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Abstract— This paper considers the traffic flow estimation
problem for the purposes of on-line traffic prediction, mode
detection and ramp-metering control. The solution to the
estimation problem is given within the Bayesian recursive
framework. A particle filter (PF) is developed based on a free-
way traffic model with aggregated states and an observation
model with aggregated variables. The freeway is considered
as a network of components, each component representing a
different section of the traffic network. The freeway traffic
is modelled as a stochastic hybrid system, i.e. each traffic
section possesses continuous and discrete states, interacting
with states of neighbor sections. The state update step in the
recursive Bayesian estimator is performed through sending
and receiving functions describing propagation of perturba-
tions from upstream to downstream, and from downstream
to upstream sections. Measurements are received only on
boundaries between some sections and averaged within regular
or irregular time intervals. A particle filter is developed with
measurement updates each time when a new measurement
becomes available, and with possibly many state updates in
between consecutive measurement updates. It provides an ap-
proximate but scalable solution to the difficult state estimation
and prediction problem with limited, noisy observations. The
filter performance is validated and evaluated by Monte Carlo
simulation.

Keywords – Monte Carlo methods, Bayesian estimation, particle
filters, macroscopic traffic models, stochastic hybrid systems

I. MOTIVATION

Traffic state estimation is an important part of an on-line road
traffic management system. The highly nonlinear behavior of the
traffic [10], with many complex interactions between vehicles,
and the computational complexity due to the large size of the
state space makes this problem challenging. The macroscopic
models [10] representing the average traffic behavior in terms of
aggregated variables (flow, density and speed at different locations)
are the most suitable models for on-line implementations. Many
of the proposed solutions for estimation of aggregated traffic
variables are based on Extended Kalman filtering applied to such
macroscopic models [26], [8], [20]. In [26] an Extended Kalman
filter (EKF) is proposed (and validated by simulation) to estimate
the unknown parameters and states of a stochastic version of
METANET, a well-known macroscopic model [19]. In [8] an
EKF is designed for estimating the number of vehicles for two
roadway sections in tandem. These estimators, [26], [8], and [20]
have all the advantages and disadvantages of the EKF technique:
computationally cheap, but relying on a linearization of the state
and measurement models which can cause filter divergence.

A framework allowing to cope with non-linear models with
uncertainties of different kinds, suitable to the traffic estimation, is

the recursive Bayesian framework [22]. According to the Bayesian
theory all information about the states of interest can be obtained
from the posterior state distribution. The Bayesian estimation prob-
lem is not analytically solvable in general, except for some special
cases. Different approximate approaches have been proposed, such
as Extended Kalman Filters [22], Interactive Multiple Model Fil-
ters [2]. Most of them assume Gaussian distribution of the noises
and are based on linearization of the state and observation models.
A powerful and scalable approximate approach has recently been
developed. It computes the posterior density function of the state
by an empirical histogram obtained from samples generated by
a Monte Carlo simulation. It is known under different names:
particle filters [7], bootstrap method [9] or condensation algo-
rithm [11]. Several implementations have been investigated [1],
[7], [9], [15], [24], [25]. The Monte Carlo simulation technique
has been applied in areas such as robotics navigation [23], target
tracking [1], [7], [3], [16], computer vision [11], [12].

In the present paper we develop a particle filter for freeway
traffic flow estimation. Particle filters (PFs) are appropriate for
traffic state estimation because they can cope with large, and highly
nonlinear models as well as non-Gaussian signals. The structure of
the particle filter corresponds closely to compositional modelling,
and it allows a parallelization for different sections of the road,
thus allowing a reduction in the computational time.

In [21] a solution to highway traffic estimation is proposed
using a sequential Monte Carlo algorithm, based on first-order
traffic models (only dynamics of the traffic density is modelled),
distinguishing between the free-flow mode and the congestion
mode. The traffic mode is estimated via a Monte Carlo technique,
the so called mixture Kalman filter [5] which is applied for
recursively estimating the traffic density. In contrast to [21], the
traffic in the present paper is described by a second-order model,
and we develop a filter that estimates both traffic density and
speed.

The particle filter presented in Section IV uses aggregated
traffic and observation models. The state model is a recently
developed compositional model [4] for freeway traffic. Sending
and receiving functions describe respectively the downstream and
upstream propagation of perturbations. The freeway is considered
as a network of components (Fig. 1), each component representing
a different section of the traffic network. Several sections form
a link. Sensors are available only at some boundaries between
sections. Measurements are averaged over regular or irregular time
intervals before being transmitted to the estimation agent. Within
the estimation agent an update of the conditional distribution of
the traffic density and speed estimate is performed using Monte
Carlo simulation (for all sections concurrently and possibly via
parallel processing). Whenever a new measurement is received a
Bayesian update of this conditional distribution is evaluated via
the PF. The PF can easily be extended to models where for the
very important sections a detailed model is used, while for other
sections a more aggregate, coarse model is employed.
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Fig. 1. Freeway links, sections and measurement points. Qi is
the average number of vehicles at the boundary between sections
i and i + 1, Ni and vi are respectively the average number of
vehicles and speed within section i.

The outline of the paper is as follows. Section II contains
the problem formulation. Section III presents the traffic and
observation models. The models we are using are stochastic and
macroscopic. A particle filter for traffic state estimation is designed
in Section IV and its performance evaluation is presented in
Section V. Finally, conclusions and ongoing research issues are
highlighted in the last section.

II. PROBLEM FORMULATION

The aim of Bayesian estimation is to evaluate the posterior
probability density function (PDF) p(xk|Zk) of the state vector xk

at time tk given a set Zk of sensor measurements available at time
tk. The conditional PDF of the state vector is represented in a PF
implementation by the histogram corresponding to a collection of
random samples, obtained by Monte Carlo simulation, executed
according to the assumed model. In this paper we propose an
algorithm for estimation of the traffic state vector xk, at discrete
time instants t1, t2, . . . , tkb , . . . , using all the past information that
was transmitted from sensors to the estimation agent prior to time
tk. The same method can be used for prediction of a future state,
i.e. E(xk+1|Zk). E(.) denotes the expectation operator, E(. | .)
denotes the conditional expectation operator, and (.)T the matrix
transpose, respectively.

The traffic flow is modelled as a stochastic hybrid system, with
continuous and discrete (modal) states, interacting with states from
neighboring sections. The global state of link m at time tk is
described by the vector xk = (xT

1,k, xT
2,k, . . . , xT

nm,k)T , xk ∈
Rnx , containing local state vectors xi,k = (Ni,k, vi,k)T of nm

sections forming this link. Ni,k is the number of vehicles counted
in section i, and vi,k is their average speed. The state vector xk is
sampled at possibly asynchronous points in time t1 < t2 < . . . <
tk < . . . . The evolution from one sample time to the next sample
time is described by the update equation

xk+1 = f(xk,Pk, Qin
k , vin

k , Qout
k , vout

k , ηk). (1)

Pk denotes the vector of all time-varying parameters, such as
road conditions, or number of available lanes; Qin

k counts the
number of vehicles entering section 1 during the k-th time interval

[tk, tk+1) while vin
k is the average speed of these vehicles. Qout

k

specifies the possible outflow, at speed vout
k from section nm. ηk

is a disturbance vector, reflecting random fluctuations in the traffic
states, and modelling errors. The traffic mode in section i in this
interval can make sudden transitions between different modes with
rates which depend on the state vectors xi−1,k, xi,k, xi+1,k. Note
that the variables in eq. (1) are related to variables which are not
indicated on Fig. 1 (input and output flows at section boundaries
0 and Nm and time-varying parameters).

Sensors (magnetic loops or video cameras) are located at some
boundaries between some sections j ∈ J ⊂ {1, . . . , nm} in
link m. Noisy measurements of the average number of vehicles
Qi,kb , cars and trucks crossing the boundary between section j
and section j + 1 during the time interval [tkb , tkb+1) together
with noisy measurements of mean speed of these vehicles are
collected and used by the filter. The intervals [tkb , tkb+1) can be
non-equidistant points in time and are typically longer than the
intervals [tk, tk+1) between successive state update steps. Within
the intervals [tkb , tkb+1) several state update steps are required.

Given the observation equation

zkb+1 = h[xs, s ∈ [tkb , tkb+1), ξkb+1 ], (2)

as well as the distribution p(x0) of the initial state vector x0, and
of the noises ηk, ξkb , the traffic estimation problem can be solved
by a particle filter having the structure presented in Section IV.
The time indices in equation (2) outline that the data are coming
in some intervals [tkb , tkb+1), at regular or irregular instants.
The model can deal with missing data due to sensor failures
or due to other reasons, by defining a function h that takes the
value “no data” with some probability. Refined models using data
classified per category (cars and trucks) and per lane can also be
accommodated in our PF filter.

III. TRAFFIC AND OBSERVATION MODELS

A. Traffic model
The traffic dynamics is modelled in this paper using sending

and receiving functions to reflect the complex traffic behavior
which incorporates forward and backward propagation of traffic
perturbations. Sending and receiving functions were first proposed
by Daganzo in [6] where piecewise affine representations of
these sending and receiving functions are used. In [4] a model
is introduced that also represents the evolution of the average
speed in each section, that comprises speed dependent sending and
receiving functions. We briefly describe this model below since it
takes part in the state update step of the particle filter developed
in Section IV.

The number of vehicles, Ni,k, [veh], present in a freeway
section i (with length Li, [km], and with �i,k lanes) at sample
time tk is related to the density ρi,k (number of vehicles per length
unit, [veh/km/lane]) via

Ni,k = ρi,kLi�i,k, i = 1, 2, . . . nm. (3)

The evolution of Ni,k is governed by the conservation of vehicles:

Ni,k+1 = Ni,k + Qi−1,k − Qi,k, (4)

where Qi,k is the number of vehicles, [veh], crossing the boundary
i (Fig. 1), leaving section i and entering section i + 1, during the
interval [tk, tk+1). Qi,k is the minimum

Qi,k = min(Si,k, Ri,k+1), (5)

among the values computed from a sending function

Si,k = max{Ni,k
vi,k∆tk

Li
+ ηSi,k, Ni,k

vout,min∆tk

Li
} (6)
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and a receiving function

Ri,k+1 = Nmax
i+1,k + Qi+1,k − Ni+1,k, (7)

where
Nmax

i+1,k = (Li+1�i+1,k)/(A� + vi+1,ktd). (8)

The sending function Si,k is a random variable expressing how
many among the Ni,k vehicles in section i at tk are at a distance
less than vi,k∆tk from the boundary between sections i and i+1,
where ∆tk = tk+1 − tk is the sampling interval. When the
density is low (corresponding to free-flow mode of traffic, i.e.
when Ni,k ≤ ρcritLi,k�i,k; ρcrit denotes the critical density)
the interaction between vehicles will be negligible and their
location will be uniformly distributed over Li. Si,k is then a
binomial random variable with Ni,k drawings, with probability
of success (vi,k∆tk)/Li. If the traffic is congested, vehicles will
be approximately equidistantly spaced and the noise is small
(relative to Si,k) and approximately Gaussian (by the central limit
theorem). This formula for Si,k does not take into account what
happens when a severe traffic jam causes stopped traffic at time
tk in section i. The speed then drops to 0 and no vehicle would
ever leave section i after time tk, even if the downstream section
was empty. Hence, we have to impose a minimum outflow speed
vout,min with which vehicles attempt to leave section i. This
minimal outflow speed can only be realized if the downstream
section is not too congested, which effect is taken into account
by the receiving function. This outflow speed vout,min is chosen
so that ρjamvout,min�i,k equals the empirically observed outflow
from a traffic jam into an empty downstream section, a value that
is typically significantly smaller than the maximum flow.

Each vehicle must be detected at least once in each section,
during the time interval [tk, tk+1) so that this definition of the
sending function to make sense. This can be expressed mathe-
matically as vi,max∆tk < Li, which is similar to the stability
condition in classical numerical solutions of partial differential
equation models of traffic.

The receiving function (7) expresses the maximum number of
vehicles that are allowed to enter section i + 1 at the next time
instant k + 1. In this formula Nmax

i+1,k characterizes the maximum
number of vehicles that can simultaneously be present in section
i + 1 at sample time tk. It is given by the available space
Li+1�i+1,k in section i, divided by the speed-dependent “virtual
length” of vehicles. This virtual length of vehicles is the average
space needed by a vehicle: its average length A� plus the distance
travelled during a minimum time distance td between two vehicles
(necessary to allow safe driving). vi,k is the average speed of
vehicles inside section i at time tk. In order to prevent possible
negative values of Ri,k+1 (7) when abrupt changes happen in the
capacity of a section (e.g. provoked by changes in the number of
lanes due to an incident), the model imposes

Ni+1,k = Nmax
i+1,k, if Nmax

i+1,k < Ni+1,k. (9)

The sending function causes downstream propagation of pertur-
bations in the traffic density. It can be recursively calculated from
left to right. The receiving function on the other hand corresponds
to upstream propagation of traffic density perturbations, and it
must be recursively calculated from right to the left. Evidently,
updating the number of vehicles in the nm different sections from
its value at time tk to its value at time tk+1 requires the solution
of a system with nm nonlinear algebraic equations (4)-(8). In our
algorithm we iteratively solve this set of equations as follows. The
sending function is calculated at first by forward recursion, and
we substitute Qi,k = Si,k in (4). With this “first guess” of the
number of vehicles in section i at time tk+1 a first guess of the
density and the speed at time tk+1 are calculated. After that a
first guess of the receiving function can be computed, recursively

from section Nm down to section 1. This means that the number
of vehicles leaving section i must be smaller than or equal to the
number of vehicles that the neighbor section can receive. In the
algorithm the number of vehicles passing boundary i is calculated
by the rule [4]:

if Ri,k+1 < Si,k, then Qi,k = Ri,k+1,

∆i,k = Si,k − Ri,k+1, Ni,k+1 = Ni,k+1 − ∆i,k . (10)

This iteration is repeated until no further changes in the flows Qi,k

are made. In a finite number of iterations this leads to the correct
number Qi,k of vehicles which actually are succeeding to cross
the boundary, whereas ∆i,k = Si,k − Ri,k+1 is the number of
vehicles which are forced to remain in section i by slowing down.

The speed vi,k+1 is updated according to the rule:

vinterm
i,k+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[vi−1,kQi−1,k + vi,k(Ni,k − Qi,k)]/Ni,k+1,

for Ni,k+1 �= 0,

vfree, otherwise,
(11)

ρantic
i,k+1 = αρi,k+1 + (1 − α)ρi+1,k+1, (12)

vi,k+1 = βvinterm
i,k+1 + (1 − β)ve(ρantic

i,k+1) + ηvi,k, (13)

where vinterm
i,k+1 is the intermediate speed taking convection into

account. It expresses the speed update if all vehicles would
maintain their speed forever: drivers can not change their speed
instantaneously due to inertia. ρantic

i,k+1 is the anticipated traffic
density which drivers see at some distance in front of their
vehicles, and ρi,k+1 is computed from (3) after Ni,k+1, i =
1, . . . , nm has been evaluated. The coefficient α ∈ (0, 1] weighs
how far ahead the drivers are looking in their anticipation (largest
lookahead for α close to 1). The function ve(ρ) expresses the
average speed corresponding to density ρ. This equilibrium speed
can be computed according to the empirical equation given in
[14], [19] but for our model we find that simpler expressions
are sufficient. When the density is below the critical density
ρcrit we assume that the desired speed is equal to the free flow
speed vfree. In congested regime the average speed drops affinely
from vfree at ρcrit to 0 at ρjam. The coefficient β ∈ (0, 1]
tunes the model by weighing how aggressively drivers adjust their
speed to changing traffic conditions. The noise ηvi,k reflects the
unpredictable behavior of the drivers and also modelling errors. It
is assumed in our simulations to have a Gaussian distribution.

Given the initial vector x0 = (N1,0, v1,0, . . . , Nnm,0, vnm,0)
T ,

and the boundary variables (the sending functions S0,k at the
upstream boundary of section 1, and the receiving functions
Rnm+1,k at the downstream boundary of section nm) one can
now evaluate the random evolution of the state xk of the freeway,
using (4) and (13) as state update equations (1).

B. Observation equations
The following observation equations are derived in agreement

with (2)

zj,kb+1(1) = Q̄j,kb+1 + ξQj ,kb+1 , (14)

zj,kb+1(2) = v̄j,kb+1 + ξvj ,kb+1 . (15)

zj,kb+1(1) is the measured averaged number of vehicles crossing
the boundary between sections j and j+1 during the time interval
∆tb = [tkb , tkb+1), namely Q̄j,kb+1 = 1

∆tb

∑k=tb+1
k=tb

Qj,k,
j ∈ J ⊂ {1, . . . , nm}; zj,kb+1(2) is the average speed over the
same interval of these Qj,k vehicles. This speed is a weighted
average of the speed in section j and section j + 1. Note
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that this average speed weighs the faster vehicles more heavily
than the slower vehicles, since faster vehicles cross boundaries
more frequently. The noise term ξQj can have a complicated
probability distribution (e.g. Poisson type, when errors due to
missed vehicles and false counted vehicles are accounted for).

IV. PARTICLE FILTER FOR FREEWAY TRAFFIC

Within the Bayesian framework, the conditional density
p(xk|Zk−1) is recursively updated according to

p(xk+1|Zk) =

∫
Rnx

p(xk+1|xk)p(xk|Zk)dxk, (16)

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (17)

where p(zk|Zk−1) is a normalizing constant. The recursive update
of p(xk|Zk) is proportional to

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1). (18)

Usually, there is no simple analytical expression for propagating
p(xk|Zk) through (18).

The particle filter technique [7] provides an approximate so-
lution to this discrete-time recursive updating of the posterior
probability density function p(xk|Zk) of the state given mea-
surements zj,kb+1(1), zj,kb+1(2) for j ∈ J ⊂ {1, . . . , nm}. The
state update and the measurement update steps use respectively
the conditional density functions p(xk+1|xk) and p(Zk|xk) that
are defined uniquely by the model described in section III. The
particle filter approximates p(xk|Zk) by the empirical histogram
corresponding to a collection of M particles (samples) {x(l)

k }M
l=1.

Each particle has an assigned relative weight, w
(l)
k , such that

the sum of all weights is unity. The weight and the value of
each particle characterize (an approximation to) the conditional
density function of the state xk. After the arrival of a new
observation zkb , the particle filter updates the value of the particles
location and their weights according to Bayes’ rule. The cloud of
particles evolves with time and depending on the observations,
so that the particles represent with sufficient accuracy the true
conditional density of the state. Note that we treat a problem that is
slightly more complicated than in the previously developed particle
filters [7]. The sensor information updates the state distribution
usually assuming that the observation at time tk is a noisy
function of the state at time tk, while in the traffic problem the
observation at time tk depends on the values of the state at all
the times {tkb−1, . . . , tkb−1, tkb} through an averaging operation.
This extension can easily be incorporated in the PF algorithm.

During the interval [tkb , tkb+1), between two consecutive mea-
surement updates, traffic state prediction is performed through
the traffic models (4), (5), (6) and (7) for the nm sections. The
likelihood function p(zk|xk) is calculated from (14)-(15) by the
predicted states at each of the time instants tk ∈ [tkb , tkb+1),
and the known measurement noise density pξi,k(ξi). The cloud of
weighted particles, drawn from the posterior conditional probabil-
ity distribution, is used to map integrals to discrete sums (since
the histogram is piecewise constant): p(xk|Zk) is approximated
by

p̂(xk|Zk) ≈
M∑

l=1

w̃
(l)
k δ(xk − x

(l)
k ), (19)

where δ is the delta-Dirac function and w̃
(l)
k are the normalized

importance weights of the posterior conditional probability
density function (PDF). New weights are calculated putting
more weight on particles that are important according to

the posterior probability density function (19). The random
samples {x(l)

k , l = 1, 2, . . . , M} are drawn from p(xk|Zk). It is
often impossible to sample from the posterior density function
p(xk|Zk). However, this difficulty is circumvented by making use
of the importance sampling from a known proposal distribution
π(xk|Zk). In implementing particle filters, the choice of the
proposal distribution is of crucial importance. The transition
prior is the most popular choice of the proposal distribution [25]:
π(xk|Zk) = p(xk|xk−1), which in the traffic problem is given
by the traffic state model.

The implementation of the particle filter is described below:

1) Initialization: k = 0
* For l = 1, . . . , M , generate samples {x(l)

0 } from the
initial distribution p(x0).

2) For k = 1, 2, . . . , km, . . . ,
* Prediction step :

For l = 1, . . . , M , sample x
(l)
k ∼ p(xk|x(l)

k−1, Z
k)

according to (3)-(13) for sections situated between two
subsequent boundaries where measurements arrive.

* Evaluate importance weights (measurement processing
step), only for k = kb, on the boundaries between the
sections where measurements are available. On the receipt
of a new measurement, compute the weights

w
(l)
k = w

(l)
k−1p(zk|x(l)

k )

and normalize, i.e. ŵ
(l)
k = w

(l)
k /

∑M
l=1 w

(l)
k . The

observation equations (14), (15) describe the likelihood
p(zk|x(l)

k ) of the observations. Note that the form of
equations (14) and (15) reduces the computational costs,
because the predicted observations will actually coincide
with the predicted number of vehicles on the boundaries
and predicted speeds, obtained from the prediction step.

* Selection step (resampling) only for k = kb:

Multiply/ Suppress samples x
(l)
k with high/ low importance

weights ŵ
(l)
k , in order to obtain M random samples

approximately distributed according to p(xk|Zk). The
residual resampling algorithm described in [17], [25]
is applied. This is a two step process making use of
sampling-importance-resampling scheme.

* For i = 1, . . . , M , set w
(l)
k = ŵ

(l)
k = 1/M .

3) Output: The output of the algorithm is a collection of sam-
ples, from which the approximate posterior distribution is
computed according to (19). The posterior mean E[xk|Zk]
and the associated covariance V [xk|Zk] are approximately
computed using the collection of samples (particles), namely

x̂k = E[xk|Zk] = 1
M

∑M
l=1 x

(l)
k ,

V [xk|Zk] = 1
M−1

∑M
l=1(x

(l)
k − x̂k)(x

(l)
k − x̂k)T .

4) Increase k and return to step 2.

Using a rather straightforward MATLAB implementation we
have succeeded in implementing this algorithm sufficiently fast
to obtain on-line predictions of the traffic state for a link with 4
sections. With more sophisticated programming tools this method
can undoubtedly be applied to on-line estimation for a large
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freeway network for the purposes of on-line traffic management.

V. FILTER PERFORMANCE EVALUATION

The particle filter performance is evaluated by Monte Carlo
simulation over independent Monte Carlo runs with different
collections of data, different initial state conditions and different
boundary conditions. The data are generated by using a stochastic
version of METANET model [14], [19], after adding Gaussian
noises to the speed and density equations. The measurements are
supplied to the filter every minute, similarly to a possible update
with real data, whereas the state prediction is performed also in
the intermediate time instants. We are estimating the states of
all sections between two sensor locations as one augmented state
vector, composed by mutually connected components. Root-Mean
Squared Errors (RMSEs) [2] ε(x̂i) = [ 1

r

∑r
i=1(εi,k)T (εi,k)]1/2,

for relative state errors, εi,k = (xi,k − x̂i,k)/xi,k, e.g., w.r.t.
density, speed and flow (the same state variables such as in
METANET) are used to evaluate the filter performance.

Investigations with simulated data

The link considered consists of four sections, with mea-
surements received only at the boundaries of the first and
fourth section. Hence, the augmented state vector is xk =
(xT

1,k, xT
2,k, xT

3,k, xT
4,k)T , i.e. i = 1, 2, 3, 4, and the measurement

vector zkb = (zT
1,kb

, zT
4,kb

)T . The boundary conditions (inflow
and speed at entrance boundary and density and speed in section
nm+1) are assumed known, not estimated. In order to see the
often used in practice flow-density and speed-flow diagrams from
the states, the plots are given in terms of flows, densities, speeds.
The initial section states are randomly generated from the true
states using Gaussian distribution, i.e. x0 ∼ N [x0, P0], where
x0 contains the exact initial state vector and P0 is the initial
state covariance matrix. The size of the sample set is M = 500
particles.
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Fig. 2. Relative root-mean square errors of the density (for all lanes),
speed and flow of the four sections

The parameters of the state model are chosen as follows:
ρi,crit = 32.5 [veh/km/lane], ∆t = 10 [sec], Li = 0.5 [km],
i = 1, 2, 3, 4, α = 0.9, β = 0.6, A� = 0.010 [km], am = 1.867.
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Fig. 3. Relative MEs of the density (for all lanes), speed and flow of the
four sections
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Fig. 4. Flow-density, flow-speed diagrams, evolution of the flow and of
the speed in time plotted from the estimated states

We assume that the free flow speed vfree is 130 [km/h], the
minimum outflow speed is vout,min = 3 [km/h].

In the initial investigation we assumed that the number of lanes
is known (but this could be estimated recursively). The simulations
assume �i,k = 3 always except for a reduction to �i,k = 1 in
lanes i = 2, 3 for tk between 2 [h] and 3 [h]. The model error
and the measurement noise are assumed to be Gaussian, where
cov(ηvi) = 0.52 [km/h]2, the covariance of the sending function
is non-stationary: cov(ηSi,k ) = (0.025Ni,kvi,k∆tk/Li)

2 [veh]2,
and Vξi = diag{202 [veh/h]2, 22 [km/h]2.

The filter performance is evaluated for r = 100 independent
Monte Carlo runs. Relative Root-mean square errors (RMSEs)
of each component of the state vector are presented in Fig. 2
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and relative mean errors (MEs) in Fig. 3. Fig. 4 contains the
flow-density, speed-flow diagrams, and shows the evolution of the
average traffic flow and of the average speed in time. All figures
are plotted from the estimated states. According to these results the
particle filter can accurately estimate the traffic states except for
a very brief increase in error during the fast transients. The flow-
density diagram, based on the estimates has a bell-shaped form in
good agreement with the well known fundamental diagram [18].
The evolution of the estimated speed in time shows that the traffic
in section 1 is characterized with a decreased speed during the
period with reduced number of lanes in sections 2 and 3 (between
2 [h] and 3 [h]. So far experiments have been performed with one
link consisting of four sections. The application of the particle
filter to many links of the freeway is straightforward.

Probabilistic traffic mode detection is currently investigated
based on multiple modelling of different traffic modes, also
the formulation of criteria for on-line modes detection and the
transitions between them. Typical traffic modes can be represented
by few models which together with the observations can provide
likelihood ratios. Likelihoods are then bringing information about
the correct model/ mode. One of the difficulties is the appropriate
classification of the traffic modes. Multiple-model particle filters
can be used for change and mode detection as well. To each mode
a separate model is assigned and based on the measurements the
wrong models will have high innovation processes, respectively
small likelihoods which means that they will be less probable and
hence rejected.

VI. CONCLUSIONS

The freeway traffic flow estimation is formulated within a
Bayesian recursive framework. A particle filter is developed using
traffic and observation models with aggregated variables. The
traffic state is modelled as a hybrid stochastic system, i.e. the
traffic section possesses continuous and discrete states, interacting
with states from neighbor sections. The filter performance is
investigated and validated by simulated data. The designed particle
filter gave very encouraging performance. Currently investigations
are conducted with real traffic data from a Belgian freeway. The
estimation approach presented is straightforward, general, and
applicable to both freeways and urban networks, with different
topologies, with any number of sensors, regularly or irregularly
received data in space and in time. It is suitable for distributed
realization and for parallel computations. The presented approach
for traffic state estimation is modular. Different traffic models
can be used in different sections of the traffic network. This
recursive Bayesian estimator is aimed at on-line applications for
mode detection, and in different control strategies of road traffic,
for instance it fits well in the model predictive control framework.
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