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Non-Minimally Coupled Inflation with Initial Conditions fr om a Pre-Inflation Anamorphic
Contracting Era

John McDonald∗

Dept. of Physics, University of Lancaster, Lancaster LA1 4YB, UK

Inflation due to a non-minimally coupled scalar field, as firstproposed by Salopek, Bardeen and Bond (SBB),
is in good agreement with the observed value of the spectral index and constraints on the tensor-to-scalar ratio.
Here we explore the possibility that SBB inflation represents the late stage of a Universe which emerges from an
early contracting era. We present a model in which the Universe smoothly transitions from an anamorphic con-
tracting era to late-time SBB inflation without encountering a singular bounce. This corresponds to a continuous
expansion in the Einstein frame throughout. We show that theanamorphic contracting era is able to provide the
smooth superhorizon initial conditions necessary for subsequent SBB inflation to occur. The model predicts cor-
rections to the non-minimal coupling, kinetic term and potential of SBB inflation which can observably increase
the spectral index relative to its SBB prediction.

Non-minimally coupled scalar field inflation models with a large non-minimal coupling and symmetric vacuum were first
proposed by Salopek, Bardeen and Bond (SBB) in [1]1. The great advantage of such models is their ability useφ4 scalar
potentials which have couplings of magnitude typical of particle physics models. This allows a conventional TeV-scaleparticle
theory to account for inflation without the extremely small couplings encountered in minimally-coupled inflation models. For
example, the Higgs boson [4] or a Higgs portal dark matter scalar [5, 6] could account for inflation. In addition, SBB inflation
predicts2 ns = 1−2/Ñ−3/Ñ2 = 0.966 andr = 12/Ñ2 = 3.3×10−3 for Ñ = 60 (whereÑ is the number of e-foldings in the
Einstein frame), which is in very good agreement with the observed spectral index,ns = 0.9677±0.0060 (68% CL, Planck TT
+ lowP + lensing), and is easily consistent with the upper bound on the tensor-to-scalar ratio,r0.002< 0.11 (95% CL, Planck TT
+ lowP + lensing) [7].

If SBB inflation is indeed the correct model, it is natural to consider the origin of this era of observable inflation. Inflation
requires a smooth, potential-dominated initial state overa region greater than the Hubble radius [8]. One way this can be
achieved is via an initial contracting era during which physical length scales contract less rapidly than|H|−1, which requires a
contracting era with an equation of state such that ¨a< 0. A stronger condition is that the contribution of the energy density to the
Friedmann equation during contraction does not become dominated by the contribution of the Kasner-type metric anisotropies,
which grows asa−6 [9, 10]. The advantage of contraction is that it does not require an initial state that is smooth to begin with.

Recently a model was proposed, the Anamorphic Universe [11], in which a contracting Universe smoothly transitions to
an expanding Universe3 at a finite value ofa. This model allows a non-singular bounce which does not strongly amplify
perturbations and anisotropies, in contrast to the case of aghost condensate non-singular bounce [13], and so can smooth the
initial state of the expanding era on superhorizon scales. This model can be explicitly realized by a non-minimally coupled
scalar model. In [11] was shown that, with appropriate choices for the conformal factorΩ(φ), the scalar kinetic termk(φ) and
the Jordan frame potentialVJ(φ), it is possible to have an expansion in the Einstein frame which corresponds to a contraction
in the physical Jordan frame (hence ’anamorphic’). In [11] the objective was to produce a contracting Jordan frame model
which is equivalent to inflation in the Einstein frame, in which case the contracting model can make predictions equivalent to
a conventional inflation model. Our aim here is to use the anamorphic framework to construct an initially contracting erathat
can evolve into late-time SBB inflation without encountering a singular bounce and which can create the initial conditions for
SBB inflation. The transition from contraction to expansionin the Jordan frame corresponds to a smooth change in the formof
expansion in the Einstein frame.

It is important to clearly distinguish betweeen the application of anamorphic contraction to inflation initial conditions and its
use in the Anamorphic Universe model. In particular, the Anamorphic Universe is able to evade the creation of a multiverse via
eternal inflation (since there is no inflation in the physicalframe), whereas the present model reintroduces inflation atlate times.

We first make clear why Einstein frame expansion can correspond to Jordan frame contraction. This follows simply from the
relation between the scale factor in the Einstein and Jordanframes,a= ã/Ω, whereã is the Einstein frame scale factor anda is
the Jordan frame scale factor. This follows from the definition ofΩ, g̃µν = Ω2gµν. Therefore if the Einstein frame scale factor is
expanding from ˜a to ãc, the ratio of scale factors in the Jordan frame is

ac

a
=

Ω(a)
Ω(ac)

× ãc

ã
. (1)
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1 A different class of non-minimally coupled inflation model was proposed earlier in [2] and [3]. Unlike the model of [1], the scalars in these models have large

masses and expectation values in the present vacuum.
2 Since SBB inflation is a single-field inflation model, it also predicts negligible non-Gaussianity, withfNL ∼ η ∼ 10−2.
3 Related ideas were previously explored in [12].
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Therefore if the conformal factorΩ becomes larger more rapidly than the rate at which Einstein frame scale factor increases, the
Jordan frame scale factor will contract i.e. the physical Universe will be a contracting Universe. We will use Eq. (1) as the basis
of our analysis in the following. A more general method is given in [11].

The model we consider here is an example of a model which interpolates between an anamorphic contracting era at large
φ and the SBB inflation at smallφ. In general, the scalar-tensor models of interest have the Jordan frame form (withMPl =
1/(8πG)1/2 = 1)

SJ =
∫

d4x
√−g

[

Ω2R
2

− k(φ)
2

∂µφ∂µφ−VJ(φ)
]

, (2)

where we follow [11] in using the signature(−,+,+,+). For the SBB model [1], valid at smallφ,

Ω2 = 1+ ξφ2 ; k(φ) = 1 ; VJ(φ) =
λφ4

4
, (3)

while for the anamorphic contraction model, valid at largeφ, we will consider

Ω2 = αe−2Aφ ; k(φ) =−ηe−2Aφ ; VJ(φ) = βe−Bφ . (4)

HereA andB are positive. This differs from the simplest model of [11] inthat(A,B) → (−A,−B). This is necessary in order
thatφ is decreasing with time and so can transition to the SBB modelat smallφ.

To smoothly transition between these limits, we will consider the following model (’interpolation model’) which interpolates
between the anamorphic contraction and SBB eras,

Ω2 = 1+
ξφ2

(1+ γφ2e2Aφ)
; k(φ) =

1− γφ2

1+ γφ2e2Aφ ; VJ(φ) =
λφ4

4
(

1+ γφ2eBφ/2
)2 . (5)

In the Einstein frame this will correspond to a continuouslyexpanding model. Therefore there is no amplification of perturbations
or anisotropies calculated in the Einstein frame as the Universe transitions from contraction to expansion in the Jordan frame, in
contrast to the case of a non-singular bounce due to ghost condensation. Whenφ < φc = 1/

√γ, assuming thatAφc andBφc are
small compared to 1, Eq. (5) reduces to the SBB model, while atφ > φc it becomes the anamorphic contraction model with a
particular set of coefficients,

α =
ξ
γ

; η = 1 ; β =
λ

4γ2 . (6)

During SBB inflation,φÑ =
√

4Ñ/3ξ. To have the correct magnitude of density perturbations, werequire thatξ ≈ 105λ1/2,
where we are most interested in the case whereλ can be large,λ ∼ 1. Therefore, as long as

√γ <<
√

ξ/Ñ, φc ≫ φÑ will be
satisfied atÑ ≈ 60 and the corrections to SBB inflation will be small. We will return these corrections later.

In general, the Einstein frame action is

SE =

∫
d4x
√

−g̃

[

R̃
2
− 3

4Ω4 ∂µΩ2∂µΩ2− k(φ)
2Ω2 ∂µφ∂µφ− VJ(φ)

Ω4

]

. (7)

In the case of the anamorphic contraction model the action becomes

SE =

∫
d4x
√

−g̃

[

R̃
2
− 1

2

(

6A2− η
α

)

∂µφ∂µφ− βe(4A−B)φ

α2

]

. (8)

Provided that 6A2 > η/α, this has the correct sign of kinetic term in the Einstein frame, despite apparently being the wrong sign
in the Jordan frame. Therefore, since we quantize in the Einstein frame, there is no problem of instability due to a ghost field.
Rescalingφ to a canonically normalized scalarχ = (6A2−η/α)1/2φ, the Einstein frame potential becomes

VE =
β
α2 exp

(

(4A−B)χ
(6A2−η/α)1/2

)

. (9)

Since we wantχ (and soφ) to decrease with time in order to transition to SBB inflationat smallφ, we require that 4A > B.
In order to have a model with an analytic solution, we will restrict attention to the case whereχ is slow-rolling during the
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contracting phase. This is not essential but simply convenient. In this case the number of e-folds in the Einstein frame on rolling
from χ to χc (whereχ > χc) is

Ñ =−
∫ χc

χ

VE

V ′
E

dχ =

(

6A2−η/α
)1/2

(4A−B)
(χ−χc) . (10)

The ratio of conformal factors is

Ω
Ωc

= exp

(

− A(χ−χc)

(6A2−η/α)1/2

)

. (11)

Thus the ratio of scale factors in the Jordan frame is

ac

a
=

Ω
Ωc

eÑ = exp(−∆(χ−χc)) , (12)

where

∆ =
A

(

6A2− η
α
)1/2

−
(

6A2− η
α
)1/2

(4A−B)
. (13)

Therefore the condition for contraction in the Jordan frameas the field rolls fromχ to χc is ∆ > 0, which requires that

η
α
> 2A2+AB . (14)

This is consistent with the result for the corresponding model in [11]. SinceA andB are positive, Eq. (14) can only be satisfied
if the φ kinetic term in the Jordan frame has the wrong sign,η > 0. The condition for slow-rolling to be valid in the Einstein
frame,η̃ ≡ |V ′′

E/VE|< 1, is satisfied if

(4A−B)2 < 6A2− η
α
. (15)

Thus both conditions can be satisfied if 4A> B> 3A and 6A2 ≈ η/α. In the interpolation modelη = 1 andα = ξ/γ. In this case
both conditions can be satisfied if

A≈ 1√
6

(

γ
ξ

)1/2

. (16)

Since it is assumed thatγ ≪ ξ in order that the model tends to SBB inflation at smallφ, it follows thatA< 1. We also assumed
that 2Aφ < 1 andBφ/2 < 1 at φc = 1/

√γ. From Eq. (16) we find that these are satisfied ifξ > 4/3. Sinceξ ∼ 105 in SBB
inflation, this is easily satisfied. Thus there is a consistent slow-roll solution of the interpolation model in which theUniverse
undergoes anamorphic contraction in the Jordan frame at early times whenφ < φc and smoothly transitions to SBB inflation
onceφ > φc.

We next check the condition for the early anamorphic contraction to produce the smooth initial conditions for SBB inflation
on superhorizon scales. The strongest requirement is that the contribution of the anamorphic era energy density to the Friedmann
equation in the Jordan frame grows more rapidly than the contribution of Kasner-type anisotropies during the contraction [9, 10].
The contribution of the potential energy density to the Friedmann equation is proportional toVJ/M2

Pl e f f = VJ/Ω2, while the

anisotropy contribution is proportional toa−6 [14]. The potential contribution during anamorphic contraction evolves as

VJ

Ω2 =
β
α

exp

(

− (B−2A)χ
(

6A2− η
α
)1/2

)

. (17)

From Eq. (12) it follows that

VJ

Ω2 ∝ a−r ; r =
(B−2A)

∆
(

6A2− η
α
)1/2

. (18)
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Requiring thatVJ/Ω2 increases more rapidly thata−6 during contraction then requires that

(B−2A)(4A−B)> 6
(

A(4A−B)−
(

6A2− η
α

))

. (19)

From the slow-roll condition, Eq. (15), the right side of Eq.(19) has an upper bound given by 6(4A−B)(B−3A). Therefore the
smoothing condition Eq. (19) is satisfied if

16
5

A> B . (20)

This is consistent with the range 4A > B > 3A for which contraction and slow-roll can both occur. We have also confirmed,
although we do not show it here, that the weaker smoothing condition, ä< 0, is generally satisfied if 4A−B> 0.

We next consider the possible modification of the SBB inflation model due to the early contracting era. Atφ ≪ φc, the
functions in Eq. (5) become

Ω2(φ)≈ 1+ ξφ2− ξγ φ4+ ξγ2 φ6 ; k(φ)≈ 1−2γ φ2+2γ2 φ4 ; VJ ≈
λ
4

φ4− λγ
2

φ6+
3λγ2

4
φ8 , (21)

where we have included terms to next-to-leading order inγφ2, as the leading-order terms cancel in the Einstein frame potential.
(We have also assumed thatAφ andBφ are small enough thate2Aφ andeBφ/2 can be set equal to 1 in Eq. (5) when deriving
Eq. (21). In the Appendix this is shown to be true for the case of interest where the spectral index modification is large enough
to be observable.) In the limitξ ≫ γ we find thatns is given by (Appendix)

ns = 1− 2
Ñ
+

1
3

(

32
3

γÑ
ξ

)2

, (22)

where we have included the leading order correction tons. Therefore the spectral index is increased relative to the SBB model.
This imposes a significant constraint on the model. In order that the correction tons is not larger than O(0.01),γ must satisfy

γ <
∼ 27

(

60

Ñ

)(

ξ
105

)

. (23)

(The condition Eq. (16) then requires thatA ∼ B <
∼ 10−2.) The critical value ofφ at which the transition from contraction to

expansion occurs,φc = 1/
√γ, therefore satisfies

φc
>
∼ 0.2

(

Ñ
60

)1/2(105

ξ

)1/2

. (24)

Thusφc is generally close to or larger than the Planck scale. In particular, if the transition from contraction to expansion occurs
whenφ is close to the Planck scale, corresponding to approximate equality in Eq. (24), then the corrections to the spectral index
can be large enough to be observable4.

In conclusion, we have shown that it is possible for non-minimally coupled SBB inflation to consistently emerge from an
anamorphic contracting era. The model has a non-singular transition to expansion which can provide the smooth initial condi-
tions necessary for SBB inflation. The model predicts modifications to the SBB model that can be large enough to produce an
observable deviation of the spectral index from its SBB prediction.
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4 In the case where the couplings ofφ to Standard Model particles have dimensionally natural magnitudes∼ 0.01−1, the reheating temperature is well-defined
[15]. This means that̃N can be tightly constrained, which makes it possible to accurately predict the spectral index in this model.
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APPENDIX: THE SPECTRAL INDEX OF THE INTERPOLATING MODEL

Here we outline the calculation of the spectral index of the interpolating model, Eq. (22). The Einstein frame potentialfrom
Eq. (21), to leading order inγφ2, is5

VE ≈ VJ0

Ω4
0

(

1+4γ2φ4) , (A-1)

whereVJ0 = λφ4/4 andΩ2
0 =

(

1+ ξφ2
)

. The φ field must be transformed to the canonically normalizedχ field in order to
compute the slow-roll parameters. Theφ kinetic term in the Einstein frame is

− 1
2

[

3
2Ω4

(

∂Ω2

∂φ

)2

+
k(φ)
Ω2

]

∂µφ∂µφ . (A-2)

To leading-order inγφ2, whereγφ2 ≪ 1, this becomes

− 1
2

[

6
φ2

(

1−2γφ2)
]

∂µφ∂µφ . (A-3)

Thus the canonically normalized fieldχ is related toφ by

∂χ
∂φ

≈
√

6
φ
(

1− γφ2) . (A-4)

The derivatives ofVE with respect toχ, which determine the slow-roll parameters, are then

∂VE

∂χ
=

∂φ
∂χ

∂VE

∂φ
≈ λ

4
√

6ξ2

(

4
ξφ2 +16γ2φ4+

4γ
ξ

)

(A-5)

and

∂2VE

∂χ2 =
∂φ
∂χ

∂
∂φ

(

∂VE

∂χ

)

≈ λ
24ξ2

(

− 8
ξφ2 +64γ2φ4− 8γ

ξ

)

. (A-6)

Thus

η =
V

′′
E

VE
≈
(

− 4
3ξφ2 ++

32
3

γ2φ4− 4
3

γ
ξ

)

(1−4γ2φ4) . (A-7)

Using the relation6 betweenφ andÑ, φ =
√

4Ñ/3ξ, this becomes

η ≈
(

− 1

Ñ
+

(32×16)
27

γ2Ñ2

ξ2 − 4γ
3ξ

)(

1− 64
9

γ2Ñ2

ξ2

)

(A-8)

Thus, to leading-order in 1/Ñ andγφ2,

η ≈− 1

Ñ
+

1
6

(

32
3

)2(γÑ
ξ

)2

. (A-9)

Theε contribution to the spectral index isO(1/Ñ2) and so is negligible. Thus, to leading-order, the spectral index is given by

ns ≈ 1+2η ≈ 1− 2

Ñ
+

1
3

(

32
3

)2(γÑ
ξ

)2

. (A-10)

5 There is a cancellation of theO(γφ2) contributions fromVJ andΩ4 to VE.
6 This relation is not significantly modified by theγφ2 corrections in the case of interest.
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We finally show that thee2Aφ andeBφ/2 terms in Eq. (5) can be set equal to 1 when deriving Eq. (21). Assuming thatAφ ≪ 1
andBφ ≪ 1 (this is easily satisfied sinceφ =

√

4Ñ/3ξ ≪ 1 andA∼ B<
∼ 10−2), the full form of Eq. (24), to leading- order inAφ

andBφ, is

Ω2(φ)≈ 1+ ξφ2− ξγ φ4−2Aγξ φ5+ ξγ2 φ6 ; k(φ)≈ 1−2γ φ2−2Aγ φ3+2γ2 φ4 ; VJ ≈
λ
4

φ4− λγ
2

φ6− λγB
4

φ7+
3λγ2

4
φ8 .

(A-11)

SinceA ≈ B, the general condition for theA andB correction terms to be negligible isA ≪ γφ. For the case where thens

correction term is large enough to be observable, corresponding to equality in Eq. (23), we haveγ ∼ 10. Usingφ =
√

4Ñ/3ξ ,
and withA given by Eq. (16), the condition for theA andB corrections to be negligible becomes

γ ≫ 1

Ñ
. (A-12)

This is easily satisfied whenγ ∼ 10 andÑ ≈ 60.
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