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Abstract 

The unknown aetiology of Chronic Kidney Disease (CKD) has attracted recent attention as a result 

of the increasing global prevalence and recent reviews of occupational and environmental exposure 

to nephrotoxins. The main focus of this research is to examine the potential relationship between 

environmental exposure to known nephrotoxins including arsenic, cadmium and lead and the 

potential health risk associated with the progressive dysfunction of the kidneys in renal impaired 

patients with CKD across Northern Ireland. In addition to these known nephrotoxins, co-abundance 

with several essential elements has been found to play a role as protecting mechanisms while others 

increase the uptake of nephrotoxic elements as a result of similar absorption mechanisms within the 

body. Key elements protecting the body from toxicity include selenium and zinc, whereas those 

which have been attributed to enhance the uptake of arsenic, cadmium and lead include iron and 

calcium. The compositional nature of the soil and stream geochemical data is explored to aid in the 

analysis of interactions between elements. Two approaches, one data-driven and the other 

knowledge-driven, are explored to investigate the associations between co-abundant elements. The 

bioaccessibility of these elements, which is the portion of the relevant toxin absorbed within the 
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body, is also investigated to identify areas across Northern Ireland with an increased environmental 

hazard and potential health risk. The study uses a combination of datasets from the United Kingdom 

Renal Registry (UKRR) unknown aetiology subset, the soil and stream geochemical dataset from the 

Tellus Survey (GSNI) with the addition of a bioaccessibility subset. Findings suggest a relationship 

between the presence of elevated arsenic in stream waters and impaired renal function of the kidneys. 

Interactions between essential elements and potentially toxic elements could explain the regional 

variation of CKD of uncertain aetiology across Northern Ireland. 

Keywords  

Environmental Toxins, Arsenic, Cadmium, Geochemistry, Bioaccessibility, Kidney Disease Data 

1. Introduction  

1.1 Environmental Toxins 

The increasing global prevalence of Chronic Kidney Disease (CKD) has attracted attention with 

research focusing on the unknown aetiologies (causes) of the progression of kidney dysfunction.  

Patients presenting with CKD of “unknown aetiology” have developed CKD as a result of factors 

other than the commonly recognised factors of age, gender, ethnicity or pre-existing medical 

conditions. The unknown causes of renal disease are significant as treating every person with a 

variety of symptoms and diseases places a large burden on the National Health Service (NHS) 

budget within the UK. Insight into the spatial variation of CKD in relation to exposure to Potentially 

Toxic Elements (PTEs) may impact management and policy within the NHS and environmental 

services. The significant treatment cost of the disease places a great strain on the NHS and 

management of renal units within the United Kingdom (UK).  In the UK, the prevalence of stages 

three to five of CKD is 8.5% with an average cost of renal replacement therapy, including dialysis 

and kidney transplants, of between £20,000 to £30,000 per patient per year comprising 1-2% of the 
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annual health budget (NHS, 2010; Lewis, 2012). Reviews of exposure to environmental toxins 

(Brewster, 2007 ; Soderland et al. 2010) have examined the multifactorial causes of CKD identifying 

several key nephrotoxins, including arsenic (As), cadmium (Cd) and lead (Pb), which affect the 

human body. The potential role of environmental toxins in the progression of CKD varies according 

to each element’s mobility and solubility within the environment, exposure to the population and the 

nephrotoxic implications which include acute and chronic renal failure. The most toxic forms of 

these elements, which are involved in the progression of kidney disease, are often inorganic and 

become exposed to the population through environmental exposure by direct ingestion. The 

solubility and mobility of each trace element alters the bioaccessibility which is defined as the 

fraction that is soluble in the gastrointestinal environment and is available for absorption (Wragg and 

Cave, 2002). The co-abundance of toxic elements and essential elements may be associated with the 

progression of CKD. Some essential elements play a role as protecting mechanisms against toxic 

elements while others increase the uptake of toxic elements as a result of similar absorption 

mechanisms. The key elements which protect the body’s cells from toxicity include zinc (Zn) and 

selenium (Se) and those which enhance uptake of As, Cd and Pb include iron (FeO) and calcium 

(CaO). The interactions between each of these elements provide insights into the effects of co-

abundance and the progression of CKD. Mobility, solubility, bioaccessibility and co-abundance of 

these elements are involved in the potential progression of kidney dysfunction. 

1.2 Exposure pathways 

Over the past years, a risk-based approach with regard to the assessment of potential exposure 

scenarios to identify elevated soil borne PTE concentrations within the context of contaminated land 

assessments has been established in a number of countries (Rothstein et al., 2006).  Within the UK 

for example, this risk-based assessment is completed in accordance with guidance documents 

developed by the Environment Agency (EA) using the Contaminated Land Exposure Assessment 

(CLEA) model (Jeffries and Martin, 2009).  Common to both the wider investigation of human 
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health and welfare effects associated with naturally occurring variations in PTE concentrations and 

the specific assessment of anthropogenic contaminated land exposure scenarios to human health, is 

the underlying assessment of Source–Pathway–Receptor linkages.  The above CLEA model 

identifies a number of relevant exposure pathways, including: 

• Inhalation of outdoor and indoor dust and vapour; 

• Dermal contact with soil and dust;  

• Consumption of contaminated home grown produce and soil adhering to produce, and 

• Ingestion of soil and dust. 

While acknowledging that a number of the above exposure pathways may be present for individual 

PTEs across different exposure scenarios, this ecological exploratory study investigates the potential 

linkages between observed total PTE concentrations in soil and renal disease, focusing on the soil 

ingestion exposure pathway.  Ingestion of soil can occur due to either intentional (geophagy or pica 

behaviour) or unintentional consumption by hand-to-mouth contact, dust ingestion, or from poorly 

washed home grown produce.  Hand-to-mouth unintentional consumption can occur via adherence of 

soil particles to hands; the <250  µm soil fraction is considered the upper particle size fraction for 

which this might occur (Choate et al. 2006, Yamamoto et al. 2006, Sicialiano et al. 2009).  The UK 

Environment Agency recognizes direct and indirect soil and dust ingestion and consumption of home 

grown produce as one of the key exposure pathways for residential land uses (Jeffries and Martin, 

2009).  To better assess exposure via the oral ingestion pathway, in vitro methods have been 

developed to estimate the oral bioaccessibility of soil contaminants.  With regard to oral intake as a 

significant PTE exposure pathway in environmental exposure scenarios, this bioaccessible fraction 

refers to the PTE fraction released in the gastro-intestinal (GI) tract by digestive juices, thus 

representing the maximum contaminant concentration available for intestinal absorption (Cave et al. 

2011).  Other environmental exposure pathways for individual PTEs, such as dermal contact with 
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and ingestion of water-borne PTEs (eg. in private drinking water supplies) may furthermore affect 

health outcomes with regard to renal disease.  This exposure pathway is however beyond the scope 

of this exploratory study, focusing on the ingestion exposure pathway of soil-borne PTEs.   

1.3 Rationale and Approach 

Previous studies have concentrated on the relationships between potentially toxic elements (PTEs) 

and a range of diseases (Ferreccio and Sancha, 2006; Meliker et al. 2007; Navas-Acien et al. 2009; 

Ryu et al. 2010; Horton et al. 2013). One such study based in Northern Ireland studied the 

bioaccessibility of trace elements in the soil and the relationship between several cancers (Barsby et 

al. 2012). This study involved assessing the bioaccessibility of elements which showed that certain 

areas with elevated total concentrations of elements (elevated nickel in soils over Palaeogene flood 

basalt areas) had low bioaccessibility presenting lower risk to the population and that areas of 

moderate total elemental abundance showed high bioaccessibility (moderate levels of arsenic in 

metasediments). The focus of this paper is to investigate potential associations between 

environmental toxins and the progression of CKD of unknown aetiology, in an attempt to explain the 

regional variation of prevalence rates of CKD across Northern Ireland as provided by the UK Renal 

Registry (UKRR).  

This exploratory paper investigates the potential linkages between observed total PTE concentrations 

in soil and renal disease, focusing on the soil ingestion exposure pathway, including intentional and 

unintentional consumption of soil.  To this end, the study explores the ‘rural’ soil geochemical 

dataset provided by the Tellus Survey (Smyth 2007), covering the whole of Northern Ireland 

(approx. 13,850 km2) with a sampling density of one sample site every 2 km2 across the rural areas of 

Northern Ireland.  Census data over the past decades highlight that the population across rural 

Northern Ireland exhibits a relatively low mobility rate in comparison with other regions of the UK. 

Champion (2005) noted that Northern Ireland recorded by far the lowest rate of movement across 

regional and country boundaries within the UK with 90.7% of residents remaining at the same 
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residence in the 12 months prior to the 2001 census. To this end, Northern Ireland provides an ideal 

region for studying potential linkages between the spatial distribution of elevated soil-borne PTE 

concentrations and health outcomes with regard to renal disease via the ingestion exposure pathway 

as described above.  It is important to note that the presented study does not attempt to analyse the 

potential complex exposure pathways along the commercial food-chain.  Such a study would require 

amongst others a comprehensive assessment of food-borne PTE concentrations as well as detailed 

dietary intake information, which is beyond the scope of this paper.  While acknowledging that these 

exposure pathways may contribute to health outcomes with regard to renal disease, the presented 

study is exploring potential linkages between observed elevated total and PTE concentrations in soil 

and renal disease, focusing on the oral ingestion exposure pathway for residential land use. The 

presented study is aimed at exploring potential linkages between soil-borne total and bioaccessible 

PTE concentrations and renal disease in order to address the observed rates of unknown aetiologies.  

To this end, the study aims at demonstrating the potential benefits for using existing comprehensive 

environmental datasets to provide additional information which may help to improve health 

outcomes and serve as an exploratory basis for further more detailed studies into potential 

environmental factors for renal disease.    

1.4 Compositional Data Analysis 

This research explores the potential relationship between renal disease patterns and the abundance of 

PTEs in soils, stream sediments and stream waters. However, the geochemical components for soil, 

stream sediments and stream waters, form a multivariate system that should be analysed as a whole, 

not component-wise (McKinley et al. 2016). Namely, geochemical data are observations that contain 

quantitatively expressed relative contributions of parts on a whole. The relevant information is 

conveyed by the ratios between the components; it does not matter if the components add up or not 

to a constant value. Therefore, even with a variable sum of geochemical concentrations, the relative 

nature of geochemical data is still present and needs to be taken into account (McKinley et al. 2016). 
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Therefore, a compositional data approach was explored to comply with the relative nature of the 

geochemical data (Aitchison, 1986; Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn, 

Egozcue, Tolosana-Delgado, 2015; van den Boogaart and Tolosana-Delgado (2013); Templ et al., 

2011). McKinley et al. (2016) caution that if a compositional approach is not used, it becomes 

difficult to guarantee that any identified pattern, trend or anomaly is not an artefact of the 

compositional nature of the data. This is particularly important for exploring the role of 

environmental factors on health where it is essential to understand how the variation in geochemical 

concentrations of PTEs may be influenced by dilution, enrichment or depletion in other elements. 

Exploratory data analysis for multi-element geochemical datasets is most often undertaken to explore 

patterns, links and associations between elements as part of the ‘Discovery Process’ (Grunsky et al., 

2014).  This paper adopts an initial, data-driven approach to capture patterns and processes that may 

be hidden or masked by dominant processes. A knowledge driven log-ratio approach is also explored 

to examine soil, stream sediments and stream water geochemistry data for a range of primary known 

nephrotoxins, including As, Pb and Cd, and secondary elements including Fe, Ca, Se, and Zn. 

Elemental associations and subcompostions of components from soils, stream sediments and stream 

waters geochemistry are identified and are used as environmental covariates for regressing CKD of 

unknown aetiology. Poisson regression analysis was used to explore the relationship between the 

environmental and disease data as the primary variable of interest, incidence rates of CKD measures 

abundance.  

2. Study Site and Materials  

Several factors make Northern Ireland an ideal region for research within the field of medical 

geology. The primary factor is Northern Ireland's complex and diverse geology which provides a 

representation of typical parent rock types and soils (Fig. 1a) and which has been mapped by the 

Geological Survey of Northern Ireland (GSNI) in the form of an available soil geochemistry dataset 
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known as the Tellus Survey (generated during 2004-2006). The diverse geology increases the 

transferability of the study to other places. A combination of the UKRR, containing data collected 

from 2006-2014 on end stage renal disease patients offers the potential to investigate the health risk 

of CKD associated with environmental toxins from the GSNI Tellus Geochemical Survey.  

  

2.1 Disease Data 

CKD is increasing annually in prevalence within Northern Ireland with an average prevalence of 3% 

in 2007 rising to 4.8% in 2014 and an age standardised incidence rate of 25.54 people per 100,000 

(NISRA, 2014;  data from UKRR, 2014). While an annual increase in CKD has been linked to 

increasing diabetes rates and longer life expectancy, the rates of unknown aetiology remain of 

concern. The unknown aetiology in renal disease patients in Northern Ireland was 17.2% of the total 

incidence rates in 2010; from 2006-2014 the age standardised incidence rate was 4.13 per 100,000 

persons (Gilg et al. 2012; data from UKRR, 2014).  This research uses a subset of data from the 

UKRR for 259 patients presenting with CKD of unknown aetiology with end stage renal disease 

indicating the requirement for dialysis and renal replacement therapy (Fig 1b and 1c). The data were 

combined with 890 super output areas (SOAs), which are the smallest census record district for 

Northern Ireland containing population counts based on the 2011 census data (NISRA, 2011). Cases 

recorded as unknown aetiology represent patients presenting with CKD, but where the medical 

practitioner deemed the cause unknown and not easily related to other known causes of CKD. The 

observed cases of CKD of unknown aetiology therefore provide the basis for an analysis between the 

spatial variation of CKD incidence and environmental trace element concentrations.  

2.2 Geochemistry 

The Tellus Survey was initiated in 2004 by GSNI to provide fine spatial resolution geochemical 

datasets (Smyth, 2007). Tellus Survey data types collected included stream sediment, heavy mineral 
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concentrate, stream water, surface soil and deep soil samples. These samples were analysed using 

several types of spectrometry methods to separate and identify the components of major and trace 

elements within every sample. Methods of analysis included X-ray fluorescence (XRF) 

spectrometry, Inductively Coupled Plasma (ICP) and ion-chromatography. A total of 5,874 sites 

were sampled for stream sediments and waters giving a distribution of one site per 2.4 km2 (Smyth, 

2007). The stream water samples were collected upstream of the stream sediments to avoid 

contamination (Young and Donald, 2013). Two types of soil samples were collected at each site 

including shallow surface soils from the 'A' horizon, which are used in this research, and deep soils 

from the 'B' horizon. Each sample was collected using a soil testing kit which included a hand auger 

to measure a 20 by 5 cm flight from a standard depth of 5-20 cm for surface soils and 35-50 cm for 

deep soils. In rural areas, 6,862 sites were sampled at an average of one site per 2 km2 and in urban 

areas including Belfast 1,315 sites were sampled at a distribution of four sites per km2 (Smyth, 2007; 

Young and Donald, 2013). The rural soil sediment data, as measured by XRF, along with the stream 

sediments and stream water datasets were used in this study. Published detection limits were used to 

replace zeros and negative amounts, however elements with a large number of censored values were 

excluded from further analysis.  The full soil composition contained 47 elements; 8 elements were 

excluded including Sc, Mo, Nd, Bi, W, Ta, Ga, and SO3 due to censored values. The non-censored 

data sets used for the stream waters and sediments contained 16 elements. Details of the number of 

samples and summary statistics for the geochemical variables of As, Cd, Pb, Fe2O3, CaO, Se and Zn 

for each of the datasets (soil, stream sediment and stream water) are provided in Table 1. 

2.3 Bioaccessibility 

A subset of surface soil samples from the rural Tellus data was used for testing bioaccessibility, 

which is the proportion of the toxin solubilised (Wragg and Cave, 2002; Hrudey et al. 1996). 

Bioaccessibility data testing was undertaken for 145 of the previously collected and stored Tellus soil 

samples. The locations, shown in Fig. 1A, were selected to cover the range of rock and soil types 
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represented across Northern Ireland (Barsby et al. 2012; Palmer, et al. 2013). The method used for 

assessing the bioaccessibility of soil samples was the Unified BARGE Method (Wragg et al 2009; 

BARGE – INERIS, 2011).  The method represented the oral exposure pathway through the stomach, 

and stomach with intestine using synthetic materials in place of the digestive system including 

gastric fluid, saliva, duodenal fluid and bile (Barsby, et al. 2012).  This research used the 

bioaccessible fraction (BAF %) analysed by Barsby et al. (2012) and Palmer, et al. (2013) which was 

calculated from the Unified BARGE Method test for each sample using the highest bioaccessible 

PTE concentration of the digestive extracts. Full details of the Unified BARGE Method used to 

produce the BAF data used in this study are provided in Barsby et al. (2012). Bioaccessibility 

provides an indication of associated environmental hazard from the PTE to the population. This 

provided bioaccessible fraction data (BAF%) for the nephrotoxins of As, Cd, and Pb for 145 sample 

locations across North Ireland (Fig. 1A). Due to the compositional nature of the bioaccessibility 

fraction data (BAF%), a compositional data analysis approach was used for these data.  

3. Methodology 

3.1 Analysis of Geochemical Data 

Summary statistics from exploratory data analysis of the primary known nephrotoxins, As, Pb and 

Cd, and secondary elements Fe, Ca and Zn for total soil, stream sediments and stream water 

concentrations are shown in Table 1. Dot maps representing the "measured" raw or absolute 

geochemical values were used to provide an initial visualisation of the geographic variation in high 

and low total concentrations and the bioaccessible fraction of the known nephrotoxins As, Pb and Cd 

across Northern Ireland (Fig 2). The "measured" raw dot maps were produced with the 

understanding and acknowledgement of dependence to all other variables and were used as an initial 

visualisation. Previous work by Barsby et al. (2012) showed that elevated total PTEs concentrations 

did not necessarily reflect high bioaccessibility, whereas areas of moderate total elemental 
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abundance of some PTEs such as As showed high bioaccessibility, Therefore, the BAF% data were 

compared with the dot map for PTEs (Figure 2) to assess the risk to human health in areas where 

clusters of elevated PTEs concentrations were present to investigate the regional variation of 

prevalence rates of CKD across Northern Ireland.  

3.2 Compositional Data Analysis 

The two approaches used for compositional data analysis included a data-driven approach and a 

knowledge-driven approach.  

The centred log-ratio transformation (clr) was used to produce a compositional biplot and screeplot 

as part of the data exploration discovery process. The compositional biplot is obtained as a standard 

covariance biplot for the centered log-ratio (clr) data (Pawlowsky and Egozcue 2011). In the 

covariance biplot, up to a good projection, the length of a link between arrows is proportional to the 

standard deviation of the corresponding simple log-ratio of the elements of the corresponding arrows. 

Therefore, it is important to note that the compositional covariance biplot cannot be interpreted in the 

same way as a non-compositional principal component analysis (PCA).  

Compositional Q-mode cluster analysis was used to investigate clustering of variables. The Q-mode 

hierarchical cluster analysis of chemical elements provide an orthonormal basis. The ilr-coordinates 

with respect to this basis try to approximate the scores of compositional principal components in a 

more interpretable way (Egozcue et al., 2003; Pawlowsky-Glahn et al. 2011a; Pawlowsky-Glahn et 

al. 2011b). These ilr-coordinates are called principal balances. The hierarchical cluster dendrograms 

shown in this paper were produced with a Ward cluster analysis with the variation matrix as distance 

between elements. The procedure is detailed in van den Boogaart and Tolosana-Delgado (2013). 

3.2.1 Data-driven approach 

Even in the absence of prior or expert knowledge, multivariate analysis techniques can help to 

identify interesting log-ratios and subcompositions to explore for further analysis. The advantage of a 
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data-driven compositional approach is that patterns and processes can be revealed that may be hidden 

or masked by dominant processes. The data-driven approach used the full geochemical composition 

to analyse and identify further relations between elements using compositional PCA and 

Compositional Q-mode cluster analysis. For the data-driven approach, balances in the hierarchical 

cluster dendrogram should highlight processes differentiating between similar elements. These may 

represent second-order processes that would otherwise be overshadowed by the major processes 

(McKinley et al. 2016).   

3.2.2 Knowledge-driven approach 

Single component elemental maps including the "measured" raw dot maps, although used widely, 

may not be sufficient to investigate the richness of the compositional geochemistry data. In particular 

for this study, the literature on renal disease indicated elemental associations between primary PTEs 

and secondary elements that cannot be determined fully by single component elemental mapping. It 

may, therefore, be more useful to ratio the PTEs to some other compositional entity. Therefore a 

knowledge driven log-ratio approach was explored to examine the soil, stream sediments and stream 

water geochemistry data for the primary known nephrotoxins, As, Pb and Cd, and secondary 

elements Fe, Ca, Zn and Se. These key nephrotoxins and secondary elements were used to form a 

knowledge driven sub composition of As, Pb, Cd, Fe, Ca, Zn and Se. 

 

3.3 Regression  

 

Poisson regression, which is appropriate for modelling count data (Cameron and Trivedi, 1998), was 

used to investigate any potential relationship between observed cases of CKD with unknown 

aetiology and environmental covariates (specifically soils, stream waters and stream sediments). The 

count of observed cases of unknown aetiology yi defines the response variable, while the log-ratios xi  

are the covariates in the regression. The Poisson regression model is then defined as: 
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yi ~ Poisson (λi)  

 

with,  ln (λi) = β0 + β1x1 + . . . + βixi            for parameter λ                                                    (1) 

 

where, the β are the linear fixed effect coefficients to be estimated.  

 

Count variables are often associated with an exposure variable, which indicates the upper limit on the 

number of times the event could have happened (Cameron and Trivedi, 1998). Population was, thus, 

incorporated into the Poisson regression model as an offset as is standard practice. The glm function 

in R (R Development Core Team, 2011), which fits the Poisson model by maximum likelihood, was 

used in this study as follows: 

 

glm(formula = obs ~ offset(log(Pop)) + ilr(data), family = poisson, data)                 (2) 

 

The Poisson regression model was, thus, fitted to the observed cases of unknown aetiology with the 

population as an offset and the Tellus geochemical concentrations as the covariates, specifically 

soils, stream waters and stream sediments. 

The observed cases of CKD with unknown aetiology were provided for each Super Output Area 

(SOA; totalling 495 SOAs). The mean geochemistry value for each geochemical element was 

calculated per SOA. Four approaches were investigated. Initially the globalised linear model was 

applied to the mean geochemical data per SOA without applying log-ratios to the geochemical data 

to provide a benchmark against which to compare the log-ratio results. Following this non-

compositional approach, Poisson regression analysis was applied based on information provided by 

the data driven and knowledge driven approaches. For the data driven approach a subcomposition 

was selected on the basis of those elements identified as significant subcompositions from the clr 
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covariance biplot and ilr dendrogram. For the knowledge driven approach, the subcomposition of As, 

Pb, Cd, Fe, Ca, Zn and Se was used for Poisson regression. The explanatory power of the resultant 

model is measured by its associated p value and calculated confidence interval (van den Boogaart 

and Tolosana-Delgado 2013).  

4. Geochemical Results and Discussion 

4.1 Spatial Distribution of Elemental Concentrations 

The spatial distribution of each PTE varied across Northern Ireland exhibiting some relationship with 

the underlying geology (Fig. 1A and Fig. 2). Arsenic concentrations were low across flood basalts, 

the Antrim Lava Group and elevated for lithic sandstones and shales (Fig. 1 and Fig. 2A). High 

concentrations of As were present in the south and west of Northern Ireland. This pattern can be 

observed also in the stream sediment data (Table 1). Elevated soil concentrations of As across the 

south western region of Northern Ireland show anthropogenic contamination from agricultural lime 

(Young and Donald, 2013).  The highest PTE As concentrations were located across the Dalaradian 

Supergroup of County Tyrone (Central Highland Grampian Terrain Fig. 1A) which had low to 

moderate bioaccessibility (Fig. 2D; Mitchell, 2004). Arsenic had the lowest BAF range (5-58%) of 

the three PTE concentrations (Fig. 2D, 2E and 2F). Previous studies (Barsby et al 2012; McKinley et 

al 2013) found that highest BAF levels of As were associated with the Gala Group metasediments in 

the Southern Uplands-Down Longford Terrain and these areas indicated a potential relationship 

between stomach cancer and the environmental impact of elevated As concentrations and BAF (Fig. 

1A and Fig. 2D).   

Elevated soil PTE concentrations of Cd were present within south Armagh and Fermanagh; these 

highlighted areas are also observed in the stream sediments and stream water data (Fig. 2B). The 

stream sediments indicate further elevated areas of Cd in the west of county Tyrone and north east of 

county Antrim although these areas have a low BAF (Fig. 2E). Cadmium has the largest range and 
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highest BAF (14-95%) with significant areas of elevated Cd soil concentrations located within 

regions with a low-to-moderate BAF (Fig. 2B and Fig.2E).  

The distribution of Pb across the eastern region of Northern Ireland shows elevated concentrations 

within the soils across the Antrim Basalts, Palaeogene intrusive centres of the Mourne Mountains, 

the Newry Igneous Complex and the central highlands of the Sperrin Mountains (Fig. 1A; Mitchell, 

2004). The natural distribution of Pb levels were associated with mineralisation in areas of 

moorlands and regions with historical contamination such as south Armagh mining district (Fig. 2C, 

Young and Donald, 2013).  The key areas of elevated concentrations had a low to moderate BAF (8-

68% BAF; Fig. 2F). Moderate to high BAFs in soils were also present across several of the elevated 

areas of lead within the stream water and stream sediments. The main elevated concentrations of Pb 

in the stream sediments were located in south Armagh and Down with a few hotspots in north 

Antrim and West Tyrone.   

4.2 Data driven approach  

For the soil and stream sediments data the proportion of variance explained by the first two 

components in the compositional covariance biplot (Fig. 3A and Fig. 4A) and screeplot  (Fig. 3B and 

Fig. 4B) is 64.65% and 60.45% respectively. In the covariance biplots the length of the rays is 

approximately proportional to the variance of the clr-components.  For the soil data, the clr of 

elements including MnO, Ni, Co, Fe2O3, Cr point to the right (positive side of the first principal 

component) while the key nephrotoxins of As, Pb and Cd, amongst other elements including U, Se 

and K2O, point to the left (Fig. 3A). This is reversed for the stream sediments data (Fig. 4A). In both 

cases, the second component may discriminate nephrotoxins quite well from the other elements. 

Subcompositions are indicated by short links (the two proportional variables have quasi-constant log 

ratios, the links are short and the arrow heads lie together (van den Boogaart and Tolosana-Delgado 

2013).  Several subcompostions can be observed from the soil data covariance biplot. The 

subcomposition (MgO, Zn, CaO) has a metric variance of 0.09 (1.45% of the total variance); the 
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subcomposition (Na2O, SiO2, Al2O3, K2O) has a metric variance of 0.12 (1.94% of the total 

variance); the subcomposition (MnO, Ni, Co, Fe2O3, Cr) has a metric variance of 0.23 (3.72% of the 

total variance) and the subcomposition (As, Pb, Cd) has a metric variance of 0.19 (3.07% of the total 

variance) (Pawlowsky-Glahn and Egozcue, 2001). The observed subcompositions for the soil data 

are interesting in that the known nephrotoxins form a subcomposition (As, Pb, Cd with other trace 

elements and Se). The other subcompositions include some of the elements Ca, Zn important in their 

role as inhibitors or where their co-abundance with the nephrotxins has been related to the potential 

progression of kidney dysfunction.  

The soil data cluster dendrogram provides further information on balances and potential 

subcompositions (Fig 3C). Some of the balances include specific elements which interact within the 

body as identified from a broad literature review. The cluster dendrogram for the stream sediment 

data (Fig 4C) shows a large balance which includes secondary essential elements which exhibit 

defensive properties within the body including Zn and CaO against two of the key known 

nephrotoxins As and Pb (Alloway, 1995; Garcia-Rico, et al. 2012; Tchounwou, et.al 2003).  

4.3 Knowledge driven approach  

Using a knowledge driven approach, the scree plot for the Tellus soils shows that the first two 

components explain 80% of the total variance. The first subcomposition (Zn, Feo, CaO) groups the 

essential elements and the second subcomposition (As, Cd and Pb ) with a total variance of 35.62%. 

This concurs with results using the data driven approach where the subcomposition As, Cd and Pb 

was identified.  

5. Poisson Regression 

Poisson regression analysis was carried out using a generalised linear model for initial data analysis 

before the addition of the ilr transformation. Using compositional data analysis the ilr transformation 
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within the Poisson regression model was used to determine the relations and significance between 

the elements and observed cases of CKD.  

5.1 Non-compositional Approach 

A non-compositional approach was used for initial analysis of the results before an ilr transformation 

was applied. The significance for each Poisson regression model increased for various elements 

including Ca and Zn when a compositional approach was applied compared with the non-

compositional approach (Tables 2 and 3). Only the essential elements FeO, Zn and Se, where p-

values were less than a significance level α=0.05, were identified as significant using a non-

compositional approach (Table 2).  Compositional analysis of the variables (using ilr transformation) 

allowed the results to remain unaffected by the compositional nature of the geochemical data and the 

results demonstrate a larger number of variables where p-values were less than a significance level 

α=0.05 (Table 3).  

 

5.2 Knowledge Driven Approach 

The knowledge driven approach was based on known PTEs which impair the kidneys. These key 

PTEs included Cd, As, and Pb. The geochemical variables when analysed using the knowledge 

driven approach with the nephrotoxic subcompositions indicated the highest number of variables 

where p-values were less than a significance level α=0.05 between the observed cases of unknown 

aetiology in CKD with log ratios of MgO, Zn and CaO mean concentrations.  The regression model 

highlighted the log ratio Zn, over FeO, CaO, Pb, As and Cd, as the most significant element 

associated with the progression of CKD. Zinc has been found to increase the uptake of cadmium in 

plants, forming increased risk of exposure in soils with elevated zinc concentrations. Ingestion of 

food with accumulated concentrations of cadmium is a risk factor for the progression of CKD in Sri 

Lanka where the incidence rate of CKD of unknown aetiology is increasing (Jayatilake , et al., 2013; 
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Jayalal, 2015). Within the subcomposition the interactions between elements are significant as these 

effect the overall environmental exposure risk to PTEs.  

The stream sediments indicate elevated areas of both As and Cd in County Tyrone and County 

Armagh but elsewhere As and Cd show different spatial distributions (Fig. 2). The role of iron may 

be important in understanding the link between As and Cd and the strength of relationship with 

observed CKD cases of unknown aetiology. The elemental mobility of As in the environment is 

normally low (Young and McDonald 2013) but As is known to become soluble and mobile under 

reducing conditions with iron oxides (ATSDR, 2007). Arsenic is strongly absorbed onto the surface 

of hydrous iron oxides in a low pH environments (Odor et al. 1998). Young and McDonald (2013) 

state that in the absence of Fe and Mn oxides in stream sediments, such as over limestone bedrock, 

As may remain in solution and have greater mobility. Cadmium, on the other hand is very soluble 

and mobile at low pH values. Excess Mg and Ca added to stream waters may increase the soluble Cd 

content but inhibit the release of Fe due to competition for absorption sites on clays by cations 

(Curtis and Walker 1994). Moreover, it has been observed that Fe deficiency in the body causes an 

up regulation of the Fe channels within the body through which both Cd and Fe are absorbed into the 

digestive tract (Thomas, et al., 2009). It is clear that this finding requires more work to explore these 

complex relations further.  The effects of these elements within water supply and the spatial variation 

of CKD have been the focus of study in global areas including Nicaragua and Sri Lanka 

(Jayasumana, et al., 2014; Jayatilake et al., 2013). A factor, therefore, to consider is the degree of 

access to the mains water supply compared with domestic well supplies across Northern Ireland. 

Private groundwater supplies account for only a small portion of the population (<1% with 122 

registered and an estimated 4,000 unregistered private supplies).  

 

The relations between these elements are relevant within the study of environmental exposure as a 

deficiency of an essential element can cause the body to uptake PTEs such as As, Pb and Cd. Fe and 
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Ca are significant coexisting elements and people who suffer from iron deficient anaemia and 

calcium deficiency are at risk of being exposed to several potentially toxic elements including 

cadmium, arsenic and lead as they enter the body through similar mechanisms  (Turgut et al, 2009; 

Martin, De Burca, & Morgan, 2009; Selinus, et al., 2013; Jarup, 2003).   

In addition to the presence of a significance level less than α=0.05 for the log ratio of Zn, Ca was 

also found to be significant in stream waters (Table 2 and Table 3).  As these cases of CKD are 

associated with end stage renal disease patients, the kidneys have reduced function and often an 

excess of essential elements can lead to kidney problems such as kidneys stones; Ca is often found as 

contributor to problems with kidney stones (Selinus, et al., 2013). These results could indicate an 

excess of Ca and Zn may contribute to the observed cases of CKD of unknown aetiology. 

 

5.3 Data Driven Approach 

The results obtained from the data driven approach showed less relations between the potential 

progressions of CKD of unknown aetiology with exposure to environmental elements. The key result 

using the data driven approach was found in the analysis of the full geochemical soil composition for 

MgO (magnesium oxide) (Table 3) where p-values were less than a significance level α=0.05. Larger 

subcompositions identified from the compositional covariance biplot and cluster dendrogram 

indicated no significance within the UKRR subset. These results indicated the knowledge driven sub 

compositional approach was more useful in determining the significance of the relationship between 

CKD and environmental toxins. 

6. Conclusion 

The Poisson regression model was fitted to the relations between the prevalence of CKD of uncertain 

aetiology and PTEs including arsenic, cadmium and lead in the soils, stream sediments and stream 

waters of Northern Ireland. Following data analysis of the Tellus geochemical data in Northern 
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Ireland the relations between CKD of unknown aetiology and environmental covariates were 

examined. Previous research showed that the progression of CKD can occur through exposure to 

environmental toxins in moderate and low concentrations. The most toxic forms of these elements 

involved in the progression of kidney disease are often inorganic and the population becomes 

exposed to them through direct ingestion of water or food containing the element and inhalation from 

occupational hazards. The key result indicated a relation between CKD of unknown aetiology and 

the environment. The main elements associated with CKD, where p-values were less than a 

significance level α=0.05, included elevated concentrations essential elements zinc and calcium. The 

compositional approach to the analysis of CKD with PTEs was appropriate as it indicated variables 

of significance in relation to the composition or relevant subcompositions. Further influences from 

socio-economic, water sources and supply areas across Northern Ireland should be considered as 

potential factors contributing to the spatial variation of CKD. Further research of the co-abundance 

of PTEs, including examination of other socio-economic factors, the level of access to public water 

sources and the impact within the renal system will provide insight into the progression of CKD of 

unknown aetiology. 
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Figure Captions 

Figure 1(A) Simplified geology adapted from McKinley et al. 2013, modified after Mitchell 2004; 

The sample sites indicate the Tellus soil samples which were analysed for bioaccessibility by Barsby 

et al. 2012 and Palmer et al. 2013; (B) Number of observed cases in CKD of unknown aetiology  

(UKRR, 2014); (C) Standardised Incidence Ratio of CKD patients with unknown aetiology. 

Figure 2 Dot maps of the potentially toxic element soil concentrations (PTEs) in mg/kg as measured 

by XRF A) arsenic (As mg/kg); B) Cadmium (Cd mg/kg) and C) Lead (Pb mg/kg). Bioaccessibility 

Fraction BAF % for the PTEs of  D) As (BAF%); E) Cd (BAF%); F); Pb (BAF%). 

Figure 3 (A) Compositional covariance biplots; and (B) Cluster dendrogram for Tellus soil 

geochemistry data. 

Figure 4 (A) Compositional covariance biplot; (B) Cluster Dendrogram for the Tellus stream water 

geochemistry data.  

Table captions 

Table 1 

Table 1 Summary statistics for total concentrations of individual potentially toxic elements (PTEs) 

and protective essential elements in mg/kg as measured by X-Ray Fluorescent Spectrometry (XRF) 

for Tellus geochemistry sediment data, stream sediments and waters data. 

Table 2 GLM model using non-transformed (raw) data for identified variables (As, Cd, Pb, Fe, Ca, 

Zn and Se) showing p values with a significance level less than α=0.05. 

Table 3 GLM using ilr transformation for the data driven approach for the full soil composition and 

relevant knowledge driven approach for the geochemical subcompositions with uncertain aetiology 

showing p values with a significance level less than α=0.05.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 

 

References 

ATSDR, 2007. Toxicological Profile for Arsenic, Atlanta: U.S. Department Of Health And Human 

Services. 

Alloway, B. J., 1995. Cadmium. In: B. J. Alloway, ed. Heavy Metals in Soils. London: Blackie 

Academic & Professional. 

Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Monographs on Statistics and 

Applied Probability. Chapman & Hall Ltd., London (UK). (Reprinted in 2003 with additional 

material by The Blackburn Press). 

BARGE – INERIS, 2011 UBM Procedure for the Measurement of Inorganic Contaminant 

Bioaccessibility from Solid Matrices. 

Barsby, A., McKinley, J., Ofterdinger, U., Young, M., Cave, M., Wragg, J., 2012. Bioaccessibilty of 

trace elements in Northern Ireland. Science of the Total Environment , 433, 397-417. 

Brewster, U. C., 2007. Chronic Kidney Disease from Environmental and Occupational Toxins. 

Connecticut State Medical Society , 70 (4), 229-238. 

Cave, M.R., Wragg, J., Denys, S., Jondreville, C., Feidt, C., 2011. Oral bioavailability. In: Swartjes 

FA, editor. Dealing with contaminated sites. Netherlands: Springer; 287–324. 

Champion, T., 2005. Population Movement within the UK. In CHAPPELL, R. (ed.) 

Focus on People and Migration. Palgrave Macmillan: Basingstoke, 91-113. 

Choate, L.M., Ranville, R.F., Bunge, A.L., Macaladay, D.L., 2006. Integr. Environ. Assess. Manage. 

2 (4), 375–384. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

Curtis, P. J., Walker, P., 1994. Release of metals from a Cd contaminated streambed in Response to 

experimental Acidifcation and Netralization. Water Resources Research 30, 3449-3454. 

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C., 2003. Isometric logratio 

transformations for compositional data analysis. Mathematical Geology 35(3):279–300. 

 

Ferreccio, C., Sancha, A. M., 2006. Arsenic Exposure and Its Impact on Health in Chile. The Journal 

of Health, Population and Nutrition, 24(2), pp. 164-165. 

Garcia-Rico, L., Tejeda-Valenzuela, L., Velez, D., Montoro, R., 2012. Content of selenium, total and 

inorganic arsenic and bioaccessibility of arsenic in children diets of Mexico.. Science Food 

Agriculture, Volume 92, 1725-1731 

Gilg, J., Castledine, C., Fogarty, D., 2012. UK Renal Registry 14th Annual Report: Chapter 1 UK 

RRT Incidence in 2010: National and Centre-Specific Analyses. Southhampton: Karger AG, Basel. 

Grunsky, E.C., Mueller, U.A., Corrigan, D., 2014. A study of the lake sediment geochemistry of the 

Melville Peninsula using multivariate methods: Applications for predicive geological mapping. 

Journal of Geochemical Exploration. 141, 15-41. 

Horton, L. M., Mortensen, M.E., Iossifova, Y., Wald, M.M., Burgess, p., 2013. What Do We Know 

of Childhood Exposures to Metals (Arsenic, Cadmium, Lead and Mercury) in Emerging Market 

Countries?. International Journal of Pediatrics,  1-13. 

Hrudey, S. E., Chen, W., Rousseaux, C. G., 1996. Bioavailability in Environmental Risk 

Assessment. New York: Lewis Publishers. 

Jarup, L. 2003. Hazards of heavy metal contamination. British Medical Bulletin , 68, 167-182. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 

 

Jayalal, A. T., 2015. Chronic kidney disease of uncertain aetiology: adding vital piece of information 

to the national project team report of Sri Lanka. BMC Nephrology , 16(216). 

Jayasumana, C., Gunatilake, S., Senanayake, P., 2014. Glyphosate, Hard Water and Nephrotoxic 

Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown 

Etiology in Sri Lanka? International Journals of Environmental Research and Public Health , 11 (2), 

2125-2147. 

Jayatilake, N., Mendis, S., Maheepala, P., Metha, F. R., 2013. Chronic kidney disease of uncertain 

aetiology: prevalence and causative factors in a developing county. BMC Nephrology , 14 (180), 1-

13. 

Jeffries J, Martin I., 2009. Updated technical background to the CLEA model, SCHO0508BNQW-E-

P. 

Lewis, R., 2012. Understanding Chronic Kidney Disease: A guide for the non-specialist. England: 
M&K Update Ltd. 

Martin, I., Morgan, H., Waterfall, E., 2009. Soil Guidance Values for Cadmium in Soil. Bristol: 

Environment Agency. 

Meliker, J. R., Wahl, R. L., Cameron, L. L., Nriagu, J. O., 2007. Arsenic in drinking water and 

cerebrovascular disease, diabetes, mellitus, and kidney disease in Michigan: a standardized mortality 

ratio analysis. Environmental Health , 6 (4), 1-11. 

McKinley, J.M., Tolosana Delgado, R., Hron, K., de Caritat, P., Grunsky, E., Reimann, C., 

Filzmoser P., and van den Boogaart K, G., 2016. Single Component map: Fact or Fiction? Journal of 

Geochemical Exploration, http://dx.doi.org/doi:10.1016/j.gexplo.2015.12.005 

McKinley, J. M., Ofterdinger, U., Young, M., Barsby, A. & Gavin, A. 2013. 'Investigating local 

relationships between trace elements in soils and cancer data' Spatial Statistics, vol 5, pp. 25-41., 

http://dx.doi.org/10.1016/j.spasta.2013.05.001 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 

 

Mitchell, I., 2004. The Geology of Northern Ireland Our Natural Foundation. Belfast: Geological 

Survey of Northern Ireland Belfast. 

Navas-Acien, A., Tellez-Plaza, M., Guallar, E., Muntner, P., Silbergeld, E., Jaar, B., 

Weaver, V., 2009. Blood cadmium and lead and Chronic Kidney Disease in US Adults: A Joint 

Analysis. American Journal of Epidemology, 170(9), 1156-1164. 

NHS, 2010. Kidney Disease Facts and Figures. United Kingdom: NHS. 

NISRA, 2014. Disease Prevalence (Quality Outcomes Framework) (administrative geographies). 

http://www.nisra.gov.uk/ accessed 4th June 2014. 

NISRA, 2011. Population Census SOA. http://www.nisra.gov.uk/ accessed 4th June 2014. 

Odor, L., Wanty, R. B., Horvath, E. Fugedi, U., 1998. Mobilization and atentauton of metals 

downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary. Journal of 

Geochemical Exploration, 65, 47-60.  

Paleneeswaren, S., Abraham Sam Rajam, P. M.,  Silambana, S., 2013. Blood Arsenic and Cadmium 

Concentrations in End Stage Renal Disease Patients who were on Maintenance Haemodialysis. 

Journal of Clinical and Diagnostic Research, 7(5), pp. 809-813. 

Palmer, S. Ofterdinger, U., McKinley, J.M., Cox, S., Barsby, A., 2013. Spatial Analysis Approaches 

to Investigate the Bioaccessibility of Nickel, Vanadium and Zinc in Northern Ireland, UK Soils. 

Environmental Geochemistry and Health, vol 35 (5), 569-584., http://dx.doi.org/10.1007/s10653-

013-9540-0 

Pawlowsky-Glahn, V., J. J. Egozcue, J.J., 2001. Geometric Approach to Statistical Analysis on the 

Simplex, Stochastic Environmental Research and Risk Assessment,15, 5, 384-398, 2001. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 

 

Pawlowsky-Glahn, V., Buccianti, A. (Eds.) 2011. Compositional Data Analysis, Theory and 

Applications. Wiley, Chichester (UK) 378p.  

Pawlowsky-Glahn, V., Egozcue, J.J., 2011. Exploring Compositional Data with the CoDa-

Dendrogram. Austrian Journal of Statistics, Volume 40, Number 1 & 2, 103-113 

Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delegado, R., 2011a. Principal balances. Proceedings 

of the 4th International Workshop on Compositional Data Analysis, CoDaWork-2011, Egozcue, J. J., 

Tolosana-Delgado, R. and Ortego, M. I. (eds.) ISBN: 978-84-87867-76-7, Sant Feliu de Guixols, 

Girona, Spain. 

Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delegado, R., 2011b. Principal balances to analyse 

the geochemistry of sediments.Proceedings of the 15th annual conference of the International 

Association for Mathematical Geosciences, IAMG-2011, Salzburg, Austria, www.iamg2011.at 

September 5-9. 

Pawlowsky-Glahn, Egozcue, Tolosana-Delgado, Modelling and Analysis of Compositional Data, 

Wiley, 2015 

R Development Core Team, 2011.  R: A Language and Environment for Statistical Computing. 

Vienna, Austria : the R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available 

online at http://www.R-project.org/.Rothstein H, Irving P, Walden T, Yearsley R., 2006. Environ Int; 

32(8):1056–65. 

Rothstein, H., Huber, M., Gaskell. G. 2006. A Theory of Risk Colonisation: The Spiralling 

Regulatory Logics of Societal and Institutional Risk, Economy and Society, 35, 1, 91–112. 

Ryu, H., Chung, J. S., Nam, T., Moon, H. S., Nam, K., 2010. Incorporation of Heavy Metals 

Bioavailability into Risk Characterization. Clean-Soil, Air and Water, 38(9), 812-815. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 

 

Selinus, O., Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., et al., 2013. 

Essentials of Medical Geology. London: Elsevier. 

Siciliano, S.D., James, K., Zhang, G., Schafer, A.N., Peak, J.D., 2009. Adhesion and enrichment of 

metals on human hands from contaminated soil at an Arctic urban brownfield. Environ. Sci. Technol 

43 (16), 6385–6390. 

Smyth, D., 2007. Methods used in the Tellus Geochemical Mapping of Northern Ireland. OR/02/022 

Soderland, P., Lovekar, S., Weiner, D. E., 2010. Chronic kidney disease associated with 

environmental toxins and exposures. Advanced Chronic Kidney Disease, 17(3), pp. 254-264. 

Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., Sutton, D., 2003. Environmental Exposure to 

Mercury and Its Toxicopathologic Implications for Public Health. Wiley Periodicals, Inc, 20 March, 

149-175. 

Templ, M., Hron K., Filzmoser, P., 2011. robCompositions: an R-package for robust statistical 

analysis of compositional data, In V. Pawlowsky-Glahn and A. Buccianti, eds. Compositional Data 

Analysis: Theory and Applications. Chichester, UK: John Wiley & Sons. Pp. 341-355. 

Thomas, L. D., Hodgson, S., Nieuwenhuijsen, M. Jarup, L., 2009. Early Kidney Damage in a 

Population Exposed to Cadmium and Other Heavy Metals. Environmental Health Perspectives, 

117(2), pp. 181-184. 

Tolosana-Delgado, R., van den Boogaart, K.G., 2013. Joint consistent mapping of high-dimensional 

geochemical surveys, Mathematical Geosciences, 45: 983-1004. 

Turgut, S., Hacıoğlu S., Emmungil, G., Turgut, G., Keskin, A., 2009. Relations between Iron 

Deficiency Anaemia and Serum Levels of Copper, Zinc, Cadmium and Lead. Polish J. of Environ. 

Stud., 18(2), pp. 273-277. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

28 

 

UKRR, 2014. Dataset of End Stage Renal Disease Patients from United Kingdom Renal Registry 

van den Boogaart, K.G., Tolosana-Delgado, R., 2013. Analyzing compositional data with R. 

Springer, Heidelberg (Germany) 258p. 

Wragg, J., Cave, M. R., 2002. In-vitro Methods for the Measurement of the Oral Bioaccessibility of 

Selected Metals and Metalloids in Soils: A Critical Review. Bristol: Environment Agency. 

Wragg, J., M. R. Cave, H. Taylor, N. Basta, E. Brandon, S. Casteel, S., et al., 2009. Interlaboratory 

Trial of a Unified Bioaccessibility Procedure. OR/07/027. 

Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., Shibata, Y., 2006. Arch. Environ. Contam. 

Toxicol. 51, 157–163. 

Young, M. E., Donald, A. E., 2013. A Guide to the Tellus Data. Belfast: Geological Survey of 

Northern Ireland, Belfast. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geochemistry Min 

(mg/kg) 

1
st

 

Quartile 

(mg/kg) 

Median 

(mg/kg) 

Mean 

(mg/kg) 

3rd 

Quartile 

(mg/kg) 

Max 

(mg/kg) 

Standard 

Deviation 

(mg/kg) 

Skew Coefficient 

of variation  

Soils 

6,862 samples 

 

As 0.01 6.50 8.70 10.48 11.70 271.20 9.91 10.03 0.95 

Cd 0.20 0.40 0.50 0.56 0.70 63.30 0.81 68.53 1.45 

Pb 2.20 22.20 28.80 41.66 41 3707.50 234.23 75.06 5.62 

Fe2O3 0.30 2.79 4.19 4.65 5.69 42.25 2.85 1.50 0.62 

CaO 0.30 0.64 0.85 1.15 1.49 16.33 0.78 2.93 0.68 

Se 0.10 47.00 0.70 0.84 101.90 7.80 0.49 2.58 0.58 

Zn 2.80 0.60 71.80 78.35 1.00 2460.50 54.29 14.28 0.69 

Stream 

Sediments 

5,874 samples 

As 0.09 4.40 9.00 14.99 15.00 1400.00 34.72 18.87 2.32 

Cd 0.25 0.25 0.50 0.83 0.90 56.40 1.42 15.96 1.72 

Pb 0.70 21.90 30.00 35.53 39.00 1245.00 38.68 13.96 1.09 

CaO 0.34 1.11 1.87 2.91 3.85 38.43 2.91 3.74 1.00 

Fe2O3 0.73 5.19 6.76 7.61 9.92 50.08 3.39 1.62 0.45 

Se 0.01 0.20 0.40 0.56 0.70 30.20 0.71 15.99 0.79 

Zn 12 94.00 129.95 160.09 178.00 3161.50 147.59 8.08 0.92 

Stream Waters 

(mg/L) 

5,874 samples 

As 0.00005 0.0004 0.00079 0.00121 0.00138 0.04526 0.00179 0.0083 0.00148 

Cd 0.000001 0.000001 0.00001 0.00002 0.00002 0.00166 0.00005 0.0197 0.0025 

Pb 0.00005 0.00005 0.00008 0.00022 0.00021 0.04430 0.00076 0.0373 0.00346 

Fe 0.00001 0.00007 0.00022 0.00064 0.00064 0.04105 1.00072 0.0113 0.00269 

Ca 0.0002 0.01969 0.03502 0.04001 0.05228 0.276 0.02904 0.0013 0.00073 

Se 0.00001 0.00006 0.00018 0.00042 0.00059 0.00563 0.00058 0.0026 0.00138 

Zn 0.0002 0.00132 0.00230 0.00541 0.00463 0.363 0.01293 0.0106 0.00239 
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Table 2  

GLM – Poisson Regression GLM Coefficients  

Variable  Intercept Estimate Pr(>|z|)   

Knowledge Driven Subcomposition  

(Soils) 

Se 0.9821  0.3313 0.00300 

Knowledge Driven Subcomposition 

(Sediments) 

Fe203 0.1349748   0.0512   0.00836 

Zn 0.0036938   0.0015  0.01468 
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Table 3 

ILR Model- Poisson 

Regression 

ILR Model Coefficients  

Variables  Intercept Estimate Pr(>|z|)   

Full Composition 

(Soils) 

ln(MgO^18/(Na20*Ce*La*Ba*Cs*I*Te*Sb*Sn*In*Ag*Se*Zn*Fe203* 

CaO*Pb*As*Cd)) 

1.8075 0.9139 0.0473 

Knowledge Driven 

Subcomposition 

(Streams) 

ln(CaO^3/(Pb*As*Cd))  0.3757    0.1398   0.0072 

Knowledge Driven 

Subcompositions 

(Sediments) 

ln(Zn^5/(FeO*CaO*Pb*As*Cd)) 1.1985     0.4110 0.0035 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

 

• Incidences of Chronic Kidney Disease (CKD) are investigated for unknown aetiology. 

• A compositional Poisson regression approach is demonstrated to investigate relations between CKD and environmental 

nephrotoxins including arsenic, cadmium, and lead. 

• The validity of classical Poisson regression is discussed using compositional geochemistry covariates. 

• Data driven and knowledge-driven log-ratio approaches are introduced. 




