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ABSTRACT
In this paper we challenge the common evaluation practices
used for Virtual Machine (VM) consolidation, such as sim-
ulation and small testbeds, which fail to capture the fun-
damental trade-off between energy consumption and perfor-
mance. We identify a number of over-simplifying assump-
tions which are typically made about the energy consumption
and performance characteristics of modern networked sys-
tems. In response, we describe how more accurate models
for data-center systems can be designed and used in order
to create an evaluation framework that allows the more reli-
able exploration of the energy-performance trade-off for VM
consolidation strategies.

Categories and Subject Descriptors
C.4 [Performance of systems]: Modeling techniques

General Terms
Performance, Theory

Keywords
Virtualization, consolidation, energy modeling, emulation.

1. INTRODUCTION
In the last decade many large-scale services have migrated

to cloud infrastructures, creating an equal increase in virtu-
alized data centers. Data center infrastructures have be-
come one of the largest and fastest growing consumers of
electricity globally, surpassing the aviation industry both in
terms of energy consumption and CO2 emissions [5]. To put
this into perspective, in 2013, U.S. data center’s electricity
consumption (91 TWh) was sufficient to power twice the
number of all the households in New York City [22]. As
a result, ICT energy consumption accounts for 3% of the
global consumption and has an annual increase of ≈4.3%
[29]. Consequently, there is a growing interest to improve
energy efficiency in data center’s design, with obvious envi-
ronmental and financial motives.

A first approach towards building greener ICT was the de-
velopment of energy proportional computing and networking
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infrastructures [6, 17]. This effort took advantage of en-
ergy efficient hardware, like CPU voltage/frequency scaling
and sleep states, low-power Ethernet and power-efficient OS-
level resource management (e.g. on demand Linux governor
and PowerNap [7]). However, even at low utilization loads,
in the order of 10%, the server power consumption can reach
up to 50% of its peak demand [10], allowing room for fur-
ther improvement. To further reduce energy consumption,
research has developed workload consolidation algorithms
which concentrate computation into a subset of the data
center infrastructures.

Host and OS virtualization have enabled additional power
consolidation techniques, providing support for virtual ma-
chine (VM) migration. VM migration allows seamless relo-
cation of VMs between physical hosts, with relatively short
down-times. VM migration allows service providers to dy-
namically aggregate load on fewer physical hosts, while ful-
filling a minimum guaranteed level of performance, expressed
in the form of service-level-agreements (SLA). VM consoli-
dation strategies commonly transform the placement algo-
rithm into an optimization problem, using as constraints
the estimated VM resource requirements and the available
resources of the physical hosts. The evaluation of the pro-
posed approximation algorithms is typically based on cus-
tom simulation frameworks [3, 12] or small-scale testbeds [9,
24, 28].

In this paper we challenge common practices used to de-
sign and evaluate VM consolidation strategies. We argue
that a set of important system parameters is commonly ig-
nored in favor of simplicity, namely:

• the dynamic energy consumption profiles of servers;
• the complexity in resource sharing between VMs in

a single host (e.g., CPU, disk, network, memory), as
well as the overhead of virtualization;

• the performance characteristics of the underlying net-
work infrastructure (topology, speed, configuration)
and the employed network protocols;

• the cost of live VM migration in terms of energy,
network traffic and application-level performance;

• complex performance behaviors of networked systems
observed in large scale deployments.

This paper argues that underestimating the impact of the
aforementioned system properties in the evaluation of VM
consolidation algorithms introduces significant inaccuracies.
Hence, existing algorithms make relocation decisions based
on inaccurate performance predictions for co-hosted VMs,
as well as they overlook migration overheads. In addition,



common evaluation methods not only ignore these proper-
ties, but also rely on very small scale experiments.

In an effort to address the aforementioned issues, we point
out how existing solutions can be reused, combined and
extended in order to create an evaluation framework that
allows the reliable exploration of the energy-performance
trade-offs in VM consolidation strategies. Such a solution
is particularly useful, since only few researchers can access
a real-sized data center infrastructure for experimentation.

We initially present related work in the field (§ 2) and then
highlight that many potential pitfalls exist in the methods
used to model application performance and energy require-
ments of data center servers (§ 3). Furthermore, we propose
a new methodology that is funded on two components: (i)
the measurement-based characterization of physical servers,
and (ii) the emulation-based estimation of the load offered
by VMs and management tools to the host servers under
different configurations (§ 4). Finally, we conclude by sum-
marizing this work (§ 5).

2. BACKGROUND AND RELATED WORK
VMs placement in a single data center infrastructure is

a compound problem with multiple competing objectives.
Firstly, consolidation aims to compress workloads into as
few physical hosts as possible, and either turn off or leave
idle the unused part of the infrastructure. During this step,
the objective is to maximize the energy saving, at the cost
of performance. Second, the opposite to the process of con-
solidation, is the elimination of performance hot-spots (e.g.,
Sandpiper [28]), which spreads VMs across the data center,
increasing the active physical hosts. Lastly, a load-balancing
process can run in the background and relocate VMs aim-
ing to smoothen the load variations across the infrastruc-
ture, and therefore, better absorb the performance spikes of
bursty workloads.

Usually hot-spot removal and consolidation are used to-
gether, hand by hand. The two functionalities have opposing
goals, but are equally necessary to achieve an equilibrium
between performance and energy saving. Specifically, this is
the most important aspect in designing greener data center
solutions: making informed decisions about the application-
level performance which is sacrificed in trade for lower en-
ergy consumption, and vice versa.

Energy-efficient VM placement algorithms: The en-
ergy/performance trade-off is controlled by the VM place-
ment algorithms, which implement the decision-making logic
for the followings:

• Choose a source host with average utilization above,
in case of hotspot removal, or below, in a case of con-
solidation, a threshold.

• Choose a VM from the selected host based on the
resources it requires. For example, during the evacua-
tion of an under-utilized server, VMs are ordered based
on their resource requirements.

• Choose a destination host with sufficient available
resources (e.g., disk, network, CPU, memory) meeting
the minimum performance guarantees for the applica-
tion which runs in the guest (determined from SLAs).

A significant number of research efforts reduce this deci-
sion making process into a vectorized bin packing problem
[3, 20]. VMs are represented as n-dimensional vectors of es-
timated resource demands, while each host is represented as

an n-dimensional vector of available resources. VM place-
ment aims to fulfill the minimum guaranteed resources, as
specified through service SLAs, while minimizing the num-
ber of active hosts. Since the vector bin packing problem
is NP-hard, a number of near-optimal solutions have been
proposed using a variety of heuristics [26, 27] (e.g., first-
fit decreasing, best-fit decreasing, worst-fit decreasing, etc.).
Alternative approaches towards the placement problem use
genetic algorithms [16] and dynamic programming [12].

Unfortunately, the common methodology for evaluating
the above solutions is simulation, which abstracts impor-
tant properties of virtualized systems, discussed in detail in
Section 3. As a result their applicability on real data center
environments is limited. This observation is also supported
by studies like [26, 28], that approach the problem from a
more practical perspective. Other works like [9, 24], eval-
uate their systems using small testbeds with no more that
few tens of machines, insufficient to capture the scalability
of the resulting system in real-sized environments.

3. COMMON PITFALLS OF
VM PLACEMENT ALGORITHMS

The VM migration decisions use as inputs: (i) the resource
requirements of a VM (given an SLA), (ii) the expected load
increase in the destination host, (iii) the available resources
of the physical hosts, and (iv) the expected level of per-
formance for VM applications. The main argument of this
paper states that the majority of the existing works does
not accurately capture the aforementioned decision criteria.
Relevant research efforts typically employ simplistic models
to decide the placement of VMs and they are evaluated us-
ing model simulation or small-scale testbeds. As a result,
they fail to capture important aspects of application-level
performance and energy consumption.

In this section we elaborate on the aforementioned evalu-
ation and design pitfalls, related to the specific properties of
large-scale virtualized data centers which tend to ignore: (i)
the dynamic of the underlying resource sharing model and
the migration cost (§ 3.1) and (ii) the energy consumption
profiles under mixed workloads (§ 3.2).

3.1 Shared virtualized resources and
application-level performance

Cloud providers have been refrained from using consolida-
tion algorithms on their infrastructures mainly because it is
not easy to predict the performance penalties on hosted ap-
plications. While the overhead of virtualization has been sig-
nificantly reduced (e.g., paravirtualized I/O, hardware sup-
port), the interaction model with a host’s physical resources
has become more complex. For example, Wang el al. [11],
exemplify some interesting artifacts in the perceived CPU
and network resource availability by guest OS. Such perfor-
mance variability has been measured to significantly affect
large-scale time-sensitive services [15].

This performance variability is a direct consequence of
the resource sharing functionality implementation between
co-hosted VMs. Nevertheless, most of the heuristics used
in VM placement algorithms, assume that the virtualiza-
tion platforms provide perfect performance isolation. Hence,
they suggest that VM resource utilization, and consequently
application-level performance, remains the same across dif-
ferent hosts.

The above assumption, however, is very simplistic and can



lead to incorrect VM placement decisions. The amount of
the resources which each VM receives depends on three fac-
tors: the scheduling policy of the hypervisor, the available
resources of the hosting platform, and the activity of co-
hosted VMs. None of these three factors can be considered
static, and moreover, they exhibit a high degree of inter-
dependencies. For example, consider many highly-utilized
VMs collocated on a server, each receiving a fair share of the
CPU time. On a lower utilized server, the same VM would
almost certainly reach a higher peak. Therefore, a typical
hot spot removal algorithm would underestimate the peak
CPU requirements of a VM, and could potentially make the
sub-optimal decisions.

Another over-simplifying assumption which is commonly
made, is the inference of application SLA violations, based
on VM or host-level utilization metrics. First, the poor re-
source sharing models which are used during evaluation, do
not provide accurate utilization estimations. Second, it is
fairly unreliable to employ only the CPU utilization to infer
SLA violations, since this approach is susceptible to false
negatives, especially for bursty workloads. This problem
has been pointed out by Wood et al. in [28], via extensive
experiments.

Finally, the available network resources is another impor-
tant factor which also determines the application-level per-
formance. This includes the available bandwidth at the end-
hosts (including the CPU overheads of packet processing),
the employed protocols, the topology of the data center’s
networking infrastructure, the speed of physical links, and
the scheduling algorithms at intermediate devices. None of
these important characteristics are sufficiently replicated in
the majority of the VM consolidation studies. The simu-
lation frameworks use an over-simplified model for the net-
work, and the small testbeds fail to reproduce the complex
behaviors observed in large scale networked systems.

3.2 Accuracy of energy consumption models
Many of the VM placement approaches, covered in § 2,

provide only gross insights on the achieved energy saving,
when we aggregate the workload on fewer hosts. The achieved
accuracy in the estimated savings is usually restricted at the
level of accounting the number of powered on servers over
the unit of time. This reduced level of detail does not allow
users to effectively evaluate the energy-performance trade-
off.

Some research efforts, like [2, 3], consider the use of a more
detailed energy model. Effectively, they are based on the ob-
servation that CPU utilization is highly correlated with the
overall energy consumption of a server. As a result, they use
linear models which are based on current utilization levels to
estimate the energy consumption. Normally, these models
have to be fitted separately for each type of server. While
this effort is certainly a step towards the right direction, it
has known limitations. First, it ignores the impact of the
CPU DVFS features and does not account the energy con-
sumption of other hardware components like disk, memory
and network.

The importance of the above facts has been pointed out
by several studies (e.g., [1, 14]), showing that depending
on the characteristics of a workload, the level of CPU-load
alone might not be a very accurate metric. This is especially
true for storage and network devices which implement en-
ergy saving features, and therefore have also a wide dynamic

energy range. Second, following the discussion of the previ-
ous section, system utilization is not modeled accurately in
the simulation frameworks which are commonly used to eval-
uate VM consolidation algorithms. Hence, the input which
is used in their linear energy/CPU-utilization models, is not
reliable.

Ideally, we would like to have evaluation frameworks which
can replicate with good accuracy the load of different system
components over time, generated from custom scenarios of
migrating VMs who execute a given workload. Thereafter,
accurate heuristic models could be applied to estimate the
energy consumption of servers using as input the collected
measurements for the CPU-load as well as the disk, the net-
work and the memory I/O operations.

3.3 Live VM migration does not come for free
Live VM migration is a first-class citizen in the data cen-

ter energy consolidation problem because of the unprece-
dented level of flexibility it offers. While useful, it is a com-
plex process with two main approaches. In the pre-copy [4]
method, the hypervisor first copies all memory pages of the
VM to the destination host, and while they change (become
“dirty”) they are re-copied until the dirtying rate slows down.
The second method, post-copy [19], performs the inverse
functionality; VM is first suspended temporarily, a minimal
state (e.g., CPU state, registers) is transferred and then re-
sumed at the target host. At the same time memory pages
are pushed to the target (pre-paging), and whenever a page
fault occurs the missing page is fetched from the source on
demand.

From the above it is clear that the live migration of a VM,
introduces overheads at multiple levels. First, it increases
the CPU load on the management domain of both the source
and the target host, second it creates extra network traffic,
and finally it temporarily degrades the performance of the
applications which run on the migrating VM. The intensity
of these overheads heavily depend on the characteristics of
the applications, the offered workload, and on the available
CPU and network resources. These facts have been pointed
out from multiple empirical studies, like [13] and [23].

Unfortunately, very few of the existing VM consolida-
tion studies take into consideration the aforementioned over-
heads. Even those who do (e.g., [2, 3]), they use analytical
models which not only are simplistic, but they also rely on
input which is not accurately replicable by the employed
validation frameworks. As a result, such models commonly
overlook the cost of migration (especially at scale) resulting
in highly over-optimistic and unrealistic results. Also, the
inability of these approaches to capture the effects of VM
migration on resources utilization, further incommodes the
study of the energy-performance trade-off for different VM
placement algorithms.

4. PROPOSED METHODOLOGY
The objective of this section is to address the main points

of criticism on past works by proposing practical solutions
which provide an environment to faithfully evaluate energy-
efficient VM placement algorithms. An accurate and effec-
tive experimentation framework should incorporate a unified
model for the available resources of a virtualized server, the
demands of hosted applications, the properties of network
infrastructure and the energy consumption of devices based
on the load. Ultimately, such a solution will allow users



to benchmark their ideas and efficiently explore the impor-
tant trade-off between energy saving and application-level
performance penalties.

Motivated by recent efforts in the faithful replication of
experiments for networked systems (§ 4.1), we elaborate on
ways to integrate energy consumption models (§ 4.2).

4.1 Data-center modeling platform
In the recent years, a resurging interest has surfaced aim-

ing for reproducible network experimentation. This has
given rise in the development of generic network experimen-
tation platforms, which allow seamless replication of large
scale systems. Mininet [21] was a pioneering tool, offering
an emulation platform with support for dense topologies,
using Linux containers and network namespaces. Overcom-
ing the limitations of simulation, users could now reuse real
applications and OS components to recreate topologies and
experiment scenarios via a script-based automation inter-
face. A more elaborate effort aiming to overcome Mininet’s
poor scalability, is SELENA [8]. SELENA’s design employs
time dilation as a way to improve the experimental fidelity
at scale while maintaining reproducibility across different
platforms.

Hereafter, we describe how SELENA can be used and ex-
tended, forming the basis for a data center modeling plat-
form which fulfills the requirement set in the previous sec-
tion. It should be emphasized that the proposed approach is
not tightly coupled with SELENA and it is compatible with
other emulation frameworks which rely on virtualization and
provide resource management primitives.
Reusing applications, emulating VMs: SELENA is a
Xen-based1 emulation framework, thus supports the re-use
of unmodified code and common OSes. VMs can be con-
figured to form virtual networks (in-a-box) and recreate the
properties of real networks (e.g., topology, link speed, la-
tency) and real hosts (e.g., OS configuration, network pro-
tocols, resources, etc.). Nonetheless, SELENA employs a
one-VM-per-host mapping, which can limit effective scaling
of data center-scale experiments. This can be addressed by
abstracting a subset of less important data center nodes, us-
ing more lightweight hybrid approach, such as using Mininet
inside a time-dilated SELENA VM. A second extension is
to create an abstraction to represent the entity of a VM
instance which runs on a server. Instead of using a heavy-
weight approach such as nested virtualization, this can be
implemented by using containers inside SELENA VMs. Fi-
nally, a new mechanism for grouping VMs on hosts, hosts on
racks and racks in pods, is also a useful feature, particularly
during the design of VM placement controllers.
Fidelity at scale: In order to faithfully emulate faster and
larger computer networks, SELENA’s technique of time-
dilation transparently slows down the passage of time for
guest operating systems. It effectively virtualizes the avail-
ability of hosting hardware resources and therefore, allows
the recreation of scenarios with increased I/O and compu-
tational demands. Users can directly control the trade-off
between fidelity and running-time via intuitive tuning knobs.
To further improve SELENA’s scalability, we could explore
zero-copy inter-guest network connectivity [18] and also the
distributed execution of experiments across multiple hosts.
Emulating resource utilization: SELENA relies on the

1http://www.xenproject.org/

Xen hypervisor which provides by design the primitives to
finely share host resources between VMs. We identify four
key virtual resources: CPU cycles, memory, disk and net-
work I/O operations. The hypervisor allocates CPU re-
sources between VMs using the credit2 scheduler, a highly
flexible and tunable scheduler. Memory resources are ab-
stracted by the hypervisor using a grant table access con-
trol mechanism, which enables accurate memory allocation
to each VM. The support of the Xen hypervisor for disk
I/O rate control is limited to simple inter-VM prioritiza-
tion. Nevertheless, Linux cgroups (via the blkio controller),
allows users to regulate the rate of I/O operations allowed in
a unit of time. In a Xen environment, a user can use cgroups
based throttling from inside the guests. Network I/O rates
can be controlled either from the VIF QoS primitives offered
by the Xen netback driver, or from within the guest by using
tc on a virtual interface’s egress queue.

Using the above mechanisms, we can determine with a
greater level of control the maximum amount of resources
which are available to a VM, or to groups of VMs. The lat-
ter is particularly useful because many VMs will be grouped
under the common abstraction of a host, hence, they need to
share a common pool of resources. The maximum amount of
available resources to each group, will be equal to the avail-
able resources of the real system’s components we want to
model. Time dilation, on the other hand, will help to virtu-
ally scale the resources of the emulation machine, and sup-
port larger experiments. With the described extensions and
using different workloads, the utilization levels of emulated
resources, and the performance of applications (running in-
side the regulated VMs), will approximate reality with sub-
stantially higher accuracy in comparison to a simulation.
Emulating the cost of live VM migration: Multiple
studies have tried to analyze and model the impact of live
VM migration in terms of application-perceived performance
degradation, network resource requirements [23], as well as
energy cost [13], migration duration and down time of a mi-
grating VM [25]. Since our experiments execute on top of a
single Xen hypervisor instance, it is not possible neither scal-
able to perform actual migrations. Therefore, our intention
is to emulate the process of a pre-copy live VM migration
inside SELENA in a lightweight way.

In order to emulate a migration, we can employ any of the
aforementioned models and given the dirty page rate of a mi-
grating VM, we can artificially recreate during runtime the
followings: (i) the migration-specific network traffic volume,
(ii) the VM downtime, and (iii) the extra CPU load. Since
the resources which are available to each VM are regulated to
match the real system (see above), the proposed methodol-
ogy will accurately replicate the extra load introduced from
migration. Consequently, the impact of a migration on the
running application’s performance will also be captured.

4.2 A system-load based energy model
Earlier measurement-based evaluations [1, 14] show that

there is a huge impact of the energy management/enhancement
techniques on system power requirements. So far, this im-
pact has not been addressed by VM migration or consolida-
tion strategies. As an example, by reproducing the method-
ology proposed in [14] in our testbed, we show in Figure 1
the power consumption of the CPU of one of our data cen-
ter servers, quorum-102, versus the load expressed in active
cycles per second, namely ACPS. In the figure we observe



 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0  2.5  5  7.5  10  12.5  15  17.5  20  22.5  25  27.5

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
s
]

Load [ACPS x10
6
]

cores=1, freq=1.2GHz
cores=1, freq=2.41GHz
cores=12, freq=1.2GHz

cores=12, freq=2.41GHz

Figure 1: CPU performance bounds of quorum-102.

that changing the number of cores and the CPU frequency
produces rather different power consumption levels. More
specifically, the authors of [14] have shown that energy con-
sumption and efficiency of each server component can be
accurately estimated upon a statistical characterization of
baseline server energy consumption plus CPU utilization,
disk I/O activity, and the network activity. Since CPU loads
due to different server components operation are additive,
the resulting total energy consumption of the server is the
sum of the individual components’ consumption, as experi-
mentally shown in [14].

Therefore, collecting activity patterns of VMs is key to es-
timate the energy behavior of a modeled real system under
VM consolidation and live migration strategy operation. As
we discussed in § 3.2, to attain a reliable estimate of energy
requirements for data center servers we need to obtain us-
age information for individual components. Indeed, we can
access such information through the Xen hypervisor, which
maintains fine grain accounting of the usage statistics for all
computational resources: i.e., CPU, disk I/O, memory I/O,
and network I/O. However, it is important and challenging,
to calibrate those statistics so that they refer to the load of
a real system and not to the virtual load of the VM. This,
though, is guaranteed through the resource utilization em-
ulation model, discussed in § 4.1. Furthermore, such statis-
tics can be emulated and used as input to a utilization-based
energy estimation model. Like in [14], such model can be
built using measurements from real server-grade machines,
whereas emulation can be suitably used to estimate the load.
Energy model details. For the implementation of the
utilization-based energy model, we propose to use the method-
ology described in [14]. We need however to extend it to
include estimates for memory energy utilization (which was
included in the baseline component in that work), and build
an energy-performance model. Specifically, by collecting
power and activity measurements for CPU, disk, memory
and network of real servers, we can generate accurate func-
tions which approximate the energy requirements.

Our per-component energy model depends on a few ac-
tivity parameters, which are the active CPU cycles per sec-
ond, number of read/write disk and memory operations, and
network utilization. Moreover, the effect of multicore pro-
cessors and DVFS is not to be neglected, as can be seen in
Figure 1, since both characteristics yields high variability in
the energy consumption. Finally, we also consider a residual
baseline energy consumption, which represents the activity
of the server when no user-level process is active.

In what follows, since it is possible to characterize the
CPU activity due to each different server component, we
remove the energy consumption due to CPU activity in the
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Figure 2: Energy consumption of our servers in a
cloud-based scenario.

estimate of each component’s energy consumption. Thereby,
energy requirements can be expressed as follows:

Ecpu = ηcpu(T, f, c, a), (1)

Edisk = ηdr(T, f, c, cs, nc) + ηdw(T, f, c, cs, nc), (2)

Enet = ηin(T, f, c, s, l) + ηout(T, f, c, s, l), (3)

Emem = ηmr(T, f, c, cs, nc) + ηmw(T, f, c, cs, nc); (4)

where ηj , ∀j ∈ {cpu, dr, dw, in, out,mr,mw} is the efficiency
of the CPU, the disk while reading or writing, the network
while receiving or sending and the memory while reading or
writing, respectively. T defines the duration of the exper-
iment, f is the system frequency, c is the amount of cores
used by the system, a is the CPU activity expressed in ac-
tive cycles per second, cs is the chunk size used to read/write
from/to the disk or memory, nc is the total number of chunks
which has to be read/written from/to the disk or memory,
s corresponds to the packet size flowing over the network
and l is the network load. In the above model, we consider
that network transmission and reception are independent
processes. The same applies for the electro-mechanical op-
eration of disks for read and write. Similarly, the behavior of
memory is independent for read and write events. Since we
do not account for CPU active cycles in all those events (the
cost of CPU cycles is computed separately), we can safely
assume that read and write operations of memory, disk and
network are “energy-orthogonal”, i.e., they do not share en-
ergy consumption, and therefore we can simply sum up the
respective energy consumptions for each component.

The resulting total energy estimation of the system is:

Etotal = Ebase + Ecpu + Edisk + Enet + Emem (5)

where Ei, ∀i ∈ {total, base, cpu, disk, net,mem}, corresponds
to the energy requirements for the whole system, the base-
line, the CPU, disk, network and memory respectively.

However, to be able to use the model in the evaluation
of VMs consolidation and/or migration strategies, we also
need to characterize the load of VMs on different machines,
possibly using different hardware and configurations. There-
fore, we need to emulate the activity of VMs and VM man-
agement software to estimate the correct amount of load
caused to the host machines (e.g., before and after migra-
tion). With SELENA, all we need to do is to use the set
of counters for usage statistics regarding the activity of the
VMs and“feed”those statistics to the model described above.
In addition, statistics of VMs which are grouped under the
same “server” virtual entity (implemented as a common pool
of resources), should be aggregated.
Preliminary evaluation. To evaluate the validity of the



presented energy model, we set up a small scale experiment.
We measure two similar servers, quorum-101 and quorum-

102, for consistency reasons. The servers are Dell Pow-
erEdge R320 (12th generation) with Intel Xeon E5-2430L
V2 2.4GHz (6 cores), two hard drives, a 100 GB SSD and
a 1 TB HDD, two Gigabit and two 10 Gigabit ports. We
have installed the Linux Ubuntu Server 14.04LTS and also a
recent version of the Xen hypervisor (v4.4).To monitor the
instantaneous power consumption of the system we use the
Sentry CDUs2. We collect our measurements every second
via the snmp protocol and we store them locally.

In Figure 2 we show some preliminary results creating
workloads on virtual machines. In the figure we can see
the estimation of the per-component energy consumption,
expressed in Joules, for one of our servers considering the
effect of DVFS. For the evaluation we use a cloud scenario
with two servers, each one hosting a VM. In this scenario
we run two Hadoop applications, WordCount and Pagerank
algorithm, and we keep track of the instantaneous power
consumption and the overall utilization of CPU, disk and
network for two different frequencies of the server. As can
be seen in the figure, the two applications have different
utilization profiles for individual system components. It is
worth mentioning that we have simplified our model, includ-
ing the effect of memory within the other components (but
it will be considered separately in later stages of our study).

Importing the utilization results into the model we esti-
mate the accumulated energy consumption for the server
which runs the application. From the power measurements
we can extract the actual energy needs and finally, we ob-
serve that the estimation error is on average about 4% and
never worse than 10%. We expect that this error can be
reduced when we properly include the memory behavior.

5. CONCLUSION
This paper challenged common evaluation practices em-

ployed in past VM consolidation studies, such as simulation
and small testbeds, which fail to capture the fundamental
properties of real systems. Specifically, we identified a se-
ries of over-simplifying assumptions regarding energy con-
sumption and performance characteristics with respect to
virtualized infrastructures. To address this problem, we
described the design of an evaluation framework which in-
corporates more accurate models for data center systems
and their available resources. In addition, we proposed a
measurement-based power characterization methodology for
servers, which accepts as input the load of individual hard-
ware components and estimates the energy consumption for
different server configurations. The integration of the two
solutions, allows us to achieve the envisioned goal of explor-
ing the energy-performance trade-off in VM consolidation.
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