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Abstract 1 

Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a 2 

future climate of elevated CO2 (eCO2) and warming requires accurate quantification of gross 3 

primary production (GPP), the largest flux of C in the global C cycle.  We evaluated six years 4 

(2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) 5 

experiment, situated in a grassland in Wyoming, USA.  The GPP data were used to calibrate a 6 

light response model whose basic formulation has been successfully used in a variety of 7 

ecosystems.  The model was extended by modeling maximum photosynthetic rate (Amax) and 8 

light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, 9 

vegetation greenness and nitrogen at current and antecedent (past) time scales. The model fit the 10 

observed GPP well (R2 = 0.79), which was confirmed by other model performance checks that 11 

compared different variants of the model (e.g., with and without antecedent effects).  Stimulation 12 

of cumulative six-year GPP by warming (29%, P=0.02) and eCO2 (26%, P=0.07) was primarily 13 

driven by enhanced C uptake during spring (129%, P=0.001) and fall (124%, P=0.001), 14 

respectively, which was consistent across years.  Antecedent air temperature (Tairant) and vapor 15 

pressure deficit (VPDant) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were 16 

the most significant predictors of temporal variability in GPP among most treatments. The 17 

importance of VPDant suggests that atmospheric drought is important for predicting GPP under 18 

current and future climate; we highlight the need for experimental studies to identify the 19 

mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP 20 

under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere 21 

models (TBMs).  The narrow uncertainties of these data-driven GPP estimates suggest that they 22 

could be useful semi-independent data streams for validating TBMs.   23 
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Introduction  1 

Gross primary production (GPP) is the largest flux in the global carbon (C) cycle, representing 2 

the gross amount of C removed from the atmosphere by plants via photosynthesis at the 3 

ecosystem scale (Chapin III et al., 2006).  GPP represents the input of C into the terrestrial 4 

biosphere, which plays an important role in determining the magnitudes of the flows and stores 5 

of C within plants and soil (Beer et al., 2010, Williams et al., 2005).   Despite its importance, 6 

there remains large uncertainty in global model projections of future GPP – both globally and 7 

regionally – under anticipated future levels of CO2 and warming (Richardson et al., 2013, Arora 8 

et al., 2013), and there is an urgent need to determine the causes of these uncertainties 9 

(Friedlingstein et al., 2014). Improved accuracy of these model predictions is critical in 10 

determining whether the terrestrial biosphere is likely to be a future sink or source of C. 11 

While the responses of net primary production (NPP) to elevated CO2 (eCO2) are well-12 

studied, less work has directly evaluated GPP, partly because it is not directly measurable.  The 13 

few studies that exist on the singular effect of eCO2 on GPP report a positive effect.  For 14 

example, Wittig et al. (2005) found a ~80% stimulation of GPP for Populus trees growing under 15 

eCO2 over a three year period.  Likewise, using three years of leaf-level photosynthesis data, Luo 16 

et al. (2001) found a ~40% increase in modelled GPP under eCO2.  A stimulation of NPP under 17 

eCO2 suggests a stimulation of GPP if it is assumed that NPP is proportional to GPP (Williams et 18 

al., 2005, Waring et al., 1998).  A ~20% increase in NPP under eCO2 is expected in mid-latitudes 19 

(Luo et al., 2006), and this should translate into increased GPP. However, semi-arid grasslands 20 

exhibit large variation in NPP responses to eCO2 (0-100%),  which is primarily driven by spatial 21 

and temporal precipitation variability (Polley et al., 2013).  The stimulation of NPP by eCO2 has 22 

been shown to be suppressed if the ecosystem is nitrogen limited (Norby and Zak, 2011).  GPP 23 
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should also be affected by responses of leaf-level photosynthesis at light saturation (Asat), which 1 

increases with eCO2 in trees (~45%), grasses (~35%), shrubs (~20%) and crops (~35%) 2 

(Ainsworth and Long, 2005), but scaling from leaf-level Asat to ecosystem-level GPP is fraught 3 

with uncertainties (Arp, 1991, McLeod and Long, 1999, Morgan et al., 2001).  4 

Warming affects GPP directly through the effect of temperature on leaf photosynthesis, 5 

and indirectly via alterations in nitrogen mineralization and water availability (Ciais et al., 2014, 6 

Cox et al., 2000).  As with eCO2, a stimulation of NPP under warming suggests a stimulation of 7 

GPP if it is assumed that NPP is proportional to GPP (Williams et al., 2005, Waring et al., 1998).  8 

Terrestrial biosphere models (TBMs) predict a reduction in NPP with long-term warming; if 9 

warming reaches 3-5 °C by 2100 under a high CO2 emissions scenario (Collins et al., 2013), 10 

global terrestrial NPP may decrease by 15-100% (10–60 PgC/year) (Sitch et al., 2008, 11 

Friedlingstein et al., 2006, Roy et al., 2001).  Retrospective analyses also show a negative effect 12 

of warming on NPP, such as a ~9% decrease in global NPP between 1980 and 2002, which offset 13 

the CO2 fertilization effect (Magnani et al., 2007).  However, the magnitude of the GPP and NPP 14 

responses to warming varies among biomes, with northern latitudes expected to exhibit the 15 

largest increases (Piao et al., 2008, Rustad, 2008, Landsberg and Waring, 1997).  At the site 16 

level, a meta-analysis of 32 separate warming experiments found a positive effect of warming on 17 

NPP for tundra sites, but no effect for temperate forest and grassland sites (Rustad et al., 2001). 18 

At the regional level, a surface temperature increase of 2 oC between 1988 and 2008 in northern 19 

latitudes stimulated GPP during the spring and fall (Piao et al., 2008, Rustad, 2008, Landsberg 20 

and Waring, 1997).      21 

TBMs assume that the interactive effect of eCO2 and warming is positive (Luo et al., 22 

2008, Norby and Luo, 2004).  Field data from climate change experiments support this for 23 
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certain years (Dukes et al., 2005), but over multiple years there is growing evidence that the 1 

positive interactive response does not exist or is not as strong as models suggest (Dieleman et al., 2 

2012, Shaw et al., 2002). The effects of eCO2 and warming – whether singular or combined – 3 

may be dependent upon precipitation inputs in water-limited ecosystems (Fay et al., 2003, 4 

Huxman et al., 2004, Knapp and Smith, 2001, Schwinning et al., 2004).  For example, an 5 

experiment in a mixed C3/C4 semi-arid grassland found that aboveground NPP was increased by 6 

~80% when annual precipitation was delivered in a few, large rain events compared to more 7 

frequent, smaller events (Heisler-White et al., 2008).  Recent work has generalized this by 8 

considering the effect of past or antecedent conditions on primary production.  For example, 9 

Ogle et al. (2015) found that event size and antecedent precipitation explained 75% of the 10 

variation in aboveground NPP (ANPP) in the same semi-arid grassland. Likewise, antecedent 11 

soil water content was a significant predictor of ANPP in a tall grass prairie (Sherry et al., 2008).  12 

We identified three major knowledge gaps with regard to the response of GPP to climate 13 

change.  First, few climate change experiments have investigated the combined effects of eCO2 14 

and warming on primary production (Luo et al., 2008).  Second, most of the literature on the 15 

ecosystem responses of primary productivity to eCO2 and warming are based on measurements 16 

of NPP (as highlighted above); very few evaluate GPP, yet this is critical for constraining 17 

predictions of C cycle responses to climate change (Norby and Luo, 2004).  Third, while 18 

analyses of climate change experiments often report that treatment effects are contingent upon 19 

background climate conditions (e.g., Morgan et al. 2011), the effects of antecedent climate 20 

conditions are often not evaluated.   21 

To address these knowledge gaps, we measured and analyzed GPP for six years as part of 22 

the Prairie Heating and CO2 Enrichment Experiment (PHACE).  The experiment consisted of six 23 
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treatments, four of which were applied in a full factorial design with CO2 (ambient vs. elevated) 1 

and temperature (ambient vs. warming), and two others involved deep and shallow irrigation 2 

applied under ambient CO2 and temperature. We drew upon this six-year dataset to address three 3 

questions: (1) How does GPP respond to the main and interactive effects of eCO2 and warming 4 

in the context of variable precipitation? (2) What environmental and meteorological factors (e.g., 5 

soil water content, antecedent conditions) govern potential responses of GPP to climate change? 6 

Finally, we illustrate how our modeling approach can be applied to generate more realistic data 7 

products for informing TBMs, and we ask: (3) How does the inclusion of antecedent conditions 8 

affect the magnitude and uncertainty in such GPP data products?  Accurate estimation of 9 

uncertainty is essential in model evaluation exercises, and we provide a full accounting of 10 

uncertainty in our analyses. 11 

 12 

Materials and methods 13 

Site description 14 

The PHACE site is situated near Cheyenne, Wyoming at an elevation of 1930 m, with a semi-15 

arid, temperate climate.  Thirty-year mean annual temperature is 8.3°C and precipitation is 378 16 

mm, with ~75% falling during the growing season (Zelikova et al., 2015). The vegetation is a 17 

mixed grass prairie, dominated by two C3 grasses, western wheatgrass (Pascopyrum smithii 18 

(Rydb.) A. Löve) and needle-and-thread grass (Hesperostipa comata Trin and Rupr), and the C4 19 

perennial grass blue grama (Bouteloua gracilis (H.B.K.) Lag). Live plant cover ranges up to 70% 20 

of ground area (Zelikova et al., 2015), and roots extend to 40 cm with 75% of root biomass 21 

occurring above 15-cm depth (Carrillo et al., 2014).  The soil is a fine-loamy, mixed, mesic 22 

Aridic Argiustoll, and biological crusts are not present (Bachman et al., 2010).  23 
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Experimental design 1 

The PHACE experiment was set up as an incomplete factorial design consisting of six treatments 2 

and five replicate plots (3.4 m in diameter) per treatments (Morgan et al., 2011).  Four of the six 3 

treatments – abbreviated as ct, cT, Ct, CT – are a full factorial design of atmospheric CO2 4 

(ambient at 380-400 ppm [abbreviated as ‘c’] versus elevated at 600 ppm [‘C’]) and warming (no 5 

warming [‘t’] versus heated by 1.5 oC in the daytime and 3.0 oC in the nighttime [‘T’]).  The 6 

increase in atmospheric CO2 (600 ppm) for the elevated CO2 plots (Ct and CT) was achieved 7 

using Free Air CO2 Enrichment (FACE) technology (Miglietta et al., 2001).  Warming was 8 

simulated (cT and CT) by applying a ceramic heater system using a proportional-integral 9 

derivative (PID) feed-back loop (Kimball, 2005).   10 

The final two treatments (cts and ctd) involve irrigation applied to ambient CO2 and no 11 

warming plots (shallow [‘s’] or deep [‘d’] irrigation). In the context of the PHACE study, the 12 

main aim of the irrigation treatments was to test the hypothesis that responses to eCO2 are 13 

indirectly due to increases in soil water.  As such, water was applied to the cts and ctd plots in an 14 

effort to increase their soil water contents to match that of the Ct treatment.  In the cts treatment, 15 

irrigation was applied when soil moisture fell below 85% of Ct at the 5-25 cm depth: in 2007, 16 

five, 18-mm precipitation events were applied (totaling 90 mm); during 2008-2011, three 21-mm 17 

events per year (totaling 63 mm each year), and 2012, four 65-mm events (totaling 260 mm) 18 

were applied.  The total amount of water applied to the ctd plots was the same as the cts plots, 19 

but water was only added twice per year (spring and fall), in approximately equal amounts. 20 

Data description 21 

All data were measured in the field from 2007-2012, and consisted of GPP (µmol C m-2 s-1), 22 

associated air temperature (Tair; oC), volumetric soil water content (SWC; m2/m2), ecosystem 23 
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phenology (“greenness”; %), photosynthetically active radiation (PAR; µmol quanta m-2 s-1), 1 

aboveground plant nitrogen content (N; g m-2), and relative humidity (RH; %); vapor pressure 2 

deficit (VPD; kPa) was computed from Tair and RH.  GPP data were obtained indirectly as the 3 

difference between measurements of net ecosystem exchange (NEE; µmol C m-2 s-1) and 4 

ecosystem respiration (Reco; µmol C m-2 s-1) that were made within two minutes of each other.  5 

NEE was measured using a 0.1 m3 canopy gas exchange chamber by measuring the rate of 6 

change of CO2 concentration for 1 minute (Bachman et al., 2010, Jasoni et al., 2005).  Reco was 7 

measured immediately afterwards and in exactly the same way as the NEE one, except that an 8 

opaque cover was placed over the chamber to eliminate light.  Midday measurements were made 9 

on a total of 88 days over six growing seasons (May through September), and measurement days 10 

were typically separated by 2 to 4 weeks. Additional measurements of NEE and Reco, and thus 11 

GPP, were made every 6 weeks at five measurement times per day in each plot (nominal times = 12 

04:00, 09:00, 12:00, 16:00 and 21:00). More details on the methods can be found in Bachman et 13 

al. (2010) and Pendall et al. (2013).  See Ryan et al. (2015) for descriptions of the environmental 14 

data and the gap-filling employed to estimate missing covariate data on certain days and hours. 15 

Data synthesis and modeling 16 

We fit a non-linear mixed effects model to the GPP data to quantify how GPP varied among the 17 

experimental treatments at the season, annual, and multi-annual scales.  The goal of this analysis 18 

is two-fold: (1) to quantify the combined effects of the categorical treatment effects and the time-19 

varying concurrent and antecedent environmental effects (addressing questions 1 and 2), and (2) 20 

to estimate GPP on non-measurements times, while accounting for different sources of 21 

uncertainty, thus allowing us to gap-fill the GPP dataset and produce estimates of cumulative 22 

GPP fluxes (addressing question 3).  23 
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Given the distributional properties of the observed GPP data (GPPobs), we assumed that 1 

GPPobs followed a normal distribution. Thus, observation i (i = 1,…, 2456):   2 

    2
( )~ ( , )obs

i i t iGPP Normal µ σ    
 

(1) 

µ is the mean or predicted GPP value,  σ2 represents the observation variance, and t(i) indicates 3 

treatment t (t = 1, 2, …, 6 treatment levels) associated with observation i. We employ a semi-4 

empirical model for the mean GPP, µ, based on the rectangular hyperbola light-response model 5 

(Desai et al., 2008, Falge et al., 2001, Thornley, 1976, Landsberg and Waring, 1997), which we 6 

adapted to include the effect of atmospheric CO2 concentration (Acock et al., 1976).  We lack 7 

sufficient data to parameterize more complex or mechanistic models (E.g. Farquhar et al., 1980). 8 

However, the light-response or radiation-use efficiency type model has been frequently applied, 9 

in various formulations, to ecosystem level GPP and NPP flux data (see above references), and 10 

thus there is good precedence for using it here. The model for µ is: 11 

    
i i i i

i

i i i i

Q PAR AmaxC

Q PAR +AmaxC
µ =  

 

                 (2) 

PARi is the measured PAR (µmol m-2 s-1); Qi (µmol CO2 µmol-1 quanta) is the quantum yield or 12 

canopy light-use efficiency (i.e., the slope of the light response curve at PAR=0); Amaxi (µmol C 13 

m-2 s-1) is the maximum CO2 uptake rate of the canopy (maximum GPP) at light saturation. 14 

C� = c�exp 	CO�� − CO���������  accounts for variation in atmospheric CO2 relative to the mean 15 

observed atmospheric [CO2] (CO��������) in the ambient (j = 1; ct, cT, ctd, cts) and elevated (j = 2; Ct, 16 

CT) CO2 plots, where CO�� is the measured atmospheric [CO2], and the parameter cj describes 17 

the effect of deviations from the mean concentration (CO��������= 376 ppm and 572 ppm for j = 1 and j 18 

= 2, respectively).  An exponential function is applied to the deviations to ensure C� > 0.   19 
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 To capture potential temporal changes in the GPP response, we modeled Q and Amax as 1 

functions of various biotic (greenness and N) and abiotic (SWC, Tair, and VPD) factors at both 2 

current and antecedent (described in detail in the section below) time-scales.  It is well known 3 

that plant photosynthesis is partly governed by leaf N content (Williams et al., 1996, Landsberg 4 

and Waring, 1997, Magnani et al., 2007) and temperature (Farquhar et al., 1980, Bernacchi et al., 5 

2001) via their effects on enzyme-mediated reactions. VPD also plays an important role via its 6 

effect on stomatal conductance, which in turn controls photosynthetic rates (Collatz et al., 1991, 7 

Medlyn et al., 2011) .  Furthermore, vegetation greenness is expected to correspond to GPP; for 8 

example, satellite estimates of GPP are inferred from the light reflectance of the vegetation, 9 

which describes greenness of the vegetation.  To ensure that Amax is positive, we modeled Amax 10 

on the log scale, and to constrain Q between 0 and 1, we modeled Q on the logit scale. For 11 

example, we modeled log(Amax) as a linear function of the aforementioned current and 12 

antecedent (subscript = ant) biotic and abiotic drivers, with parameters that vary by treatment t (t 13 

= 1, 2, …, 6) associated with observation i: 14 

0 , ( ) 1, ( ) 2 , ( ) 3, ( ) 4 , ( ) , 5, ( ) ,

6 , ( ) , 7 , ( ) 8, ( ) 9 , ( ) , ( ), ( ( ))

log( )

interactions

i t i t i i t i i t i i t i ant i t i ant i

t i ant i t i i t i i t i ant i t i p t i

Amax SWC VPD Tair SWC VPD

Tair N Greenness Greenness

α α α α α α

α α α α ε

= + + + + +

+ + + + ∆ + +
     (3) 15 

εt,p represents a plot (nested in treatment) random effect, and p(t(i)) indicates plot p associated 16 

with treatment t and observation i (p = 1, 2, 3, 4, 5 for each treatment). ∆Greennessant represents 17 

the antecedent rate of change of greenness; when greenness is increasing, ∆Greennessant > 0, and 18 

when leaves are senescing ∆Greennessant < 0.  We define ‘interactions’ in Eqn (3) to potentially 19 

include all 2-way interactions between the covariates indicated in Eqn (3). Preliminary analysis 20 

identified five two-way interactions (of 36 possible) that were most important for understanding 21 

GPP (see appendix S1 for details of preliminary analysis), including Tair×Tair, SWCant×Tairant, 22 
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SWCant×VPDant, SWC×SWCant Tair×Tairant and VPD×Tair; these five interactions represent the 1 

“interactions” term and are assigned interaction effects parameters α10,t - α15,t, respectively.  2 

Including these interactions is further justified because: (1) Tair×Tair accounts for a potential 3 

peaked temperature response; (2) SWCant×Tairant indicates the seasonality of moisture 4 

availability; (3) SWCant×VPDant indicates differential below- versus aboveground water stress 5 

effects; and, (4) previous studies have reported important interactions between current and 6 

antecedent factors. Regarding the last point, C fluxes are likely to respond differently to a rain 7 

event (increase in current SWC) that occurs during a dry period (low SWCant) compared to 8 

during a wet period (high SWCant) (Arp, 1991, Barron-Gafford et al., 2014, Cable et al., 2013, 9 

Ryan et al., 2015), thus reflecting potential hysteresis patterns (Oikawa et al., 2014, Barron‐10 

Gafford et al., 2011). 11 

The function for logit(Q) is the same as for log(Amax) except that: (1) there is no N term 12 

because N is primarily expected to affect the amount of RuBisCO in the photosynthetic tissues, 13 

which in turn primarily limits Amax (Reich et al., 2009); and (2) it has its own nested plot random 14 

effects and treatment-specific effects parameters (β0,…, β14) (see Table 3 for a summary of model 15 

parameters). 16 

Quantification of antecedent drivers 17 

We characterized and quantified antecedent covariates following the stochastic antecedent 18 

modeling (SAM) framework described by Ogle et al. (2015); examples of practical 19 

implementation are given by Ryan et al. (2015), Cable et al. (2013), and Barron-Gafford et al. 20 

(2014).  Traditional methods of defining antecedent variables often compute a deterministic 21 

average of the variable over a fixed past time period.  SAM is different in that it allocates 22 

parameters (“importance weights”) to specific periods in the past, thus enabling quantification of 23 
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the relative importance of the variable at those different past times. Following Cable et al. (2013) 1 

and Ryan et al. (2015), we allowed GPP to be influenced by Tair and VPD over daily time-2 

scales, and by SWC and greenness over weekly time-scales. In general, we describe the 3 

antecedent variable (Xant) associated with observation i as: 4 

    
, ( ) 1, ( ( ))

1
, ( )

Nperiods

ant i X tp i k p t i
k

k t i
X W X − +

=

= ∑  

 

                 (4) 

where X = VPD or Tair, �� is the 24-hour mean for a particular day or time period, k is the time 5 

lag into the past (for Nperiod = 7 time steps) such that when k = 1, �� is the observed 24-hour 6 

mean that occurred during tp(i), the time period associated with observation i; again, t(i) and 7 

p(t(i)) are the treatment (t = 1,..,6) and plot (p = 1,..,5 per treatment) associated with observation 8 

i. WX are the weight parameters to be estimated. The expression for SWCant is similar to equation 9 

(4) except that	��	is the7-day mean for a particular week such that tp denote the week associated 10 

with each observation and k denotes the time (week scale) lag (Nperiods = 6); as done in Ryan et 11 

al. (2015), we allocated a separate weight for each of the first few weeks in the past (k = 1, 2, 3, 12 

4), the fifth (k = 5) weight to past weeks 5-6, and the sixth (k = 6) weight to past weeks 7-10.  We 13 

made a slight modification to calculate ∆Greennessant:  14 

 

( ), ( ) 1, ( ( )) ( ) , ( ( ))
1

, ( )

Nperiods

ant i X tp i k p t i tp i k p t i
k

k t i
Greenness W X X− + −

=

∆ = −∑  (5) 

where ��, i, k, t, tp, and p are as defined previously for the weekly scale covariates. Like SWCant, 15 

the time periods are on a weekly scale, but k = 1, 2, 3, and 4 correspond to the past week, two 16 

weeks ago, three weeks ago, and four weeks ago (Nperiods = 4), respectively. 17 

 We refer to the model described above as the ‘main’ model.  We also implemented an  18 

‘alternative’ model that excludes all antecedent covariates from the Q and Amax functions, as 19 

defined in Eqn (3), to evaluate the importance of including antecedent effects. The alternative 20 
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model (no antecedent effects) is more similar to the types of models that are often applied for 1 

partitioning eddy-covariance NEE data into its GPP and ecosystem respiration components, such 2 

as those described in the review paper by Desai et al. (2008). 3 

Model implementation and assessment 4 

We implemented the model within a hierarchical Bayesian framework (see Appendix S2 for 5 

details) using the software package JAGS (Plummer, 2003), which uses Markov chain Monte 6 

Carlo (MCMC) to sample from the joint posterior of the model parameters.  Depending on the 7 

model (main or alternative model), we ran three parallel chains for 100,000-200,000 iterations 8 

each.  After discarding the first 50% of iterations as ‘burn in’, we thinned the chains by 100 to 9 

reduce within-chain autocorrelation and to reduce storage requirements; convergence was 10 

assessed using the Brooks-Gelman-Rubin diagnostic tool (Gelman et al., 2013).  This produced 11 

roughly 3000 independent samples from the posterior distribution for each parameter, which 12 

were summarized by their posterior means, central 95% credible intervals (CIs) defined by the 13 

2.5th and 97.5th percentiles, and Bayesian p-values (Gelman et al., 2013). 14 

We assessed the performance of the model by comparing predicted GPP versus observed 15 

GPP.  We used the coefficient of determination (R2) as an informal measure of model accuracy.   16 

A limitation with solely using R2 is that it does not detect when over-fitting occurs, the 17 

phenomenon by which R2 can increase with greater model complexity (more parameters).  To 18 

overcome this, we also calculated two other commonly used model assessment diagnostics: the 19 

deviance information criterion (DIC) and the posterior predictive loss (PPL).  Each of these 20 

statistics are the sum of a goodness of fit term and a model complexity (penalty) term that 21 

describes the effective number of parameters (Spiegelhalter et al., 2002, Gelfand and Ghosh, 22 
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1998).  One model is more desirable over another if it has a lower DIC and lower PPL.  Using 1 

these two indices, we compared our main model with the alternative model. 2 

Estimates of seasonal, annual and six-year GPP 3 

Our Bayesian approach to analyzing the GPP data also provides a framework for predicting GPP 4 

for time periods for which it was not measured. Each of the fitted models (main and alternative) 5 

was subsequently applied on an hourly time-step during the March-October period (we assumed 6 

GPP = 0 during other months due to the lack of vegetation during these winter months) for 2007-7 

2012, and for every plot using each of the 3000 parameter sets sampled from the posterior 8 

distribution.  The model simulations were implemented using equations (2)-(5) as well as all 9 

measurements of plot-level data (daily SWC, daily greenness, hourly Tair, hourly VPD, and 10 

annual N).  The resulting hourly GPP predictions were summed within each season, each year, 11 

and across all years for each of the 3000 model executions, yielding posterior predictive 12 

distributions of seasonal (spring [March-May], summer [June-August], fall [Sept-Oct]), annual 13 

(March-October), and six-year GPP estimates. These distributions account for both model 14 

uncertainty (e.g., lack of fit) and parameter uncertainty. 15 

Comparisons to GPP simulated from 12 terrestrial biosphere models 16 

The data-driven predicted GPP values could serve as important ‘data-products’ for informing and 17 

evaluating terrestrial biosphere models (TBMs).  Importantly, the Bayesian procedure explicitly 18 

quantifies uncertainty in such data products. To exemplify the importance of quantification of 19 

data product uncertainty, we considered two different types of data products: (1) six-year 20 

cumulative GPP from the main and alternative models as described in the previous subsection, 21 

and (2) the percent change in the six-year GPP under warming (cT) and eCO2 (Ct) relative to the 22 

control (ct).  As with the first, the second data product was computed using Monte Carlo 23 
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simulations based on the 3000 posterior estimates of the six-year GPP (see Appendix S3 for 1 

description of how both data products were computed).  The six-year GPP and GPP responses 2 

predicted from 12 TBMs were compared against the corresponding data products. The TBMs 3 

included: six land surface models (CABLE, CLM4.0, CLM4.5, ISAM, OCN, and ORCHIDEE); 4 

three global dynamic vegetation models (JULES, LPJ-GUESS and SDGVM); and three 5 

ecosystem models (DAYCENT, GDAY, and TECO); see Table S1 in the supplementary material 6 

for a description of the TBMs. The TBMs were not calibrated to the site using response data, but 7 

they were provided optional data or parameter values (e.g., Vcmax, specific leaf area, rooting 8 

depth, soil texture) representative of the site. Models were also forced with site meteorological 9 

data covering the six years of the experiment (see Appendix S4 for details). 10 

As a result of the TBMs not being rigorously calibrated against the PHACE data, there 11 

was no expectation that the TBM responses would match or be close to the expected PHACE 12 

responses. The purpose of comparing our “GPP data product” against the TBM output was to 13 

illustrate how our data product could be used to inform the TBMs.  Our analysis represents a 14 

more flexible and potentially more rigorous method for “gap-filling” missing data – compared to 15 

algorithms that are currently used to gap fill, for example, fill eddy flux data – and we show how 16 

it can be used to generate GPP estimates (data products) over the course of the experiment. 17 

 18 

Results 19 

Assessment of model performance  20 

Our main model was able to explain a large portion of the variation in the hourly GPP 21 

observations (overall R2 of 0.79).  However, the accuracy of the GPP predictions varied among 22 

the treatments (Fig. 1), with treatment-specific fits: cT (R2=0.86), ctd (R2=0.81), ct (R2=0.80), cts 23 
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(R2=0.77), CT (R2=0.77), and Ct (R2=0.67).  For all treatments, the model tends to slightly 1 

under-predict GPP at high values, and while this bias is minimal, it is more pronounced in the Ct 2 

treatment (Fig. 1).  That is, amongst a number of treatments, there are a handful of measurements 3 

that are significantly higher than the modelled values, and these seem to mainly be concentrated 4 

on one or two days during the fall (Fig. S5).  5 

The alternative model, which excluded all of the antecedent covariates, resulted in a 6 

poorer fit (R2 = 0.58 overall, R2 ranged from 0.40 to 0.67 among treatments) and greater bias 7 

(more severe under-prediction of GPP at high values) (Fig. S1).  The more robust DIC and PPL 8 

measures also strongly indicated much better model performance for the main model compared 9 

to the alternative model (DIC=12,690 and PPL=45,852 for the main model, with DIC=13,903 10 

and PPL=80,067 for the alternative model).   11 

Phenology of grassland carbon uptake and its relation to precipitation 12 

The time series of predicted GPP revealed high interannual variability (Fig. 2).  For example, for 13 

the control treatment (ct), predicted daily GPP reached a maximum around 10 g C m-2 day-1 for 14 

2009 and 2010, which was double the predicted maximum in 2012 (~5 g C m-2 day-1; Fig. 2a). 15 

Within years, bimodal peaks in GPP were predicted in 2007, 2008, 2011, and 2012 in response to 16 

spring and late-summer precipitation inputs.   17 

Treatment effects on GPP 18 

Over the entire experimental period (2007-2012), the largest and most statistically significant 19 

increases in GPP relative to the control treatment (ct) occurred under warming (29% increase; 20 

Table 1 and Fig. 3b; P=0.02 for ct vs cT), eCO2 (26%; Table 1 and Fig. 3b; P=0.07 for ct vs Ct), 21 

and deep irrigation (28%; Table 1 and Fig. 3b; P<0.01 for ct vs ctd).   22 

At the annual time scale, relative to ct, annual GPP increased under eCO2 (Ct) in 2007,  23 
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2008, 2011, and 2012 (Fig. 3a and Table 1; ct vs Ct, P=0.007, 0.09, 0.02 and 0.009, respectively).  1 

Warming (cT) also stimulated annual GPP in 2007, 2008, 2010, and 2011 (Fig. 3a and Table 1; ct 2 

vs cT, P=0.006, 0.04, 0.09, and 0.005 respectively).  There is some evidence that the combination 3 

of eCO2 and warming (CT) enhanced GPP in 2007 and 2011 (Fig. 3a and Table 1; ct vs CT, 4 

P=0.09 and 0.08, respectively).  The large increase in GPP under deep irrigation (ctd) was 5 

reflected across individual years, with four showing statistically significant increases of 28-61%.  6 

In the absence of warming, annual GPP under eCO2 (Ct) was similar to annual GPP under 7 

shallow irrigation (cts) for all years (Table 1; Ct vs cts, P>0.18 for any individual year). 8 

Seasonal differences in the treatment effects emerged. The 29% overall increase in GPP 9 

under warming (cT) relative to the control (ct) during all six years was primarily driven by 10 

enhanced spring productivity (Fig. 3b, black-filled portion of cT bars; Table 1, ct vs cT: 129% 11 

increase, P=0.001).  During the summer, there was on average an 11% decline in GPP under cT 12 

(Table 1, ct vs cT, P=0.15), which is consistent with Pendall et al. (2013) who used linear 13 

regression and linear interpolation to estimate April-September GPP sums from data.  Although 14 

the CO2 effect was only statistically significant (P<0.09) for four out of the six years, GPP 15 

increased by 124% under eCO2 (Ct) during fall.  The spring cT and fall Ct GPP estimates were 16 

the only treatment by season combinations that were always significantly different (P<0.03) from 17 

the corresponding season-level ct estimates, for all years (Table 2, rows 1 and 3).  Compared to 18 

spring and summer, GPP also increased the most during fall under eCO2 and warming (ct vs CT: 19 

42% increase, P=0.03), deep irrigation (ct vs ctd: 68% increase, P=0.002), and shallow irrigation 20 

(ct vs cts: 66% increase, P=0.008) (Table 1). 21 

Importance of current and antecedent conditions for understanding treatment effects on GPP 22 

Including antecedent terms in the submodels for Amax and Q (see Eqn (3)) resulted in decreases 23 

Page 18 of 43Global Change Biology



19 

in the predicted six-year GPP relative to the alternative model, with the greatest reductions 1 

occurring for the control treatment (by 12%, P=0.14), the eCO2 × warming treatment (by 20%, 2 

P=0.04), and the deep irrigation treatment (by 14%, P=0.05).  Furthermore, 34 out of the 36 3 

treatment × year combinations corresponded to a decrease in annual GPP of between 1% and 4 

42% for the main model versus the alternative model (Tables S3a, S3b, S3c).  Both Amax and Q 5 

were not significantly affected by concurrent covariates (SWC, VPD, Tair, greenness, and N), for 6 

most or all treatments, depending on the covariate (Table 3).  Conversely, the main effect of two 7 

of the three antecedent covariates (VPDant and Tairant) on Amax was significant for the majority of 8 

treatments (Fig. 4a,b; Table 3).  The most important predictors for Q involved the SWCant×Tairant 9 

and SWCant×VPDant interactions, which were significant for four and three of the treatments, 10 

respectively (Fig. 4c,d; Table 3).  Although the direction of the VPDant (for Amax), Tairant (Amax), 11 

SWCant×Tairant (Q), and SWCant×VPDant (Q) effects were consistent for the vast majority of 12 

treatments (Table 3), the magnitude of the antecedent effects differed among certain pairs of 13 

treatments (Fig. 4a,c,d).  14 

Given that antecedent conditions are important for understanding GPP, we can evaluate 15 

the time-scales over which each variable influences GPP.  For SWCant, the first two weeks prior 16 

to the GPP measurement were generally the most important for predicting GPP (Fig. S2a).  For 17 

the majority of treatments, Tair experienced 3-4 days prior and VPD from 1-3 days prior tended 18 

to be the most important for predicting GPP (Fig. S2b,c). 19 

Comparison of predicted six-year GPP with TBMs 20 

When comparing the GPP predictions from our data-driven analysis with those of 12 terrestrial 21 

biosphere models (TBMs), the 95% credible intervals (CIs) of our six-year GPP "data product" 22 

(whether generated from the main or alternative model) under the control (ct) and eCO2 (Ct) 23 
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treatments are fairly narrow compared to the range of TBM predictions (Fig. 5a,b). Under the 1 

control treatment, only one of the twelve TBM predictions fell within the 95% CI of the data 2 

product if antecedent conditions were included in the calculation of the data product (Fig. 5a, 3 

black cross and error bar).  The number of TBM predictions consistent, or almost so, with the 4 

data product increased to five if antecedent conditions were not included when computing the 5 

data product (Fig. 5a, grey cross and error bar).  Under the eCO2 scenario, there was greater 6 

similarity in the number of TBM predictions agreeing with the data product if antecedent versus 7 

no antecedent conditions were included for determining the data product (Fig. 5b).   8 

The TBMs also need to accurately predict the relative change in GPP under scenarios of 9 

environmental change (e.g., eCO2, warming, or some combination). We used our GPP analysis 10 

framework to produce a data product of the percent difference in GPP under treatment conditions 11 

relative to control conditions. In contrast to the cumulative GPP estimates, these percent 12 

differences were associated with high uncertainty, sometimes spanning both decreases and 13 

increases (e.g., Fig. 5c,d).  This resulted in the majority of TBM simulations that are consistent 14 

with this data product (i.e., the TBM predictions lie within the CIs; Fig. 5c,d), despite the wide 15 

range of TBM predictions.  Thus, the data product associated with GPP on the absolute scale 16 

(Figs. 3a,b) is more useful for evaluating and informing TBMs than the data product on the 17 

percent change scale (e.g. Figs. 3c,d). 18 

 19 

Discussion 20 

Implications of treatment effects on annual GPP 21 

Annual GPP was predicted to be most stimulated by elevated CO2 (eCO2, Ct treatment) during 22 
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the three driest years of our study (2007, 2011, and 2012), suggesting that increased GPP under 1 

eCO2 could have resulted from enhanced water-use efficiency (Kelly et al., 2015).  The shallow 2 

irrigation (cts) treatment confirmed the role of SWC in mediating the GPP responses to eCO2, 3 

consistent with findings in a similar grassland system (Parton et al., 2012). Moreover, deep 4 

irrigation led to a greater percentage increase in GPP compared with eCO2 or surface irrigation 5 

(Table 1; Fig. 3). This may reflect the frequency and magnitude in which irrigation was applied 6 

under ctd (twice, large events) compared to cts (three-five smaller events).  Larger, less frequent 7 

precipitation events are expected to stimulate GPP to a greater extent than smaller, more frequent 8 

events, especially early in the growing season (Heisler-White et al., 2008, Lauenroth and Sala, 9 

1992, Ogle et al., 2015).  A prior estimate of annual GPP for this same site suggested a reduction 10 

in GPP by eCO2 in 2009 (Pendall et al., 2013), but our analysis revealed that a significant 11 

difference existed only during summer of that year (P=0.06).  We also found that 2009 – the 12 

wettest year – had  the highest annual GPP under the control treatment compared to all other 13 

study years(Fig. 3, Table S2, Table S3a), in agreement with Mueller et al. (2016) who found the 14 

highest aboveground biomass in that year but no eCO2 effect.  Other grassland studies have 15 

found no response or a reduction in primary production under eCO2 during wet years (Hovenden 16 

et al., 2014, Polley et al., 2013). 17 

Climate change treatments altered the seasonality of GPP, particularly in spring and fall, 18 

as observed for species and community-level measurements at the same site (Reyes-Fox et al., 19 

2014, Zelikova et al., 2015). Across all years, warming (cT) consistently increased annual GPP 20 

by 12-50%, and this was predominantly driven by enhanced production during the spring (Fig. 21 

3a; Tables 1,2), when temperature limits constrained productivity in this high elevation system. 22 

Increased annual GPP for all treatments, except cT, relative to the control (ct) was dominated by 23 
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increases in GPP during the fall (Table 1, furthest right column).  The consistency of the 1 

statistical significance of this eCO2 enhancement during fall of most years, as well as the 2 

warming enhancement in spring (Table 2), may be due to two potential co-occurring 3 

mechanisms: (i) Spring warming directly stimulates earlier snow melt, photosynthesis, and plant 4 

growth (Figs. S4, Luo, 2007, Richardson et al., 2010b, Sherry et al., 2008); and/or (ii) the SWC 5 

in fall is sustained for longer as a result of the water-saving effects of eCO2 in water limited 6 

systems like at PHACE (Webb et al., 2012, Morgan et al., 2004, Morgan et al., 2011, Nowak et 7 

al., 2004).  Our results indicate that these GPP enhancements in spring and fall may extend the 8 

growing season. For example, in 2008 (an average year in terms of meteorology), modelled GPP 9 

during spring was consistently higher under warming, although observed GPP showed only a 10 

minor increase (Fig. S5a and S5c).  In fall, modelled GPP remained significantly higher with 11 

eCO2 compared to ambient, which is supported by the observations (Fig S5b,d).  In the warm, 12 

dry year of 2012, GPP was significantly enhanced by warming in spring and by eCO2 in fall 13 

(Table 3). This is partly consistent with observed treatment effects on vegetation greenness 14 

(Zelikova et al., 2015), which was stimulated by the combination of warming and eCO2 in spring 15 

of 2012. Overall, our data-model product provides reasonable support for hypothesized 16 

mechanisms that could extend the growing season in this cool, dry grassland, although additional 17 

observations in spring and fall could improve confidence in climate change effects on ecosystem 18 

physiology (Richardson et al., 2010a, Richardson et al., 2013). 19 

Importance of antecedent conditions for predicting GPP and evaluating treatment differences 20 

An increasing number of studies recognize the importance of antecedent conditions in 21 

understanding the terrestrial C cycle (Barron-Gafford et al., 2014, Cable et al., 2013, Ryan et al., 22 

2015, Gamnitzer et al., 2011).  Our main model (with antecedent effects) explained 67-86% of 23 
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the variation in the GPP data, but the alternative model (without antecedent effects) only 1 

explained 40-67% of the variation.  This difference in the explanatory power of models that 2 

include antecedent conditions has also been demonstrated for other C flux components, including 3 

soil respiration (Ogle et al., 2015, Barron-Gafford et al., 2014), annual aboveground NPP, and 4 

annual tree growth (Ogle et al., 2015).  The increased explanatory power of the “antecedent 5 

models” cannot not be solely explained by the additional parameters that they introduce given 6 

the support conveyed by model selection indices that penalize for the number of parameters or 7 

model complexity. In particular, our results suggest that antecedent vapor pressure deficit 8 

(VPDant) and antecedent air temperature (Tairant) were the most important predictors of GPP, 9 

primarily via their effects on maximum potential GPP (Amax). Antecedent SWC (SWCant) 10 

interacted with these two factors to affect light-use efficiency (Q).   11 

The importance of Tairant suggests that accounting for seasonal changes in air temperature 12 

is critical for obtaining good estimations of Amax in this temperate grassland, especially in spring 13 

when moisture is less limiting (Lauenroth and Sala, 1992).  The importance of antecedent 14 

temperature has been implicated as depicting a temperature acclimation response (Ogle et al., 15 

2015).  However, the general positive effect of Tairant on Amax actually indicates that warmer past 16 

temperatures tend to enhance Amax and GPP, regardless of the current air temperature which 17 

appears to have little impact on GPP once antecedent temperature is accounted for (see Table 3). 18 

It appears that GPP is more likely to respond to concurrent changes in soil water (SWC), and to 19 

some extent VPD, compared to temperature. The importance of concurrent SWC and VPD on 20 

GPP likely reflects stomatal regulation of plant water status, which in turn is expected to affect 21 

photosynthesis, and thus GPP. 22 
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  While we would expect GPP to be partly regulated by short-term (sub-daily) changes in 1 

VPD (e.g., via stomatal control; Oren et al. 1999), we also found that VPD experienced over the 2 

past few days (VPDant) affects GPP, especially through its influence on Amax. In particular, high 3 

VPD for about 1-3 days prior, is predicted to reduce Amax, across all treatments (Fig. 4a). While 4 

the effect of VPD on stomatal closure and photosynthesis is usually treated as being 5 

instantaneous due to tight coupling of stomatal conductance to VPD (Collatz et al., 1991), this 6 

study suggests that plants may adjust to VPD over longer time scales. VPD conditions occurring 7 

over the past 1-7 days represent a proxy for past atmospheric drought conditions (Haddad et al., 8 

2002), and GPP is likely to be negatively impacted by cumulative atmospheric drought.  9 

Furthermore, the VPDant effect was more negative under eCO2 (Fig. 4a), indicating greater 10 

sensitivity of stomata (and hence, photosynthesis) to atmospheric drought, potentially leading to 11 

higher integrated water-use efficiency under eCO2.  12 

The use of VPD as a predictor of GPP is not new (Groenendijk et al., 2011), but the 13 

proposition that antecedent VPD is an important driver of GPP has not been previously 14 

considered.  One possibility is that this effect is just an artifact of our model because VPD 15 

depends upon Tair, and the VPDant effect could reflect a non-linear Tairant effect.  However, this is 16 

unlikely because although current VPD is highly correlated with current Tair (r = 0.85), the 17 

correlation between the antecedent covariates (VPDant versus Tairant) is weaker (r = 0.68).  18 

Furthermore, our model contains quadratic Tair (Tair2) terms in both the Amax and Q functions, 19 

thus the shape of the expected response of GPP to Tair (peaked) should already be accounted for.  20 

A more plausible explanation for the VPDant effect is that stomatal conductance or 21 

photosynthesis acclimate to VPD.  For example, Kutsch et al. (2001) found that a decrease in 22 

stomatal aperture in beech trees – implying a decrease in GPP – was negatively correlated with 23 
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the previous month’s mean VPD.  The importance of past VPD, rather than past SWC, prompted 1 

the authors to suggest that plants possess a biochemical memory of past climatic conditions.  2 

Buckley (2005) further suggests that when VPD exceeds some threshold, water potential can 3 

reach a cavitation threshold, leading to cavitation and reducing transpiration at any given VPD.  4 

If VPD is subsequently reduced, then there is a lag between the recovery of water potential and 5 

embolism repair; the time scale of this recovery is not well understood but could contribute to a 6 

GPP versus VPD lag.  Various mechanisms have been proposed to explain the stomatal behavior 7 

versus VPD lag including the hydroactive feedback hypothesis (Buckley 2016) or delays 8 

associated with abscisic-acid (ABA) signalling (Aliniaeifard and van Meeteren, 2014).  Clearly, 9 

additional research is required to establish the generality of a GPP versus VPD lag (antecedent 10 

effect) and to identify underlying mechanisms related to stomatal behavior, biochemical 11 

acclimation, or other explanations.  12 

Terrestrial biosphere models (TBMs) do not commonly account for the potential direct 13 

effects of antecedent VPD on the physiological components, for example, through acclimation of 14 

photosynthesis (Kattge and Knorr, 2007, Smith et al., 2015).   Nevertheless, soil water content 15 

does contain information on antecedent VPD, and thus via soil water effects on physiology 16 

models have an indirect "memory" of VPD.  However, model physiological responses to changes 17 

in soil water are empirical and can range from insensitive to too sensitive (De Kauwe et al., 18 

2015, De Kauwe et al., 2014). First principles methods that integrate carbon costs and benefits 19 

under antecedent environmental conditions (De Kauwe et al., in review, Mueller et al., 2016) 20 

may provide a robust method to incorporate acclimation of leaf physiology to antecedent VPD 21 

and soil water into TBMs.  Our results highlight accounting for such an acclimation process, 22 
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which directly considers the effect of antecedent conditions, could improve modelled estimates 1 

of photosynthesis.  2 

Implications for the terrestrial carbon cycle  3 

Estimates of global GPP used in the last IPCC report were calculated from site-level GPP 4 

estimates that were derived by fitting a light response curve to flux tower NEE data (Beer et al., 5 

2010, Lasslop et al., 2010).  The site-level Amax terms in these analyses were also represented as 6 

exponential functions of  current environmental covariates (Lasslop et al., 2010).  If antecedent 7 

conditions (such as VPDant, SWCant, and Tairant) had been included, our analysis suggests that 8 

annual estimates of GPP at semi-arid grasslands could have been improved (Fig. 1 vs. Fig. S1). 9 

For other ecosystems or plant functional types that are less sensitive to drought, the effect of 10 

antecedent meteorological conditions may be less pronounced.  Moreover, our results show that 11 

including antecedent conditions could result in lower estimates of cumulative GPP in temperate 12 

grasslands under current climate (by 12%), and especially under a future, warmer climate and 13 

eCO2 (by 20%; see Table S3c). 14 

Since the early 1990s, global change experiments, such as Free Air CO2 Enrichment 15 

(FACE) studies, have generated data on responses of key biogeochemical processes to future 16 

environmental conditions.  Such experiments have become invaluable for informing model 17 

forecasts (Piao et al., 2013, Zaehle et al., 2014, De Kauwe et al., 2014, Walker et al., 2014, De 18 

Kauwe et al., in review).  One of the challenges associated with applying terrestrial biosphere 19 

models (TBMs) to understand climate change impacts on GPP and the C cycle is limited access 20 

to accurate data products for informing and evaluating the models. Since many data products are 21 

derived from simpler models that are fit to observational data, it is prudent to account for 22 

uncertainty in such data products since they are not perfect representations of the real system. 23 
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Our hierarchical Bayesian approach to analyzing the GPP data in the context of a fairly simple 1 

light-response model provides a mechanism for predicting GPP at non-measurement time-2 

periods, while accounting for uncertainty in these predictions.  However, we wish to emphasize 3 

that the purpose of the comparison between TBMs and our “data product” (Fig. 5) was not to 4 

validate the TBMs, but rather to evaluate the utility of the data products.   5 

We are confident in our seasonal, annual, and six-year cumulative GPP predictions given 6 

their relatively narrow 95% CIs (e.g., Fig. 5a and 3b). The width of the intervals, however, did 7 

vary among global change treatments, with the widest intervals (and weakest model fits [lowest 8 

R2s]) occurring for treatments involving eCO2 (Ct and CT). This suggests that additional 9 

information or improved model structure is required to obtain more accurate GPP estimates 10 

under eCO2. In general, the tight estimates for cumulative GPP at different time scales suggest 11 

that this would be a valuable (semi-)independent data stream that TBMs can be compared 12 

against.   13 

The importance of antecedent environmental conditions on grassland GPP has been 14 

highlighted by the Bayesian model selection procedure used in this study. Antecedent conditions 15 

were key predictors of GPP, in particular air temperature and vapor pressure deficit of the past 16 

week, and research into the mechanism by which antecedent Tair and VPD affect GPP would be 17 

an interesting and useful contribution to understanding the carbon cycle in these grassland 18 

ecosystems. Including antecedent conditions substantially improved the fit of the Bayesian 19 

model and led to a consistent reduction in the computed multi-year GPP in this grassland 20 

ecosystem, across the vast majority of treatments and years. Given the global coverage of 21 

grassland ecosystems, understanding the effect of antecedent environmental conditions more 22 

broadly is likely to have implications for our understanding of the global carbon cycle. 23 
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responses to warming, elevated CO2, and irrigation:quantifying the drivers of ecosystem 2 

physiology in a semiarid grassland. Global Change Biology.  3 

 4 

Table 1. Percent differences in predicted annual GPP for key pairs of treatments.  Percentages 5 

are given for each year, for the six-year total (2007-2012), and for the six-year seasonal totals 6 

(spring, summer, fall). Asterisks denote the Bayesian P-value for the difference: P ≤ 0.01 (**), 7 

0.01 < P ≤ 0.05 (*) and 0.05 < P ≤ 0.1 (
(†)

).  See Fig. 1 legend for treatment codes. 8 

 2007 2008 2009 2010 2011 2012 2007- 

2012 

2007-2012 

(Spring) 

2007-2012 

(Summer) 

2007-2012 

(Fall) 

Warming effect 

(cT - ct) 40** 30* 12 27
(†)

 50** 29 29* 129** -11 56** 

Elevated CO2 effect 

(Ct - ct) 47** 31
(†)

 -5 7 49* 63** 26
(†)

 47
(†)

 1 124** 

Warming and CO2 

effect (CT - ct) 28
(†)

 8 -11 -3 24
(†)

 -1 6 20 -5 42* 

Deep irrigation 

effect (ctd - ct) 30* 30** 15 1 57** 61** 28** 31 19* 68** 

Shallow irrigation 

effect (cts - ct) 29
(†)

 9 -10 -9 25
(†)

 41 9 2 2 66** 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Table 2. Percent differences in predicted seasonal GPP for key pairs of treatments, for 

selected seasons. Pairs of treatments and seasons were selected based on the percent change 

values in the furthest three right columns of Table 1 that were significant (had asterisks).  As 

in Table 1, asterisks denote the Bayesian P-value for the difference: P ≤ 0.01 (**), 0.01 < P ≤ 

0.05 (*) and 0.05 < P ≤ 0.1 (
(†)

).  See Fig. 1 legend for treatment codes.  

 2007 2008 2009 2010 2011 2012 2007- 

2012 

Warming effect  

(cT – ct) for spring 109** 112** 70** 161** 209** 141** 129** 

Warming effect 

(cT – ct) for fall 60** 27 146* 38 127** 97 56** 

eCO2 effect  

(Ct – ct) for fall 100** 46* 263** 281* 268** 461** 124** 

eCO2×warming effect 

(CT – ct) for fall 45
(†)

 7 129 89 90* 93 42* 

Deep irrigation effect 

(ctd – ct) for summer 11 24* 11 -1 55** 27 19* 

Deep irrigation effect 

(ctd – ct) for fall 60
(†)

 37* 149
(†)

 38 168** 177
(†)

 68** 

Surface irrigation effect 

(cts – ct) for fall 44 -2 175** 208* 196** 315** 66** 
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Table 3. Summary of posterior estimates and Bayesian P-values for parameters in the Amax 

and Q functions (α’s and β’s, respectively; see Eqn. 3). Dark grey cells indicate P ≤ 0.001, 

medium grey indicate 0.001 < P ≤ 0.01, light grey indicate 0.01 < P ≤ 0.05, and white indicate 

P > 0.05.  The signs (+ or –) denote a positive or negative effect. See Fig. 1 legend for 

treatment codes. 
 

Effect parameter 

(associated covariate) 

Treatment 

ct cT Ct CT ctd cts 

α� (SWC) –   +  + 

α� (VPD) –      

α� (Tair)       

α�	(SWCant)  +  +  + 

α� (VPDant)  – – – –  

α� (Tairant)  + + + +  

α	 (Nitrogen)   –   + 

α
 (Gness) –    +  

α� (Gnessant.diff)     –  

 α�� (VPD×Tair) +      

α�� (Tair×Tair)       

α�� (SWC×SWCant)    –  – 

α�� (Tair×Tairant)       

α�� (SWCant×Tairant) +   +   

α�� (SWCant×VPDant) –   –   

� (SWC) +    + – 

� (VPD)     –  

� (Tair)       

� (SWCant) + +   +  

� (VPDant)       

� (Tairant) + –    + 

	 (Gness) +      


 (Gnessant.diff)       

� (VPD×Tair)       

�� (Tair×Tair)  +     

�� (SWC×SWCant)    +   

�� (Tair×Tairant)       

�� (SWCant×Tairant)  –  – – + 

�� (SWCant×VPDant) +   + +  
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Observed versus predicted GPP for each treatment. The predicted values were obtained from the main 
model (with antecedent effects) and are represented by the posterior means and central 95% credible 
intervals of replicated observations (Gelman et al., 2013) of GPP, based on Eqns (1) and (2). The solid, 

diagonal gray line represents the 1:1 line; the dashed line represents the best fit line. Treatment codes 
involve combinations of: c (ambient CO2), C (elevated CO2), t (no warming), T (warming), d (deep 

irrigation), or s (shallow irrigation).  
Fig. 1  
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Time-series of predicted gross primary production (GPP) for (a) daily GPP for the control (ct) treatment, 
where the grey bars denote the weekly precipitation at the site, and (b) hourly GPP for days of the year 
140-215 for 2009 for the ct treatment (observed GPP is denoted by *). In both (a) and (b), the black line 
represents the posterior mean of the daily (a) or hourly (b) predicted GPP, and the grey error bars indicate 
the 95% credible intervals.  The data points and associated error bars in panel (b) represent the mean and 
range of GPP observations made on measurement days and across at least four of the five plots of the 

control treatment.    
Fig. 2  
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Predicted annual (growing season; March-October) and seasonal GPP for each treatment by (a) each study 
year and (b) summed across all six years. The overall height of each bar denotes the posterior mean and 
the error bars represent the central 95% credible intervals of the (a) annual GPP or (b) six-year GPP.  The 

totals represented by each bar are broken-down by seasonal totals according to the shading. See Fig. 1 
legend for treatment codes.    

Fig. 3  
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Posterior means (denoted by ×) and central 95% credible intervals (CIs; error bars) for a subset of 
parameters (covariate effects) in the Amax function (panels a and b) and the Q function (panels c and d) 

(Eqn. 3, Table 2); these parameters were the most significant across the greatest number of 
treatments.  The key Amax parameters are associated with antecedent vapor pressure deficit (VPDant) and 
antecedent air temperature (Tairant).  The key Q parameters are associated with antecedent soil water 
content (SWCant) and the interaction between SWCant and VPDant.  95% CIs that overlap with zero 
(dashed horizontal line) indicate a non-significant effect. See Fig. 1 legend for treatment codes.    

Fig. 4  
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Comparison of the posterior estimates of GPP (‘data product’; × = posterior mean; error bars and horizontal 
dashed lines = 95% credible interval) with simulated GPP from 12 terrestrial biosphere models (TBMs; see 
Table S1 in the supplementary information for descriptions of each TBM, labeled 1-12).  The GPP data 

products are based on the GPP posterior estimates generated from the main (black lines and symbols) and 
alternative (gray lines and symbols) models, where the alternative model is the same as the main model but 
without antecedent effects.  The metrics shown here are: total six year GPP (2007-2012; growing season, 
March-October in each year) under (a) the control (ct) treatment and (b) the elevated CO2 (Ct) treatment; 
and, percentage change in total six year GPP under (c) warming (cT) relative to ct, and (d) Ct relative to ct. 

Fig. 5  
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