677)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.3369 0.4279 −0.0006 0.2170 0.2398 0.2508 5.9145 0.0484 0.6478 −0.0080 0.2231 0.1645 0.5496 3.7676 0.5400 0.4262 −0.0006 0.2117 0.2295 0.2029 6.8423

(0.1181) (0.0398) (0.0001) (0.0462) (0.0500) (0.0641) (0.0403) (0.0009) (0.0451) (0.0421) (0.2916) (0.0735) (0.0001) (0.0785) (0.0888)
300 sec 0.0200 0.5468 −0.0044 0.4548 0.0417 0.5284 4.7630 0.0155 0.6382 −0.0108 0.2498 0.1800 0.5178 3.9256 −0.0545 0.7421 −0.0058 0.4631 −0.0772 0.5412 5.4191

(0.0686) (0.0363) (0.0003) (0.0385) (0.0350) (0.0686) (0.0453) (0.0013) (0.0471) (0.0446) (0.1468) (0.0752) (0.0006) (0.0649) (0.0583)
450 sec 0.1688 0.3894 −0.0018 0.4301 0.1299 0.4148 5.0636 0.0002 0.6394 −0.0148 0.2545 0.2010 0.4887 3.9798 0.1965 0.4704 −0.0021 0.4443 0.0624 0.3923 5.8185

(0.0784) (0.0362) (0.0002) (0.0420) (0.0396) (0.0722) (0.0532) (0.0020) (0.0482) (0.0456) (0.1760) (0.0759) (0.0003) (0.0730) (0.0684)
900 sec 0.1244 0.3604 −0.0041 0.4671 0.1551 0.4211 4.8749 0.0717 0.5003 −0.0114 0.2627 0.2718 0.3984 4.2652 0.0953 0.4723 −0.0053 0.5185 0.0495 0.4375 5.4425

(0.0734) (0.0358) (0.0005) (0.0408) (0.0393) (0.0800) (0.0530) (0.0018) (0.0517) (0.0514) (0.1507) (0.0744) (0.0008) (0.0684) (0.0647)
average 0.1625 0.4311 −0.0027 0.3923 0.1416 0.4038 5.1540 0.0340 0.6064 −0.0113 0.2475 0.2043 0.4886 3.9846 0.1943 0.5278 −0.0035 0.4094 0.0660 0.3934 5.8806

(0.0846) (0.0370) (0.0003) (0.0419) (0.0410) (0.0712) (0.0480) (0.0015) (0.0480) (0.0459) (0.1913) (0.0748) (0.0005) (0.0712) (0.0701)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.2681 0.5707 −0.0032 0.1766 0.1762 0.2632 5.8979 0.1574 0.4792 −0.0067 0.2432 0.2162 0.5329 3.8040 0.4365 0.6404 −0.0036 0.1559 0.1322 0.2188 6.8221

(0.1175) (0.0447) (0.0003) (0.0462) (0.0505) (0.0645) (0.0415) (0.0025) (0.0462) (0.0431) (0.2896) (0.0868) (0.0005) (0.0786) (0.0906)
300 sec 0.0975 0.4654 −0.0063 0.4474 0.0741 0.5248 4.7705 0.1404 0.4539 −0.0099 0.2761 0.2250 0.5017 3.9585 0.0870 0.5620 −0.0076 0.4717 −0.0078 0.5341 5.4343

(0.0677) (0.0328) (0.0005) (0.0388) (0.0346) (0.0681) (0.0430) (0.0026) (0.0480) (0.0456) (0.1452) (0.0638) (0.0009) (0.0657) (0.0569)
450 sec 0.1805 0.3796 −0.0039 0.4295 0.1318 0.4142 5.0646 0.1713 0.3794 −0.0066 0.3021 0.2478 0.4743 4.0076 0.2190 0.4400 −0.0045 0.4488 0.0723 0.3914 5.8199

(0.0783) (0.0357) (0.0004) (0.0421) (0.0396) (0.0693) (0.0424) (0.0028) (0.0484) (0.0466) (0.1756) (0.0729) (0.0007) (0.0729) (0.0681)
900 sec 0.1735 0.3219 −0.0052 0.4592 0.1629 0.4222 4.8730 0.1382 0.4156 −0.0135 0.2624 0.2885 0.3952 4.2706 0.1891 0.3736 −0.0060 0.5205 0.0750 0.4373 5.4428

(0.0723) (0.0322) (0.0006) (0.0409) (0.0390) (0.0779) (0.0458) (0.0025) (0.0520) (0.0512) (0.1480) (0.0623) (0.0009) (0.0683) (0.0635)
average 0.1799 0.4344 −0.0047 0.3782 0.1362 0.4061 5.1515 0.1518 0.4320 −0.0092 0.2709 0.2444 0.4760 4.0102 0.2329 0.5040 −0.0054 0.3992 0.0679 0.3954 5.8798

(0.0840) (0.0363) (0.0004) (0.0420) (0.0409) (0.0700) (0.0432) (0.0026) (0.0487) (0.0466) (0.1896) (0.0714) (0.0007) (0.0714) (0.0698)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.10: In-sample estimation (AMZN)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.5340 0.2601 0.4573 0.2333 0.6848 7.3498 0.5825 0.2618 0.4350 0.2573 0.6870 7.5915 0.6257 0.2509 0.5391 0.1258 0.6030 6.7187

(0.2366) (0.0231) (0.0381) (0.0315) (0.3451) (0.0290) (0.0482) (0.0401) (0.2902) (0.0379) (0.0610) (0.0511)
300 sec 0.6268 0.2849 0.3522 0.3042 0.6136 7.6205 0.7213 0.2975 0.3238 0.3216 0.6108 7.8899 0.6270 0.2220 0.4899 0.2016 0.5497 6.8648

(0.2699) (0.0226) (0.0387) (0.0339) (0.3989) (0.0284) (0.0486) (0.0428) (0.3112) (0.0375) (0.0641) (0.0567)
450 sec 0.7299 0.2666 0.3324 0.3325 0.5601 7.8547 0.8586 0.2668 0.3229 0.3426 0.5543 8.1417 0.6844 0.2643 0.3801 0.2598 0.5047 7.0146

(0.3008) (0.0225) (0.0398) (0.0360) (0.4479) (0.0283) (0.0502) (0.0456) (0.3345) (0.0370) (0.0647) (0.0593)
900 sec 0.8789 0.2724 0.2868 0.3575 0.4932 8.1475 1.0600 0.2863 0.2694 0.3603 0.4877 8.4451 0.7505 0.1889 0.3889 0.3144 0.4366 7.2444

(0.3441) (0.0223) (0.0398) (0.0374) (0.5145) (0.0280) (0.0500) (0.0472) (0.3708) (0.0373) (0.0666) (0.0631)
average 0.6924 0.2710 0.3572 0.3069 0.5879 7.7431 0.8056 0.2781 0.3378 0.3205 0.5849 8.0170 0.6719 0.2315 0.4495 0.2254 0.5235 6.9606

(0.2879) (0.0226) (0.0391) (0.0347) (0.4266) (0.0284) (0.0493) (0.0439) (0.3267) (0.0374) (0.0641) (0.0575)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec −0.0201 0.4610 −0.0011 0.4388 0.1584 0.6927 7.3249 0.0548 0.4448 −0.0010 0.4192 0.1847 0.6934 7.5715 −0.8383 0.7990 −0.0043 0.4911 −0.0377 0.6441 6.6102

(0.2427) (0.0329) (0.0001) (0.0377) (0.0323) (0.3524) (0.0416) (0.0002) (0.0478) (0.0414) (0.3062) (0.0621) (0.0004) (0.0579) (0.0507)
300 sec 0.2339 0.4429 −0.0007 0.3294 0.2447 0.6208 7.6020 0.3080 0.4538 −0.0007 0.3022 0.2597 0.6177 7.8726 −0.4157 0.6637 −0.0032 0.4073 0.0907 0.5821 6.7911

(0.2727) (0.0311) (0.0001) (0.0385) (0.0346) (0.4020) (0.0393) (0.0001) (0.0483) (0.0438) (0.3220) (0.0614) (0.0004) (0.0624) (0.0560)
450 sec 0.1952 0.4800 −0.0009 0.2932 0.2597 0.5697 7.8328 0.3197 0.4690 −0.0008 0.2887 0.2685 0.5626 8.1235 −0.3941 0.7054 −0.0027 0.2544 0.1889 0.5423 6.9367

(0.3051) (0.0350) (0.0001) (0.0397) (0.0368) (0.4533) (0.0446) (0.0001) (0.0501) (0.0469) (0.3426) (0.0600) (0.0003) (0.0637) (0.0575)
900 sec 0.4918 0.4172 −0.0006 0.2652 0.3059 0.4970 8.1404 0.5772 0.4535 −0.0007 0.2460 0.2974 0.4922 8.4368 −0.0210 0.4850 −0.0021 0.3163 0.2730 0.4492 7.2228

(0.3528) (0.0383) (0.0001) (0.0400) (0.0389) (0.5259) (0.0498) (0.0002) (0.0501) (0.0495) (0.3991) (0.0709) (0.0004) (0.0675) (0.0629)
average 0.2252 0.4503 −0.0009 0.3316 0.2422 0.5950 7.7250 0.3149 0.4553 −0.0008 0.3140 0.2526 0.5915 8.0011 −0.4173 0.6633 −0.0031 0.3673 0.1287 0.5544 6.8902

(0.2933) (0.0343) (0.0001) (0.0389) (0.0357) (0.4334) (0.0439) (0.0001) (0.0491) (0.0454) (0.3425) (0.0636) (0.0004) (0.0629) (0.0568)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.3389 0.3663 −0.0015 0.4430 0.1810 0.6872 7.3426 0.4881 0.3130 −0.0007 0.4285 0.2305 0.6874 7.5908 −0.4680 0.7024 −0.0081 0.4759 −0.0197 0.6538 6.5827

(0.2394) (0.0322) (0.0003) (0.0380) (0.0333) (0.3490) (0.0410) (0.0004) (0.0483) (0.0428) (0.2855) (0.0512) (0.0007) (0.0572) (0.0492)
300 sec 0.5283 0.3391 −0.0006 0.3423 0.2793 0.6142 7.6193 0.6662 0.3272 −0.0003 0.3185 0.3072 0.6108 7.8905 −0.6699 0.7644 −0.0096 0.3691 0.0792 0.5970 6.7547

(0.2731) (0.0327) (0.0003) (0.0389) (0.0356) (0.4029) (0.0418) (0.0003) (0.0489) (0.0454) (0.3175) (0.0611) (0.0009) (0.0616) (0.0548)
450 sec 0.5979 0.3372 −0.0006 0.3196 0.3000 0.5612 7.8524 0.7798 0.3081 −0.0003 0.3161 0.3221 0.5544 8.1419 −0.5535 0.7650 −0.0074 0.2256 0.1875 0.5564 6.9054

(0.3039) (0.0333) (0.0002) (0.0400) (0.0377) (0.4519) (0.0427) (0.0003) (0.0505) (0.0483) (0.3365) (0.0579) (0.0007) (0.0628) (0.0565)
900 sec 0.7914 0.3124 −0.0003 0.2805 0.3399 0.4935 8.1473 0.9764 0.3220 −0.0003 0.2642 0.3438 0.4878 8.4456 −0.0634 0.5232 −0.0046 0.3005 0.2582 0.4572 7.2082

(0.3486) (0.0341) (0.0002) (0.0400) (0.0391) (0.5205) (0.0438) (0.0002) (0.0502) (0.0497) (0.3866) (0.0649) (0.0007) (0.0669) (0.0626)
average 0.5641 0.3387 −0.0007 0.3463 0.2750 0.5890 7.7404 0.7276 0.3176 −0.0004 0.3318 0.3009 0.5851 8.0172 −0.4387 0.6887 −0.0074 0.3428 0.1263 0.5661 6.8628

(0.2912) (0.0331) (0.0002) (0.0392) (0.0364) (0.4311) (0.0423) (0.0003) (0.0495) (0.0466) (0.3315) (0.0588) (0.0007) (0.0621) (0.0558)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.11: In-sample estimation (MRK)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.6199 0.1581 0.2872 0.3603 0.2328 6.2835 0.4175 0.2167 0.2429 0.3764 0.2873 4.7709 0.9213 0.1478 0.2948 0.3422 0.2080 7.1388

(0.1466) (0.0226) (0.0436) (0.0474) (0.1112) (0.0279) (0.0535) (0.0563) (0.3560) (0.0374) (0.0723) (0.0802)
300 sec 0.6367 0.1495 0.2729 0.3729 0.2091 6.2991 0.4594 0.2195 0.2364 0.3609 0.2599 4.9271 0.9327 0.1355 0.2796 0.3598 0.1842 7.1294

(0.1493) (0.0224) (0.0445) (0.0494) (0.1176) (0.0279) (0.0533) (0.0576) (0.3588) (0.0370) (0.0741) (0.0841)
450 sec 0.5194 0.1550 0.3443 0.3254 0.2717 5.9570 0.4588 0.2204 0.1973 0.3960 0.2467 4.9852 0.6961 0.1318 0.3924 0.2938 0.2675 6.6877

(0.1252) (0.0227) (0.0430) (0.0452) (0.1195) (0.0278) (0.0539) (0.0589) (0.2823) (0.0377) (0.0712) (0.0744)
900 sec 0.3880 0.2024 0.3338 0.3281 0.3582 5.5111 0.4992 0.1725 0.2301 0.3885 0.2071 5.1150 0.4444 0.2243 0.3781 0.2779 0.4259 5.9566

(0.1015) (0.0227) (0.0412) (0.0411) (0.1262) (0.0279) (0.0555) (0.0620) (0.1995) (0.0381) (0.0654) (0.0621)
average 0.5410 0.1662 0.3096 0.3467 0.2679 6.0127 0.4587 0.2073 0.2267 0.3805 0.2503 4.9495 0.7486 0.1599 0.3362 0.3184 0.2714 6.7281

(0.1307) (0.0226) (0.0431) (0.0458) (0.1186) (0.0279) (0.0540) (0.0587) (0.2991) (0.0376) (0.0708) (0.0752)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.3274 0.5696 −0.0011 0.2073 0.1628 0.2886 6.2084 0.3625 0.4301 −0.0018 0.1575 0.2975 0.3088 4.7409 0.4950 0.6789 −0.0013 0.1953 0.0910 0.2801 7.0444

(0.1426) (0.0354) (0.0001) (0.0423) (0.0476) (0.1098) (0.0399) (0.0002) (0.0539) (0.0565) (0.3420) (0.0636) (0.0001) (0.0696) (0.0805)
300 sec 0.4099 0.5235 −0.0007 0.1815 0.1920 0.2642 6.2274 0.3914 0.4145 −0.0017 0.1630 0.2903 0.2805 4.8994 0.5770 0.6485 −0.0009 0.1597 0.1107 0.2585 7.0350

(0.1449) (0.0338) (0.0001) (0.0434) (0.0493) (0.1164) (0.0388) (0.0002) (0.0536) (0.0577) (0.3439) (0.0620) (0.0001) (0.0717) (0.0839)
450 sec 0.2818 0.4729 −0.0017 0.2771 0.1919 0.2988 5.9194 0.3808 0.4015 −0.0028 0.1477 0.3306 0.2582 4.9704 0.2424 0.6803 −0.0025 0.2645 0.0715 0.3123 6.6256

(0.1249) (0.0379) (0.0002) (0.0427) (0.0462) (0.1195) (0.0440) (0.0005) (0.0543) (0.0598) (0.2791) (0.0766) (0.0003) (0.0707) (0.0771)
900 sec 0.2086 0.4332 −0.0030 0.2903 0.2500 0.3723 5.4892 0.4453 0.2818 −0.0016 0.1990 0.3515 0.2120 5.1093 0.0859 0.6318 −0.0049 0.3075 0.1365 0.4557 5.9043

(0.1029) (0.0368) (0.0004) (0.0411) (0.0418) (0.1268) (0.0422) (0.0005) (0.0561) (0.0627) (0.2001) (0.0659) (0.0007) (0.0644) (0.0633)
average 0.3069 0.4998 −0.0016 0.2390 0.1992 0.3060 5.9611 0.3950 0.3820 −0.0020 0.1668 0.3175 0.2649 4.9300 0.3501 0.6599 −0.0024 0.2318 0.1024 0.3266 6.6523

(0.1288) (0.0360) (0.0002) (0.0424) (0.0462) (0.1181) (0.0412) (0.0004) (0.0545) (0.0592) (0.2913) (0.0670) (0.0003) (0.0691) (0.0762)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.2079 0.6653 −0.0043 0.1914 0.1256 0.3007 6.1912 0.3070 0.4691 −0.0110 0.1620 0.2873 0.3036 4.7484 0.1961 0.9255 −0.0058 0.1480 −0.0079 0.3121 6.9988

(0.1423) (0.0378) (0.0003) (0.0420) (0.0475) (0.1113) (0.0479) (0.0017) (0.0543) (0.0574) (0.3369) (0.0719) (0.0005) (0.0684) (0.0800)
300 sec 0.3689 0.5638 −0.0030 0.1783 0.1731 0.2689 6.2210 0.3399 0.4507 −0.0081 0.1619 0.2849 0.2768 4.9045 0.4925 0.7370 −0.0037 0.1478 0.0681 0.2700 7.0193

(0.1447) (0.0350) (0.0002) (0.0432) (0.0494) (0.1178) (0.0452) (0.0013) (0.0540) (0.0582) (0.3418) (0.0653) (0.0003) (0.0712) (0.0840)
450 sec 0.3549 0.3948 −0.0024 0.2824 0.2240 0.2935 5.9270 0.3401 0.4211 −0.0090 0.1478 0.3315 0.2555 4.9740 0.3898 0.5430 −0.0032 0.2735 0.1276 0.3030 6.6391

(0.1246) (0.0342) (0.0003) (0.0429) (0.0458) (0.1215) (0.0514) (0.0019) (0.0546) (0.0602) (0.2786) (0.0678) (0.0004) (0.0714) (0.0762)
900 sec 0.2238 0.4358 −0.0066 0.2820 0.2457 0.3767 5.4823 0.4377 0.2766 −0.0038 0.2030 0.3554 0.2102 5.1116 0.1846 0.5859 −0.0086 0.2845 0.1514 0.4622 5.8923

(0.1017) (0.0341) (0.0007) (0.0410) (0.0415) (0.1279) (0.0465) (0.0014) (0.0562) (0.0630) (0.1956) (0.0571) (0.0010) (0.0643) (0.0620)
average 0.2888 0.5149 −0.0041 0.2335 0.1921 0.3099 5.9554 0.3562 0.4044 −0.0080 0.1687 0.3148 0.2615 4.9346 0.3157 0.6978 −0.0053 0.2134 0.0848 0.3368 6.6374

(0.1283) (0.0353) (0.0004) (0.0423) (0.0461) (0.1196) (0.0478) (0.0016) (0.0548) (0.0597) (0.2882) (0.0655) (0.0006) (0.0688) (0.0755)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.12: In-sample estimation (BA)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.2715 0.3489 0.3952 0.1815 0.6284 4.8778 0.2917 0.3535 0.4536 0.1090 0.6265 4.4490 0.2735 0.3450 0.3342 0.2524 0.6289 5.3507

(0.0767) (0.0228) (0.0361) (0.0303) (0.0874) (0.0287) (0.0431) (0.0353) (0.1467) (0.0376) (0.0625) (0.0535)
300 sec 0.2911 0.3552 0.3776 0.1844 0.5954 4.9399 0.3405 0.3646 0.4140 0.1200 0.5714 4.6040 0.2734 0.3466 0.3308 0.2513 0.6122 5.3429

(0.0791) (0.0226) (0.0361) (0.0309) (0.0946) (0.0285) (0.0433) (0.0370) (0.1459) (0.0372) (0.0626) (0.0543)
450 sec 0.3374 0.3129 0.4255 0.1637 0.5478 5.0740 0.4080 0.2947 0.4651 0.1160 0.4954 4.8592 0.3060 0.3312 0.3789 0.2088 0.5902 5.3660

(0.0848) (0.0227) (0.0367) (0.0321) (0.1067) (0.0286) (0.0450) (0.0405) (0.1487) (0.0375) (0.0624) (0.0538)
900 sec 0.3622 0.2552 0.4012 0.2352 0.4726 5.2910 0.4161 0.2502 0.4511 0.1648 0.4296 4.8955 0.3652 0.2588 0.3555 0.2894 0.4970 5.7418

(0.0937) (0.0227) (0.0394) (0.0364) (0.1110) (0.0285) (0.0477) (0.0451) (0.1776) (0.0375) (0.0672) (0.0614)
average 0.3155 0.3180 0.3999 0.1912 0.5611 5.0457 0.3641 0.3157 0.4459 0.1275 0.5307 4.7019 0.3045 0.3204 0.3499 0.2505 0.5821 5.4504

(0.0836) (0.0227) (0.0371) (0.0324) (0.0999) (0.0286) (0.0448) (0.0395) (0.1547) (0.0375) (0.0637) (0.0558)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.0984 0.5327 −0.0025 0.3739 0.1009 0.6426 4.8392 0.1767 0.4918 −0.0021 0.4581 0.0238 0.6448 4.3994 −0.0005 0.6397 −0.0036 0.2727 0.1535 0.6427 5.3140

(0.0770) (0.0284) (0.0002) (0.0355) (0.0307) (0.0861) (0.0315) (0.0002) (0.0420) (0.0356) (0.1504) (0.0597) (0.0006) (0.0621) (0.0548)
300 sec 0.0844 0.5326 −0.0032 0.3671 0.1171 0.6058 4.9141 0.1966 0.5050 −0.0030 0.4328 0.0360 0.5869 4.5677 −0.0320 0.6141 −0.0043 0.2818 0.1821 0.6201 5.3233

(0.0817) (0.0304) (0.0004) (0.0356) (0.0315) (0.0945) (0.0329) (0.0004) (0.0426) (0.0378) (0.1584) (0.0680) (0.0009) (0.0628) (0.0557)
450 sec 0.1445 0.4870 −0.0030 0.4209 0.0880 0.5589 5.0495 0.2604 0.4359 −0.0027 0.4791 0.0357 0.5086 4.8334 0.0311 0.5846 −0.0040 0.3433 0.1240 0.6011 5.3399

(0.0869) (0.0306) (0.0004) (0.0363) (0.0330) (0.1075) (0.0349) (0.0004) (0.0445) (0.0416) (0.1555) (0.0602) (0.0007) (0.0620) (0.0554)
900 sec 0.2336 0.3697 −0.0021 0.3896 0.1961 0.4766 5.2837 0.3078 0.3556 −0.0030 0.4572 0.1165 0.4340 4.8885 0.2005 0.4186 −0.0023 0.3337 0.2327 0.5019 5.7331

(0.0973) (0.0332) (0.0004) (0.0393) (0.0372) (0.1142) (0.0398) (0.0008) (0.0476) (0.0467) (0.1837) (0.0613) (0.0007) (0.0672) (0.0635)
average 0.1402 0.4805 −0.0027 0.3879 0.1255 0.5710 5.0216 0.2354 0.4471 −0.0027 0.4568 0.0530 0.5436 4.6722 0.0498 0.5642 −0.0036 0.3079 0.1731 0.5914 5.4276

(0.0857) (0.0307) (0.0004) (0.0367) (0.0331) (0.1006) (0.0348) (0.0004) (0.0442) (0.0404) (0.1620) (0.0623) (0.0007) (0.0635) (0.0574)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.0838 0.5533 −0.0081 0.3550 0.1006 0.6413 4.8429 0.2042 0.4644 −0.0064 0.4518 0.0446 0.6310 4.4377 0.0162 0.6362 −0.0094 0.2662 0.1454 0.6492 5.2956

(0.0777) (0.0304) (0.0008) (0.0357) (0.0308) (0.0888) (0.0371) (0.0014) (0.0429) (0.0377) (0.1465) (0.0527) (0.0012) (0.0614) (0.0539)
300 sec 0.1392 0.4944 −0.0062 0.3553 0.1371 0.6004 4.9277 0.3026 0.4052 −0.0024 0.4149 0.0979 0.5717 4.6037 0.0183 0.5878 −0.0091 0.2725 0.1863 0.6234 5.3147

(0.0826) (0.0324) (0.0010) (0.0361) (0.0318) (0.0977) (0.0388) (0.0015) (0.0433) (0.0397) (0.1509) (0.0569) (0.0016) (0.0625) (0.0548)
450 sec 0.1708 0.4757 −0.0064 0.4116 0.0931 0.5563 5.0553 0.3424 0.3619 −0.0032 0.4646 0.0819 0.4968 4.8570 0.0471 0.5969 −0.0090 0.3443 0.0979 0.6087 5.3207

(0.0870) (0.0317) (0.0009) (0.0364) (0.0332) (0.1100) (0.0401) (0.0013) (0.0449) (0.0429) (0.1500) (0.0529) (0.0013) (0.061) (0.0549)
900 sec 0.2708 0.3519 −0.0035 0.3880 0.1969 0.4760 5.2849 0.3619 0.3127 −0.0034 0.4473 0.1370 0.4308 4.8940 0.2442 0.3989 −0.0040 0.3363 0.2288 0.5021 5.7326

(0.0958) (0.0317) (0.0008) (0.0394) (0.0373) (0.1137) (0.0407) (0.0016) (0.0477) (0.0469) (0.1803) (0.0559) (0.0012) (0.0671) (0.0637)
average 0.1662 0.4688 −0.0061 0.3775 0.1319 0.5685 5.0277 0.3028 0.3861 −0.0038 0.4447 0.0904 0.5326 4.6981 0.0815 0.5549 −0.0079 0.3048 0.1646 0.5959 5.4159

(0.0858) (0.0315) (0.0009) (0.0369) (0.0333) (0.1026) (0.0392) (0.0015) (0.0447) (0.0418) (0.1569) (0.0546) (0.0013) (0.0631) (0.0568)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.13: In-sample estimation (MSFT)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.2561 0.3340 0.4322 0.1565 0.6295 4.8059 0.2042 0.4831 0.2422 0.2110 0.6833 4.4116 0.3154 0.1997 0.6108 0.0973 0.5861 5.2314

(0.0721) (0.0228) (0.0360) (0.0300) (0.0782) (0.0272) (0.0427) (0.0358) (0.1383) (0.0386) (0.0616) (0.0511)
300 sec 0.2604 0.3191 0.4186 0.1815 0.5970 4.9288 0.2416 0.3907 0.2831 0.2498 0.6028 4.8012 0.2845 0.2133 0.6031 0.0960 0.5952 5.1063

(0.0757) (0.0225) (0.0367) (0.0315) (0.0924) (0.0276) (0.0458) (0.0404) (0.1296) (0.0382) (0.0609) (0.0506)
450 sec 0.2614 0.3596 0.3713 0.1861 0.5980 4.9139 0.2463 0.3822 0.2870 0.2518 0.5919 4.8716 0.2798 0.3179 0.4899 0.1029 0.6085 4.9830

(0.0748) (0.0224) (0.0360) (0.0310) (0.0945) (0.0277) (0.0460) (0.0407) (0.1224) (0.0378) (0.0586) (0.0483)
900 sec 0.2825 0.1911 0.5051 0.2105 0.5296 5.0853 0.2597 0.2354 0.3755 0.3015 0.5185 5.0417 0.3134 0.1061 0.6923 0.0991 0.5508 5.1490

(0.0807) (0.0231) (0.0391) (0.0344) (0.1019) (0.0283) (0.0503) (0.0459) (0.1321) (0.0396) (0.0633) (0.0524)
average 0.2651 0.3010 0.4318 0.1836 0.5885 4.9335 0.2380 0.3728 0.2969 0.2535 0.5991 4.7815 0.2983 0.2093 0.5990 0.0988 0.5852 5.1174

(0.0758) (0.0227) (0.0370) (0.0317) (0.0917) (0.0277) (0.0462) (0.0407) (0.1306) (0.0386) (0.0611) (0.0506)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec −0.0044 0.6427 −0.0051 0.3603 0.0558 0.6559 4.7322 0.0367 0.7156 −0.0061 0.1914 0.1404 0.6943 4.3767 −0.0817 0.6221 −0.0053 0.5017 −0.0246 0.6256 5.1322

(0.0718) (0.0305) (0.0004) (0.0350) (0.0297) (0.0796) (0.0396) (0.0008) (0.0425) (0.0363) (0.1376) (0.0559) (0.0005) (0.0597) (0.0502)
300 sec 0.1263 0.5187 −0.0030 0.3537 0.1239 0.6126 4.8898 0.1564 0.5865 −0.0028 0.2123 0.1831 0.6214 4.7540 −0.0077 0.5003 −0.0048 0.5312 0.0333 0.6112 5.0669

(0.0753) (0.0291) (0.0003) (0.0365) (0.0314) (0.0907) (0.0342) (0.0003) (0.0454) (0.0401) (0.1347) (0.0579) (0.0007) (0.0607) (0.0505)
450 sec −0.0513 0.6618 −0.0081 0.3469 0.0930 0.6108 4.8820 −0.0591 0.7572 −0.0107 0.2504 0.1185 0.6087 4.8302 −0.0916 0.6098 −0.0070 0.4636 0.0392 0.6194 4.9556

(0.0805) (0.0386) (0.0008) (0.0356) (0.0321) (0.0990) (0.0510) (0.0012) (0.0452) (0.0427) (0.1384) (0.0651) (0.0013) (0.0580) (0.0490)
900 sec 0.1109 0.3901 −0.0047 0.4706 0.1524 0.5388 5.0658 0.1559 0.3980 −0.0038 0.3379 0.2496 0.5257 5.0272 −0.0784 0.4392 −0.0080 0.6616 0.0186 0.5675 5.1122

(0.0832) (0.0351) (0.0006) (0.0390) (0.0349) (0.1031) (0.0419) (0.0007) (0.0504) (0.0467) (0.1438) (0.0656) (0.0013) (0.0623) (0.0530)
average 0.0453 0.5533 −0.0052 0.3829 0.1063 0.6045 4.8925 0.0725 0.6143 −0.0058 0.2480 0.1729 0.6125 4.7470 −0.0649 0.5428 −0.0063 0.5395 0.0166 0.6059 5.0667

(0.0777) (0.0333) (0.0005) (0.0365) (0.0320) (0.0931) (0.0417) (0.0008) (0.0459) (0.0415) (0.1386) (0.0611) (0.0010) (0.0602) (0.0507)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.0475 0.6082 −0.0094 0.3478 0.0662 0.6568 4.7298 0.0598 0.6943 −0.0135 0.1851 0.1426 0.6940 4.3776 −0.0069 0.5913 −0.0096 0.4760 −0.0125 0.6256 5.1322

(0.0708) (0.0287) (0.0006) (0.0351) (0.0295) (0.0790) (0.0379) (0.0017) (0.0426) (0.0363) (0.1351) (0.0528) (0.0009) (0.0600) (0.0498)
300 sec 0.0555 0.6074 −0.0110 0.3184 0.1032 0.6189 4.8733 0.0790 0.6937 −0.0131 0.1795 0.1510 0.6274 4.7380 0.0402 0.4996 −0.0093 0.4942 0.0419 0.6134 5.0613

(0.0754) (0.0317) (0.0009) (0.0365) (0.0313) (0.0908) (0.0388) (0.0012) (0.0454) (0.0402) (0.1314) (0.0556) (0.0013) (0.0615) (0.0501)
450 sec 0.0754 0.5871 −0.0105 0.3222 0.1118 0.6121 4.8786 0.0779 0.6336 −0.0129 0.2249 0.1672 0.6064 4.8360 0.0484 0.5584 −0.0096 0.4371 0.0368 0.6241 4.9432

(0.0757) (0.0316) (0.0010) (0.0357) (0.0314) (0.0951) (0.0414) (0.0016) (0.0458) (0.0414) (0.1250) (0.0522) (0.0015) (0.0580) (0.0484)
900 sec 0.1150 0.4134 −0.0095 0.4457 0.1461 0.5441 5.0542 0.1422 0.4277 −0.0090 0.3147 0.2474 0.5278 5.0228 0.0663 0.3824 −0.0103 0.6191 0.0302 0.5733 5.0986

(0.0815) (0.0328) (0.0010) (0.0390) (0.0346) (0.1028) (0.0429) (0.0015) (0.0508) (0.0464) (0.1331) (0.0539) (0.0014) (0.0625) (0.0519)
average 0.0734 0.5540 −0.0101 0.3585 0.1069 0.6080 4.8840 0.0897 0.6123 −0.0121 0.2260 0.1771 0.6139 4.7436 0.0370 0.5079 −0.0097 0.5066 0.0241 0.6091 5.0588

(0.0759) (0.0312) (0.0009) (0.0366) (0.0317) (0.0919) (0.0403) (0.0015) (0.0462) (0.0411) (0.1312) (0.0536) (0.0013) (0.0605) (0.0500)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.14: In-sample estimation (KO)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.1224 0.3456 0.3923 0.1981 0.6570 3.6179 0.1087 0.3188 0.3768 0.2466 0.6671 3.2911 0.1328 0.3676 0.3984 0.1640 0.6471 4.0145

(0.0401) (0.0226) (0.0358) (0.0300) (0.0468) (0.0285) (0.0468) (0.0395) (0.0725) (0.0372) (0.0575) (0.0480)
300 sec 0.1192 0.3260 0.4053 0.2036 0.6450 3.6274 0.1133 0.3308 0.3741 0.2326 0.6474 3.2987 0.1239 0.3218 0.4299 0.1810 0.6418 4.0272

(0.0397) (0.0226) (0.0363) (0.0307) (0.0468) (0.0284) (0.0461) (0.0392) (0.0720) (0.0374) (0.0594) (0.0501)
450 sec 0.1269 0.3537 0.3978 0.1772 0.6384 3.6002 0.1370 0.2994 0.3942 0.2299 0.5922 3.5088 0.1141 0.4249 0.3790 0.1306 0.6882 3.7371

(0.0392) (0.0226) (0.0354) (0.0297) (0.0513) (0.0286) (0.0468) (0.0407) (0.0625) (0.0369) (0.0552) (0.0443)
900 sec 0.1863 0.1980 0.4352 0.2624 0.4694 4.3288 0.1983 0.1962 0.3318 0.3614 0.4070 4.2359 0.1722 0.1962 0.5341 0.1715 0.5381 4.4693

(0.0545) (0.0231) (0.0393) (0.0361) (0.0717) (0.0285) (0.0516) (0.0501) (0.0875) (0.0391) (0.0623) (0.0534)
average 0.1387 0.3058 0.4077 0.2103 0.6025 3.7936 0.1393 0.2863 0.3692 0.2676 0.5784 3.5837 0.1357 0.3276 0.4354 0.1618 0.6288 4.0620

(0.0434) (0.0227) (0.0367) (0.0316) (0.0542) (0.0285) (0.0478) (0.0424) (0.0736) (0.0376) (0.0586) (0.0490)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.0156 0.5458 −0.0067 0.3688 0.1259 0.6622 3.6030 0.0042 0.5612 −0.0113 0.3504 0.1515 0.6737 3.2717 −0.0608 0.7346 −0.0100 0.3425 0.0573 0.6575 3.9856

(0.0429) (0.0378) (0.0010) (0.0357) (0.0317) (0.0495) (0.0492) (0.0019) (0.0465) (0.0422) (0.0793) (0.0750) (0.0018) (0.0575) (0.0509)
300 sec −0.0070 0.5366 −0.0078 0.3864 0.1333 0.6519 3.6081 0.0348 0.4974 −0.0089 0.3630 0.1681 0.6507 3.2899 −0.1253 0.7536 −0.0128 0.3790 0.0592 0.6587 3.9799

(0.0428) (0.0360) (0.0011) (0.0360) (0.0318) (0.0502) (0.0489) (0.0021) (0.0459) (0.0420) (0.0785) (0.0708) (0.0018) (0.0585) (0.0518)
450 sec 0.0692 0.4435 −0.0043 0.3966 0.1471 0.6394 3.5976 0.0061 0.5656 −0.0158 0.3799 0.1328 0.5999 3.4902 0.0326 0.5547 −0.0050 0.3720 0.0948 0.6894 3.7344

(0.0435) (0.0374) (0.0014) (0.0354) (0.0313) (0.0555) (0.0534) (0.0027) (0.0464) (0.0435) (0.0727) (0.0700) (0.0023) (0.0552) (0.0472)
900 sec 0.0224 0.5022 −0.0082 0.3885 0.1591 0.4898 4.2900 0.0727 0.5248 −0.0101 0.2562 0.2424 0.4303 4.1965 −0.0496 0.5993 −0.0093 0.4720 0.0527 0.5650 4.4102

(0.0557) (0.0368) (0.0008) (0.0388) (0.0368) (0.0719) (0.0478) (0.0012) (0.0514) (0.0511) (0.0894) (0.0633) (0.0012) (0.0610) (0.0540)
average 0.0250 0.5071 −0.0068 0.3851 0.1413 0.6108 3.7747 0.0295 0.5372 −0.0115 0.3374 0.1737 0.5887 3.5621 −0.0508 0.6605 −0.0093 0.3914 0.0660 0.6426 4.0275

(0.0462) (0.0370) (0.0011) (0.0365) (0.0329) (0.0568) (0.0498) (0.0020) (0.0476) (0.0447) (0.0800) (0.0698) (0.0018) 0.0580) (0.0510)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.0421 0.5196 −0.0155 0.3485 0.1416 0.6631 3.6004 0.0810 0.3953 −0.0108 0.3711 0.2066 0.6682 3.2885 −0.0361 0.7458 −0.0259 0.2685 0.0878 0.6646 3.9645

(0.0413) (0.0332) (0.0022) (0.0360) (0.0308) (0.0480) (0.0411) (0.0042) (0.0467) (0.0423) (0.0744) (0.0631) (0.0035) (0.0588) (0.0479)
300 sec 0.0285 0.4969 −0.0167 0.3687 0.1537 0.6516 3.6089 0.1024 0.3568 −0.0039 0.3720 0.2208 0.6474 3.2994 −0.0558 0.6840 −0.0273 0.3273 0.1076 0.6611 3.9730

(0.0413) (0.0324) (0.0023) (0.0363) (0.0312) (0.0485) (0.0418) (0.0046) (0.0461) (0.0416) (0.0739) (0.0599) (0.0036) (0.0594) (0.0497)
450 sec 0.0811 0.4364 −0.0089 0.3836 0.1537 0.6397 3.5968 0.1140 0.3546 −0.0071 0.3869 0.2076 0.5927 3.5083 0.0111 0.6124 −0.0167 0.3329 0.0984 0.6933 3.7218

(0.0414) (0.0333) (0.0026) (0.0356) (0.0304) (0.0530) (0.0428) (0.0041) (0.0470) (0.0426) (0.0667) (0.0579) (0.0040) (0.0558) (0.0446)
900 sec 0.0794 0.4507 −0.0113 0.3552 0.1874 0.4867 4.2960 0.1258 0.3984 −0.0098 0.2723 0.2868 0.4201 4.2141 0.0295 0.5424 −0.0140 0.4075 0.0945 0.5622 4.4166

(0.0547) (0.0347) (0.0012) (0.0395) (0.0364) (0.0719) (0.0426) (0.0015) (0.0519) (0.0509) (0.0873) (0.0598) (0.0019) (0.0630) (0.0530)
average 0.0578 0.4759 −0.0131 0.3640 0.1591 0.6103 3.7755 0.1058 0.3763 −0.0079 0.3506 0.2304 0.5821 3.5776 −0.0128 0.6462 −0.0209 0.3341 0.0971 0.6453 4.0190

(0.0447) (0.0334) (0.0021) (0.0369) (0.0322) (0.0553) (0.0421) (0.0036) (0.0479) (0.0444) (0.0756) (0.0602) (0.0032) (0.0592) (0.0488)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.15: In-sample estimation (XOM)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.1696 0.3878 0.4791 0.0631 0.7012 4.2062 0.1314 0.3219 0.5309 0.0830 0.7123 3.0103 0.2243 0.4016 0.4685 0.0560 0.6926 4.9997

(0.0496) (0.0223) (0.0337) (0.0264) (0.0425) (0.0293) (0.0437) (0.0333) (0.1142) (0.0365) (0.0552) (0.0438)
300 sec 0.1708 0.4533 0.3804 0.0929 0.6904 4.2535 0.1503 0.2957 0.5195 0.1073 0.6527 3.1009 0.2229 0.4875 0.3504 0.0872 0.6934 5.0322

(0.0501) (0.0221) (0.0329) (0.0262) (0.0453) (0.0293) (0.0445) (0.0354) (0.1150) (0.0359) (0.0534) (0.0427)
450 sec 0.1558 0.5002 0.3634 0.0665 0.7228 4.0309 0.1748 0.2562 0.5188 0.1314 0.5797 3.2730 0.1863 0.5857 0.2976 0.0512 0.7584 4.6602

(0.0449) (0.0217) (0.0314) (0.0243) (0.0501) (0.0291) (0.0454) (0.0382) (0.0954) (0.0345) (0.0489) (0.0370)
900 sec 0.1689 0.4641 0.3577 0.0990 0.6698 4.2847 0.1961 0.2377 0.4655 0.1845 0.4947 3.3780 0.2098 0.5323 0.3103 0.0822 0.7034 4.9777

(0.0501) (0.0220) (0.0324) (0.0262) (0.0539) (0.0290) (0.0475) (0.0425) (0.1105) (0.0355) (0.0510) (0.0403)
average 0.1663 0.4513 0.3952 0.0803 0.6961 4.1938 0.1631 0.2779 0.5087 0.1266 0.6099 3.1905 0.2108 0.5018 0.3567 0.0692 0.7119 4.9174

(0.0487) (0.0220) (0.0326) (0.0258) (0.0480) (0.0292) (0.0453) (0.0374) (0.1088) (0.0356) (0.0521) (0.0409)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.0192 0.5368 −0.0030 0.4629 0.0222 0.7045 4.1956 0.0947 0.3681 −0.0027 0.5364 0.0637 0.7125 3.0101 −0.0810 0.6954 −0.0052 0.4349 −0.0210 0.7001 4.9758

(0.0562) (0.0348) (0.0005) (0.0336) (0.0273) (0.0487) (0.0420) (0.0018) (0.0438) (0.0356) (0.1275) (0.0677) (0.0010) (0.0549) (0.0458)
300 sec 0.1575 0.4652 −0.0003 0.3797 0.0898 0.6903 4.2542 0.1560 0.2885 0.0005 0.5190 0.1098 0.6525 3.1020 0.1312 0.5681 −0.0015 0.3443 0.0673 0.6939 5.0318

(0.0570) (0.0328) (0.0005) (0.0330) (0.0270) (0.0539) (0.0468) (0.0026) (0.0446) (0.0376) (0.1291) (0.0628) (0.0010) (0.0535) (0.0445)
450 sec 0.2027 0.4635 0.0010 0.3602 0.0767 0.7230 4.0304 0.1106 0.3392 −0.0062 0.5233 0.1051 0.5805 3.2718 0.1277 0.6324 −0.0011 0.2987 0.0387 0.7584 4.6610

(0.0518) (0.0297) (0.0006) (0.0314) (0.0249) (0.0594) (0.0506) (0.0031) (0.0454) (0.0404) (0.1093) (0.0548) (0.0010) (0.0489) (0.0387)
900 sec 0.2215 0.4199 0.0010 0.3522 0.1144 0.6702 4.2838 0.1508 0.2998 −0.0049 0.4646 0.1693 0.4950 3.3780 0.1645 0.5715 −0.0007 0.3124 0.0691 0.7034 4.9789

(0.0561) (0.0306) (0.0005) (0.0325) (0.0272) (0.0626) (0.0524) (0.0035) (0.0475) (0.0438) (0.1225) (0.0579) (0.0009) (0.0511) (0.0432)
average 0.1502 0.4714 −0.0003 0.3888 0.0758 0.6970 4.1910 0.1280 0.3239 −0.0033 0.5108 0.1120 0.6101 3.1905 0.0856 0.6169 −0.0021 0.3476 0.0386 0.7139 4.9119

(0.0553) (0.0320) (0.0005) (0.0326) (0.0266) (0.0562) (0.0479) (0.0027) (0.0454) (0.0393) (0.1221) (0.0608) (0.0010) (0.0521) (0.0430)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.0571 0.5296 −0.0063 0.4320 0.0368 0.7048 4.1947 0.1599 0.2791 0.0074 0.5278 0.1041 0.7126 3.0096 0.0227 0.6645 −0.0101 0.3783 0.0111 0.7005 4.9745

(0.0529) (0.0330) (0.0011) (0.0344) (0.0267) (0.0454) (0.0379) (0.0042) (0.0437) (0.0354) (0.1190) (0.0616) (0.0019) (0.0571) (0.0440)
300 sec 0.1095 0.5222 −0.0032 0.3621 0.0803 0.6913 4.2510 0.1929 0.2319 0.0109 0.5193 0.1331 0.6537 3.0986 0.0803 0.6539 −0.0066 0.3033 0.0585 0.6970 5.0213

(0.0541) (0.0319) (0.0011) (0.0334) (0.0265) (0.0485) (0.0392) (0.0045) (0.0445) (0.0369) (0.1210) (0.0583) (0.0018) (0.0546) (0.0432)
450 sec 0.2486 0.4133 0.0052 0.3687 0.0886 0.7249 4.0237 0.1697 0.2638 −0.0012 0.5190 0.1283 0.5795 3.2741 0.2471 0.5256 0.0030 0.3050 0.0653 0.7588 4.6594

(0.0490) (0.0285) (0.0011) (0.0313) (0.0246) (0.0536) (0.0403) (0.0043) (0.0454) (0.0399) (0.1021) (0.0499) (0.0018) (0.0491) (0.0379)
900 sec 0.2278 0.4031 0.0030 0.3626 0.1155 0.6707 4.2823 0.2151 0.2066 0.0050 0.4661 0.1960 0.4947 3.3786 0.2108 0.5312 0.0000 0.3105 0.0825 0.7031 4.9797

(0.0539) (0.0304) (0.0010) (0.0324) (0.0268) (0.0570) (0.0418) (0.0048) (0.0475) (0.0439) (0.1169) (0.0550) (0.0017) (0.0514) (0.0417)
average 0.1608 0.4671 −0.0003 0.3814 0.0803 0.6979 4.1879 0.1844 0.2453 0.0055 0.5081 0.1404 0.6102 3.1902 0.1402 0.5938 −0.0034 0.3243 0.0543 0.7149 4.9087

(0.0525) (0.0309) (0.0011) (0.0329) (0.0262) (0.0511) (0.0398) (0.0045) (0.0453) (0.0390) (0.1148) (0.0562) (0.0018) (0.0531) (0.0417)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.16: In-sample estimation (DD)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.3209 0.1952 0.4832 0.2304 0.5220 5.3559 0.1837 0.2460 0.3984 0.2892 0.6000 4.2014 0.5037 0.1813 0.5040 0.2068 0.4806 6.1389

(0.0938) (0.0231) (0.0389) (0.0347) (0.0754) (0.0287) (0.0494) (0.0433) (0.2223) (0.0384) (0.0641) (0.0581)
300 sec 0.2869 0.2581 0.4584 0.1989 0.5666 5.1318 0.2009 0.2433 0.3925 0.2899 0.5679 4.3400 0.4267 0.2633 0.4765 0.1650 0.5504 5.7993

(0.0839) (0.0230) (0.0373) (0.0324) (0.0790) (0.0286) (0.0496) (0.0441) (0.1887) (0.0381) (0.0604) (0.0524)
450 sec 0.3415 0.1625 0.5004 0.2343 0.4808 5.4215 0.2230 0.1429 0.4826 0.2903 0.5206 4.5118 0.5202 0.1687 0.5037 0.2090 0.4488 6.1333

(0.0961) (0.0234) (0.0398) (0.0359) (0.0847) (0.0291) (0.0519) (0.0466) (0.2214) (0.0387) (0.0650) (0.0594)
900 sec 0.3295 0.1722 0.4456 0.2789 0.4636 5.3710 0.2352 0.1466 0.3808 0.3791 0.4525 4.5969 0.4929 0.1826 0.4602 0.2417 0.4498 6.0310

(0.0943) (0.0231) (0.0398) (0.0368) (0.0898) (0.0286) (0.0543) (0.0512) (0.2122) (0.0385) (0.0641) (0.0592)
average 0.3197 0.1970 0.4719 0.2356 0.5082 5.3200 0.2107 0.1947 0.4136 0.3121 0.5353 4.4125 0.4859 0.1990 0.4861 0.2056 0.4824 6.0256

(0.0920) (0.0232) (0.0389) (0.0349) (0.0822) (0.0287) (0.0513) (0.0463) (0.2111) (0.0384) (0.0634) (0.0573)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.0027 0.6142 −0.0034 0.3342 0.1066 0.5655 5.2609 0.1461 0.4560 −0.0017 0.2836 0.2257 0.6210 4.1479 −0.2117 0.8319 −0.0052 0.3029 0.0353 0.5501 5.9962

(0.0915) (0.0335) (0.0002) (0.0382) (0.0339) (0.0735) (0.0351) (0.0002) (0.0495) (0.0426) (0.2146) (0.0631) (0.0004) (0.0618) (0.0558)
300 sec 0.0481 0.5304 −0.0036 0.3894 0.1157 0.5845 5.0901 0.1502 0.4254 −0.0023 0.3079 0.2333 0.5850 4.3003 0.1082 0.4603 −0.0060 0.4098 0.1263 0.5792 5.1026

(0.0850) (0.0336) (0.0003) (0.0370) (0.0326) (0.0776) (0.0353) (0.0003) (0.0496) (0.0437) (0.0850) (0.0317) (0.0007) (0.0371) (0.0329)
450 sec 0.1312 0.4573 −0.0024 0.4167 0.1232 0.5049 5.3742 0.1719 0.3090 −0.0023 0.4095 0.2387 0.5336 4.4850 0.1328 0.5774 −0.0029 0.3904 0.0663 0.4842 6.0680

(0.0956) (0.0341) (0.0002) (0.0395) (0.0364) (0.0839) (0.0372) (0.0003) (0.0523) (0.0466) (0.2192) (0.0616) (0.0004) (0.0644) (0.0600)
900 sec 0.1390 0.3978 −0.0033 0.4143 0.1870 0.4747 5.3504 0.1692 0.3178 −0.0034 0.3227 0.3204 0.4643 4.5757 0.1508 0.5014 −0.0042 0.4195 0.1208 0.4648 6.0043

(0.0966) (0.0372) (0.0004) (0.0396) (0.0383) (0.0894) (0.0394) (0.0005) (0.0545) (0.0515) (0.2186) (0.0702) (0.0008) (0.0636) (0.0625)
average 0.0802 0.4999 −0.0032 0.3887 0.1331 0.5324 5.2689 0.1594 0.3771 −0.0024 0.3309 0.2545 0.5510 4.3772 0.0450 0.5927 −0.0046 0.3807 0.0872 0.5196 5.7928

(0.0922) (0.0346) (0.0003) (0.0386) (0.0353) (0.0811) (0.0368) (0.0003) (0.0515) (0.0461) (0.1843) (0.0566) (0.0006) (0.0567) (0.0528)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.0868 0.5093 −0.0053 0.3978 0.0958 0.5584 5.2771 0.1193 0.4781 −0.0111 0.3121 0.1927 0.6151 4.1633 0.1105 0.5903 −0.0060 0.3906 0.0471 0.5314 6.0370

(0.0915) (0.0305) (0.0004) (0.0378) (0.0345) (0.0743) (0.0396) (0.0013) (0.0495) (0.0440) (0.2144) (0.0534) (0.0006) (0.0618) (0.0572)
300 sec 0.1082 0.4603 −0.0060 0.4098 0.1263 0.5792 5.1026 0.1334 0.4250 −0.0095 0.3365 0.2137 0.5779 4.3173 0.1237 0.5362 −0.0069 0.4050 0.0818 0.5688 5.7585

(0.0850) (0.0317) (0.0007) (0.0371) (0.0329) (0.0788) (0.0399) (0.0015) (0.0497) (0.0451) (0.1904) (0.0556) (0.0010) (0.0601) (0.0528)
450 sec 0.1884 0.3941 −0.0039 0.4288 0.1422 0.5006 5.3829 0.1467 0.3616 −0.0101 0.4119 0.2009 0.5343 4.4833 0.2338 0.5082 −0.0047 0.3912 0.0884 0.4806 6.0750

(0.0954) (0.0318) (0.0004) (0.0396) (0.0363) (0.0842) (0.0417) (0.0014) (0.0521) (0.0476) (0.2180) (0.0571) (0.0006) (0.0647) (0.0597)
900 sec 0.2160 0.3385 −0.0041 0.4068 0.2091 0.4742 5.3513 0.1563 0.3688 −0.0112 0.3173 0.2858 0.4686 4.5675 0.3053 0.4125 −0.0047 0.3971 0.1567 0.4652 6.0036

(0.0946) (0.0319) (0.0005) (0.0397) (0.0376) (0.0891) (0.0414) (0.0015) (0.0542) (0.0520) (0.2120) (0.0566) (0.0009) (0.0642) (0.0604)
average 0.1499 0.4255 −0.0048 0.4108 0.1434 0.5281 5.2785 0.1389 0.4084 −0.0105 0.3444 0.2233 0.5490 4.3829 0.1933 0.5118 −0.0055 0.3960 0.0935 0.5115 5.9685

(0.0916) (0.0315) (0.0005) (0.0386) (0.0353) (0.0816) (0.0407) (0.0014) (0.0514) (0.0472) (0.2087) (0.0557) (0.0008) (0.0627) (0.0575)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.17: In-sample estimation (VZ)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.1865 0.3436 0.3803 0.2155 0.6561 4.5980 0.1554 0.2208 0.4543 0.2715 0.6524 4.1027 0.2123 0.4154 0.3314 0.1883 0.6612 5.1070

(0.0638) (0.0224) (0.0363) (0.0309) (0.0702) (0.0289) (0.0508) (0.0436) (0.1236) (0.0363) (0.0566) (0.0481)
300 sec 0.1826 0.3393 0.3585 0.2406 0.6403 4.5746 0.1686 0.2335 0.3798 0.3270 0.6005 4.2803 0.1941 0.4297 0.3155 0.1930 0.6741 4.9285

(0.0633) (0.0223) (0.0370) (0.0321) (0.0761) (0.0285) (0.0518) (0.0461) (0.1139) (0.0362) (0.0564) (0.0479)
450 sec 0.1775 0.3019 0.3961 0.2384 0.6261 4.4940 0.1698 0.2089 0.3762 0.3509 0.5672 4.2410 0.1829 0.3925 0.3638 0.1819 0.6743 4.8087

(0.0610) (0.0226) (0.0374) (0.0324) (0.0755) (0.0284) (0.0529) (0.0481) (0.1073) (0.0372) (0.0570) (0.0472)
900 sec 0.2031 0.2610 0.3807 0.2833 0.5570 4.6715 0.2095 0.1947 0.3083 0.4156 0.4751 4.5137 0.1987 0.3406 0.3892 0.2016 0.6310 4.8846

(0.0670) (0.0227) (0.0388) (0.0350) (0.0864) (0.0282) (0.0540) (0.0514) (0.1126) (0.0376) (0.0590) (0.0500)
average 0.1874 0.3114 0.3789 0.2445 0.6199 4.5845 0.1758 0.2145 0.3797 0.3413 0.5738 4.2844 0.1970 0.3946 0.3500 0.1912 0.6602 4.9322

(0.0638) (0.0225) (0.0374) (0.0326) (0.0770) (0.0285) (0.0524) (0.0473) (0.1144) (0.0368) (0.0572) (0.0483)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.0831 0.4475 −0.0021 0.3670 0.1843 0.6576 4.5938 0.0377 0.3422 −0.0042 0.4493 0.2347 0.6548 4.0964 −0.0633 0.7216 −0.0048 0.2739 0.1104 0.6687 5.0858

(0.0697) (0.0362) (0.0006) (0.0364) (0.0320) (0.0773) (0.0444) (0.0012) (0.0507) (0.0446) (0.1348) (0.0726) (0.0010) (0.0572) (0.0502)
300 sec 0.1630 0.3570 −0.0005 0.3576 0.2355 0.6402 4.5752 0.0895 0.3188 −0.0031 0.3730 0.3038 0.6015 4.2784 0.0930 0.5268 −0.0020 0.3044 0.1690 0.6749 4.9272

(0.0698) (0.0347) (0.0007) (0.0370) (0.0330) (0.0835) (0.0468) (0.0013) (0.0518) (0.0472) (0.1264) (0.0641) (0.0011) (0.0567) (0.0496)
450 sec 0.0753 0.3919 −0.0028 0.3992 0.2095 0.6273 4.4911 0.0825 0.3086 −0.0040 0.3698 0.3225 0.5689 4.2377 −0.1021 0.6514 −0.0066 0.3591 0.1096 0.6802 4.7914

(0.0690) (0.0364) (0.0009) (0.0374) (0.0336) (0.0817) (0.0458) (0.0014) (0.0528) (0.0491) (0.1244) (0.0692) (0.0015) (0.0565) (0.0496)
900 sec 0.1376 0.3163 −0.0022 0.3871 0.2653 0.5574 4.6711 0.0809 0.3408 −0.0071 0.3100 0.3706 0.4780 4.5086 0.0084 0.5063 −0.0053 0.3990 0.1536 0.6334 4.8791

(0.0762) (0.0381) (0.0012) (0.0390) (0.0363) (0.0946) (0.0527) (0.0022) (0.0538) (0.0530) (0.1320) (0.0712) (0.0019) (0.0589) (0.0528)
average 0.1148 0.3782 −0.0019 0.3777 0.2237 0.6206 4.5828 0.0727 0.3276 −0.0046 0.3755 0.3079 0.5758 4.2803 −0.0160 0.6015 −0.0047 0.3341 0.1357 0.6643 4.9209

(0.0712) (0.0363) (0.0008) (0.0375) (0.0338) (0.0843) (0.0474) (0.0015) (0.0523) (0.0485) (0.1294) (0.0693) (0.0014) (0.0573) (0.0505)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.1205 0.4167 −0.0042 0.3652 0.1934 0.6573 4.5946 0.1308 0.2555 −0.0042 0.4510 0.2579 0.6526 4.1029 0.0231 0.6443 −0.0100 0.2698 0.1347 0.6686 5.0860

(0.0667) (0.0313) (0.0013) (0.0365) (0.0316) (0.0727) (0.0393) (0.0033) (0.0509) (0.0448) (0.1284) (0.0594) (0.0021) (0.0574) (0.0489)
300 sec 0.1258 0.4003 −0.0042 0.3502 0.2214 0.6412 4.5724 0.1387 0.2819 −0.0052 0.3728 0.3090 0.6009 4.2799 0.0312 0.6130 −0.0097 0.2780 0.1482 0.6797 4.9122

(0.0663) (0.0310) (0.0015) (0.0370) (0.0327) (0.0782) (0.0410) (0.0032) (0.0520) (0.0474) (0.1191) (0.0556) (0.0023) (0.0566) (0.0486)
450 sec 0.0999 0.3791 −0.0060 0.3885 0.2162 0.6277 4.4902 0.1585 0.2280 −0.0022 0.3737 0.3439 0.5670 4.2419 −0.0499 0.6315 −0.0142 0.3191 0.1342 0.6838 4.7800

(0.0648) (0.0314) (0.0017) (0.0374) (0.0330) (0.0779) (0.0428) (0.0036) (0.0531) (0.0495) (0.1137) (0.0563) (0.0025) (0.0567) (0.0473)
900 sec 0.1179 0.3536 −0.0075 0.3737 0.2560 0.5591 4.6671 0.1564 0.2847 −0.0089 0.3001 0.3805 0.4769 4.5107 0.0220 0.5322 −0.0125 0.3602 0.1604 0.6375 4.8678

(0.0706) (0.0333) (0.0020) (0.0388) (0.0356) (0.0885) (0.0440) (0.0034) (0.0540) (0.0530) (0.1188) (0.0576) (0.0029) (0.0589) (0.0504)
average 0.1160 0.3874 −0.0055 0.3694 0.2218 0.6213 4.5811 0.1461 0.2625 −0.0051 0.3744 0.3228 0.5744 4.2839 0.0066 0.6052 −0.0116 0.3068 0.1444 0.6674 4.9115

(0.0671) (0.0318) (0.0016) (0.0375) (0.0332) (0.0793) (0.0418) (0.0034) (0.0525) (0.0487) (0.1200) (0.0572) (0.0024) (0.0574) (0.0488)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.



Table 3.18: In-sample estimation (PEF)

Full Pre-Crisis Crisis

HAR β βd βw βm R2 AIC β βd βw βm R2 AIC β βd βw βm R2 AIC
150 sec 0.3228 0.1686 0.3547 0.3662 0.4091 5.1306 0.2903 0.2542 0.2400 0.4014 0.4374 4.6459 0.3613 0.1091 0.4405 0.3348 0.3918 5.6384

(0.0897) (0.0228) (0.0427) (0.0407) (0.0989) (0.0280) (0.0511) (0.0488) (0.1719) (0.0381) (0.0727) (0.0695)
300 sec 0.2903 0.2455 0.2939 0.3551 0.4350 4.8899 0.3566 0.2417 0.2360 0.3895 0.3551 4.8172 0.2469 0.2491 0.3646 0.3018 0.5206 5.0068

(0.0805) (0.0225) (0.0407) (0.0389) (0.1083) (0.0279) (0.0518) (0.0517) (0.1271) (0.0376) (0.0662) (0.0604)
450 sec 0.2737 0.2681 0.2761 0.3511 0.4413 4.7612 0.3293 0.2159 0.2735 0.3814 0.3618 4.6681 0.2364 0.3370 0.2687 0.3090 0.5253 4.9015

(0.0759) (0.0223) (0.0403) (0.0386) (0.1014) (0.0281) (0.0516) (0.0511) (0.1209) (0.0365) (0.0648) (0.0601)
900 sec 0.3364 0.1836 0.2725 0.4112 0.3347 5.0473 0.4561 0.1625 0.2008 0.4536 0.2279 5.0364 0.2587 0.2182 0.3553 0.3295 0.4640 5.0621

(0.0874) (0.0225) (0.0431) (0.0434) (0.1242) (0.0280) (0.0559) (0.0603) (0.1295) (0.0375) (0.0680) (0.0638)
average 0.3058 0.2165 0.2993 0.3709 0.4050 4.9572 0.3581 0.2186 0.2376 0.4065 0.3456 4.7919 0.2758 0.2283 0.3573 0.3188 0.4754 5.1522

(0.0834) (0.0225) (0.0417) (0.0404) (0.1082) (0.0280) (0.0526) (0.0530) (0.1373) (0.0374) (0.0679) (0.0635)
Full Pre-Crisis Crisis

HARQ β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC β γ βq βw βm R2 AIC
150 sec 0.0632 0.5976 −0.0032 0.2506 0.1753 0.4598 5.0413 0.1683 0.5253 −0.0038 0.1572 0.2999 0.4573 4.6104 −0.1190 0.8711 −0.0043 0.2632 −0.0092 0.4819 5.4790

(0.0873) (0.0344) (0.0002) (0.0413) (0.0407) (0.0983) (0.0435) (0.0005) (0.0513) (0.0495) (0.1627) (0.0674) (0.0003) (0.0685) (0.0692)
300 sec 0.1071 0.5713 −0.0042 0.1942 0.2465 0.4676 4.8308 0.2448 0.5135 −0.0033 0.1434 0.2906 0.3841 4.7718 −0.0866 0.7279 −0.0066 0.2447 0.1482 0.5659 4.9084

(0.0794) (0.0332) (0.0003) (0.0402) (0.0387) (0.1066) (0.0405) (0.0004) (0.0516) (0.0517) (0.1252) (0.0587) (0.0006) (0.0641) (0.0594)
450 sec 0.0970 0.5098 −0.0041 0.2366 0.2614 0.4660 4.7164 0.1715 0.5207 −0.0075 0.1858 0.2959 0.3859 4.6302 −0.0755 0.7923 −0.0054 0.2083 0.1071 0.5827 4.7736

(0.0759) (0.0305) (0.0004) (0.0395) (0.0386) (0.1012) (0.0459) (0.0009) (0.0517) (0.0512) (0.1164) (0.0516) (0.0005) (0.0610) (0.0589)
900 sec 0.1221 0.5313 −0.0065 0.1983 0.2907 0.3675 4.9972 0.3321 0.4486 −0.0054 0.1288 0.3440 0.2556 5.0005 −0.1013 0.7243 −0.0091 0.2668 0.1567 0.5119 4.9694

(0.0871) (0.0364) (0.0005) (0.0425) (0.0435) (0.1229) (0.0448) (0.0007) (0.0556) (0.0608) (0.1287) (0.0621) (0.0009) (0.0655) (0.0633)
average 0.0974 0.5525 −0.0045 0.2199 0.2435 0.4402 4.8964 0.2292 0.5020 −0.0050 0.1538 0.3076 0.3707 4.7532 −0.0956 0.7789 −0.0063 0.2458 0.1007 0.5356 5.0326

(0.0824) (0.0337) (0.0004) (0.0409) (0.0404) (0.1073) (0.0437) (0.0006) (0.0525) (0.0533) (0.1332) (0.0599) (0.0006) (0.0648) (0.0627)
Full Pre-Crisis Crisis

TV-HAR β γ α βw βm R2 AIC β γ α βw βm R2 AIC β γ α βw βm R2 AIC
150 sec 0.1220 0.5199 −0.0062 0.2603 0.2042 0.4557 5.0488 0.2116 0.4745 −0.0086 0.1586 0.3172 0.4545 4.6156 −0.0142 0.7287 −0.0079 0.2829 0.0467 0.4733 5.4954

(0.0871) (0.0316) (0.0004) (0.0414) (0.0405) (0.0979) (0.0405) (0.0012) (0.0515) (0.0493) (0.1627) (0.0609) (0.0006) (0.0689) (0.0687)
300 sec 0.1084 0.5629 −0.0110 0.1961 0.2442 0.4681 4.8299 0.2523 0.4892 −0.0090 0.1473 0.3020 0.3794 4.7794 −0.0430 0.6954 −0.0145 0.2459 0.1397 0.5700 4.8990

(0.0794) (0.0326) (0.0008) (0.0402) (0.0387) (0.1070) (0.0405) (0.0011) (0.0519) (0.0518) (0.1234) (0.0546) (0.0013) (0.0637) (0.0591)
450 sec 0.0967 0.5251 −0.0133 0.2062 0.2794 0.4580 4.7311 0.1762 0.4833 −0.0174 0.1945 0.3092 0.3788 4.6418 −0.0363 0.7478 −0.0168 0.1532 0.1858 0.5563 4.8349

(0.0772) (0.0354) (0.0014) (0.0404) (0.0388) (0.1024) (0.0474) (0.0025) (0.0522) (0.0515) (0.1212) (0.0601) (0.0020) (0.0641) (0.0599)
900 sec 0.1934 0.4595 −0.0104 0.2005 0.3099 0.3606 5.0079 0.3597 0.3983 −0.0091 0.1351 0.3616 0.2493 5.0089 0.0553 0.5710 −0.0128 0.2673 0.2025 0.4987 4.9961

(0.0868) (0.0341) (0.0010) (0.0428) (0.0436) (0.1233) (0.0432) (0.0013) (0.0559) (0.0609) (0.1275) (0.0555) (0.0015) (0.0666) (0.0636)
average 0.1301 0.5169 −0.0102 0.2158 0.2594 0.4356 4.9045 0.2500 0.4613 −0.0110 0.1589 0.3225 0.3655 4.7614 −0.0095 0.6857 −0.0130 0.2373 0.1437 0.5246 5.0563

(0.0826) (0.0334) (0.0009) (0.0412) (0.0404) (0.1077) (0.0429) (0.0015) (0.0529) (0.0534) (0.1337) (0.0578) (0.0014) (0.0658) (0.0628)

Notes: The table provides in-sample parameter estimates and measure of fit for the standard HAR, the HARQ and the TV-HAR models. The standard errors are in parentheses. R2 stands for the adjusted R-squared. AIC denotes the Akaike
information criterion. The subsample of the pre-crisis period is from 2000 to 2006. The subsample of the crisis period is from 2007 to 2010. The numbers in bold represent that this model fits the data better than the other two models for the
average of different frequencies. The numbers in italic represent that for one specific model, which sampling frequency can offer the better fit than other sampling frequencies.
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Table 3.19: Out-of-sample forecasts (MMM)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.1365 0.9294 0.9678 1.0105 1.0110 0.4023 0.4449 0.4554 0.5141 0.4542 1.6893 1.2942 1.3536 1.3843 1.4303
HARQ 1.0181 0.9240 0.9848 1.0165 0.9859 0.3936 0.4365 0.4410 0.5035 0.4436 1.4884 1.2911 1.3944 1.4028 1.3942
TV-HAR 1.0208 0.9188 0.9418 1.0003 0.9704 0.4002 0.4417 0.4528 0.5103 0.4513 1.4881 1.2781 1.3101 1.3692 1.3614

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 37.2711 10.8604 15.8844 10.5021 18.6295 0.3933 0.5158 0.5543 0.7763 0.5599 65.0393 18.6497 27.4276 17.8253 32.2355
HARQ 32.3932 10.4042 22.3326 10.8672 18.9993 0.3990 0.5318 0.5583 0.7743 0.5658 56.4841 17.8379 38.7281 18.4669 32.8793
TV-HAR 32.4450 9.5722 14.7722 9.7000 16.6224 0.3955 0.5195 0.5560 0.7814 0.5631 56.5776 16.3887 25.4766 16.4155 28.7146

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.8959 0.9942 1.0176 1.0060 0.9784 0.9783 0.9811 0.9683 0.9792 0.9767 0.8811 0.9976 1.0301 1.0134 0.9806
TV-HAR 0.8982 0.9886 0.9732 0.9899 0.9625 0.9948 0.9928 0.9943 0.9925 0.9936 0.8809 0.9875 0.9678 0.9892 0.9564

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.8691 0.9580 1.4059 1.0348 1.0670 1.0143 1.0311 1.0071 0.9973 1.0124 0.8685 0.9565 1.4120 1.0360 1.0682
TV-HAR 0.8705 0.8814 0.9300 0.9236 0.9014 1.0055 1.0073 1.0030 1.0065 1.0056 0.8699 0.8788 0.9289 0.9209 0.8996

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 10.4119 0.5801 -1.7612 -0.5958 2.1587 2.1727 1.8884 3.1687 2.0776 2.3269 11.8893 0.2414 -3.0101 -1.3434 1.9443
TV-HAR 10.1771 1.1392 2.6804 1.0112 3.7520 0.5158 0.7192 0.5694 0.7516 0.6390 11.9095 1.2479 3.2152 1.0838 4.3641

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 13.0878 4.2005 -40.5942 -3.4766 -6.6956 -1.4262 -3.1100 -0.7097 0.2680 -1.2445 13.1539 4.3528 -41.2011 -3.5994 -6.8235
TV-HAR 12.9486 11.8615 7.0020 7.6370 9.8623 -0.5542 -0.7300 -0.3016 -0.6491 -0.5587 13.0101 12.1237 7.1132 7.9088 10.0390

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.20: Out-of-sample forecasts (AMZN)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 2.3162 2.5051 2.6659 3.0013 2.6221 1.3762 1.4652 1.6102 1.8473 1.5747 3.0240 3.2881 3.4608 3.8703 3.4108
HARQ 2.2981 2.4718 2.5797 2.9521 2.5754 1.3112 1.4088 1.5186 1.7526 1.4978 3.0411 3.2721 3.3786 3.8554 3.3868
TV-HAR 2.2938 2.5102 2.6196 2.9711 2.5987 1.3449 1.4406 1.5761 1.8069 1.5421 3.0082 3.3156 3.4053 3.8478 3.3942

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 32.5901 36.5768 43.4159 53.4816 41.5161 3.5172 3.9143 4.6656 6.3905 4.6219 54.4813 61.1709 72.5940 88.9401 69.2966
HARQ 32.8004 36.0394 40.4686 52.8421 40.5376 3.3854 3.7767 4.4283 6.2293 4.4549 54.9492 60.3324 67.6061 87.9405 67.7071
TV-HAR 30.2987 37.4240 39.3789 52.6757 39.9444 3.4666 3.8681 4.5926 6.3338 4.5653 50.5027 62.6908 65.5722 87.5701 66.5840

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9922 0.9867 0.9676 0.9836 0.9825 0.9527 0.9615 0.9431 0.9487 0.9515 1.0057 0.9951 0.9762 0.9962 0.9933
TV-HAR 0.9903 1.0021 0.9826 0.9900 0.9912 0.9772 0.9832 0.9788 0.9781 0.9793 0.9948 1.0084 0.9839 0.9942 0.9953

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 1.0065 0.9853 0.9321 0.9880 0.9780 0.9625 0.9648 0.9491 0.9748 0.9628 1.0086 0.9863 0.9313 0.9888 0.9787
TV-HAR 0.9297 1.0232 0.9070 0.9849 0.9612 0.9856 0.9882 0.9843 0.9911 0.9873 0.9270 1.0248 0.9033 0.9846 0.9599

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 0.7845 1.3299 3.2359 1.6384 1.7472 4.7259 3.8473 5.6918 5.1262 4.8478 -0.5661 0.4852 2.3756 0.3849 0.6699
TV-HAR 0.9702 -0.2055 1.7379 1.0048 0.8769 2.2796 1.6797 2.1173 2.1857 2.0656 0.5215 -0.8381 1.6051 0.5805 0.4672

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ -0.6452 1.4694 6.7885 1.1957 2.2021 3.7469 3.5163 5.0862 2.5229 3.7181 -0.8587 1.3707 6.8709 1.1239 2.1267
TV-HAR 7.0308 -2.3161 9.2984 1.5069 3.8800 1.4370 1.1811 1.5657 0.8869 1.2677 7.3027 -2.4846 9.6726 1.5404 4.0078

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.21: Out-of-sample forecasts (MRK)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.8267 1.8758 1.6712 1.6364 1.7525 0.9847 1.0170 1.1030 1.0871 1.0479 2.4606 2.5225 2.0990 2.0501 2.2830
HARQ 1.7635 1.8015 1.6192 1.5912 1.6938 0.9545 1.0070 1.0727 1.0806 1.0287 2.3727 2.3997 2.0307 1.9756 2.1947
TV-HAR 1.7655 1.7971 1.6155 1.5848 1.6907 0.9450 0.9921 1.0654 1.0761 1.0197 2.3832 2.4033 2.0296 1.9678 2.1960

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 55.5580 71.9409 33.1289 17.0851 44.4282 6.5013 6.9400 8.3676 7.2428 7.2629 92.4966 120.8851 51.7736 24.4961 72.4128
HARQ 48.5127 47.5582 30.9971 16.4167 35.8712 6.3279 7.0083 8.3117 7.2633 7.2278 80.2768 78.0913 48.0787 23.3090 57.4389
TV-HAR 44.7759 46.6737 30.8540 16.2452 34.6372 6.3137 6.8971 8.2362 7.2322 7.1698 73.7370 76.6246 47.8846 23.0318 55.3195

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9654 0.9604 0.9689 0.9723 0.9668 0.9693 0.9901 0.9726 0.9941 0.9815 0.9643 0.9513 0.9675 0.9637 0.9617
TV-HAR 0.9665 0.9580 0.9667 0.9685 0.9649 0.9597 0.9755 0.9660 0.9900 0.9728 0.9685 0.9527 0.9669 0.9599 0.9620

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.8732 0.6611 0.9357 0.9609 0.8577 0.9733 1.0098 0.9933 1.0028 0.9948 0.8679 0.6460 0.9286 0.9515 0.8485
TV-HAR 0.8059 0.6488 0.9313 0.9508 0.8342 0.9711 0.9938 0.9843 0.9985 0.9869 0.7972 0.6339 0.9249 0.9402 0.8240

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 3.4577 3.9638 3.1091 2.7662 3.3242 3.0689 0.9877 2.7439 0.5937 1.8485 3.5749 4.8673 3.2536 3.6336 3.8324
TV-HAR 3.3504 4.1967 3.3338 3.1533 3.5086 4.0316 2.4498 3.4035 1.0043 2.7223 3.1452 4.7270 3.3063 4.0113 3.7974

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 12.6811 33.8927 6.4349 3.9121 14.2302 2.6665 -0.9841 0.6680 -0.2824 0.5170 13.2111 35.4004 7.1367 4.8460 15.1486
TV-HAR 19.4070 35.1222 6.8670 4.9160 16.5780 2.8853 0.6182 1.5706 0.1470 1.3053 20.2814 36.6137 7.5115 5.9777 17.5961

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.22: Out-of-sample forecasts (BA)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.1250 1.1709 1.2212 1.4407 1.2395 0.5604 0.6203 0.6781 0.8011 0.6650 1.5502 1.5855 1.6302 1.9223 1.6721
HARQ 1.1309 1.1926 1.2487 1.4325 1.2512 0.5385 0.6002 0.6505 0.7887 0.6444 1.5770 1.6387 1.6992 1.9172 1.7080
TV-HAR 1.1175 1.1876 1.2407 1.4471 1.2482 0.5426 0.6176 0.6678 0.8037 0.6579 1.5504 1.6167 1.6720 1.9316 1.6927

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 8.0374 7.8581 8.2595 11.7079 8.9657 0.5771 0.7361 0.8235 1.1778 0.8286 13.6549 13.2209 13.8587 19.6368 15.0928
HARQ 7.8226 7.8598 10.4614 11.6793 9.4558 0.5710 0.7339 0.8082 1.1739 0.8217 13.2830 13.2254 17.7300 19.5896 15.9570
TV-HAR 7.6069 7.7509 8.8926 11.7697 9.0050 0.5699 0.7337 0.8169 1.1794 0.8250 12.9056 13.0347 14.9734 19.7439 15.1644

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 1.0052 1.0185 1.0225 0.9943 1.0101 0.9610 0.9676 0.9593 0.9844 0.9681 1.0173 1.0336 1.0423 0.9974 1.0226
TV-HAR 0.9933 1.0142 1.0159 1.0044 1.0070 0.9684 0.9956 0.9849 1.0032 0.9880 1.0001 1.0197 1.0256 1.0048 1.0126

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9733 1.0002 1.2666 0.9976 1.0594 0.9894 0.9970 0.9814 0.9967 0.9911 0.9728 1.0003 1.2793 0.9976 1.0625
TV-HAR 0.9464 0.9864 1.0766 1.0053 1.0037 0.9877 0.9968 0.9920 1.0014 0.9945 0.9451 0.9859 1.0804 1.0055 1.0042

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ -0.5237 -1.8549 -2.2506 0.5721 -1.0143 3.9038 3.2439 4.0710 1.5550 3.1934 -1.7287 -3.3570 -4.2304 0.2636 -2.2631
TV-HAR 0.6674 -1.4230 -1.5913 -0.4442 -0.6978 3.1624 0.4367 1.5149 -0.3232 1.1977 -0.0117 -1.9709 -2.5641 -0.4822 -1.2572

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 2.6723 -0.0207 -26.6584 0.2442 -5.9407 1.0552 0.2992 1.8632 0.3284 0.8865 2.7237 -0.0341 -27.9345 0.2404 -6.2511
TV-HAR 5.3558 1.3642 -7.6649 -0.5281 -0.3683 1.2315 0.3206 0.7955 -0.1374 0.5526 5.4870 1.4079 -8.0435 -0.5457 -0.4236

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.23: Out-of-sample forecasts (MSFT)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.9398 0.9413 0.9622 1.0360 0.9698 0.3760 0.4095 0.4237 0.4412 0.4126 1.3643 1.3417 1.3677 1.4838 1.3894
HARQ 0.9352 0.9568 0.9739 1.0371 0.9757 0.3487 0.3879 0.3977 0.4145 0.3872 1.3769 1.3851 1.4077 1.5059 1.4189
TV-HAR 0.9269 0.9407 0.9697 1.0298 0.9668 0.3539 0.3822 0.3911 0.4198 0.3868 1.3584 1.3612 1.4053 1.4891 1.4035

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 7.8400 6.4018 5.7300 6.6837 6.6639 0.2429 0.2944 0.3027 0.3297 0.2924 13.5605 11.0005 9.8165 11.4681 11.4614
HARQ 9.1598 7.5335 6.2997 6.6170 7.4025 0.2323 0.2844 0.2814 0.3056 0.2759 15.8820 12.9919 10.8314 11.3693 12.7687
TV-HAR 7.2368 6.2084 6.0562 6.5961 6.5244 0.2321 0.2776 0.2776 0.3077 0.2737 12.5113 10.6741 10.4073 11.3311 11.2309

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9952 1.0165 1.0122 1.0010 1.0062 0.9275 0.9474 0.9388 0.9393 0.9383 1.0092 1.0323 1.0293 1.0148 1.0214
TV-HAR 0.9863 0.9993 1.0078 0.9941 0.9969 0.9411 0.9335 0.9232 0.9515 0.9373 0.9957 1.0145 1.0275 1.0036 1.0103

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 1.1683 1.1768 1.0994 0.9900 1.1086 0.9565 0.9661 0.9296 0.9270 0.9448 1.1712 1.1810 1.1034 0.9914 1.1117
TV-HAR 0.9231 0.9698 1.0569 0.9869 0.9842 0.9555 0.9429 0.9169 0.9332 0.9371 0.9226 0.9703 1.0602 0.9881 0.9853

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 0.4825 -1.6457 -1.2182 -0.1031 -0.6211 7.2496 5.2578 6.1181 6.0678 6.1733 -0.9218 -3.2320 -2.9294 -1.4848 -2.1420
TV-HAR 1.3699 0.0661 -0.7808 0.5941 0.3124 5.8887 6.6544 7.6793 4.8466 6.2673 0.4322 -1.4477 -2.7541 -0.3580 -1.0319

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ -16.8340 -17.6784 -9.9433 0.9979 -10.8645 4.3479 3.3916 7.0450 7.3045 5.5222 -17.1196 -18.1030 -10.3378 0.8614 -11.1748
TV-HAR 7.6937 3.0214 -5.6932 1.3109 1.5832 4.4488 5.7078 8.3082 6.6797 6.2861 7.7375 2.9673 -6.0183 1.1947 1.4703

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.24: Out-of-sample forecasts (KO)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.5974 0.6036 0.5704 0.6292 0.6002 0.3623 0.3467 0.3556 0.3869 0.3629 0.7745 0.7970 0.7322 0.8117 0.7789
HARQ 0.5810 0.6083 0.5670 0.6290 0.5963 0.3376 0.3329 0.3358 0.3786 0.3462 0.7643 0.8156 0.7410 0.8175 0.7846
TV-HAR 0.5858 0.5992 0.5736 0.6316 0.5975 0.3529 0.3437 0.3508 0.3839 0.3578 0.7612 0.7916 0.7413 0.8181 0.7781

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 2.3054 2.2310 1.7567 2.0232 2.0791 0.7204 0.4757 0.5448 0.5755 0.5791 3.4988 3.5526 2.6692 3.1133 3.2085
HARQ 2.2349 2.1587 1.8021 2.0227 2.0546 0.6787 0.4532 0.5151 0.5625 0.5524 3.4067 3.4429 2.7712 3.1222 3.1858
TV-HAR 2.2169 2.1376 1.8032 2.0220 2.0449 0.7138 0.4727 0.5390 0.5634 0.5722 3.3487 3.3911 2.7552 3.1202 3.1538

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9725 1.0078 0.9939 0.9996 0.9934 0.9317 0.9603 0.9443 0.9786 0.9537 0.9868 1.0233 1.0120 1.0072 1.0073
TV-HAR 0.9806 0.9928 1.0054 1.0037 0.9956 0.9740 0.9915 0.9864 0.9923 0.9861 0.9829 0.9932 1.0124 1.0078 0.9991

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9694 0.9676 1.0259 0.9997 0.9907 0.9420 0.9526 0.9454 0.9775 0.9544 0.9737 0.9691 1.0382 1.0028 0.9960
TV-HAR 0.9616 0.9581 1.0265 0.9994 0.9864 0.9908 0.9937 0.9893 0.9790 0.9882 0.9571 0.9545 1.0322 1.0022 0.9865

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 2.7508 -0.7766 0.6122 0.0364 0.6557 6.8251 3.9729 5.5707 2.1357 4.6261 1.3155 -2.3320 -1.2010 -0.7169 -0.7336
TV-HAR 1.9404 0.7200 -0.5446 -0.3719 0.4360 2.5968 0.8542 1.3570 0.7665 1.3936 1.7092 0.6760 -1.2399 -0.7805 0.0912

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 3.0569 3.2390 -2.5864 0.0259 0.9338 5.7994 4.7371 5.4591 2.2510 4.5616 2.6317 3.0879 -3.8230 -0.2838 0.4032
TV-HAR 3.8384 4.1868 -2.6507 0.0611 1.3589 0.9236 0.6294 1.0708 2.0953 1.1798 4.2904 4.5455 -3.2227 -0.2221 1.3478

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.25: Out-of-sample forecasts (XOM)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.8387 0.8741 0.8293 0.9000 0.8605 0.4114 0.4508 0.4792 0.5196 0.4653 1.1604 1.1929 1.0929 1.1864 1.1581
HARQ 0.8365 0.8780 0.8296 0.9225 0.8451 0.4128 0.4520 0.4796 0.5207 0.4663 1.1555 1.1988 1.0931 1.2250 1.1681
TV-HAR 0.8337 0.8867 0.8400 0.9112 0.8485 0.4135 0.4530 0.4789 0.5163 0.4654 1.1501 1.2133 1.1119 1.2086 1.1710

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 5.4459 5.6783 4.0226 5.4953 5.1605 0.3734 0.4365 0.5085 0.5688 0.4718 9.2653 9.6253 6.6686 9.2049 8.6910
HARQ 5.5249 5.8939 4.1268 6.0216 5.3918 0.3776 0.4385 0.5156 0.5714 0.4758 9.4008 10.0017 6.8460 10.1255 9.0935
TV-HAR 5.4655 6.0175 4.2157 5.7227 5.3553 0.3736 0.4365 0.5091 0.5665 0.4714 9.2995 10.2198 7.0066 9.6052 9.0328

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9974 1.0044 1.0003 1.0249 1.0068 1.0033 1.0026 1.0008 1.0021 1.0022 0.9958 1.0049 1.0002 1.0325 1.0084
TV-HAR 0.9941 1.0144 1.0129 1.0125 1.0085 1.0050 1.0049 0.9993 0.9936 1.0007 0.9912 1.0172 1.0174 1.0187 1.0111

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 1.0145 1.0380 1.0259 1.0958 1.0435 1.0113 1.0046 1.0139 1.0046 1.0086 1.0146 1.0391 1.0266 1.1000 1.0451
TV-HAR 1.0036 1.0597 1.0480 1.0414 1.0382 1.0007 1.0001 1.0012 0.9959 0.9995 1.0037 1.0618 1.0507 1.0435 1.0399

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 0.2610 -0.4427 -0.0335 -2.4949 -0.6775 -0.3340 -0.2610 -0.0796 -0.2097 -0.2211 0.4198 -0.4944 -0.0182 -3.2485 -0.8353
TV-HAR 0.5916 -1.4443 -1.2915 -1.2483 -0.8481 -0.5003 -0.4886 0.0733 0.6360 -0.0699 0.8832 -1.7163 -1.7422 -1.8697 -1.1112

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ -1.4521 -3.7965 -2.5911 -9.5768 -4.3541 -1.1285 -0.4564 -1.3893 -0.4605 -0.8587 -1.4619 -3.9105 -2.6601 -10.0009 4.5084
TV-HAR -0.3602 -5.9728 -4.8001 -4.1373 -3.8176 -0.0651 -0.0053 -0.1229 0.4084 0.0538 -0.3691 -6.1766 -5.0687 -4.3488 -3.9908

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.26: Out-of-sample forecasts (DD)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.3914 1.3108 1.3994 1.4607 1.3906 0.4739 0.5069 0.5388 0.6169 0.5341 2.0822 1.9161 2.0475 2.0961 2.0355
HARQ 1.3161 1.3304 1.3635 1.4399 1.3625 0.4659 0.4984 0.5261 0.6056 0.5240 1.9563 1.9570 1.9940 2.0680 1.9938
TV-HAR 1.3381 1.3333 1.3700 1.4555 1.3742 0.4618 0.4945 0.5214 0.6041 0.5205 1.9979 1.9649 2.0090 2.0965 2.0171

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 19.8313 12.3804 18.4184 15.4229 16.5133 0.4715 0.5252 0.5462 0.7470 0.5725 34.4087 21.3072 31.8758 26.4735 28.5163
HARQ 15.1980 11.8152 16.3627 14.8184 14.5486 0.4867 0.5441 0.5404 0.7451 0.5791 26.2753 20.3020 28.2764 25.4152 25.0672
TV-HAR 16.0452 12.3708 16.4521 15.1435 15.0029 0.4944 0.5446 0.5489 0.7512 0.5848 27.7545 21.2757 28.4269 25.9805 25.8594

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9459 1.0150 0.9743 0.9857 0.9802 0.9833 0.9832 0.9765 0.9818 0.9812 0.9395 1.0213 0.9739 0.9866 0.9803
TV-HAR 0.9617 1.0172 0.9790 0.9964 0.9886 0.9746 0.9756 0.9677 0.9793 0.9743 0.9595 1.0255 0.9812 1.0002 0.9916

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.7664 0.9543 0.8884 0.9608 0.8925 1.0322 1.0360 0.9895 0.9975 1.0138 0.7636 0.9528 0.8871 0.9600 0.8909
TV-HAR 0.8091 0.9992 0.8932 0.9819 0.9209 1.0485 1.0370 1.0050 1.0057 1.0240 0.8066 0.9985 0.8918 0.9814 0.9196

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 5.4099 -1.4978 2.5702 1.4270 1.9773 1.6747 1.6833 2.3493 1.8209 1.8821 6.0500 -2.1315 2.6140 1.3397 1.9680
TV-HAR 3.8309 -1.7180 2.1024 0.3596 1.1437 2.5385 2.4432 3.2268 2.0679 2.5691 4.0523 -2.5469 1.8796 -0.0190 0.8415

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 23.3634 4.5659 11.1615 3.9196 10.7526 -3.2218 -3.6020 1.0538 0.2544 -1.3789 23.6378 4.7175 11.2919 3.9975 10.9112
TV-HAR 19.0917 0.0776 10.6758 1.8118 7.9142 -4.8482 -3.7002 -0.4978 -0.5705 -2.4042 19.3387 0.1477 10.8199 1.8624 8.0422

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.27: Out-of-sample forecasts (VZ)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.9796 0.9636 0.9468 1.0335 0.9809 0.4696 0.4950 0.5163 0.5656 0.5116 1.3636 1.3164 1.2709 1.3857 1.3342
HARQ 0.9634 0.9568 0.9473 1.0348 0.9756 0.4506 0.4807 0.5017 0.5540 0.4968 1.3496 1.3153 1.2827 1.3968 1.3361
TV-HAR 0.9720 0.9596 0.9501 1.0325 0.9785 0.4666 0.4909 0.5179 0.5626 0.5095 1.3526 1.3125 1.2755 1.3862 1.3317

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 6.1433 5.1869 4.6750 5.0415 5.2617 0.5203 0.5617 0.7093 0.8963 0.6719 10.3773 8.6696 7.6610 8.1627 8.7177
HARQ 6.2779 5.4946 4.7059 5.0885 5.3917 0.5115 0.5540 0.6995 0.9004 0.6663 10.6199 9.2148 7.7226 8.2421 8.9498
TV-HAR 6.1595 5.2982 4.6597 5.0143 5.2829 0.5167 0.5582 0.7079 0.8959 0.6697 10.4084 8.8673 7.6353 8.1153 8.7566

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9835 0.9930 1.0005 1.0013 0.9946 0.9596 0.9711 0.9718 0.9794 0.9705 0.9897 0.9992 1.0093 1.0080 1.0015
TV-HAR 0.9922 0.9958 1.0035 0.9990 0.9976 0.9936 0.9917 1.0031 0.9947 0.9958 0.9919 0.9970 1.0036 1.0004 0.9982

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 1.0219 1.0593 1.0066 1.0093 1.0243 0.9832 0.9862 0.9861 1.0046 0.9900 1.0234 1.0629 1.0080 1.0097 1.0260
TV-HAR 1.0026 1.0214 0.9967 0.9946 1.0039 0.9932 0.9937 0.9980 0.9996 0.9961 1.0030 1.0228 0.9966 0.9942 1.0042

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 1.6499 0.7018 -0.0516 -0.1290 0.5428 4.0359 2.8886 2.8213 2.0632 2.9522 1.0312 0.0826 -0.9304 -0.8028 -0.1548
TV-HAR 0.7778 0.4177 -0.3473 0.0959 0.2360 0.6415 0.8336 -0.3126 0.5294 0.4230 0.8132 0.2999 -0.3579 -0.0374 0.1795

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ -2.1910 -5.9319 -0.6615 -0.9327 -2.4293 1.6794 1.3813 1.3878 -0.4589 0.9974 -2.3371 -6.2887 -0.8044 -0.9719 -2.6005
TV-HAR -0.2633 -2.1450 0.3266 0.5393 -0.3856 0.6785 0.6286 0.1955 0.0409 0.3859 -0.2989 -2.2803 0.3358 0.5805 -0.4157

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Table 3.28: Out-of-sample forecasts (PEF)

Full Pre-Crisis Crisis

MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0967 1.0781 1.0460 1.1804 1.1003 0.7937 0.8535 0.8018 0.9884 0.8594 1.3249 1.2472 1.2299 1.3249 1.2817
HARQ 1.0260 1.0277 1.0326 1.1353 1.0554 0.7536 0.7981 0.7524 0.9323 0.8091 1.2312 1.2005 1.2436 1.2882 1.2409
TV-HAR 1.0340 1.0272 1.0320 1.1384 1.0579 0.7535 0.7965 0.7457 0.9302 0.8065 1.2452 1.2009 1.2476 1.2951 1.2472

Full Pre-Crisis Crisis

MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 14.4748 8.8819 6.6204 9.1039 9.7703 6.6833 7.6515 3.8176 7.8585 6.5027 20.3417 9.8084 8.7309 10.0417 12.2307
HARQ 11.8529 7.9249 6.3831 8.2243 8.5963 6.1272 6.7366 3.5648 7.3776 5.9516 16.1641 8.8197 8.5052 8.8619 10.5877
TV-HAR 11.8724 7.7245 6.4875 8.3667 8.6128 6.1101 6.7532 3.5533 7.3673 5.9460 16.2112 8.4559 8.6970 9.1192 10.6208

Full Pre-Crisis Crisis

Relative MAE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.9355 0.9532 0.9872 0.9618 0.9594 0.9494 0.9350 0.9383 0.9433 0.9415 0.9293 0.9625 1.0111 0.9723 0.9688
TV-HAR 0.9428 0.9528 0.9866 0.9644 0.9616 0.9493 0.9332 0.9300 0.9411 0.9384 0.9398 0.9628 1.0144 0.9775 0.9736

Full Pre-Crisis Crisis

Relative MSE 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARQ 0.8189 0.8923 0.9641 0.9034 0.8947 0.9168 0.8804 0.9338 0.9388 0.9175 0.7946 0.8992 0.9741 0.8825 0.8876
TV-HAR 0.8202 0.8697 0.9799 0.9190 0.8972 0.9142 0.8826 0.9308 0.9375 0.9163 0.7969 0.8621 0.9961 0.9081 0.8908

Full Pre-Crisis Crisis

MAE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 6.4478 4.6808 1.2835 3.8166 4.0572 5.0620 6.4958 6.1685 5.6713 5.8494 7.0730 3.7455 -1.1146 2.7748 3.1197
TV-HAR 5.7233 4.7221 1.3390 3.5594 3.8360 5.0740 6.6756 6.9966 5.8898 6.1590 6.0163 3.7155 -1.4383 2.2504 2.6360

Full Pre-Crisis Crisis

MSE Gains(%) 150 300 450 900 average 150 300 450 900 average 150 300 450 900 average
HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HARQ 18.1140 10.7748 3.5851 9.6617 10.5339 8.3201 11.9567 6.6220 6.1201 8.2547 20.5369 10.0805 2.5853 11.7486 11.2378
TV-HAR 17.9792 13.0312 2.0074 8.0980 10.2790 8.5768 11.7401 6.9245 6.2505 8.3730 20.3053 13.7896 0.3885 9.1867 10.9175

Notes: The table reports the out-of-sample performances of the standard HAR, the HARQ and the TV-HAR models for different subsample periods, based on MAE and MSE. The numbers in bold represent
the model with best forecasting performance. The subsample of the pre-crisis period is from 2004 to 2006. The subsample of the crisis period is from 2007 to 2010. The relative MAE and MSE means the
ratio of the losses for the different models relative to the losses of the HAR model. The MAE and MSE Gains(%) measure the gains of forecasting accuracy compared with the HAR model, for example, the
MAE gains of HARQ is calculated as follows: (MAEHAR −MAEHARQ)/MAEHAR.
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Concluding Remarks

This thesis investigates financial volatility and cross-market correlation by using

different volatility measures and models. We consider both parametric (Chapters 1 and

2) and non-parametric (Chapter 3) volatility measurement; high-frequency (Chapters

1 and 3) and daily (Chapter 2) data; univariate (Chapters 1 and 3) and multivariate

(Chapter 2) models; conventional (Chapters 1 and 3) and Bayesian (Chapter 2) methods.

In Chapter 1, we introduce the Intraday SV specification which incorporates the duration

information to model and forecast intraday return volatility. The duration information

includes both the lag duration and the lag expected duration calculated from the

ACD model. We consider the expected duration rather than only rely on the actual

duration because the expected duration allows us to investigate the effects of surprises in

durations on intraday return volatility. We find there is a negative relationship between

the unexpected duration and volatility. This chapter supports that when we investigate

the intraday return volatility, the duration can offer useful information.

In Chapter 2, we examines financial contagion between stock markets of USA and

five EU countries. We consider both the recent Global Financial Crisis (GFC) and the

European Sovereign Debt Crisis (ESDC). We compare the contagion effects estimating

from the DCC-GARCH and DC-MSV models and outline that financial contagion is

more significant based on the DC-MSV model. We extend the DC-MSV model by

incorporating the implied volatility (DC-MSV-IV), and compare the contagion effect

with the standard DC-MSV. The contagion effect is further more significant under
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the DC-MSV-IV model. We confirm the implied volatility information is useful for

detecting financial contagion. We offer the empirical evidence of the existence of

contagion for the countries under investigation. Compared with the stable market

regimes, the correlations are significantly higher during the crisis market regimes. The

dynamic correlations are even higher during ESDC compared with GFC. For the five

EU countries, the UK is most influenced by the financial contagion whereas Germany

is least influenced.

In Chapter 3, we introduce a TV-HAR model to forecast RV. We observe a regular

pattern of RV that can be captured by the TV-HAR model: if there is an increase in

the lag daily RV compared with its longer-term average level (monthly RV), the current

RV tends to decrease rapidly to its long term level; conversely, if there is a decrease

in the lag daily RV compared with its longer-term average level (monthly RV), that

reversion takes longer. The TV-HAR model allows the weight of daily lags to vary

according to the absolute difference between the long-term (monthly) RV and the short-

term (daily) RV. The weight of daily lags is highest when the RV is equal to its longer-

term level. The lower weight can make the forecasts quickly mean reverting when

daily RV is bigger than its monthly RV, and slowly mean reverting when daily RV is

smaller than its monthly RV. We compare the TV-HAR model with the standard HAR

and recently introduced HARQ models. The better performance of the TV-HAR model

can be supported by both the simulated and empirical data.
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series forecasts vis-à-vis implied volatility. Journal of Futures Markets. 24, 1005–
1028.

McAleer, M. and Medeiros, M. C., 2008. Realized volatility: A review. Econometric
Reviews. 27, 10–45.

McMillan, D. G. and Garcia, R. Q., 2009. Intra-day volatility forecasts. Applied
Financial Economics. 19, 611–623.
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