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Richard Hyde, Plamen Angelov
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Lancaster, LA1 4WA, UK

A R MacKenzie
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Abstract

In recent times there has been an increase in data availability in continuous data

streams and clustering of this data has many advantages in data analysis. It is

often the case that these data streams are not stationary, but evolve over time,

and also that the clusters are not regular shapes but form arbitrary shapes

in the data space. Previous techniques for clustering such data streams are

either hybrid online / offline methods, windowed offline methods, or find only

hyper-elliptical clusters.

In this paper we present a fully online technique for clustering evolving

data streams into arbitrary shaped clusters. It is a two stage technique that

is accurate, robust to noise, computationally and memory efficient, with a low

time penalty as the number of data dimensions increases. The first stage of the

technique produces micro-clusters and the second stage combines these micro-

clusters into macro-clusters. Dimensional stability and high speed is achieved

through keeping the calculations both simple and minimal using hyper-spherical

micro-clusters. By maintaining a graph structure, where the micro-clusters

are the nodes and the edges are its pairs with intersecting micro-clusters, we

minimise the calculations required for macro-cluster maintenance. The micro-

clusters themselves are described in such a way that there is no calculation

required for the core and shell regions and no separate definition of outer micro-
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clusters necessary.

We demonstrate the ability of the proposed technique to join and separate

macro-clusters as they evolve in a fully online manner. There are no other fully

online techniques that the authors are aware of and so we compare the tech-

nique with popular online / offline hybrid alternatives for accuracy, purity and

speed. The technique is then applied to real atmospheric science data streams

and used to discover short term, long term and seasonal drift and the effects on

anomaly detection. As well as having favourable computational characteristics,

the technique can add analytic value over hyper-elliptical methods by character-

ising the cluster hyper-shape using Euclidean or fractal shape factors. Because

the technique records macro-clusters as graphs, further analytic value accrues

from characterising the order, degree, and completeness of the cluster-graphs as

they evolve over time.

Keywords: online, evolving, clustering, micro-cluster, arbitrary shape

1. Introduction

Recent technological advances in many disciplines have seen an increase in

the amount of data being provided in continuous streams of data, i.e. ’on-line

data’. These data streams range from machine condition monitoring and atmo-

spheric science data to social media analysis. The analysis and clustering of data5

streams has become increasingly important [1]. However, condition monitoring

can suffer from sensor drift due to ageing, temperature fluctuations, modifica-

tions or upgrades to machine components, changes in load or type of use. En-

vironmental monitoring will also be affected by sensor drift, but also seasonal

variations and secular trends due to technological, socio-economic or climate10

change. While seasonality and other cyclic periodicities can be moved relatively

easily off-line, any attempt to do this online renders the analysis vulnerable to

aliasing changing seasonal cycles into secular changes. Other problem datasets

are short-term but high-dimension and rapidly changing: chemical batch proces-

sors [2], environmental mesocosms [3], or ecological manipulation experiments15
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[4], for instance. Social media analysis will be affected by the inevitable changes

in peoples’ taste, population changes and many other influences. In examples

such as these the assumption of a stationary data environment is invalid and

techniques for data analysis need to be capable of coping with evolving data

streams. It is often the case in such data, particularly that incorporating spatial20

or relational information, that clusters of related data will not be hyper-elliptical

and will fall into arbitrarily shaped groupings. The cases for arbitrary shaped

clusters are well established and found in many sources [5, 6, 7] . Specifically

a case such as that shown in [3] demonstrates the need for evolving clusters of

arbitrary shapes - as the nature of the landscape changes over time, so must the25

clusters.

The ability to adapt our analytic to these secular (non-periodic) changes

requires not only a method of reducing the importance of old data but also a

way to divide previously singular clusters of data into multiple clusters. With

the previously available techniques discussed in section 2 this is achieved, not by30

dividing the clusters in an online manner, but rather by re-clustering using an

offline clustering technique on demand. With ever-increasing data sets, i.e. ’Big

Data’, the need to discard or archive the data after processing once becomes

necessary for both computational and memory efficiency.

The technique presented in this paper has two distinct stages. The first35

creates micro-clusters when data samples occur in un-clustered data space. The

radius of the micro-clusters, r0, is fixed and should be as small as is practical.

In this newly proposed method we use a simple linear ageing process which

reduces the ’Energy’ of a micro-cluster and allows unused micro-clusters to die

out completely. Alternative ageing techniques could be used including those40

exponential types that leave micro-clusters present, with insignificant Energy,

but allow them to be ’re-born’ and become relevant in the future with further

data. The micro-cluster Energy is renewed every time they receive new data.

When no data is received the micro-clusters lose some Energy, gradually fading

out. If no data is received for a long time the micro-cluster Energy will reach45

zero and they are are no longer recorded.
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The second stage searches for overlapping micro-clusters. The micro-clusters

are defined as having a kernel region < 0.5r0 and a shell region > 0.5r0. By only

connecting those micro-clusters whose kernel regions overlap into another micro-

cluster shell we automatically determine edge micro-clusters. Micro-clusters50

which do not have at least the user-specified local density, i.e. the minimum

number of samples within the radius, remain as separate outlier micro-clusters.

Each macro-cluster consists of the graph of intersecting micro-clusters; the ad-

jacency relations for each micro-cluster are stored as a property of that micro-

cluster. For convenience, we call micro-clusters in adjacency relations (i.e. in-55

tersecting micro-clusters) Siblings. Those micro-clusters with no Siblings define

graphs of order 1 without edges (i.e. intersections) and constitute a macro-

cluster graph by themselves. Using this graph structure reduces the calculations

required to separate clusters if a cluster dies and breaks a chain graph resulting

in two groups of micro-clusters no longer being connected.60

We call this technique Clustering of Evolving Data-streams into Arbitrary

Shapes (CEDAS). We demonstrate the efficacy of CEDAS by testing the algo-

rithm for speed and dimensional effects on artificial data sets. Application of

CEDAS to the KDDCup99 data stream set is used to compare cluster purity

with DenStream and MR-Stream and also to demonstrate the ability of CEDAS65

to deal with Big Data, adapt to evolving data streams and detect internet in-

trusion attacks with high accuracy. We then apply the algorithm to real-world

London Air Quality [2] atmospheric monitoring to demonstrate how, by vary-

ing the micro-cluster decay time, we can differentiate between short term and

long term secular change to discover to discover temporally local anomalies and70

extremes of the overall distribution.

The rest of the paper is structured as follows: Section 2 provides a review of

the current state of the art. Section 3 describes the principles and methodology

behind the CEDAS algorithm and provides a description of the pseudo-code

given in Appendix A. Section 4 describes the data sets and the methodology of75

their use throughout the analysis parts of the paper. Section 5 provides analysis

of the proposed algorithm and comparisons to alternative techniques in separate
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subsections, each with their own discussion. The findings are summarised in

section 6 and finally we consider some directions for future work in Section 7.

2. State of the Art80

Alternative online data stream clustering techniques such as ELM [8], DEC

[9] provide online clustering of data streams. Both of these techniques operate

on data streams and provide clustering results online but are limited to hyper-

ellipsoidal cluster shapes. The basis for ELM is to store the local mean as a

cluster centre and to adjust the cluster centre and radii as more data arrives.85

DEC maintains a list of core and non-core clusters defined by the weight of the

cluster. The weight decays over time or is increased as new data samples join

the cluster. In this way, core clusters may decay to non-core, non-core clusters

my disappear or increase their weight to become core clusters or new, non-core,

clusters may be created. In both techniques the clusters that are created are90

hype-ellipsoidal. In the case of concave cluster shapes DEC may create many

smaller hyper-ellipsoidal clusters or one large cluster encapsulating all the data

depending on the user parameter values.

Other existing data stream clustering methods such as Chameleon [10], DB-

Scan [11] and SPARCL [12] are all techniques for clustering arbitrary shapes95

offline. Sparcl utilises a two-layer approach whereby k-means [13] clustering

is used to create a large number of micro-cluster centres in the first layer.

These micro-cluster centres are then further clustered using a hierarchical ap-

proach. Chameleon and DBScan are techniques that successfully cluster arbi-

trary shapes, however, both work offline and therefore require the full data set.100

An incremental version of DBScan [14] was proposed which allows for incremen-

tal modification of the clusters. However, after each increment the micro-clusters

re-built and so require the full data from each increment to be available.

A method known as DenStream was proposed in [14] based on the CluStream

[15]. A set of core- and potential-micro-clusters are maintained online. Each105

micro-cluster is created from a stored set of data with a decaying weight. By

5



decaying the data samples those with a weight below a user-specified threshold

are discarded and the memory requirement is limited somewhat although this

loses potentially useful micro-clusters. The technique has an initialisation phase,

using DBScan, to create an initial set of micro-clusters. Additionally, while the110

micro-clusters are maintained in an on-line fashion the process of combining the

micro-clusters into final clusters is an off-line approach carried out on demand.

DenStream is capable of finding arbitrarily shaped clusters as it’s 2nd stage

clustering is based on DBScan whereas CluStream, with it’s 2nd stage based on

k-means [16], finds hyper-elliptical clusters.115

Two developments of DenStream known as SDStream [17] and rDenStream

[18] improve on the basic DenStream algorithm. SDStream is based on SWClus-

tering Algorithm described in [19] and is an offline approach, repeated tempo-

rally at incremental time windows. The authors claim improved quality of clus-

ters over CluStream [15] however, it remains an incremental offline approach120

requiring storage of past data. rDenstream is a three stage clustering technique

also based on DenStream. In rDenStream any discarded clusters are retained

in memory and may be re-introduced to improve the clustering at a later time.

Processing of this discarded data requires additional processing time and mem-

ory allocation. The 2nd stage of these techniques uses DBScan which has been125

demonstrated have an order of D4 time penalty, where D is the number of di-

mensions [20]. DBScan becomes impractical for big data and high dimensions

and as a result techniques based around DBScan may also suffer from this lim-

itation. The combined online-offline approaches limit this time penalty by only

applying the offline DBScan macro-clustering function ’on demand’ at reduced130

frequency.

Grid-based technique MR-Stream [21], divides the data space into a tree

of grids of decreasing size (increasing resolution). MR-Stream is a combined

on- and offline technique with the cluster grid updated online and regular sec-

ond stage clustering of the grid combined with a tree pruning algorithm. In135

the extreme case of densely populated data space the offline components must

visit each grid space, 2DH where D is the number of dimensions and H the
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(a) kernel and shell micro-cluster radii (b) Combined micro-clusters

Figure 1: Illustration of kernel micro-cluster regions showing (a) micro-cluster radius in ma-

genta and, micro-cluster kernel radius in blue (b) micro-clusters combined to the macro-

clusters

granularity, or resolution, of the clusters.

A recently introduced technique, CODAS [20] demonstrated a new approach

to clustering of continuous data streams into arbitrary shaped clusters. CODAS140

is a two stage technique with a micro-clustering first stage. The micro-clusters

are designated as having an inner ’kernel’ and outer ’shell’ region. This removes

the need for classifying micro-clusters as ’edge’ or ’non-edge’ and simplifies the

micro-cluster joining calculations. As a result the technique has been demon-

strated to be dimensionally stable with a time penalty in the order of D
100 ), where145

D is the number of dimensions. Although CODAS is an online technique it does

not allow for the clusters to evolve. That is to say that clusters, once formed,

will remain. This means that in cases where the data stream evolves, i.e. forms

different clusters at different times, CODAS does not update to remove the old

micro-clusters. As a fully online technique, no data is stored and so it is not150

possible to use techniques such as windowing, or ageing of data to overcome

this limitation. The technique presented in this paper builds on the underlying

techniques of CODAS but stores the micro-cluster adjacency information to al-

low the macro-clusters to evolve and to provide additional information on the

structure of the cluster-graph.155

7



3. The Proposed Approach

Traditional offline clustering techniques for arbitrary shapes may categorize

data samples as ’core’ or ’non-core’. However, this requires storage of the data

samples and ever-increasing storage capacity which is prohibitive for online clus-

tering. CEDAS stores only the information related to the micro-clusters and a160

graph structure recording the micro-cluster connections.

The following terminology is defined for the CEDAS approach:

1. Cluster Graph: the structure that defines which micro-clusters join to

form which macro-clusters. This is stored by recording the intersects of

each micro-cluster in ’Edge’, together with the appropriate macro-cluster165

assignation in ’Macro’.

2. Local density: the number of samples per micro-cluster

3. Macro-cluster: a cluster consisting of a number of intersecting micro-

clusters.

4. Micro-cluster: a micro-cluster with a local density above the threshold.170

5. Outlier-micro-cluster: a micro cluster with local density below the thresh-

old.

6. Sample: any data point in ′n′ dimensions.

7. Threshold: the minimum number of samples within the micro-cluster ra-

dius of any sample to form a micro-cluster.175

In general CEDAS is a data-driven approach to divide the data space in to

kernel and shell regions based on a user defined radius, r0. Each micro-cluster

consists of a shell annulus region between radii r0
2 and r0 and a kernel region

being < r0
2 . Any micro-cluster above a given density threshold is considered

for macro-cluster membership. Micro-clusters with kernel regions that intersect180

another micro-cluster shell region form macro-clusters. Micro-clusters above
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the threshold but with no intersections are also considered to be macro-clusters.

Shell regions are considered to be edges of macro-clusters.

New data from the data stream will fall in to one of 3 regions:

1. empty space, where it will form a new, outlier-micro-cluster185

2. a micro-cluster shell region, where it will be assigned to the cluster, the

cluster count updated and the micro-cluster centre recursively updated to

the mean of its samples.

3. a micro-cluster kernel region, where it will be assigned to the micro-cluster

and the cluster count updated190

The micro-cluster that has been modified, or created, by this process is then

checked to see if the local density is above the threshold. If this is the case then

this micro-cluster is checked for new intersections with other micro-clusters. If

new intersections have been made then all the micro-clusters are linked and

assigned to the same macro-cluster. This ensures that all linked micro-clusters195

have the same macro-cluster reference and maintains arbitrarily shaped data

space regions of macro-clusters in a fully online manner.

With this approach at any given time a data sample can be checked for

its macro-cluster membership, any new sample is immediately clustered and

outliers are identified as members of outlier micro-clusters.200

Figure 1 shows a subset of a plot of test data. Figure 1(a) shows the kernel

and shell radii of the micro-clusters. Where the kernel radius of any cluster

intersects a shell radius of any other the clusters combine as shown in Figure

1(b). Here the micro-clusters with intersecting kernel and shell regions have

combined to form the red shaded cluster region whereas the micro-cluster with205

the non-intersecting kernel remains separate as the grey region.

3.1. CEDAS Algorithm

This sub-section describes in detail the steps shown in the pseudo-code given

in Appendix A. There are 4 distinct steps for the full algorithm including ini-

tialisation:210
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1. Initialization

2. Update Micro-Clusters

3. Kill Clusters

4. Update Cluster Graph

3.1.1. Initialization215

This creates a structure to store the information related to each micro-cluster

and takes place with the first data sample. The ’centre’ and ’radius’ define the

region in data space covered by the micro-cluster. ’Count’ stores the total

number of data samples that have been allocated to the micro-cluster. The

value of ’Count’ is recorded to allow recursive updates to the micro-cluster220

centre. ’Macro’ is a reference to the macro-cluster to which this micro-cluster

belongs. The value of ’Macro’ is the same for all micro-clusters in the ’Sibling’

list. ’Energy’ is a value used to determine the length of time since a micro-cluster

received new data. The decay algorithm reduces this value and is discussed later.

’Siblings’ is a list of intersecting micro-clusters, if a micro-cluster has no Sibling225

list then it is a macro-cluster itself. In graph theory terminology the micro-

cluster number paired with each intersect constitutes and ’edge’ of the form

{µCc, µCI}, where the first term is the current micro-cluster and the second

term is the intersecting micro-cluster.

3.1.2. Update Cluster230

This part of the algorithm updates the micro-clusters.

In step 10, a flag is set to record whether any micro-cluster positions are

changed or a new micro-cluster is created. If none are changed then the later

section of the algorithm that updates the cluster graph is not required to run.

Step 11 finds the distance to the nearest micro-cluster centre. If this distance235

is less than r0 the new sample is within a micro-cluster and the (Energy) of that

micro-cluster is re-set to 1 and the number of samples that have been placed

within that micro-cluster increased by 1.
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Step 16 checks if the sample is in the micro-cluster kernel region. If not then

the micro-cluster centre is updated recursively in step 18 to the mean of all the240

included samples to date and the index u of the modified cluster is set.

Steps 20-27 create a new micro-cluster if the sample did not lie in any current

micro-clusters.

3.1.3. Kill Cluster

Step 28 decays the Energy of each micro-cluster. In the example here we use245

a simple linear decay but any function could be applied such as the exponential

strategy in [14]. Note that with an exponential strategy the Energy of a cluster

will never reach zero and some other pruning function will be required. Step 29

lists any clusters that have an Energy less than zero and step 30 checks if any

further work is required and returns if no clusters have died.250

Steps 33-37 remove all dead clusters and also deletes any references to the

dead micro-cluster from all the micro-cluster Sibling lists. Micro-clusters are

referred to by their index and some may have been removed from the middle

of the graph. This means all the references in any Sibling lists that refer to

a higher micro-cluster than the one removed must be decremented by 1. This255

results in an updated cluster graph.

3.1.4. Update Cluster Graph

This section is only required to run if either:

1. a new cluster has been created

2. a cluster centre location has been modified260

3. a cluster has died and been removed

Step 41 calculates the distance from the updated cluster centre Cu to the

centre of all other micro-clusters Ci. Step 42 checks if the central kernel of

either micro-cluster intersects the other micro-cluster and stores the intersects

in the set {j}. Step 43 stores all the new intersects along with all the current265

Siblings of the updated micro-cluster. Step 44 finds the minimum macro-cluster
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number from all the intersecting micro-clusters, Step 45 assigns that number to

the modified micro-cluster and step 46 updates the macro-cluster number of the

intersecting micro-clusters.

Steps 48-58 reassign the macro-cluster numbers. This is not essential to270

the algorithm, but without these steps the macro-cluster numbers would be

non-consecutive and would increase indefinitely.

4. Test Data

To analyse the performance of the proposed the CEDAS technique the fol-

lowing data sets were used:275

4.1. Spiral High Dimensional Data

This dataset comprises three helical data streams, two of which join mid-way

through the test while the other stays separate. These data streams are moved

through a range of multiple dimensions to examine the time variance of the

analysis with higher dimensional data. The data was analysed using CEDAS280

with a range of values for Decay and settings of InitialRadius = 0.05 and

MinimumClusterSize = 4. The data set is then moved into higher dimensional

data space by adding additional dimensional data coordinates. By projecting

the data back into 3 dimensions the clustered data can be plotted and the results

of cluster membership checked while increasing the complexity of the clustering285

calculations.

4.2. Mackey-Glass Data Streams

3D data stream consisting of 2 Mackey-Glass time series presented as a data

stream. The data streams are solutions of the Mackey-Glass non-linear time

delay differential equation [22, 23]. shown in equation 1.290

dx(t)

dt
=

ax(t− τ)

1 + x(t− τ)10 − bx(t)
(1)

The equation is solved numerically at discrete time steps using the 4th order

Runge-Kutta method using different values for a and b to create x and y values
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(a) Without Noise (b) With Noise

Figure 2: Illustration of the Mackey-Glass data sets showing a) without noise b) with noise.

The two Mackey-Glass streams are shown in red and green with the noise in blue.

and provide a data stream of 40,020 samples. For each time step 10 random

data samples were created around the core value. The data streams are shown

in Figure 2a. It can be seen that early in the data the values of both data295

streams are coincident. They later separate and come together at various times.

We would expect that ’recent’ data will produce a changing number of macro-

clusters and an online, evolving clustering technique will detect these changes. A

further data set was created by adding additional data of random noise samples

at every 5th time step creating a dataset of 44,022 samples. This is used to test300

the robustness of CEDAS to detecting the clusters in a noisy environment. The

data can be seen in Figure 2b. By presenting the data sequentially we create

a continually evolving data stream rather than a data stream of static values

with sporadic variation, such as the KDDCup data set below, which tests the

ability of the algorithm to add, merge and separate macro-clusters..305

The data was presented to the CEDAS algorithm 1 sample at a time to

imitate an online data stream and the results plotted at each time step to create

a video of the results. The CEDAS algorithm was used to detect and report in

the plot title the following information:

1. Definite Clusters: these were defined as clusters containing > 15 data310

samples and > 1 micro-cluster

2. Outlier Clusters: these were defined as containing > 15 data samples all
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contained in 1 micro-cluster

3. Last Change: the time period at which the last change in the number of

Definite Clusters occurred. This information was recorded to allow the315

state at that time to be reproduced.

4.3. KDDCup99 Data Stream Set

To further test the CEDAS algorithm in a different environment the KKD-

Cup99 [24] dataset was used as a data stream presented to the algorithm se-

quentially. The data set consists of approximately 5 million samples in the full320

data set, 500,000 samples in the 10% reduced set, simulating network intrusion

attacks on a military installation. The dataset has 42 features and information

to classify the data into 22 attack types in addition to the normal network traffic.

This data is used to determine the cluster purity and memory use for compar-

ison with alternative techniques and also to validate the clustering results in325

relation to the number of attack types which occur in a time period.

The dataset is loaded in chunks, to avoid memory issues of holding the

data, and passed to the CEDAS algorithm sequentially to mimic an online data

stream. To compare the results with alternative techniques the cluster purity

is measured at set intervals of 1,000 data samples. The cluster purity measure-330

ments have also been placed in to groups of 25 to allow direct comparisons to

the results in Wan et al [21]. In addition the number of clusters at these time

steps is also plotted to compare the number of known attacks within the time

period with the number of clusters created by CEDAS.

4.4. London Air Quality Data335

We then apply the technique to data from the Kings College London Air

Quality Website [2]. The data is from one site, Westminster Marylebone, in 2

dimensions, labelled NOx, PM10. Here and throughout, NOx is defined as the

reactive oxides of Nitrogen, primarily NO and NO2, and PM10 is defined as the

mass concentration of microscopic airborne particles with aerodynamic diameter340

of 10µm or above. The data, which is recorded operationally to monitor breaches
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of air pollution legislation [25] and to inform the public of adverse air pollution

conditions, is captured at 15 minute intervals and ranges from 1st January 2010

to 30th December 2014 for a total of 87,600 samples. This data is used to test

CEDAS ability to differentiate short and long term anomalies and follow the345

temporal drift of real data.

To allow for clustering to take place the data is normalised to a suitable

range relative to the micro-cluster radius, r0. Here the range was based on the

data available in the dataset and scaled to 0− 1. The data had an actual range

from min = 7.200 to max = 1, 447, ppbv (parts-per-billion by volume) for NOx350

and min = −0.9, max = 422.8 (µgm−3) for PM10 and so predicted ranges

of 0 to 1500 and 0 to 200 respectively were used. The scaling introduced by

this normalisation has an effect on the local density, joining and separation of

micro-clusters and so expert knowledge is required to find suitable values for

scientific research involving the cluster results.355

For this real data test CEDAS was run with different decay times across the

different sets of data from London Air Quality kept by Kings College London

collected between 2010-2014. The data was presented to the CEDAS algorithm

sequentially, in NOx, PM10 pairs, to mimic on-line data streams. The micro-

clusters were plotted and the transparency of the micro-clusters set according360

to the value of the Energy in each. In this way if anomalous data appears for a

short period of time the cluster adjusts, but it fades over the subsequent time

period providing an online visualisation of the Energy of the micro-clusters.

This provides a clear visual indication of CEDAS adapting to the changes in

the data stream and following long term and short term drift. By using different365

decay times we demonstrate the different clusters that are created and discuss

how this can be useful to investigate different time periods for drift and shift.

5. Results and Discussion

This section contains 3 separate subsections. Within each Subsesction are

the results and a discussion of the implication of these results. Subsection 5.1370
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uses the Mackey-Glass data streams described above to validate the ability of

CEDAS to accurately deal with data drift, cluster separation, cluster merg-

ing and noise over time. Subsection 5.2 compares CEDAS with alternative

techniques CluStream, DenStream and MR-Stream with respect to data dimen-

sionality, complexity, processing speed, cluster quality and memory efficiency.375

Subsection 5.3 applies the CEDAS algorithm to a real data stream from the

London Air Quality monitoring system to demonstrate how evolving clustering

can aid data mining of data streams containing short term drift, long term drift

and short and long term anomalies.

5.1. CEDAS Functionality with Cluster Separation, Cluster Merging, Drift and380

Noise

To validate the correct functionality of CEDAS the algorithm was applied to

the Mackey-Glass data streams using Decay = 1, 000 samples, Radius = 0.05

and MinimumClusterSize = 12.

5.1.1. Cluster Separation and Merging385

Using the clean Mackey-Glass data stream The sample number at which

a change in the number of macro-clusters was detected was stored. After the

analysis data was plotted with data from each time period coloured differently.

This is shown in Figure 3a.

As expected, after the initial settling period (red), it is seen that at each390

colour change the number of clusters in the data contained in the preceding

decay period has changed. For example, in the green period the data was

contained in a single cluster. At the time the colour changes to black, the data

in the previous 1,000 samples had just separated to 2 separate clusters. When

the colour changes to magenta, the previous 1,000 samples created 1 cluster.395

5.1.2. The Effects of Noise

To test the effects of noise on CEDAS the Mackey-Glass dataset is used

with a random noise sample added every 5 data samples as described above.

The random nature of the noise will have some effect on the initial positions
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(a) Without Noise (b) With Noise

Figure 3: CEDAS Auto Change Detection, changes in colour represent changes in the number

of clusters. The changes detected without noise are also detected with noise with the additional

changes caused by temporary separate micro-clusters before they rejoin the main clusters.

of micro-clusters if the noise falls within them. This increases the likelihood of400

an initial micro-cluster separating from the main macro-cluster group. If this

occurs then the number of macro-clusters may change briefly. This would give

the appearance of false positives when compared with the results from dataset

without noise. These additional clusters are in fact present at that time and it

is accepted that the noise has in fact changed the clustering.405

The results are shown in Figures 3a and 3b. In Figure 3b it can be seen that

c, e, f, g, h, o are triggered by the noise and could easily be discounted based

on he number of samples, if required. The trigger points without noise can be

matched to those with noise as shown in table 1. These are discussed in the

following sub-sections.410

5.1.3. False Positives

With any online technique, apparent changes at some point in time may turn

out to be irrelevant at a later time. An example of such soon-to-be-irrelevant

data anomalies are those that result from the added noise. Rather than calling

these ’false positives’, they could be considered as ’temporary or short-term415

true positives’. In the event these are caused by temporary misplacement of

micro-clusters caused by noise, which are rapidly re-absorbed into the macro-

cluster, then these addition clusters will have an unusually short lifespan, i.e.

considerably shorter than the set decay period. In this way any triggers that are

within a user-defined short time span from a previous trigger could be discounted420
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Table 1: Matching Additional ’Noisy’ Trigger points in brackets with ’No Noise’ trigger points.

Trigger Points

Group Without Noise With Noise

1 a a

1 b b (c)

3 c d (e, f, g, h)

4 d i

5 e j

6 f k

7 g l

8 h m

9 i n

10 j (o) p

if required. However, this is not always desirable, as even short term anomalies

may be of interest. They may, for example, indicate the start a general drift in

the data.

5.1.4. False Negatives

With appropriate settings for decay time and micro-cluster radius, false nega-425

tives do not occur. It must be remembered that a different decay time will create

different times for cluster separation. This is not indicative of false negatives,

but rather a deliberate function of the technique to consider clusters based on

data within a defined time frame.

5.1.5. True Positives430

As we have demonstrated here, all changes to clusters are correctly detected.

With the noisy dataset, although we have some temporary true positives, as

18



Figure 4: Plot of mean processing time per sample in seconds for varying data dimensionality.

Each line represents the processing time for different decay periods which create a proportional

increase in micro-clusters.

discussed above, CEDAS has successfully detected the same true positives as

with the clean dataset as shown in table 1.

5.1.6. True Negatives435

If we consider the definition of a ’true negative’ to be that ’no changes in

macro-clusters are detected when there are none’ then this occurs with every

sample that does not create new clusters.

5.2. Comparisons With Alternative Techniques

5.2.1. Speed and Dimensionality440

By utilising hyper-spheres for micro-clusters the cluster joining technique

checking for micro-cluster overlap is much simpler than, e.g. hyper-ellipsoidal

micro-clusters. Micro-clusters are joined if the edge of the core hypersphere

intersects another hyper-sphere shell. This requires only a comparison between

the euclidean distance between cluster centres and the sum of the micro-cluster445

radii. Therefore, the only calculation that is dimensionally dependent is the

euclidean distance with complexity O(D) where ′D′ is the number of dimensions.

The relationship between the number of data dimensions and processing time

per sample is linear.
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Figure 5: Comparison of processing time per sample with the decay time. In this example

the decay time is directly proportional to the number of micro-clusters.

With each new data sample being assigned to a single micro-cluster it is450

only necessary to check the intersections for that micro-cluster and then only

if the micro-cluster centre has been modified, or a new micro-cluster has been

created. This further reduces the required number of calculations. The radii

of the micro-clusters is constant and so we only need to compare the euclidean

distance between the changed micro-cluster and all others with 1.5r0.455

The relationship between the number of data dimensions, decay period and

calculation time is plotted in Figure 4. Using Matlab’s curve fitting toolbox the

relationship between the data dimensions and time per sample was tested for

different decay times. In the case of an evolving data stream with continuous

drift the decay time is also proportional to the number of micro-clusters. To460

investigate the relationship between decay time, and so the number of micro-

clusters, and run time the coefficients of the ′x′ term in the linear equations

are plotted in Figure 5 and show an approximately linear relationship. This

demonstrates that CEDAS has a linear time penalty with both the number of

dimensions and the number of micro-clusters.465

By comparison, Figure 6 shows the relationship between processing time and

dimensionality with the same data set for both DenStream [14] and Clustream

[15]. We used the Massive Online Analysis [26] implementation running on

R3.2.2 in RStudio 0.98.1102 analysing the same spiral high dimensional dataset

as for CEDAS. CluStream was also limited to a maximum of 100 micro-clusters.470
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For both of these techniques, two tests were run using a decay time of 1,000

samples:

1. Both DenStream and CluStream without carrying out the 2nd stage re-

clustering until the end of the data stream.

2. We approximated a fully online technique by carrying out the 2nd stage475

clustering technique at frequent intervals - every 100 samples for Den-

Stream and every 10 samples for CluStream.

For the DenStream 2nd stage re-clustering DBScan [11] was used as imple-

mented in the ’R’ package by Hahsler [27] to allow for arbitrary shaped macro-

clusters to form in a similar manner to CEDAS. The results shown in Figures480

6a and 6b are for test 1 and the results shown in Figure 6c and 6d are for test

2. Without 2nd stage re-clustering both DenStream and ClusStream are faster

than CEDAS for low dimensionality data. The break even point is approxi-

mately 12D for CluStream and 220D for DenStream. When the second stage

re-clustering of the micro-clusters is done frequently enough to approximate485

fully on-line analysis there is significant time penalty for both DenStream and

CluStream. In both cases CEDAS is noticeably faster than both DenStream

and CluStream and suffers significantly less time penalty for increasing data

dimensionality.

5.2.2. Speed and Cluster Quality490

The KDDCup99 [24] data stream is a popular dataset for testing evolving

clustering algorithms such as eClass [28] and it is used here to allow direct

comparisons with D-Stream and MR-Stream purity results presented by Wan

et al [21]. Two sets of results are presented. The first is the same analysis used

by Wan et al. of creating 500 time intervals spaced at 1K samples and placing495

these into groups of 25 and taking the mean cluster purity over these groups

of 25. Taking the mean of a set of results can disguise individual poor results

and so the cluster purity for CEDAS at each of the 500 time intervals is also

provided. These results are shown in Figure 7.
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(a) Without Re-Clustering Low Dimensionality(b) Without Reclustering High Dimensionality

(c) With Re-Clustering, Low Dimensionality (d) With Re-Clustering High Dimensionality

Figure 6: Typical analysis time per sample for DenStream, CluStream and CEDAS across

various dimensional data. a) and b) show CluStream and DenStream without 2nd stage re-

clustering until the end of the data stream. c) and d) show DenStream and CluStream with

frequent 2nd stage re-clustering. In all plots CEDAS is shown in green.
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It should be noted that purity alone, as defined by equation 2, may be a500

poor measure by itself.

purity =

∑n
i=1
|Cdi |
|Ci|

K
× 100% (2)

accuracy =

∑n
i=1

∣∣Cdi ∣∣∑n
i=1 |Ci|

× 100% (3)

Here Ci is the number of samples in a cluster, CDi is the number of these

samples assigned to the dominant class and N is the number of clusters. In cases

where a high number of samples are contained in one cluster with low purity,

yet few samples are contained in a high number of clusters with high purity the505

result is a high mean purity even though most samples are incorrectly assigned.

Equally, the reverse is true when few clusters are present, if 99% of the data

is correctly assigned in one cluster and two sample are contained in a second,

one of which is mis-assigned the mean purity looks poor. In Wan et al. the

relevance of this measure is further reduced by taking the mean of these means510

and so the purity measure is included here for comparison to Wan et al. only

and not to attach any particular significance to the result. The cluster accuracy

measure as defined in equation 3 is presented in Figure 7d which is a measure of

the number of samples that have been correctly assigned to the dominant class.

By using both the purity and accuracy measures the quality of the clustering515

can be stated with greater confidence.

The results of the quality analysis are shown in Figure 7. Although the

purity at time period 145 is 73%, the mean over the 25 time periods this is 96%.

Using the two time periods selected by Wan et al, 27 and 52, we see that the

CEDAS purity was 96% and 99.85% compared with MR-Stream at 97.5% and520

92% respectively. It is interesting to note that at time periods 26 and 28 CEDAS

purity is 100% suggesting that CEDAS adapts quickly to this variation. Using

the 25 time periods measure favoured by Wan et al. we see that CEDAS mean

purity exceeds that of MR-Stream. When considering the accuracy measure

we note that at the time periods 27 and 52 the accuracy measurements are525
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(a) D-Stream, MR-Stream Purity (b) CEDAS Purity at 25 Steps

(c) CEDAS Purity at All Steps (d) CEDAS Accuracy

Figure 7: (a) Plot of cluster purity (data from Tan et al), (b) Cluster purity for CEDAS by

the same measure as Tan et al. (c) Cluster purity at each time step showing reduced purity.

(d) CEDAS accuracy measure.

98.5% and 99.98% respectively. This indicates that nearly all the samples are

correctly assigned to the dominant clusters, but the purity is reduced due to

few incorrectly assigned samples in clusters with few members. The accuracy of

CEDAS remains close to 100% at all times except for 3 single occasions where

it drops to around 90% and 2 at around 95%.530

Figure 7a shows the results provide by Wan et al. for the mean purity over

25 time steps for both D-Stream and MR-Stream.

Having established via the purity and accuracy measures that the clusters

are meaningful it is useful to see if they demonstrate any results of interest. To

do this the number of clusters in a time period are compared with the number535
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Figure 8: Plot of the number of classes of attack and the number of cluster found by CEDAS

in each time period.

of classes given in the data. The plot of these is given in Figure 8 where it can

be seen that each time there is a rise in the number of classes, i.e. attacks, the

number of clusters also rises. Given that these clusters have high purity, and the

accuracy of clustering is also high, these additional clusters must contain attack

vectors unique to each type of attack. There are 50 time periods with attack540

vectors present and these are detected 100%. As discussed above, occasional

separated micro-clusters are a feature of evolving techniques and providing they

are short-lived and re-absorbed into the main clusters they can be ignored with

reasonable confidence. When the number grows beyond 1 sample per cluster,

however, they may be indicative of possible attacks. Thus with a threshold of545

1 we have 20 false positives. However increasing the threshold to 2 to allow for

occasional separated micro-clusters reduces this Figure to 4, and a threshold

of 3 reduces this to a single instance. This compares favourably with a mean

number of clusters per attack of 8.2.

5.2.3. Memory Efficiency550

To demonstrate the efficient memory use of CEDAS, we compare the storage

required by MR-Stream and DenStream with that required by CEDAS when

clustering the KDDCup99 datastream. The results presented by Wan et al. for

MR-Stream are shown in Figure 9a and, when the data stream is evolving and

has variety, we see that MR-Stream reaches Figures in the thousands of nodes555

with a peak approaching 12,000. By contrast, the number of micro-clusters

required by DenStream and CEDAS for the same data stream are shown in
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(a) Memory Usage for MR-Stream (b) Memory Usage for CEDAS, DenStream

Figure 9: Plot of the number of nodes or micro-clusters, which equates to memory use, for

MR-Stream, DenStream and CEDAS. CluStream is not shown as it uses a number of micro-

clusters set by the user.

Figure 9b. DenStream has a mean value of 181 and maximum of 839 whereas

CEDAS has a mean of 20 and peaks at 137. This demonstrates the significant

memory saving of micro-clusters over grid based techniques. Even allowing for560

the CEDAS cluster description consisting of 5 values there is significant saving

over MR-Stream.

5.3. Application to Real Atmospheric Data Streams

This section describes how anomaly detection differs between long-, medium

and short-term analysis and how CEDAS copes with such variation. To demon-565

strate this we are define ’Short Term’ as being 7 days and ’Medium Term’ as

being 28 days and ’Long Term’ as being one year. The data used for clustering

is NOx with PM10 from the London Air Quality database for the Westmin-

ster Marylebone monitoring station. Data samples are taken every 15 minutes

covering an overall period of 5 years.570

In Subsection 5.3.1 we consider how the use of a short decay period can

reveal short term data drift that would be disguised in medium term decay

periods. Subsection 5.3.2 describes the use of medium term decay periods to in-

vestigate possible seasonal variations. Finally, in Subsection 5.3.3 demonstrates

how medium term decay periods can be used to investigate long term variations.575
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(a) Processing Speed for MR-Stream (b) Processing Speed for CEDAS

Figure 10: Plots of the processing speed of 9a MR-Stream accumulated time (from [21]) and

9b CEDAS mean time per sample.

In this paper we only provide visual indications of how CEDAS reacts to the

evolving data stream. Numerical analysis of the clustering results is discussed

in Section 6 Conclusions.

Videos of the CEDAS cluster analysis can be found in the supplementary

material.580

5.3.1. Short Term Drift and Anomalies

Using a decay period equivalent to 7 days of data we can detect the changes

in NOx and PM10 over time. Sample plots are shown in Figure 11 (a)-(c)

showing the cluster analysis at 3 different dates for the preceding 7 days. The

data for the preceding 28 day period, for the same dates, is shown in Figures585

11 (d)-(f).

We can see that the 7 day period preceding 24/03/11 is markedly different

from the 7 day period preceding 06/02/11. Despite these difference in the 7 day

data, by comparing the plots (d)-(f) we can see that overall, for the preceding

28 day periods the spread of data values has been more consistent. The data590

shown in the black and green clusters of the 7 day analysis in 11 (b) may be

considered anomalous for that week, but in Figure 11 (e) we see that it it is not

unusual over the preceding 28 day period. However, data such as that in the
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(a) Fri 6th (b) Wed 8th (c) Sat 24th

(d) Fri 6th (e) Wed 8th (f) Sat 24th

Figure 11: Sample plots of short term decay periods (a)-(c) and medium term decay periods

(d)-(f). The short term variations indicated in (a)-(c) show the data varies over different 7 day

periods. The medium term variations in (d)-(f) show that the data over the 28 day periods is

more consistent and disguises the 7-day variation.

yellow and magenta cluster of 11 (b) is seen to still be anomalous over the 28

day period, Figure 11 (e), where the clusters are now coloured khaki and blue.595

This demonstrates that, by selecting suitable decay periods, the clustering

results from the proposed algorithm provides relevant analysis of how data be-

haves over different time periods and how CEDAS can follow these changes in

a fully online manner.

5.3.2. Medium Term Drift and Anomalies600

The plots in Figure 12 are the cluster results for a 28 day decay period

taken at different dates throughout the year. Over the 5 year period of the data

streams this approximate pattern is repeated each year. The primary variation

is not in the maximum, minimum or range of either NOx or PM10 but rather

in the range of the PM10 : NOx ratio. This is particularly noticeable when605

comparing, e.g. March and July where at any given value of NOx the range of

28



(a) Jan 2011 (b) March 2011

(c) July 2011 (d) Oct 2011

Figure 12: Plots of CEDAS clustering with a 28 day decay time showing variation of the data

over a single year.

PM10 values is greater in March. Anomalous data can still be seen in March

indicating that some unusual events are present.

This demonstrates the ability of CEDAS to follow such seasonal drifts, if

they exist, and find data that is anomalous within that local time frame.610

5.3.3. Long Term Drift and Anomalies

For long term changes, i.e. changes across years, the data could be analysed

in multiple ways. For example, the data could be clustered on the full 365 day

decay period. However, as we have already indicated in the Subsection 5.3.2

there are variations within that year which may be hidden in the way described615
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(a) March 2010 (b) March 2012

(c) March 2013 (d) March 2014

Figure 13: Plots of CEDAS clustering with a 28 day decay time showing variation of the data

for March over a 5 year period.

in Subsection 5.3.1. With this information it is reasonable to consider an analysis

of 28 day decay periods, at the same date, for subsequent years. Examples of

these cluster results are provided in Figure 13 and shows the results for data of

the 28 days preceding 01/04 for the years 2010-2015.

The shape of the main cluster can be seen to vary between years indicating620

the changes in data values. Anomalies are indicated and are for the particular

year under consideration. In all cases we see some relatively minor anomalies

with values that are slightly different form the main cluster. These could be

symptomatic of the data undergoing normal drift and changes. March 2012,

however, shows some more extreme anomalies, shown in blue and green, with625
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particularly high PM10 values. Thus we see that these anomalies detected

in March 2012 were not measured in any other year. This demonstrates how

CEDAS may be used to analyse yearly changes, i.e. long term shifts in data

and find anomalies independent of drift.

6. Summary and Conclusions630

A new, fully online clustering technique for clustering data into arbitrarily

shaped clusters is proposed. In Section 3 the algorithm has been described. The

technique has been applied to the various data sets described in Section 4 and

the results presented and discussed. In this section the results are summarised

together with appropriate conclusions.635

6.1. Technique Validity

Section 5.1 demonstrates the ability of CEDAS to accurately divide and

merge evolving data streams where appropriate demonstrating the validity of

the technique. The proposed algorithm is also shown to be robust to noise.

6.2. Cluster Quality640

In Section 5.2.2 we compared the proposed algorithm to ClusStream, Den-

Stream and MR-Stream and demonstrated that in the tested scenarios CEDAS

performed as well as, or better, than all three alternatives. Including the addi-

tional accuracy measure provides evidence that the mean cluster purity measure

is, in the case of CEDAS, a fair measure of the cluster quality.645

6.3. Computational Efficiency

When working with stable data-streams with few micro-clusters, DenStream

and CluStream approach the speed of the newly proposed technique. However,

when the data stream evolves more rapidly, or there are a higher number of

micro-clusters, the offline portion of combined online/ offline techniques be-650

comes a limiting factor and CEDAS becomes significantly faster. In the case
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of low dimensionality and where the second stage, offline, technique is not re-

quired often then DenStream and CluStream may also be faster. However, this

precludes these techniques from being considered as fully online. If excessive

periods of time are allowed between second stage clustering important clusters655

and their information may go unnoticed. By being fully online the proposed

technique will not suffer from this limitation. It should also be noted that

CluStream finds only hyper-elliptical and not arbitrarily shaped clusters.

6.4. Memory Efficiency

In general, the similarities in the micro-cluster stage means there is a sim-660

ilarity between memory use for CEDAS, DenStream and ClusStream. The for

micro-clusters of a similar size the number will be similar for each technique.

MR-Stream is highly memory intensive, not only does it store data for all the

cluster nodes, but also for those nodes on the higher plane. MR-Stream claims

to use this information to reduce the calculations required for the second stage665

clustering. However, in the case of a highly populated data space this will re-

sults in an increase in memory storage and calculations as a high proportion

of the nodes and their parents need to be stored and visited during the second

stage clustering. In an effort to reduce the memory requirements MR-Stream

prunes nodes with a low density, however this implies a possible loss of data670

without regard to it’s relevance to the current state.

6.5. Dimensionality

The proposed algorithm has a linear complexity and time penalty relative

to the number of data dimensions. DenStream and CluStream have a similar

linear complexity and time penalty, however, it is shown in section 5.2 that the675

penalty is lower for CEDAS. MR-Stream has penalty of nDH for dense data

space rendering it more suitable to low dimensional sparse data, particularly

when considered with the memory requirements.
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6.6. Decay Time and the Number of Micro-Clusters

The proposed algorithm has a linear time penalty related to the number of680

micro-clusters. This is common to all two stage clustering techniques, including

those alternatives discussed previously. In cases where the data is fairly static

in the data space this has little relevance, however, if the data sample are con-

tinuously drifting through the data space there is a direct relationship between

the speed of drift and the number of micro-clusters. Thus, in the worst case,685

there is a linear relationship between the decay time and the processing time.

In practice data streams that drift at such a high rate are likely to be rare and

may require a different type of analysis in any case. In the case of fairly static

data the number of micro-cluster will vary little and no time penalty results

from an increase in decay time.690

6.7. Anomalies, Drift and Time

Sections 5.2.2 and 5.3 discuss the ability of the proposed algorithm to cope

with drift and anomaly detection in real data streams. In both these sections

CEDAS proved capable of accurately detecting anomalies within the defined

time periods demonstrating possible applications in network security and atmo-695

spheric science research. The results in section 5.2.2 demonstrate how CEDAS

could be used to automate detection across multiple dimensions that cannot

be easily visualised, whereas Section 5.3 presents a visualization for primary

interpretation by the user. In Section 7 some possible techniques are briefly

discussed to place a numerical measure of the cluster information.700

6.8. General Conclusions

Clustering of Evolving Data Streams into Arbitrary Shapes has been demon-

strated to be a robust and accurate technique with linear complexity across both

data stream size and data stream dimensionality. It is a fully online technique

providing constant and immediate access to the clustering results. The tech-705

niques has been applied to real life datasets and shown to produce useful incites

into evolving data streams.
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7. Future Work

The work presented in this paper demonstrates the ability of the proposed

technique to accurately cluster data from evolving data streams, however, no710

analysis of these clusters is considered. Proposed future work could consider

quantitative methods for measuring the clustering results. Well established

shape factors such as circularity, solidity or waviness etc may provide insight

into the changing relationship between clusters over time. Macro-clusters are

agglomerations of micro-clusters which suggests fractal analysis [29]. Providing715

some measure of the location, spread, size and shape of the macro-clusters can

provide information towards a quantitative assessment of the similarity and

connection between the internal cluster space and difference measure to other

macro-clusters.

Appendix A. Pseudo Code720

Cµi - micro-cluster ′i′ data structure containing:

Cµi (Centre) - vector ∈ IR with length = number of dimensions, micro-

cluster ′i′ centre co-ordinates

Cµi (Count) - integer, number of data samples that have been assigned to

micro-cluster ′i′725

Cµi (Macro) - integer, micro-cluster ′i′ macro-cluster membership

Cµi (Energy) - Energy ∈ IR, current value of assigned to micro-cluster ′i′

Cµi (Siblings) - vector of integers, list of ′Sibling′ micro-clusters linked to

micro-cluster ′i′

Cµ for all the above, but without subscript refers to all micro-clusters730

di - ∈ IR, distances from new data sample to the micro-cluster centre i

dmin - ∈ IR, distance to the nearest micro-cluster centre
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{D} - vector of integers, set of indices of dead micro-clusters. (For the

decay process described here this is a vector of length 1).

Decay - ∈ IR, rate at which Cµi (Energy) is reduced735

G - temporary variable for re-assigning macro-cluster numbers

i - integer, index value

Nc - integer, number of micro-clusters

r0 - ∈ IR, micro-cluster radius, user input

x - vector ∈ IR with length = number of dimensions, current data sample740

u - integer, index of updated or created micro-cluster

Input: x, R0

Initialization:

1: while x 6= {} do

2: if Cµ = ∅ then745

3: Cµ1 (Centre) = S

4: Cµ1 (Count) = 1

5: Cµ1 (Macro) = 1

6: Cµ1 (Energy) = 1

7: Cµ1 (Sibling) = 1750

8: Nc = Nc + 1

9: u = Nc

10: end if

Update Micro-Cluster :

11: u = 0755

12: dmin = ||x− Cµi (Centre)||min
13: if dmin < r0 then

14: i = argminKj=1{dj}

15: Cµi (Energy) = 1
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16: Cµi (Count) = Cµi (Count) + 1760

17: if di(min) >
R0

2 then

18: u = i

19: Cµu =
(Cµu (Count)−1)×C

µ
u+S

Cmu
u(Count)

20: end if

21: else765

22: Cµ1 (Centre) = x

23: Cµ1 (Count) = 1

24: Cµ1 (Macro) = 1

25: Cµ1 (Energy) = 1

26: Cµ1 (Sibling) = 1770

27: Nc = Nc + 1

28: end if

Kill Clusters:

29: Ci(Energy) = Ci(Energy)−Decay

30: {D} = find(Ci(Energy) < 0)775

31: if {D} = ∅ then

32: return

33: else

34: for all Di:

35: delete CµDi780

36: delete C(Sibling) = Di

37: Cµi (Sibling) > Di = Ci(Sibling)− 1

38: Nc = Nc − 1

39: end if

40: if u 6= 0 then785

41: dui = ||Cµu (Centre)− Cµi (Centre)||

42: {j} = find(Duj < (1.5× r0))

43: Cµu (Sibling) = Cµu (Sibling) ∪ {j}

44: G = min{CCu(Sibling)(Macro)}

45: Cµu (Macro) = G790

36



46: CµCu(Sibling)(Macro) = G

47: end if

Housekeeping: Reassign Macro Cluster Numbers

48: Cµ(Macro) = 0

49: G = 0795

50: for i = 1toNc do

51: if Ci(Macro) = 0 then

52: G = G+ 1

53: Cµi (Macro) = G

54: Cµ
Cµ
i
(Sibling)

= G800

55: else

56: Cµ
Cµ
i
(Sibling)

= Cµi (Macro)

57: end if

58: end for

59: end while805
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