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ABSTRACT 
Cloud datacenters are compute facilities formed by hundreds and 

thousands of heterogeneous servers requiring significant power 

requirements to operate effectively. Servers are composed by 

multiple interacting sub-systems including applications, 

microelectronic processors, and cooling which reflect their 

respective power profiles via different parameters. What is 

presently unknown is how to accurately model the holistic power 

usage of the entire server when including all these sub-systems 

together. This becomes increasingly challenging when 

considering diverse utilization patterns, server hardware 

characteristics, air and liquid cooling techniques, and importantly 

quantifying the non-electrical energy cost imposed by cooling 

operation. Such a challenge arises due to the need for multi-

disciplinary expertise required to study server operation 

holistically. This work provides a unified model for capturing 

holistic power usage within Cloud datacenter servers. Constructed 

through controlled laboratory experiments, the model captures the 

relationship of server power usage between software, hardware, 

and cooling agnostic of architecture and cooling type (air and 

liquid). An exciting prospect is the ability to quantify the amount 

of non-electrical power consumed through cooling, allowing for 

more realistic and accurate server power profiles. This work 

represents the first empirically supported analysis and modeling 

of holistic power usage for Cloud datacenter servers, and bridges 

a significant gap between computer science and mechanical 

engineering research. Model validation through experiments 

demonstrates an average standard error of 3% for server power 

usage within both air and liquid cooled environments. 
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1.  INTRODUCTION  
Cloud datacenters form the backbone of modern Internet 

infrastructure globally, and are critical for provisioning digital 

services to consumers. These systems are driven by diverse user 

behavior and are composed by numerous interacting physical 

(servers, cooling), and virtual (applications, resource schedulers) 

sub-systems. Datacenters require vast amounts of compute and 

storage power to facilitate Internet-scale workload, and 

subsequently consume 1.8% electrical energy globally [1].  

Datacenters suffer numerous challenges towards achieving high 

energy-efficiency, stemming from cooling load [2], failures [3], 

and underutilization as low as 10%-25% [4], with idle datacenters 

(i.e. servers running with minimal usage) consuming almost half 

of their peak power [5]. Suppliers to the datacenter industry are 

starting to address aspects of energy-efficiency through layout for 

efficient cooling [7], efficient IT components and workload 

scheduling [8], consolidation, and resource throttling [9]. 

However, datacenters are mission critical facilities with implicit 

requirements including reliability, capacity, as well as explicit 

requirements including availability enforced through Service 

Level Agreements (SLAs). As a result, Cloud datacenter 

providers are reluctant to deploy energy–efficiency mechanisms 

without precisely understanding its implication towards 

operational performance and business objectives. 

In order to achieve such an understanding, it is imperative to study 

holistic power profiles of servers – specifically the co-relation 

between electrical and thermal energy produced in both hardware 

and cooling under different operational conditions driven by 

software utilization. Servers alone consume 29-31% of the total 

datacenter energy, requiring an additional 34-38% in facility-level 
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Fig. 1. Knowledge gap in energy-efficient Cloud datacenters 

across disciplines. 



 

 

 

cooling for heat removal from the facility [10], [11].  However, 

ascertaining such knowledge is challenging due to the complexity 

in identifying and analyzing key parameters within each sub-

system, and importantly their interrelation (i.e. an increase in 

software resource utilization results in higher power consumption, 

resulting in higher chip temperature, thus requiring more server 

cooling load).  

This problem is inherently multi-disciplinary in nature due to the 

diversity of solutions which requires in-depth knowledge and 

understanding of the both virtual (software stacks) as well as 

physical (IT hardware, cooling) systems. Work towards energy-

efficient datacenters primarily focuses on either the perspective of 

computing (scheduling, workload management, software, etc.) 

[14-16] or mechanical (cooling systems, UPS, layout, etc.) [2, 6, 

18, 19]. This has resulted in knowledge gaps as depicted in Fig. 1 

towards understanding explicitly the holistic power profiles and 

sub-system interaction across both the virtual and physical layers 

within servers. As a result, there is a strong need to conduct 

experiments in controlled laboratory environments to study the 

holistic and correlative power profiles of server sub-systems. 

Determining this relationship and their respective power profiles 

would enable the creation of a unified model for holistic power 

usage for Cloud datacenter servers. The effectiveness of such a 

model would require accurately capturing power profiles of all 

sub-systems agnostic of hardware specification and cooling type, 

enabling Cloud researchers and engineers to determine more 

accurate power profiles for computing servers when considering 

the power draw from its internal cooling capability. 

The objective of this work is to analyze and model holistic power 

usage within Cloud datacenter servers. Specifically, we propose a 

unified model comprising software utilization, server architecture 

and cooling type and how each contribute towards the total power 

usage of the server under different operational conditions. To our 

knowledge, this is the first endeavor towards empirically studying 

and modeling holistic Cloud datacenter server power profiles 

including cooling properties. This work provides a step change in 

bridging the gap between Computer Science and Mechanical 

Engineering – research disciplines which have closely aligned 

interested towards energy-efficient Cloud datacenters. 

Contributions are summarized as follows: 

Analysis of Cloud datacenter server sub-system power profiles. 

Through numerous experiments conducted we investigate the 

operational profile of the entire server including software 

utilization, hardware and cooling by extracting parameters 

including performance, resource usage, core temperature, and 

power consumption for hardware and cooling.  

Unifying model for Cloud datacenter server power usage. We 

propose an empirically validated statistical model for capturing 

sub-system power profiles and their co-relation that operates 

agnostic of server hardware and cooling type. Importantly, in 

addition to electrical power of server operation, we are able to 

capture the thermal energy rejected by cooling fans and/or pumps. 

Furthermore, we present a number of applications of the analysis 

findings and proposed model. 

Section 2 provides background of this work; Section 3 discusses 

related work; Section 4 presents the experiment methodology; 

Section 5 presents the analysis findings; Section 6 constructs the 

holistic power model; Section 7 presents the model validation; 

Section 8 discusses model application; Section 9 details 

conclusions and future work. 

2.  BACKGROUND 

2.1  The Holistic Energy Chain  
Cloud datacenter servers (and by extension the greater facility) 

are formed by numerous interacting sub-systems. These sub-

systems exhibit both implicit and explicit interactions with respect 

to their operational characteristics. As a result, a logical deduction 

is that changes to a particular sub-system will impact other sub-

systems within the server.  

With respect to energy usage, as the user drives the operational 

characteristics and resource usage of the application software in 

the datacenter [6], it is intuitive to assume that alterations to 

application operation will impose a cascading affect throughout 

the entire system. As shown in Fig. 2, software comprises specific 

characteristics of energy cost (computation per watt) and 

performance (MIPS). This results in the generation of heat on the 

CPU chip that requires cooling for heat rejection from the 

motherboard. 

While it is possible to directly measure each sub-system and 

produce the sum of parameters, calculating the total power 

consumption is challenging when a specific sub-system changes. 

For example, if the software throughput increases, it is not 

obvious how this effect cascades throughout the server. This is 

particularly important when considering sub-systems may not 

necessarily follow a linear relationship for resource utilization and 

energy use [20], and that servers can be composed of air or liquid 

cooling reflecting different power profiles. This becomes even 

more challenging outside the boundary of a single server and 

within context of the entire facility. As a result, it is critical that 

not only is the holistic power usage of a datacenter is quantified, 

but more importantly how alterations within a specific sub-system 

impact such parameters.  

3.  RELATED WORK 
Power consumption of servers can be measured, estimated, or a 
combination of both. Measurements include devices that capture 
the electrical power of a server, while estimation are parameters 
that are inferred by correlated parameters (i.e. CPU utilization) 
[14]. There are numerous works that model sever power 
consumption comprising processors, VMs and servers. 

Works such as [21-23] quantify the datacenter power 
consumption of a server by measuring the voltage drop of resistors 
inserted on power rails across the server motherboard. As detailed 
in [14], direct measurement of datacenter servers requires precise 
insight into the mainboard layout so that supply lines are assigned 
to the correct sub-system, and relevant to this work are unable to 
capture sub-system power consumption that cannot be directly 
measured. Numerous works study and model the power profiles 
of computing servers.  

Heath et al. [24] propose an energy model for heterogeneous 
server clusters, where power consumption of an individual server 
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is estimated using a linear model constructed from resource 
utilization parameters. The model is evaluated through simulation 
from trace requests from 1998 World Cup trace data, 
demonstrating an average error estimation of 1.3%. 

Economou et al. [25] propose a linear model to estimate server 
power consumption using the input parameters of CPU, memory, 
disk I/O and network rate. Through the use of custom 
benchmarks, they stress individual motherboard sub-systems and 
measure their respective power profile. The proposed power 
models were validated through experimentation, demonstrating 
model error between 0 – 15% for a blade server. 

Fan et al. [26] propose a nonlinear power model using CPU 
utilization at the input, and include an error correction factor 
determined based on system characteristics learnt during 
calibration. Model validation was performed on several hundred 
servers, reporting an average estimation error less than 1% on 
average.  

Harton et al. [27] propose a real-time power consumption model 
for a software defined datacenter. Their model requires inputs 
from utilization and electrical power from the Power Supply Unit. 
By using a MIMO/MISO model and machine learning regression 
techniques, they model server power consumption, demonstrating 
through experiments that the model is capable of accurately 
predicting server power utilization within a 5% margin of error. 

While each of these works provide accurate measurements and 
model validation of server electrical power consumption and 
validated models for server power consumption of numerous 
hardware components, none of them are able to quantify non-
electrical power consumed due to cooling requirements of the 
server itself. 

Beitelmal and Fabris [28] presented new IT efficiency metric 
based on a thermodynamic approach. This approach defined the 
ratio between IT work, which is the outcome of running the 
server, and the total power including cooling load. This metric 
restricted the efficiency of ICT, however indicated the need to 
potentially redefine the current metric standard for datacenters.  

A study of thermal effects of servers was analyzed by Sampath 
[20] and Pandiyan [33]. The analysis included measuring server 
component response to different levels of system load. The 
research focused on ambient temperature effects on power 
consumption and related cooling techniques. CFD models were 
used to investigate the feasibility of a power consumption 
prediction formula predict empirical formula for power 
consumption. All simulation results were validated with 
experimental work, and the error percentages were less than 10%. 
They demonstrate a linear relationship between power 
consumption and processor utilization within their experiments. 
This results could be used to extrapolate energy-efficient studies 
at the datacenter level. 

Investigation of chiller-less cooling technology of datacenters has 
been conducted intensively [29], [32], [34]. A liquid-cooled 
server with an economizer based system was used to better 
understand the sectors of power through the datacenter. Results 
showed an excellent saving of energy of 25% when using energy-
centric configuration for cooling. Further to these studies, David 
et al [30] investigated the operation conditions and scenarios 
effects on overall power consumption of liquid-cooled rack of 
servers. Ham et al [31] presented an investigation of a simplified 
model to model datacenter cooling and energy consumption. The 
model focused on the effects of interior thermal management 
techniques for reducing energy bills.  

These works present a gap between studying the power utilization 
of servers and its respective cooling in a unified manner. Towards 
highlighting this challenges, there has been concentrated efforts 
towards studying datacenter power holistically. 

Shoukourrian, et al. [12] propose an evaluation toolset 
PowerDAM capable for a unified collection of energy profiles 

from HPC datacenter sub-systems. The system uses remote scripts 
to collect input data from system monitoring tools, resource 
management, and sensor data. They demonstrate that applying 
their approach within the LRZ HPC system, computation and 
cooling constitutes 84% and 4% of the to-tal consume energy, 
respectively per user. 

Pelly et al. [13] presents an analytics framework for modeling 
total datacenter power towards understanding and abstracting 
total datacenter power. They integrate numerous parametric 
power models for datacenter component simulation including 
servers, chiller plants and cooling towers. They provide a case 
study for hypothetical datacenter and propose a technique for 
intelligent cooling management. 

4.  METHODOLOGY 

4.1  Approach 
In order to construct a unifying model for Cloud datacenter server 
power profiles, it is first necessary to study the operational 
characteristics of the server holistically. This is performed by 
capturing parameters across all sub-systems. These parameters 
are categorized as virtual (i.e. CPU, application throughput), and 
physical (i.e. server power consumption, hardware temperature) 
as summarized in Table 1. As these sub-systems focus on a 
specific subset of system operation, they each entail a bespoke 
technique for parameter extraction ranging from built-in functions 
and external monitoring devices, and values derived from 
empirically validated mathematical models.  

Fig. 3 provides an overview of sub-system parameter extraction 
and data collection. Parameters from numerous sub-systems are 
transmitted to the Control Server. The Control Server is 
responsible for integrating unstructured data files detailing 
recorded parameters into CSV files with their respective 
timestamps. These CSV files are then stored in a database which 
can be queried for conducting analysis. 
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Fig. 3. Architecture for parameter extraction 



 

 

 

4.2  Experiment Setup 
We conducted controlled laboratory experiments shown in Fig. 4 
to study sub-system operation of a Sun Fire V20z, 2AMD Operton 
processor, 64-bit x86, 1GBx8, running Debian Ubuntu. We 
executed a generic three-tier web application to drive 
utilization. The three-tier web application is composed of a set of 
VM images, with its load balancer image implemented via 
HAProxy [36] that distributes load between application servers. 
These application servers are comprised of a single JBoss web 
container running within a Java VM and a pre-installed photo 
album application. The photo album application stores and 
retrieves data within a single MySQL image. The application 
enables to control the performance and throughput of the 
applications, creating additional threads thus increased server 
CPU utilization.  

Metrics were collected using the method illustrated in Fig. 3. 
Specifically, application performance was collected from the 
generation of system log files detailing application performance 
at fixed time intervals. Server resource usage was collected 
through the top command within Linux. Server temperature was 
determined by using the PCMI command to ls-sensors, and server 
electrical power collected using a Vol-tech 9000 meter.  

We also collected the power consumption of cooling equipment 
within the servers. The installed cooling pump is a CoolIT ECO 
III – 120 Direct Contact Liquid Cooling (DCLC), and its power 
was measured from its manual specification. On the other hand, 
while the server has a built-in tachometer sensor to capture fan 
speed, the amount of power drawn by these fans is still unknown. 
To ascertain this, samples of Delta FFB0412SHN were tested in 
order to correlate speed (rpm) and electrical power (W). We 
studied the operation of 3 x DELTA FFB 40x40x28mm series 
fans. The test procedure included powering the fan using a 
controllable power supply within the ranges of 4.48 – 13.83V and 
measuring the power consumption at each level. Simultaneously, 
an iParaAiluRy digital tachometer is used to record the rotational 
speed of the fan at each level. This digital tachometer sends a laser 
beam to the blade of the fan and capture the reflection using a 
silver light-reflective sticker attached to a fan blade. Depending 
on the number of laser signal detected indicates the revolution per 

minute, the resolution of the tachometer 1 rpm is capture with an 
error rate of ±0.05%.  

Fig. 5 shows the correlation between fan speed N and power 
Pfan using the three cases, where it is observable that the 
correlation follows a polynomial function. As a result, we 
are able to capture this correlation as  

𝑃𝑓𝑎𝑛 = 𝑓1𝑁 − 𝑓2𝑁2 + 𝑓3𝑁3                          (1) 

In order to determine the correlation parameters f1, f2 and f3, the 
collected data were analyzed using non-linear regression. The 
estimation is based on Gauss-Newton method. This method starts 
with an initial approximation of values and then performs 
linearization around this selected value. This will require 

minimizer function  in order to achieve convergence as shown in 
Equation 2.  

Γ = ∑ (𝑟𝑖(𝑥(𝑘)) + ∇𝑟𝑖(𝑥(𝑘))
𝑇

(𝑥 − 𝑥(𝑘)))
2

𝑖𝑚𝑎𝑥

𝑖=0

     (2) 

Where k is the number of current iteration, x is the values of current 
approximation, and r is the evaluated function in matrix form at 
the assumed guess values. Once convergence occurs, after a 
number of iterations, the empirical constraints are ready to 
compute as shown in Table 2, with a proportion of variance (R = 
0.993). 

This equation can be used to directly map the fan speed of the 
server with its corresponding electrical output.  

In order to create different operational conditions for experiments, 
we used cpu-limit to enable the ability to control the CPU 
utilization of the server. Each experiment was conducted 10 times 
for a period of 5 minutes, resulting in a total of 70 experiment 
cases. All sub-system metrics after experiments were 
automatically transferred to a Windows machine via bash scripts 
and scp for conducting data analysis using RStudio.   

 

     
Fig. 5. Fan power measurement and modeling. 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

5000 7500 10000 12500 15000

P
o

w
er

 (
W

)

Speed (rpm)

Table 2. Empirical constant for the fan formula. 

Constant f1 f2 f3 

Value 2.46e-04 – 3.70e-08 3.11e-12 

 

 
Fig. 4. Experiment layout for datacenter server sub-system 

parameter extraction. 
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Category Sub-system Parameter 

Virtual 
Application Throughput 

Middleware CPU utilization 

Physical 

Server Hardware Power (W) 

Server Cooling Voltage (V) & Current (A) 

CPU Core Temperature (ºC) 

Environment Ambient Temperature (ºC) 

 



 

 

 

5.  ANALYSIS 
Table 3 summarizes collected parameters across all experiment 
cases. It is observable that there exists a strong correlation between 
application throughput and all respecti ve parameters indicated by 
a Pearson correlation value > 0.9. This result is intuitive given that 
users drive resource usage, and subsequent power and temperature 
profiles within the server. This is demonstrated by varying levels 
of CPU and server power consumption for each experiment case 
as shown in Fig. 6(a) and 6(b), respectively.  

While all parameters with the exception of ambient temperature 
exhibits strong positive correlation, this relationship is not strictly 
linear as shown in Fig. 7 depicting change of parameters from idle 
server operation (i.e. no workload execution). Temperature of both 
CPU cores increases dramatically from 37.15ºC at 40% utilization 
to 45.19ºC at 100% utilization for Core 0. Furthermore, we observe 
that server power usage and application performance is not 
perfectly linear – with performance degradation occurring at 80%+ 
utilization.  

Altering the system utilization levels of a server at different 
intensity results in a non-proportional change in corresponding 
parameters within the server in terms of performance, temperature 
and power consumption. This result indicates that alteration to 
software efficiency (i.e. reduced resource usage or increased 
throughput) results in different changes with respect to power. This 
is particularly noticeable when studying the change in utilization 
at step intervals as illustrated in Fig. 8. While these changes might 
appear minimal within a single server, such behavior becomes 
increasingly important within the context of large-scale systems 
composed of hundreds and thousands of servers over extended 
periods of time.  

The total electrical power of cooling systems consumed comprises 
cold plate pumps and fans. The cold plate pumps, require 2.88W 
to operate across all experiment cases. As mentioned previously 

in Section 4, the fan speed is correlated to the power consumption. 
Therefore, the instantaneous power consumption of the fans can be 
recorded based on monitoring of fan speed. The average power 
consumption by fans is 3.81W (at 100% utilization). On average, 
the cooling corresponds to 3.07% of the datacenter server electrical 
power consumption.  

This analysis demonstrates three items of interest. First, while there 
exists a positive correlation between an increase in CPU utilization 
and sub-system operation, this does not reflect a strictly linear 
within sub-system operation. Secondly, power consumed by the 
cooling systems themselves represent a non-negligible amount of 
power consumption. Thirdly, such analysis and measurement of 
sub-system operation does not capture the non-electrical power 
expended for server cooling. Such observations highlight that there 
is an opportunity to further energy-efficient research in Computer 
Science by the inclusion of additional power to provide more 
realistic power profiles. Even if such cooling represents a small 
amount of additional power, such increments result in large power 
profiles consumed within the context of tens of thousands of 
datacenter servers. 

 

  

Fig. 7. Change in sub-system parameters from idle. 

 

Fig. 8. Illustration of disproportionate parameter change. 
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Fig. 6. Datacenter server experiment cases  

(a) CPU utilization, (b) Power. 
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Table 3. Datacenter sub-system parameters.  
 Virtual Physical 

Case 
Software 

perf. 
CPU 

Power 

(W) 

Core 0 

temp. 

 (º C) 

Core 1 

temp. 

(ºC) 

Ambient 

temp.   

(º C) 

Fan 

(W) 

Pump 

(W) 

A 0.00 0.00 136.00 37.15 35.63 18.04 1.37 2.88 

B 48.42 20.00 152.99 37.26 35.86 18.17 1.55 2.88 

C 97.22 41.43 162.97 38.49 36.43 18.13 2.32 2.88 

D 183.98 59.15 184.25 41.59 40.09 18.11 2.98 2.88 

E 228.78 78.65 206.17 43.49 41.42 18.01 3.78 2.88 

F 250.08 89.21 211.42 43.85 41.90 18.07 3.90 2.88 

G 265.46 100.00 222.52 45.19 43.54 18.17 4.62 2.88 

 



 

 

 

6.  MODELING 
6.1 Construction 
We propose a unified model for capturing the relationship between 
resource utilization, microelectronic processor power, and cooling 
comprising electrical and non-electrical power. 

This research focuses on the relationship between thermal 
characteristics of servers and the corresponding reflect on the 
cooling system. The first part of model construction entails 
sectoring microelectronic processor power into three categories: 
Idle power, dynamic power, and static power. Idle power Pidle 
represents the power consumed by the motherboard and server 
processor when it is idle (i.e. ~ 0% CPU utilization). Dynamic 
power Pdynamic represents the server power consumption driven by 
an increase in CPU resource utilization u. Static power Pstatic is the 
power consumed by the CPU driven by its die temperature T (i.e. 
physical temperature of the core). Each of these categories 
interrelated to one another, and although their respective 
relationship appears intuitive, it is derived from complex 
electronics with static leakage power of CPU consumption (solely 
dependent on temperature and voltage) and a physics phenomenon 
known as the Poole-Frenkel effect. 

Each of these categories together form the total power 
consumption consumed by IT processes PIT.   

𝑃𝐼𝑇 = 𝑃𝑖𝑑𝑙𝑒 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐                   (3) 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑎1𝑢                                  (4)  

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑎2𝑇𝐶𝑃𝑈 + 𝑎3𝑇𝐶𝑃𝑈
2                           (5) 

The constants 𝑎1 , 𝑎2 , 𝑎3 for dynamic and static power are 
calculated based on the method detailed Equation (2) in Section 4 
producing parameters in Table 4 with an R value of 0.983 
indicating high accuracy. 

Table 4. Empirical constants for the power formula 

Constant a1 a2 a3 

Value 0.7605 0.05 0.005 

 
Datacenter server power consumption additionally comprises the 
operation of pumps Ppump and/or fans Pfan for cooling. This results 
in the total power consumption of the entire server PServer as 

𝑃𝑆𝑒𝑟𝑣𝑒𝑟 = 𝑃𝐼𝑇 + ∑ 𝑚

𝑚

1

𝑃𝑝𝑢𝑚𝑝 + ∑ 𝑛

𝑛

1

𝑃𝑓𝑎𝑛                 (6) 

where m and n represent the total number of pumps and fan within 
the server, respectively. This summation of cooling components 

allows for the model to capture the power profiles of server cooling 
comprising liquid, air or a combination of both. 

The total power drawn by a server PTotal includes both power 
consumed by the microelectronics components, PServer, and power 
losses in the power supply units PSUs, PPSU. It is possible for PSUs 
to exhibit varied operational efficiencies (i.e. the ratio between 
input and output of electricity).  

∑ 𝑙 (1 − 𝜂)𝑃𝑃𝑆𝑈

𝑙

1

                                 (7) 

where η represents the power supply unit efficiency percentage 

and l represents the number of PSU used to power the server. 

While PTotal represents the consumed power by server 
microelectronic components, such components require cooling 
power internal and external of the server to function. Internally, 
there exist two types of cooling: (1) pumps which circulate water 
inside a cold-plate to collect heat from CPUs, and (2) fans which 
move colder air to pass over microelectronic components. The hot 
working fluid requires mechanical work to reject heat and back to 
the supply condition. This is performed by the heat exchanger and 
fans in conjunction, and represents the external power Pexternal. As 
shown in Fig. 9, Pexternal represents the amount of power expended 
to achieve temperature homeostasis between the input and output 
temperature of the server (heat transfer). As a result, the 
summation of internal and external power consumption of cooling 
Pcooling forms 

𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = ∑ 𝑚

𝑚

1

𝑃𝑝𝑢𝑚𝑝 + ∑ 𝑛

𝑛

1

𝑃𝑓𝑎𝑛 + 𝑃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙       (8) 

Thus, the total power consumption of a datacenter when 

considering all sub-systems holistically is represented as: 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐼𝑇 + ∑ 𝑙 (1 − 𝜂)𝑃𝑃𝑆𝑈

𝑙

1

+ 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔          (9) 

With this equation and its respective parts, it is possible to calculate 
the partial power utilization effectiveness (pPUE) of the server. 
The pPUE is defined as the ratio of power consumed within the IT 
and cooling, and aims to determine the effectiveness of server 
power usage. We have presented two methods to measure pPUE: 
exclusion and inclusion of internal cooling as shown in Equation 
10 and 11, respectively.  

𝑝𝑃𝑈𝐸𝐼 =
𝑃𝐼𝑇 + 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔

𝑃𝐼𝑇
                          (10) 

 

𝑝𝑃𝑈𝐸𝐼𝐼 =
𝑃𝑆𝑒𝑟𝑣𝑒𝑟 + 𝑃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

𝑃𝑆𝑒𝑟𝑣𝑒𝑟
                     (11) 

The reason for providing two measurements for pPUE is due to 
limitations of knowledge pertaining to server operation. Feasibly, 
if the specification for fan and pump characteristics are unavailable 
or immeasurable it is not possible to fully construct a unified model 
without full information. As a result, 𝑝𝑃𝑈𝐸𝐼 assumes full 
knowledge of sub-system operation and provides a higher degree 
of accuracy. 𝑝𝑃𝑈𝐸𝐼𝐼instead measures the temperature difference 
of the server (𝑃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙), treating the internal cooling architecture 
as a black box.  

6.2 Validation 
In order to validate our proposed unifying model for server power 
consumption, we conducted numerous experiments to study model 
accuracy at under various server utilization levels and deployed 
cooling techniques. 

 
Fig. 9. Illustration of Ptotal breakdown. 



 

 

 

The experimental setup used for model validation is a Sun Fire 
V20z, 2AMD Operton processor server using (1) air-cooling only, 
and (2) liquid-cooling only. This is important as it drives different 
cooling behavior within the system (for example, the operation 
temperature directly effects the power consumption of the CPU 
cores). The temperature of supply and return water from the 
external heat exchanger were recorded at each level of the 
experiment. The recorded water temperature assists in 
determining the precise calculation of predicted power. In 
addition, it is required to measure the flow rate of the pumps, 
which is captured by timing the collection period of 300ml of 
water and dividing the volume by time.  

We used the SPECPower benchmark [35] in order to impose 
workload to control the server utilization between 0 – 100% at 
10% increments. At each level of utilization level the server is 
monitored and both the CPU die temperature and fan speed are 
recorded. The recorded data is analyzed, averaged and fitted into 
the proposed model to evaluate server power consumption. 

Fig. 10 and 11 contrasts the modelled server power profile against 
measured experiment outputs for air and liquid cooling, 
respectively. The model is able to successfully capture server 
power consumption with an average relative error rate of 0.98% 
and 1.62%, with values ranging between -5.60 – 3.92% (air) and   
-0.97 – 2.94% (liquid). The weakness of the model arises for idle 
server power usage, where the error rate deviates up to 7% for 
liquid cooling. The reason for this deviation is due to parameter 
selection for Equation 4 to represent PDynamic (i.e. a zero value for 
utilization with the applied constant results in a large discrepancy). 
While the model accurately model power consumption at various 
utilization level, there is future room for improvement for idle 
utilization through error correction. 

Fig. 12 demonstrates the breakdown of power usage within each 
server sub-system in liquid cooling. It is observable that increasing 
the resource utilization results in power usage within each sub-
system increasing at different rates. PDynamic experiences the largest 
growth from 1% to 33%, driven by increased resource utilization 
of the server. Furthermore, it indicates that the total cooling 
constitutes an additional 5.9 – 10% power for the datacenter server 
to operate, increasing with higher levels of resource utilization as 
shown in Fig. 13. In contrast, air cooling results in 3.44% – 13.44% 
additional power consumption, with similar breakdown of sub-
system power usage observed within liquid cooling.  

Air cooling consumes on average 7% additional power in 
comparison to liquid, with the largest deviation of 13% at 100% 
utilization. When applying 𝑝𝑃𝑈𝐸𝐼𝐼 to servers with air and liquid 
cooling, we observe a PUE on average of 1.16 and 1.09, 
respectively. This is due to the capability of liquid to remove heat 

is greater than air and sustain a lower temperature due to its thermal 
capacity [19].  

7.  MODEL APPLICATION 
The findings ascertained within this work combined with the 
proposed model indicates that it is possible to capture the total 
power consumption of Cloud datacenter servers comprising both 
hardware and cooling. We describe three potential applications of 
these findings within the Cloud computing and datacenter research 
community: 

7.1 Power Profiling 
The proposed model is capable of producing detailed power 
profiles of all server sub-systems, and more importantly quantify 
the cooling power expended under different utilization levels and 
cooling techniques. By demonstrating that up to 10% and 13% of 
the total server power usage is driven by cooling for air and liquid 
(non-detectable by server power meters), we envision the 
enhancement of numerous energy-efficient scheduling algorithms 
capable of capturing this new power profile. 

7.2 Air and Liquid Cooling Validation 
The unified power model allows for studying and experimenting 
with different server architectures using both liquid and air 
cooling. We envision that the proposed model can be exploited by 
the community in order to rapidly evaluate various datacenter 
server deployments under different cooling configurations. As 
demonstrated from our analysis and validation, each cooling type 
will result in different temperature and power profiles, therefore 
providing more accurate trade-off analysis for application 
performance and total facility cooling.  

 
Fig. 12. Breakdown of server sub-system power usage  

for liquid cooling. 
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Fig. 11. Model accuracy vs. experiments with liquid cooling. 
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Fig. 10. Model accuracy vs. experiments with air cooling.      
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7.3  Enhanced pPUE Accuracy 
The pPUE metrics detailed in Equations (10) and (11) applied to 
the analysis results in Section 4 results in values of 1.062 and 1.096 
for 𝑝𝑃𝑈𝐸𝐼  and 𝑝𝑃𝑈𝐸𝐼𝐼 ,  respectively. While this difference is 
minimal, it is worth highlighting that 𝑝𝑃𝑈𝐸𝐼𝐼 provides increased 
accuracy for measuring energy-efficiency, and will be magnified 
within the context of thousands of servers. Moreover, the external 
heat rejection is very close to the IT equipment, whereas in larger 
scale systems the liquid/air must travel significant distance to reject 
heat. Furthermore, in many scenarios it is not practical or 
economically feasible to collect data from every sub-system for 
energy-aware decision making. Therefore, the metrics combined 
within our model allow for providers to determine and select which 
metric is most suitable for their requirements. 

8.  CONCLUSIONS 

In this paper we have presented a unified model of power usage 
within a Cloud datacenter server comprising software, hardware 
and cooling holistically. Through controlled experiments within a 
laboratory environment, we analyzed the alteration in operational 
characteristics for multiple sub-systems and propose a model 
capable of capturing sub-system power usage cross-cutting the 
entire architecture at various utilization levels. We validate our 
model in air and liquid cooling experiments, demonstrating high 
model accuracy under numerous system conditions. We foresee 
that this model can be rapidly integrated into existing and future 
server power models for enhanced accuracy. Our contributions are 
summarized as follows: 

Different power profiles within heterogeneous utilization, 
architectures and cooling systems. Through our analysis we 
demonstrate that while there exists an intuitive relationship 
between sub-systems parameters from application performance, 
microprocessor temperature, fan speed and server power, this 
relationship is not strictly linear and is dependent on utilization 
levels and cooling type. This requires rethinking the cascading 
effects of improvements in application efficiency and its impact 
onto other sub-systems (and vice versa). 

Cooling represents a non-negligible amount of server power 
usage. Our findings show that the actual power consumed and 
rejected by cooling systems within the server represents up to 10% 
and 13% within the total server, varying dependent on cooling type 
and utilization levels. Such an assumption is frequently omitted in 
energy-aware scheduling in computer science due to solely 
measuring server electrical power. Our model allows for 
researchers to easily integrate this characteristic into their 
assumptions for server power usage. 

Future work includes applying our method and model to a greater 
number of server architectures and cooling techniques to further 
validation. Furthermore, we believe that there is potential to apply 
error correction factoring to further enhance model accuracy for 
idle server usage to be in line with other utilization levels. Finally, 
we intend to exploit this model to create new energy-aware 
scheduling algorithms as well study its integration with facility 
level power models. 
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