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Abstract 24 

Non-steady state chambers are often employed to measure soil CO2 fluxes. CO2 25 

concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are 26 

calculated from regressions of C versus t based a limited number of observations. Variability in 27 

the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor 28 

fits are often discarded, resulting in “missing” f values. We solve these problems by fitting linear 29 

(steady state) and non-linear (non-steady state, diffusion based) models of C versus t, within in a 30 

hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment 31 

(PHACE) study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. 32 

CO2 was collected from static chambers bi-weekly during five growing seasons, resulting in 33 

>12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on non-34 

hierarchical and hierarchical Bayesian (B vs HB) versions of the linear and diffusion-based (L vs 35 

D) models, resulting in four different models (BL, BD, HBL, HBD). Three models fit the data 36 

exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The non-hierarchical 37 

models (BL, BD) produced highly uncertain f estimates f (wide 95% CIs), whereas the 38 

hierarchical models (HBL, HBD) produced very precise estimates. Of the hierarchical versions, 39 

the linear model (HBL) underestimated f by ~33% relative to the non-steady state model (HBD). 40 

The hierarchical models offer improvements upon traditional non-hierarchical approaches to 41 

estimating f, and we provide example code for the models. 42 

Index terms: (1) 0490, (2) 0414, (3) 1986, (4) 0428, (5) 1990 43 
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1. Introduction 46 

Soils are primary sources or sinks of radiatively active “greenhouse” gases such as carbon 47 

dioxide (CO2), and quantifying CO2 fluxes has been the subject of intense research for the last 48 

few decades [e.g., Raich and Schlesinger, 1992]. CO2 and other trace gas fluxes are typically 49 

measured by inserting a small chamber into or on top of the soil, and collecting gas samples at 50 

predetermined time intervals after closure to follow the change in concentration in the chamber 51 

headspace as the gas accumulates or is drawn-down due to soil production or consumption, 52 

respectively. The gas concentrations may be analyzed in the field, such as by an in-line infrared 53 

gas analyzer (IRGA) [e.g., Davidson et al., 2002], or brought back to the lab and analyzed via an 54 

IRGA or gas chromatography (GC) [e.g., Venterea et al., 2009]. If the gas concentration (C) 55 

changes approximately linearly with time (t) since closure, then the trace gas fluxes are typically 56 

estimated from linear, or sometimes non-linear, regressions of C versus t for each independent 57 

chamber session.  58 

The typical regression approach, however, potentially suffers from three primary issues. 59 

First, CO2 concentrations collected while the chamber is closed may deviate from linearity due to 60 

time-dependent feedbacks between soil air and chamber headspace [Livingston et al., 2005]. For 61 

instance, such feedbacks can reduce the diffusion gradient as CO2 builds up in the chamber and 62 

diffuses out laterally, leading to underestimation of CO2 fluxes by up to 25% [Livingston et al., 63 

2005]. This problem can be addressed by fitting a non-linear model to the C versus t data, such 64 

as an exponential decay function [Hutchinson and Mosier, 1981], quadratic function [Wagner et 65 

al., 1997] or, less commonly, models inspired by diffusion theory [Livingston et al., 2006; 66 
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Pedersen et al., 2001]. Second, missing or highly variable observations can lead to poor 67 

regression fits (i.e., low R2 value) for particular chamber sessions, for both linear and non-linear 68 

models. This problem can be addressed by collecting more data points in each chamber session 69 

[e.g., Davidson et al., 2002], by grouping similar chamber sessions, or by discarding data for 70 

problematic chamber sessions [Hart, 2006; Pihlatie et al., 2007]. Third, uncertainty estimates 71 

associated with each flux value are typically ignored, or if reported, they still are not accounted 72 

for in subsequent analysis or modeling of the flux estimates, which are treated like data. This 73 

issue can be addressed using statistical methods that quantify precision and propagate uncertainty 74 

such as Monte Carlo analysis [Venterea et al., 2009], but such approaches are rarely utilized. 75 

We overcome these three issues by developing a hierarchical Bayesian approach coupled 76 

with a non-linear, non-steady state flux model that is derived from fundamental diffusion theory 77 

[Livingston et al., 2006]. We demonstrate how the hierarchical approach addresses the missing or 78 

“bad” data problem, propagates uncertainties in the individual flux estimates, and can easily 79 

accommodate a diffusion-based model to account for non-steady state conditions. We illustrate 80 

our modeling approach by applying it to data on C versus t that were obtained from the Prairie 81 

Heating and CO2 Enrichment (PHACE) study conducted in a semiarid grassland in Wyoming. 82 

PHACE was a global change experiment involving manipulations of atmospheric [CO2], 83 

temperature, soil moisture, and vegetation status, resulting in 12 different treatment 84 

combinations, with five plots (replicates) per treatment level. We focus on the CO2 data to 85 

illustrate our modeling approach because it is an important greenhouse gas, and understanding 86 

controls on soil respiration is paramount to understanding the global carbon cycle [Bond-87 

Lamberty and Thomson, 2010]. Moreover, because the soil acts as a source of CO2 (C 88 
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accumulates in the chamber), we can draw upon existing, concise analytical solutions to the 89 

standard diffusion equation [Livingston et al., 2006]. 90 

The objective of this study is to describe and illustrate a more robust method for estimating 91 

CO2 fluxes from data generated from static chambers. First, we draw-upon on a non-steady state 92 

flux model that explicitly accounts for time dependent artifacts such as soil-chamber feedbacks 93 

[Davidson et al., 2002; Livingston et al., 2006]. Second, we employ a hierarchical statistical 94 

model that accommodates the nested and crossed design of the PHACE experiment by assuming 95 

that the session-level flux terms (parameters in the linear and non-steady state models) vary 96 

around treatment by sampling date fluxes. The hierarchical approach results in “borrowing of 97 

strength” or “partial pooling” [Gelman and Hill, 2007; Gelman et al., 2012] among chamber 98 

sessions such that sessions associated with problematic data are informed by sessions with clean 99 

data. The Bayesian framework allows the uncertainty in the flux estimates to be easily 100 

propagated to subsequent analyses, which can be simultaneously implemented within the 101 

Bayesian flux model; we illustrate this by conducting a simple post-analysis to evaluate the 102 

effects of the global change treatments on soil CO2 fluxes. 103 

2. Field Methods 104 

2.1. Field Experiment 105 

Data were obtained as part of the Prairie Heating And CO2 Enrichment (PHACE) 106 

experiment that was conducted in a semiarid mixed prairie in southeastern Wyoming, USA (41o 107 

11’ N, 104o 54’ W). The vegetation is dominated by a mixture of C4 and C3 grasses, including 108 

Bouteloua gracilis (C4), Pascopyrum smithii (C3), and Hesperostipa comata (C3). The soil is a 109 

fine-loamy, mixed, mesic Aridic Argiustoll. The mean monthly air temperatures range from -2.5 110 

oC in January to 17.5 oC in July, and the mean annual precipitation is 384 mm (based on 132 111 
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years of weather records). Chamber CO2 data were collected during the growing seasons (April – 112 

October) of 2007 through 2011 (five years). The average air temperature during these growing 113 

seasons ranged from 12.5 oC (2009) to 17.4 oC (2007), and the total precipitation received during 114 

each growing season ranged from 300 mm (2010) to 425 mm (2009). The site conditions and 115 

climate during the study period are described in greater detail in Dijkstra et al. [2013] and 116 

Zelikova et al. [2015]. 117 

The PHACE study was established in 2005, at which time, 20 plots (3.4 m diameter) were 118 

assigned to one of four treatment combinations (5 plots per treatment): ambient CO2 and 119 

temperature (denoted ct), ambient CO2 and elevated temperature (cT), elevated CO2 and ambient 120 

temperature (Ct), and both elevated CO2 and temperature (CT). Free Air CO2 Enrichment 121 

technology was used to raise the atmospheric [CO2] to ~600 ppm (±40 ppm) in the elevated CO2 122 

plots (Ct and CT). Ceramic infrared heaters were used to raise the canopy temperature by about 123 

1.5 oC and 3 oC above the ambient temperature during the day and night, respectively, in the 124 

elevated temperature plots (cT and CT). The CO2 and warming treatments were initiated in April 125 

2006 and April 2007, respectively. An additional 10 plots were established in 2007 and assigned 126 

to one of two irrigation treatments that experienced ambient CO2 and temperatures (5 plots 127 

each): shallow irrigation (cts, 3-5 irrigation events during the growing season to maintain soil 128 

water content similar to that in elevated CO2 plots) or deep irrigation (ctd, two irrigation events 129 

at the start and end of the growing season, annual amount equal to that in cts treatment). 130 

Additional details about the PHACE experiment and associated treatment methodologies are 131 

provided in Dijkstra et al. [2010] and LeCain et al. [2015]. 132 

In 2008, a 0.4 m2 subplot was established in each of the ct, cT, Ct, and CT plots. The 133 

subplots were isolated from the surrounding plot by a metal sheet that was buried 30 cm into the 134 



7 

soil, and vegetation in the subplots was killed by application of a broad spectrum systematic 135 

herbicide (glyphosate). Seedlings that emerged after herbicide application were manually 136 

removed. See Dijkstra et al. [2013] for details about the herbicide treatment. 137 

2.2. Chamber CO2 Measurements 138 

We used static, closed chambers [Hutchinson and Mosier, 1981] to measure CO2 fluxes 139 

approximately every other week during the growing season, resulting in 12-16 measurements 140 

each year, for five years (2007-2011). In each plot, chamber anchors (diameter 20 cm, height 10 141 

cm) were inserted 8 cm into the soil one month prior to the first measurements. One anchor was 142 

placed in the area with intact vegetation, and one anchor in the subplots where vegetation was 143 

removed.  Measurements were taken between 10:00 am and 1:00 pm local time, separated into 144 

three periods, with each period lasting one hour to measure 10 plots simultaneously. Treatments 145 

were blocked within each period to minimize biases caused by diurnal effects on trace gas fluxes.  146 

Chambers were placed on the anchors and sealed with a rubber band (made from a tire 147 

inner tube).  Headspace gas samples (20 mL) were taken immediately after placing the chambers 148 

on the anchors (time t = 0), and after t = 15, 30, and 45 minutes (for the first three measurements 149 

dates in 2007, gas samples were not taken at 45 minutes) and injected into 12 mL evacuated 150 

Exetainers (Labco Limited, Lampeter, UK). Gas samples were analyzed for CO2 on a gas 151 

chromatograph (Varian 3800, Varian, Inc., Palo Alto, CA, USA) usually within two days after 152 

sampling (CO2 was measured with a thermal conductivity detector). The minimum detection 153 

limit for CO2 calculated according to Parkin and Venterea [2010] was 0.1 mg CO2-C m-2 hr-1. 154 

Data were available for 3139 chamber sessions, yielding 12,240 pairs of (C, t) observations. 155 

2.3. Environmental Data 156 
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Continuous, plot-level measurements of soil temperature and water content were made 157 

throughout the PHACE experiment. Custom-built Type T thermocouples were used to monitor 158 

soil temperature at a depth of 3 cm within ~1 m of each chamber and logged on an hourly basis 159 

on a Campbell CR-1000 data loggers (Campbell Scientific, Logan, UT, USA); soil temperatures 160 

recorded at the time of each chamber session were used for this study. Volumetric soil water 161 

content was monitored in each plot at multiple depths using EnviroSMART sensors (Sentek 162 

Sensor Technologies, Stepney, Australia); for this study, we used the 5-15 cm data. Soil water 163 

data were missing for ca. 6% of the days, primarily due to instrument failure. We gap-filled 164 

missing values using data from a nearby plot belonging to the same experimental treatment, or 165 

using cubic spline interpolation on days when data were missing across all or most plots of the 166 

same treatment [see, Ryan et al., 2015]. In this study, we used daily averages of the hourly soil 167 

water content values. 168 

3. Estimating Soil CO2 Fluxes 169 

We evaluated two different process models and two different statistical modeling 170 

approaches to estimating soil CO2 fluxes based on the aforementioned data (§2.2 and §2.3). One 171 

process model is based on a simple linear model of C versus t, and the other represents a non-172 

linear, non-steady state model. For the statistical approaches, we fit the process models to all data 173 

in a non-hierarchical framework that treats each chamber session as an independent data set (akin 174 

to traditional approaches). We also fit the models to the data in a hierarchical statistical 175 

framework that views the chamber sessions as samples from a population of sessions, thus 176 

allowing for borrowing of strength [Gelman et al., 2012] among chamber sessions. We begin 177 

with a description of the process models (linear followed by the non-steady state diffusion 178 

model), then we describe the statistical (non-hierarchical followed by hierarchical) approaches to 179 
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fitting the process models to the chamber C and t data. All four model combinations are 180 

implemented in a Bayesian framework, which we will refer to as the BL (non-hierarchical 181 

Bayesian linear), HBL (hierarchical Bayesian linear), BD (non-hierarchical Bayesian non-steady 182 

state diffusion), and HBD (hierarchical Bayesian, non-steady state diffusion) models. 183 

3.1. Linear Model 184 

This model assumes a linear relationship between CO2 concentration (C, µmol m-3) and 185 

time since chamber closure (t, sec): 186 

 
0t

A
C C f t

V
= +   (1.1) 187 

where C0 (µmol m-3) is the initial [CO2] in the chamber at time t = 0; f (µmol m-2 sec-1) is the flux 188 

density across the soil-atmosphere interface at time t = 0; A (m2) is the soil surface area over 189 

which the chamber is deployed; V (m3) is the air volume of the chamber. This model assumes 190 

that the surface flux is in steady state such that it does not change during the chamber closure 191 

period. 192 

3.2. Non-steady State Diffusion Model 193 

We also explored a non-linear model based on non-steady state diffusion theory that 194 

accounts for feedbacks associated with accumulation of CO2 in a closed chamber. The model 195 

that we use is based on the analytical solution to a partial differential equation (PDE) of soil 196 

[CO2] dynamics that assumes the soil acts as a source of CO2 (e.g., CO2 is produced by microbial 197 

decomposition and root respiration). The model (PDE solution) is given in Livingston et al. 198 

[2006] as: 199 

 ( )0

2
/ exp( / )erfc / 1t

A
C C f t t t

V
τ τ τ τ

π

  
= + + −   

   
  (1.2) 200 
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C0, f, A, and V are defined analogous to the corresponding terms in Eqn (1.1); τ (sec) is a “time 201 

constant” given by τ = (V/A)2(φ Dc)
-1, which is a dynamic quantity that varies with soil water 202 

content via its dependence on φ and Dc, where φ (m3 air m-3 soil) is the soil air-filled porosity and 203 

Dc (m
2 sec-1) is the soil gas diffusion coefficient. In Eqn (1.2), erfc is the complimentary error 204 

function, which is related to the standard normal cumulative distribution function (Φ): 205 

 ( ) ( )erfc / 2 1 2 /t tτ τ = − Φ
 

  (1.3) 206 

Eqn (1.2) assumes that horizontal transport of CO2 within the soil is minimal, which is 207 

reasonable given the relatively short duration of our chamber sessions (30-45 min) [Davidson et 208 

al., 2002] and the relatively deep insertion (8 cm) of our chambers into the soil. 209 

Air-filled porosity, φ, is computed from measured volumetric soil water content (θ, m3 m-
210 

3) as: 211 

 1
BD

PD
φ θ= − −   (1.4) 212 

where BD (g m-3) is the soil bulk density, and PD (g m-3) is the soil particle density. The 213 

diffusion coefficient, Dc, is allowed to vary in response to soil physical characteristics 214 

representative of the PHACE site [Morgan et al., 2011], based on Moldrup et al. [2000]: 215 

 ( )
2 3/

3

0 100 100

100

2 0.04

b

c
D D

φ
φ φ

φ

+
 

= +  
 

  (1.5) 216 

D0 (m
2 sec-1) is the gas diffusion coefficient in free air given the measured soil temperature (Tsoil, 217 

K) and atmospheric pressure (P, atm), where ( ) ( )0

0

1 .7 5

0
so ilT P

stp T P
D D=  , assuming Dstp = 0. 218 

0000139 m2 sec-1 is the gas diffusion coefficient in free air at standard temperature (T0 = 273.2 219 

K) and pressure (P0 = 0.99 atm) [Massman, 1998]. In Eqn (1.5), φ100 (m
3 air m-3 soil) is the soil 220 
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air-filled porosity at a soil water potential of -100 cm H2O, and b (unitless) is a parameter 221 

describing the soil water retention curve [Campbell and Norman, 1998]: 222 

 

b

e

sat

θ

θ

−
 

Ψ = Ψ  
 

  (1.6) 223 

Ψ (cm H2O) is soil water potential, Ψe (cm H2O) is the air-entry potential, and θsat (m
3 m-3) is the 224 

saturated soil water content. φ100 is computed by evaluating Eqn (1.4) at θ = θ100, where θ100 is 225 

obtained by solving Eqn (1.6) for θ as a function of Ψ, and subsequently evaluating the solution 226 

at Ψ = -100 cm H2O. Again, θ was measured in each plot (see §2.3), and we propagate 227 

uncertainty in the water retention parameters associated with Eqns (1.5) and (1.6) based on site-228 

level results reported in Morgan et al. [2011] (for more detail, see the Supporting Information).  229 

3.3. Non-hierarchical Statistical Model  230 

We fit the above linear (Eqn (1.1)) and non-steady state diffusion (Eqns (1.2)–(1.6)) models 231 

to the observed chamber C versus t data via a non-hierarchical Bayesian framework, resulting in 232 

the BL and BD models, respectively. For the BD model, we also simultaneously accounted for 233 

uncertainty in the soil water retention parameters (b, Ψe, and θsat); see the on-line Supporting 234 

Information. The non-hierarchical framework is somewhat analogous to more traditional 235 

approaches—that employ least squares, maximum likelihood, or other optimization algorithms—236 

that estimate C0 and f independently for each chamber session. That is, we treat each chamber 237 

session independently such that they do not share any common parameters. Thus, for chamber 238 

session i (i = 1, 2, …, 3139) and time t (t = 0, 900, 1800 sec for 191 sessions, or t = 0, 900, 1800, 239 

2700 sec for 2948 sessions), we assume that the observed CO2 concentration, Cobs (µmol mol-1), 240 

is normally distributed around the predicted (mean) concentration: 241 
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 2

, ,~ ,
1000

obs lab
t i t i i

lab

RT
C Normal C

P
σ

 
 
 

  (1.7) 242 

Where C (µmol m-3) is based on Eqn (1.1) or Eqn (1.2) for the BL or BD model, respectively. R 243 

is the gas constant (0.08205 L atm mol-1 K-1), and Tlab (293.15 K) and Plab (0.74 atm) are the 244 

laboratory temperature and pressure, respectively, under which the gas samples were analyzed. C 245 

is indexed by t because it is a function of time, and by i since each chamber session is associated 246 

with its own set of parameters (i.e., f, C0, and the observation variance, σ2) and physical drivers 247 

(i.e., θ, Tsoil, and P). 248 

Within the Bayesian framework, we specified priors for the unknown parameters. To align 249 

with traditional approaches, we assumed independent, relatively non-informative (vague) priors 250 

for each session-specific parameter such that: 251 

 
0 , ~ (0, )

~ (0, )σ

i i

i

C f Normal B

Uniform U
  (1.8) 252 

Where the values of the prior variances (B) and the upper limit of the uniform were selected to be 253 

very large (ca. 1×105 - 1×107). Since C0 should reflect the background [CO2] in the treatment 254 

plots, the prior for C0 was also truncated such that values < 300 or > 4500 µmol mol-1 were 255 

assigned prior probabilities of zero. 256 

The goal of this analysis is to obtain the joint posterior distribution of the model parameters, 257 

which is proportional to the likelihood times the priors. Using the bracket notation [X] and [X|Y] 258 

to indicate the marginal and conditional (on Y) probability or probability density of X [Gelfand 259 

and Smith, 1990], respectively, the posterior is given by: 260 

 [ , , | ] [ | , , ][ ][ ][ ]∝
������� ������������

posterior likelihood priors

obs obs

0 0 0
C f σ C C C f σ C f σ   (1.9) 261 



13 

Where Cobs is the matrix of observed chamber [CO2], and C0, f, and σ are the vectors of the 262 

session-level C0i, fi, and σi parameters, respectively. The likelihood is given by Eqn (1.7), which 263 

is linked to Eqn (1.1) for the BL model or to Eqns (1.2)-(1.6) for the BD model via the mean or 264 

predicted [CO2] (Ct,i), and the priors are given by Eqn (1.8). 265 

3.4. Hierarchical Statistical Model 266 

Regardless of the fitting method (e.g., least squares, Bayesian), traditional analyses may 267 

suffer from the fact that relatively few measurements (e.g., 3-4) are made per session, and some 268 

sessions can lead to poor fits. Traditional approaches often employ an R2 (coefficient of 269 

determination) cut-off such that sessions yielding “low” R2 are discarded [e.g., Hart, 2006; 270 

Pihlatie et al., 2007], and thus, estimates of the associated flux (i.e., f) are missing for these 271 

sessions. Our hierarchical specification allows the sessions to potentially borrow strength from 272 

each otherthe degree to which they borrow strength depends on the magnitude of the among 273 

session variance [Gelman et al., 2012]so sessions associated with “poor” or highly variable 274 

data will be partly informed by data obtained from “good” sessions, providing estimates of the 275 

fluxes for all sessions.  276 

We employ three assumptions to allow sessions to borrow strength from each other. First, 277 

we assume that the sessions share some common parameters. For example, we modify the 278 

likelihood in Eqn (1.7) such that the observation variance (σ2) is assumed to vary at the level of 279 

treatment k (k = 1, 2, …, 6 levels). That is, we assume that σ2 is similar for each session within a 280 

given treatment (thus, σ2 is indexed by k), but that the treatments may be associated with 281 

different variances. 282 

Second, we assume a hierarchical model for the session-specific initial or background 283 

[CO2] (C0i) and flux (fi) parameters such that they are nested in treatments, vegetation types, and 284 
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dates. That is, for treatment k (k = 1, 2, …, 6 for ct, cT, Ct, CT, cts, ctd), CO2 treatment level k’ 285 

(k’ = 1 [ambient] or 2 [elevated]), vegetation type v (v = 1 [vegetated] or 2 [vegetation 286 

removed]), and date d (d = 1, 2, … 72):  287 

 

2

0 0 , , '

2

, ,

ˆ ˆ~ ( , )

~ ( , )

σ

σɶ ɶ

i k v d k

i k v d k

C Normal C

f Normal f   (1.10) 288 

Thus, 2σ̂  describes variability in the background [CO2] among sessions within each k by v by d 289 

combination; we assume 2σ̂ varies by CO2 treatment level given the much larger variation that is 290 

expected under experimentally applied elevated CO2. Similarly, σɶ describes variability in the 291 

fluxes within each combination of k, v, and d, and we allow for σɶ to differ among the six 292 

treatment (k) levels. Since the hierarchical prior in Eqn (1.10) results in borrowing of strength 293 

and more precise estimates of C0 and f, we did not find it necessary to constrain C0i between 300 294 

and 4500 µmol mol-1, as done in the non-hierarchical models. 295 

Third, we assigned a hierarchical prior to the 0 , ,
ˆ

k v d
C  parameters that allows for borrowing of 296 

strength among treatments, vegetation types, and dates within each CO2 treatment level k’: 297 

 
2

0 , , 0 ' '
ˆ ~ ( , )σ

k v d k k
C Normal C   (1.11) 298 

Conversely, we give independent priors to the treatment by vegetation type by date-level flux 299 

parameters ( fɶ ) because these are our primary quantities of interest, and they could vary 300 

considerably across time and among treatments. Thus, we wish to avoid borrowing of strength 301 

that could lead to an underestimate of this potential variability; hence, we give independent, 302 

vague priors to each fɶ  following Eqn (1.8): 303 

 , ,
~ (0, )ɶ

k v d
f Normal B   (1.12) 304 
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Again, B is chosen to be sufficiently large. The remaining treatment-level parameters are 305 

assigned standard, vague priors for the variances (inverse gamma distribution) and initial [CO2]: 306 

 
2 2 2 2

' '

0 '

ˆ, , , , ~ ( , )

~ ( , )

σ σ σ σɶ
k k k k

k

InvGamma a b

C Uniform L U
  (1.13) 307 

Where a and b are sufficiently small (relatively non-informative), and L and U correspond to 300 308 

and 4500 µmol mol-1, respectively. 309 

For the HBL and HBD models, the joint posterior distribution of the model parameters is: 310 

 

ˆ ˆ[ , , , , , , , , | ]

ˆ ˆˆ ˆ[ | , , ][ | , ][ | , ][ | , ][ ][ ][ ][ ][ ][ ]

∝ɶ ɶ
�������������

ɶ ɶɶ ɶ
�����������������������������

posterior

likelihood hierarchical priors priors

obs

0 0 0

obs

0 0 0 0 0 0

C C C f f σ σ σ σ C

C C f σ f f σ C C σ C C σ C f σ σ σ σ
  (1.14) 311 

Cobs, f, and C0 are as described following Eqn (1.9); here, ˆ
0C and fɶ are arrays of the treatment by 312 

vegetation type by date-level initial [CO2] and CO2 fluxes, respectively; ,0C  ,σ  ˆ ,σ  ,ɶσ  and σ 313 

are vectors of the treatment-level initial [CO2] and the standard deviations. The likelihood is 314 

given by Eqn (1.7) with σi
2 replaced with σk

2, the hierarchical priors are given by Eqns (1.10) 315 

and (1.11), and the priors are given by Eqns (1.12) and (1.13). 316 

3.5. Treatment Effects 317 

Traditional approaches to estimating the surface soil CO2 flux obtain point estimates of f 318 

then treat these as data in subsequent analysis. This approach, however, ignores the uncertainty 319 

in the f estimates. The Bayesian approach, whether hierarchical or not, can be easily extended to 320 

account for uncertainty in the f estimates, thus facilitating a more appropriate approach to 321 

subsequent analysis of f.  We demonstrate this in a simple analysis that calculates all possible 322 

pairwise treatment contrasts to obtain posterior estimates of each contrast, which can be 323 

evaluated to make inferences about treatment effects. An approach to comparing f among 324 
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treatments is to first compute the average f value across all plots (pk) and dates (d) associated 325 

with global change treatment k and vegetation type v: 326 
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 
∑ ∑   (1.15) 327 

Where i(k,v,d) denotes the chamber session i associated with each k, v, and d. For illustrative 328 

purposes, we only consider dates between 2009 and 2011 (thus, the number of days is D = 41), 329 

which corresponds to the years for which the vegetated and non-vegetated plots were always 330 

measured on the same dates.  331 

Next, we compute all possible pairwise treatment contrasts (∆), comparing treatment level k 332 

versus k’ within each vegetation type: 333 

 , ', , ',k k v k v k v
f f∆ = −   (1.16) 334 

for k = 1, 2, …, 5 and k’ = k + 1, …, 6, resulting in 21 pairwise comparisons (15 for the vegetated 335 

plots [6×5/2] and 6 for the non-vegetated plots [4×3/2]; treatments 5 and 6 were not applied to 336 

non-vegetated plots). The treatment contrasts (∆’s) are treated as derived quantities in the 337 

Bayesian models, and posterior distributions for each ∆ are obtained. One could follow the same 338 

procedure to compute contrasts between the vegetation types within each global change 339 

treatment level. Note that an advantage of a hierarchical Bayesian approach is that one generally 340 

does not need to correct for family-wise errors rates associated with typical multiple comparison 341 

tests [Gelman et al., 2012; Li and Shang, 2013]. 342 

3.6. Model Comparisons 343 

For each of the four models, we evaluated model fit by comparing the observed 344 

concentration data (Cobs) versus “predicted” (or “replicated”) data (Cpred) [Gelman et al., 2004] 345 
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that would be generated under the same sampling distributions (e.g., Eqn (1.7) with σi
2 [BL and 346 

BD] or σk
2 [HBL and HBD]) given the predicted concentrations (C, Eqns (1.1) or (1.2)). Model 347 

fit was qualitatively evaluated by plotting Cpred versus Cobs and by computing the R2 from a 348 

linear regression of the posterior medians of Cpred versus Cobs. We also computed model 349 

comparison indices, including the deviance information criterion, DIC [Spiegelhalter et al., 350 

2002], and posterior predictive loss, D∞ [Gelfand and Ghosh, 1998]. DIC is the sum of a “model 351 

fit” term (Dbar, lower values indicate better fit) and a “penalty” term representing the effective 352 

number of parameters (pD, higher values reflect a more parameter-rich model). A difference in 353 

DIC > 10 between two models provides strong support for the model with the lowest DIC 354 

[Spiegelhalter et al., 2002]. Likewise, D∞ is the sum of a model fit term and a model penalty 355 

term; while a lower D∞ implies a better model, unlike DIC, there are no specific rules of thumb 356 

for differences in D∞ among candidate models [Gelfand and Ghosh, 1998]. However, D∞ is 357 

generally thought to be more stable or reliable than DIC, and D∞ assesses predictive 358 

performance, whereas DIC assesses explanatory performance [Carlin et al., 2006]. 359 

3.7. Implementation 360 

All four Bayesian models were implemented in OpenBUGS [Lunn et al., 2009]. For each 361 

model (BL, HBL, BD, and HBD), we ran three parallel MCMC chains for sufficiently long to 362 

obtain an equivalent of >3000 effectively independent samples from their joint posteriors. Each 363 

parameter’s marginal posterior distribution was summarized by its posterior median and 95% 364 

credible interval (CI), which is defined by the 2.5th and 97.5th quantiles. The OpenBUGS code 365 

and data are available from the Dryad Digital Repository (doi:10.5061/dryad.mb605) at 366 

http://dx.doi.org/10.5061/dryad.mb605. 367 
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4. Results 368 

4.1. Model Comparisons and Model Fit 369 

Although the BL, HBL, and HBD models fit the data equally well (R2 ≥ 0.98; Fig. 1A, C, 370 

D), the BD model produced more variable predictions and under-predicted [CO2], yielding 371 

predictions close to 0 ppm for a subset of relatively high observed values, resulting in an inferior 372 

model fit (R2 = 0.87). Both non-hierarchical (BL and BD) models led to highly uncertain 373 

predictions of [CO2] such that the 95% CIs for the Cpred values were exceptionally wide 374 

compared to the HBL and HBD models (Figs. 1 and 2A). 375 

The DIC and D∞ model comparison indices also provide strong support for the hierarchical 376 

models (HBL and HBD), with slightly greater support for the HBD model. The DIC values for 377 

the BL and BD models were about 3.5-9 times higher than the DICs of the HBL and HBD 378 

models, and the D∞ values were 2-3 orders of magnitude higher (Table 1).  Moreover, the HBL 379 

and HBD models resulted in notably fewer effective parameters (lower pD) and thus a more 380 

parsimonious model, owing to the borrowing of strength across the dataset. 381 

4.2. Posterior Estimates of Soil CO2 Flux  382 

The main goal of implementing the four models described herein was to obtain estimates of 383 

the soil CO2 flux rate (f) associated with each chamber session. The two linear models (BL and 384 

HBL) produced similar point estimates (posterior medians) of the f values (Fig. 3A; r = 0.97), 385 

whereas the BD model overestimated the f values compared to its hierarchical counterpart 386 

(HBD) (Fig. 3B; r = 0.989, but all points fall under the 1:1 line). While the f estimates from the 387 

HBL and HBD models were highly correlated (r = 0.995), the HBL model underestimated the f 388 

values by ~33% compared to the HBD model (Fig. 3C). As found for the replicated data, both 389 
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non-hierarchical models also produced highly uncertain estimates of f (wide 95% CIs) compared 390 

to the hierarchical models (Figs. 2B, 3, and S1).  391 

An advantage of the hierarchical models is that they produce estimates of soil CO2 flux 392 

rates at the level of treatment (k), vegetation type (v), and date (d), denoted by fɶ in Eqn (1.10), 393 

that account for variation among plots within each treatment (as captured by the treatment-394 

specific variance term, 2σɶ , in Eqn (1.10)). Figure 4 provides example time-series of the predicted 395 

fɶ values obtained from the HBD model, for three different treatment combinations, showing 396 

that the soil CO2 flux rates were fairly similar between the ambient (ct) and elevated CO2 and 397 

warming (CT) treatments, but removal of vegetation (ct -veg) greatly reduced the flux rates in 398 

2009-2011 (Fig. 4). 399 

4.3. Posterior Estimates of Other Quantities 400 

The HBL and HBD models generally produced more precise and realistic estimate of the 401 

initial (or background) [CO2] (C0, Eqns (1.1), (1.2), and (1.8)) compared to the two non-402 

hierarchical models (BL and BD) (see Fig. S2). Unlike the non-hierarchical models, the 403 

hierarchical models provided direct estimates of the overall initial [CO2] by CO2 treatment (i.e., 404 

0C  in Eqn (1.11)). The HBL and HBD models estimated 0C  to be 488.7 [483.4, 494.2] and 467.1 405 

[463.2, 471.0] for the ambient CO2 treatment, and 802.5 [783.8, 820.7] and 782.2 [765.0, 799.2] 406 

for the elevated CO2 treatments, respectively. 407 

The HBL and HBD models also quantified four potentially important variance terms, as 408 

summarized in Table S1. For example, both models indicate that the variation in the initial [CO2] 409 

(C0i) among sessions (i) within treatments (k), vegetation types (v), and dates (d) was three orders 410 

of magnitude higher in the elevated CO2 plots compared to the ambient CO2 plots, and ambient 411 
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showed remarkably little variation in C0i (e.g., posterior medians for 'σ̂
k  were < 1 μmol mol-1 for 412 

the ambient plots versus ca. 200 μmol mol-1 for the elevated CO2 plots; Table S1). The higher 413 

spatial and temporal variation in the elevated CO2 plots is expected given the technology used to 414 

supply CO2 and the effect of environmental conditions (especially wind) on the spatial and 415 

temporal variability of the CO2 concentration within an elevated CO2 plot [Bunce, 2011; 416 

Miglietta et al., 2001].  However, the variation in initial [CO2] among levels of t, v, and d ( 0 , ,
ˆ

k v d
C417 

), effectively “averaging” across sessions and plots, was comparable between elevated and 418 

ambient CO2 treatments (i.e., posterior medians for 'σ
k were only ~3 times higher in the elevated 419 

plots; Table S1). Both models also indicate that variation in the CO2 fluxes (fi) among sessions 420 

within each k, v, and d was lowest in the ambient (control) treatment and highest for the irrigated 421 

treatments (Table S1). 422 

4.4. Treatment Contrasts 423 

Although this study does not focus on quantifying the effects of the different global change 424 

treatments on soil CO2 flux (f), we demonstrate how the Bayesian approach to estimating f can 425 

be easily extended to quantify treatment effects. If uncertainty in f is rigorously accounted for, as 426 

done in the Bayesian approach, the BL model suggests that f only differed among global change 427 

treatments (within a given vegetation type) for three of the 21 comparisons (i.e., 95% CI for ∆, 428 

Eqn (1.16), did not contain zero). Conversely, the other three models (HBL, BD, and HBD) 429 

found many differences among the treatments, yielding 17-18 ∆s that were different from zero. 430 

The lack of treatment differences associated with the BL model may be attributed to the highly 431 

uncertain estimates of f (wide 95% CIs for f; e.g., Fig. 3, and hence, wide 95% CI’s for ∆). 432 

However, despite the wide CIs for f generated by the BD model (Fig. 3), the uncertainty in the 433 
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difference among pairs of f values was remarkably low (narrow CIs for ∆s, Fig. 5A). As one 434 

might expect, precise estimates of f produced by the HBL and HBD models led to tight estimates 435 

for the ∆s (Fig. 5). In general, however, the direction (positive or negative) and magnitude 436 

(posterior median) of the ∆s was comparable across models (very few points fall in the gray 437 

areas in Fig. 5). 438 

5. Discussion and Conclusions 439 

5.1. Linear versus Non-steady State Diffusion Model 440 

Just focusing on the hierarchical models (HBL and HBD) and point estimates (here, 441 

posterior medians), the linear (HBL) model tends to underestimate f by ~33% (multiplicative 442 

bias) and overestimate C0 by ~40 ppm (additive offset) relative to the HBD model. This 443 

difference is to be expected if a linear model is fit to concentration (C) versus time (t) data 444 

obtained from fairly small, static chambers that may be subject to concentration feedbacks 445 

[Livingston et al., 2006; Pedersen et al., 2001]. Such feedbacks would lead to an observed non-446 

linear, decelerating relationship between observed C versus t, and a linear model would 447 

necessarily have a flatter slope compared to the initial slope near t = 0, which represents the 448 

surface flux (f) of interest. Thus, as others have also suggested [Venterea et al., 2009], the linear 449 

model is not appropriate in such situations, and a non-linear model that captures the decelerating 450 

relationship is more appropriate. In particular, it would seem most appropriate to use a model 451 

based on the physics underlying the concentration feedback effects. Thus, the non-steady state 452 

diffusion model [Livingston et al., 2005; 2006] would be the preferred model. This non-steady 453 

state diffusion model is easy to implement within the hierarchical Bayesian approach, and the 454 

flexibility of the coding environment (e.g., OpenBUGS, JAGS) further facilities the application 455 

of such a model (see on-line Supplemental Material). However, the HBD model can take 10 456 
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times longer to implement in software such as OpenBUGS, such that the HBL model may be 457 

preferred in situations where concentration feedbacks are minimal. 458 

5.2. Non-hierarchical versus Hierarchical Statistical Model 459 

An important contribution of this study is the finding that a hierarchical statistical modeling 460 

approach may be preferred over a more standard, non-hierarchical approach for estimating fluxes 461 

from non-steady state chambers that yield a limited number of observations per session. The 462 

hierarchical approach yielded much more precise estimates of all quantities of interest, such as 463 

session-level fluxes (f), higher-level fluxes (e.g., fɶ ), initial (background) [CO2] (C0), and 464 

pairwise treatment contrasts (∆). The reason for these more precise estimates (i.e., narrower CIs) 465 

is that the hierarchical approach results in borrowing of strength (or partial pooling) [Gelman and 466 

Hill, 2007; Gelman et al., 2012; Ogle et al., 2014] such that problematic (“bad”) chamber 467 

sessions (ones with low individual R2 values) are informed by “good” chamber sessions (e.g., 468 

Fig. 6A-E). Thus, not only did the HBL and HBD models provide more precise estimates, they 469 

also yielded more biologically realistic estimates, especially for “bad” chamber sessions. Thus, 470 

the hierarchical models are not wasteful. That is, there is no need to discard “bad” session data as 471 

the borrowing of strength attribute generally ensures that the session-level f estimates for these 472 

sessions are reasonable, provided that there are more “good” than “bad” sessions. Additionally, 473 

in situations where all sessions produced the same amount (e.g., 4 time points) of “good” data, 474 

there is comparatively less borrowing of strength and the predicted chamber [CO2] values align 475 

with the observed [CO2] values for each replicate session (e.g., Fig. 6F-J), but the hierarchical 476 

structure still produces much more precise estimates than the non-hierarchical approach. 477 

The borrowing of strength attribute associated with the hierarchical approach also results in 478 

fewer effective parameters (i.e., decreased model complexity). This essentially overcomes the 479 
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problem of a potentially over-parameterized statistical model. For example, in the non-480 

hierarchical models, three parameters (f, C0, σ) are being estimated for each chamber session, yet 481 

there may only be 3-4 observations of C versus t per session. Thus, there is essentially 0.75-1 482 

parameters being informed by each data point (or 1-1.33 data points per parameter), resulting in 483 

a highly over-parameterized model. In the hierarchical models, the effective number of 484 

parameters is much less such that each parameter is effectively informed by ca. 3.5-9 times as 485 

much information compared to the two non-hierarchical models (Table 1), thus increasing the 486 

information content of the C versus t data. 487 

5.3. Post-analysis of Flux Estimates 488 

In this study, we present a simplified example involving pairwise treatment contrasts, with 489 

the idea that these contrasts can lend insight into potential factors (i.e., treatment effects) 490 

contributing to variation in the estimated fluxes (f’s). In doing so, we propagated uncertainty in 491 

the f’s to the derived ∆’s, allowing us to obtain posterior distributions for the ∆’s. More detailed 492 

“post-analyses” of f can also be implemented to provide greater insight into the factors governing 493 

f. As an alternative to the approach described herein for evaluating ∆, one could account for 494 

uncertainty in f in the post-analyses following a general model such as: 495 
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E(fi|Data) is the posterior mean (or expected value) of each f value (e.g., for each chamber 497 

session), conditional on the chamber data (i.e., Data = C observations). In this generic example, 498 

we assume that these point estimates, E(fi|Data), are normally distributed with mean µ i and 499 

variance σi
2, but other, potentially more appropriate, distributions could be employed.  500 
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One would account for uncertainty in f when specifying the variance model, such that σi
2 is 501 

decomposed into two terms: Var(fi|Data) is the estimated posterior variance of each fi, and 
2

residσ  502 

describes the “typical” (unknown) residual variance. (A traditional approach would assume 503 

Var(fi|Data) = 0, and estimate a common, residual variance.) E(fi|Data) and Var(fi|Data) are 504 

outputs generated from the HBD (or HBL) model described herein, and are thus treated as 505 

known (“data”) in the post-analysis. Flexibility in modeling the factors governing f is 506 

accommodated by the model for µ i, M(β,X), which can take on any form appropriate to the 507 

particular analysis. For example, M(β,X) could represent a linear or non-linear “regression” 508 

involving a set of continuous and/or categorical covariates, X (e.g., soil water content, soil 509 

temperature, season, treatment level, etc.), with regression coefficients (or parameters), β. In this 510 

post-analysis, one would obtain estimates and posterior distributions of β and 
2

residσ . The 511 

posterior results for β incorporate the uncertainty in the f values and are used to make inferences 512 

about the factors affecting the surface fluxes. 513 

5.4. Future Directions 514 

We demonstrate a hierarchical, non-steady state diffusion modeling approach to estimating 515 

soil surface CO2 efflux (e.g., f) based on C versus t data collected from non-steady state soil 516 

chambers. Our original intention was to demonstrate this approach for estimating surfaces fluxes 517 

for multiple trace gases (e.g., N2O, CH4, and CO2). However, application of the approach to N2O 518 

and CH4 fluxes is more challenging because the soil can act as both a source and a sink for N2O 519 

and CH4. The non-steady state diffusion model that we adapted from Livingston et al. [2005; 520 

2006] is only applicable to situations where the soil acts as a source. We are not aware of a 521 

comparable solution for situations where the soil acts as both a sink and/or a source. Sahoo and 522 
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Mayya [2010] offer a potential solution by solving a two-dimensional non-steady state diffusion 523 

model, but the solution is quite complicated and cannot be easily implemented in existing 524 

software packages such as OpenBUGS or JAGS. However, one could use a simpler (e.g., 525 

exponential) equation [Hutchinson and Mosier, 1981; Sahoo and Mayya, 2010] that 526 

approximates the complicated analytical solution, and our work suggests that this should be 527 

implemented in a hierarchical statistical framework.  528 
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Table 1. Summary of model fit and comparison indices. The coefficient of determination (R2) 641 

was obtained from a least-squares regression of the predicted (posterior median of replicated 642 

data) versus observed chamber [CO2] data. Differences in the deviance information criterion 643 

(DIC) and posterior predictive loss (D∞) were computed for the BL, HBL, and BD model relative 644 

to (minus) the HBD model (i.e., the HBD model had the lowest DIC and D∞). The relative, 645 

effective number of parameters (pD) was computed for the BL, HBL and BD models as their pD 646 

values divided by the pD value for the HBD model (the HBD model had the lowest pD).  647 

Model* R2 

Difference 

in DIC 

Relative 

pD** 

Difference 

in D∞ 

BL model 0.98 7.8×104 8.89 8.8×1010 

HBL model 0.98 4.1×103 3.52 7.9×107 

BD model 0.87 6.4×104 1.02 1.0×1011 

HBD model 0.99 0 1 0 

     

*BL = non-hierarchical Bayesian linear model; HBL = hierarchical Bayesian linear model; BD = 648 

non-hierarchical Bayesian non-steady state diffusion model; HBD = hierarchical Bayesian non-649 

steady state diffusion model. 650 

**We used the alternative formulation that computes pD from the posterior variance of the log 651 

likelihood [Gelman et al., 2014]. 652 
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Figure 1 653 

 654 

Figure 1.  Observed versus predicted chamber [CO2] for the (A) non-hierarchical Bayesian 655 

linear (BL) model, (B) non-hierarchical Bayesian, non-steady state diffusion (BD) model, (C) 656 

hierarchical Bayesian linear (HBL) model, and (D) hierarchical Bayesian, non-steady state 657 

diffusion (HBD) model. The best fit line is indicate by the thin blue diagonal line; the 1:1 line is 658 

indicated by the thick red diagonal line. Each point represents an individual observation (N = 659 

12,240). The predicted [CO2] values are the posterior medians (symbols) and 95% credible 660 

intervals (CIs, gray error bars) for each replicated data point. For the non-hierarchical models 661 

(BL and BD), the narrowest 50% of the CIs are indicated by dark gray, and the widest 50% are 662 

indicated by light gray.663 
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Figure 2 664 

 665 

Figure 2.  Cumulative distribution of the 95% CI widths for each (A) observation level 666 

replicated chamber [CO2] data point (N = 12,240), and (B) session-level estimated soil surface 667 

CO2 flux (N = 3139). The CI widths are computed at the 97.5th percentile minus the 2.5th 668 

percentile based on the corresponding posterior distributions.  See Fig. 1 for a description of the 669 

models (BL, HBL, BD, and HBD).670 
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Figure 3 671 

 672 

 673 

 674 

Figure 3.  Comparison of the predicted session-level, surface soil CO2 fluxes (f) obtained from 675 

the four models described in Figure 1 (BL, HBL, BD, and HBD). The points depict the posterior 676 

medians for each model, and the horizontal and vertical gray error bars denote the 95% CIs for 677 

the y and x models, respectively. The thin blue lines indicate the best fit line; the thick diagonal 678 

red line denotes the 1:1 line.679 

680 
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Figure 4 681 

 682 

 683 

 684 

Figure 4. Predicted (posterior medians and 95% CIs) treatment-level surface soil CO2 fluxes ( fɶ  685 

in Eqns (1.10) and (1.12)) for a subset of treatments, for each of the five growing seasons for 686 

which chamber data were collected. The treatments shown are: ambient CO2 and temperature 687 

(ct), elevated CO2 and warming (CT), and ambient CO2 and temperature with vegetation 688 

removed (ct-veg). Predictions were generated by the hierarchical Bayesian, non-steady state 689 

diffusion (HBD) model.690 
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Figure 5 691 

 692 

Figure 5. Comparison of the posterior estimates (medians) for the pairwise treatment contrasts 693 

(∆, see Eqn (1.16)) between the four models described in Figure 1 (BL, HBL, BD, and HBD). 694 

The quadrats shaded in gray indicate conflicting results generated by the two models being 695 

compared (e.g., model x predicts f is higher for treatment k relative to k’, whereas model y 696 

predicts the opposite). The white (unshaded) quadrats indicate general agreement among the two 697 

models, and points that fall along the diagonal 1:1 line indicate perfect agreement between the 698 

models, with respect to the posterior median. The BL model only yielded three ∆ values that 699 

were significantly different from zero (i.e., 95% credible intervals [CIs] for a particular ∆ did not 700 

contain zero), whereas the HBL, BD, and HBD models yielded 17, 17, and 18 significant ∆ 701 

values, respectively. 702 
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Figure 6 703 

 704 

Figure 6. Example chamber sessions for (A-E) April 25, 2011, for the control (ct) treatment 705 

(ambient CO2 and temperature), and (F-J) June 18, 2009, for the ambient CO2 and warming (cT) 706 

treatment. Observed and predicted (posterior medians and 95% CIs) for chamber [CO2] values 707 

are shown for each of the five replicate plots for each date, based on the BL, HBL, and HBD 708 

models (see Fig. 1 for a description of the models); results for the BD model are not shown for 709 

clarity of presentation and given its poor fit (Fig. 1B). These results demonstrate the utility of the 710 

hierarchical approach for yielding more realistic estimates of the soil surface flux (f) for chamber 711 

sessions associated with poor data (E); for this session, the BL model predicted a negative flux, 712 

while the HBL and HBD models predicted positive fluxes that are consistent with the other 713 

sessions on that day. On dates the yielded “good” sessions for all five replicates (e.g., F-J), the 714 

BL, HBL, and HBD models produced similar predictions, but BL and HBL tend to slightly 715 
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overestimate the initial [CO2]. Symbols and corresponding CIs are systematically jittered to 716 

increase visibility; some CIs are very narrow and are hidden behind their corresponding symbol.  717 
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Introduction  

This supporting information provides a description of how the soil water retention parameters were 

estimated and incorporated into the non-steady state diffusion model (Text S1).  

Supporting figures are also included that illustrate (1) uncertainties associated with the estimated soil 

surface CO2 fluxes obtained under four different modeling approaches (Fig. S1), and (2) estimates of 

background or initial chamber [CO2] obtained from the four different modeling approaches, for 

representative plots, dates, and global change treatments (Fig. S2). 
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Text S1: Soil Water Retention Parameters 

The soil water retention parameters (θ100 and b) relevant to the model for Dc (CO2 diffusion 

coefficient) were estimated by fitting the log-transformed version of Eqn 1.6 to data on soil water 

content (θ) and soil water potential (Ψ). Direct measurements of θ were made at the field site, 

while Ψ was estimated using soil texture data measured at the field site and pedotransfer 

functions in the Rosetta software (version 1.2) [see supplemental materials in, Morgan et al., 

2011]. We fit Eqn 1.6 to the θ and Ψ data within a simple, non-hierarchical Bayesian framework 

and assigned uniform, U(0, 100), priors to each of b and the intercept (θ100 is a deterministic 

function of b and the intercept), and we estimated the values of these parameters at the site level. 

The Bayesian analysis was implemented in OpenBUGS [Lunn et al., 2009], which adopts a 

Markov chain Monte Carlo (MCMC) approach to approximate the joint posterior distribution of 

the parameters. This produced 3000 independent samples of a and θ100 from the posterior.  The 

posterior means and variances from this analysis were used to specify informative priors for b 

and θ100 within the non-steady state diffusion models (i.e., for both the BD and HBD models). In 

particular, we assumed θ100 ~ Normal(0.374,0.000201)I(0.348,0.404) and b ~ Normal(4.55, 

0.2058)I(4.23,4.86), where I(A,B) indicates that the normal distribution was truncated at A and B 

such that parameter values lying outside these limits are associated with zero probability density. 

The values for A and B were set equal to the 2.5th and 97.5th percentiles obtained from the 

Bayesian analysis of the soil water retention data. 
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Parameter 

Treatment 

level 

HBL model  HBD model 

2.5th Median 97.5th  2.5th Median 97.5th 

1σ  ct 90.7 93.8 97.0  80.2 82.8 85.7 

2σ  cT 76.1 78.6 81.4  59.1 61.1 63.2 

3σ  Ct 105.4 109.7 114.3  88.2 91.9 95.7 

4σ  CT 119.9 124.8 129.9  105.8 110.3 114.9 

5σ  ctd 103.2 107.7 112.8  82.8 86.4 90.4 

6σ  cts 116.8 121.9 127.5  95.5 99.7 104.3 

1σ̂  c 0.02 0.52 3.16  0.01 0.14 0.55 

2σ̂  C 188.7 199.6 211.0  193.9 204.5 215.8 

1σ  c 34.3 39.2 44.5  21.4 25.6 30.0 

2σ  C 84.2 102.5 121.7  77.8 95.9 114.4 

1σɶ  ct 0.28 0.30 0.32  0.39 0.41 0.44 

2σɶ  cT 0.36 0.39 0.41  0.53 0.57 0.60 

3σɶ  Ct 0.38 0.41 0.45  0.54 0.58 0.62 

4σɶ  CT 0.35 0.38 0.41  0.50 0.54 0.58 

5σɶ  ctd 0.54 0.59 0.65  0.76 0.82 0.89 

6σɶ  cts 0.67 0.73 0.79  1.02 1.11 1.21 

 

Table S1. Posterior estimates (median and 95% credible interval limits, 2.5th and 97.5th 

percentiles) of the standard deviation terms associated the two hierarchical Bayesian 

models: HBL (linear process model) and HBD (non-steady state diffusion model). 

Treatment codes are: ct = ambient CO2 and temperature, cT = ambient CO2 and warming, 

Ct = elevated CO2 and temperature, CT = elevated CO2 and warming, cts = shallow 

irrigation, ctd = deep irrigation, c = ambient CO2, and C = elevated CO2. See text 

following Eqn 1.14 for a description of σ (the [CO2] residual error variance); see Eqn 

1.10 for a description of σ̂  and σɶ  and Eqn 1.11 for a description of σ ; σ, σ̂ , and σ

have units of μmol mol-1, and σɶ has units of μmol m-2 s-1. 
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Figure S1. Histograms of the session-level 95% credible interval (CI) widths for the soil surface 

CO2 flux (f) obtained from the (A) non-hierarchical Bayesian, linear (BL) model, (B) hierarchical 

Bayesian, linear (HBL) model, (C) non-hierarchical Bayesian, non-steady state diffusion (BD) 

model, and (D) hierarchical Bayesian, non-steady state diffusion (HBD) model. Bars shaded in 

gray indicate CI widths <2 µmol m-2 s-1, and the percentages near the shaded bars indicate the 

percent of sessions (out of 3139) associated with CI widths <2 µmol m-2 s-1. 
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Figure S2. Examples of the predicted initial chamber [CO2] at time t = 0 (i.e., C0 in Eqn (1.2)). 

Representative examples are shown for one plot in each of the ct (ambient CO2, ambient 

temperature) and Ct (elevated CO2, ambient temperature) treatments, for the (A) non-hierarchical 

Bayesian, linear (BL) model, (B) hierarchical Bayesian, linear (HBL) model, (C) non-hierarchical 

Bayesian, non-steady state diffusion (BD) model, and (D) hierarchical Bayesian, non-steady state 

diffusion (HBD) model. The symbols denote the posterior medians, and the error bars denote the 

95% credible intervals (CIs). The results for the non-hierarchical (BL and BD) models resulted in 

wider 95% CIs than the hierarchical (HBL and HBD) models. 


