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Abstract

This paper presents a multisine approach for trajectory optimization based on information gain,
with distance and orientation sensing to known beacons. It addresses the problem of active sensing, i.e.
the selection of a robot motion or sequence of motions, which make the robot arrive in its desired goal
configuration (position and orientation) with maximum accuracy, given the available sensor information.
The optimal trajectory is parameterized as a linear combination of sinusoidal functions. An appropriate
optimality criterion is selected which takes into account various requirements (e.g. maximum accuracy
and minimum time). Several constraints can be formulated, e.g. with respect to collision avoidance. The
optimal trajectory is then determined by numerical optimization techniques. The approach is applicable to
both nonholonomic and holonomic robots. Its effectiveness is illustrated here for a nonholonomic wheeled
mobile robot (WMR) in an environment with and without obstacles.
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1 Motivation

Many applications in mobile robotics have sophisticated motion requirements. A successful task completion
is often related to reaching quite accurately a goal while processing noisy sensor data under uncertainties.
This refers to active sensing, the main question of which is: “What motion should the robot execute in
order to gain (the most accurate) information about its environment?”. Active sensing is a challenging
topic for different reasons. The solution depends on the optimality criterion. This should be such that
maximum information is extracted from the sensor data. At the same time computationally efficient sensor
data processing is needed for the on-line execution of the generated motions. Obstacle avoidance adds an
another level of difficulty [12]. Uncertainty (e.g. in the model and sensor data) call for stochastic estimation
and control techniques. The nonlinear character of the problem adds further difficulty to this. Finally, for
nonholonomic systems nonholonomic constraints have to be taken into account, so that the generated path
from the admissible configuration space corresponds to a feasible trajectory [22], [13].

This paper introduces an approach for trajectory optimization based on information gain. A mobile
robot is moving in the Cartesian plane starting from an initial configuration to a desired goal configuration
which has to be reached with maximum accuracy. While moving around, the robot can make use of
uncertain sensor data to improve the estimate of its configuration (position and orientation). The sensor data
consist of distance and orientation measured with respect to one or more beacons. Hence, the optimization
problem consists in finding the path that minimizes the uncertainty of the configuration estimate at the goal
configuration.

Between two points there are an infinite number of trajectories. The key idea is to represent them by
a parameterized family of possible trajectories. This way the infinite-dimensional optimization problem
is reduced to a finite-dimensional, parameterized optimization problem. We propose to use multisine
trajectories: deviations from a nominal trajectory are represented by linear combinations of a limited
number of sines. Active sensing is considered as a global optimization problem subject to constraints.



Several optimization criteria are possible, such as entropy [23] or a weighted trace of the covariance matriz,
respectively the Fisher information matriz at the final configuration estimate. The covariance matrix results
from a stochastic estimator: standard linear Kalman filter (KF) [11], extended KF [1], unscented KF [10],
or other Kalman filtering technique.

One feature of our approach is that the optimal trajectory is generated as a linear combination of sine
functions. This parameterization is appealing because: 1) the complete path can be characterized by a
limited number of parameters; 2) all primitives satisfy, at least partially, the boundary conditions in initial
and goal configuration; 3) the harmonic content of the motion, hence the maximum maneuvering frequency,
is explicitly kept under control. On the other hand, the disadvantage — as opposed to e.g. splines — is that
it is a global parameterization. In particular, modifications of the path, e.g. to avoid an obstacle, have a
global effect. Multisines are rich excitation signals which are often used in experimental system identification
[24, 6]. And in fact, system identification and active sensing can be considered as one and the same problem.
Multisines have also proved to offer advantages for nonholonomic control systems (they assure smooth
stabilization), which could be interesting if tracking control is added later on to the estimation problem
considered here. It should be noted that within our approach other parameterizations are also possible.

1.1 Related Work

Active sensing corresponds to a constrained optimization of a multi-objective criterion with respect to a
sequence of actions. Different kinds of problems arise and the methods for their solution can be classified
in two groups: i) the sequence of actions is restricted to a parametrized trajectory or trajectory represented
by some functions [4], [12], [18], [2], [3]. To this group belongs the approach, proposed in the present paper.
In [7] the choice of “where to look next” is treated as a special case of an optimal experiment design.
Minimization of the weighted trace of the estimation error covariance matrix is chosen as a criterion to
perform the next motion. i) The sequence of actions is not reduced to a parametrized trajectory. Then
Markov decision processes (MDPs) and partially observable MDPs optimization problems need to be solved
[25, 5]. The robot actions and the environment are modeled in a statistical framework. Solutions proposed
in [21, 5, 8] are based on minimization of a probabilistic metric (entropy). The method developed in [5]
is applied under positional uncertainty; the approach proposed here is suitable under both positional and
orientation uncertainty.

The rest of the paper is structured as follows. Section 2 describes the motion and measurement models
of the considered nonholonomic WMR. The proposed approach for trajectory optimization is introduced
in Section 3. Simulation studies illustrating its effectiveness are presented in Section 4. Finally Section 5
discusses the results and Section 6 summarizes the conclusions.

2 Motion and Measurement Models

The following active sensing task is considered. The WMR starting from a configuration (position and
orientation) (ws,ys,¢s)? is required to reach a desired goal configuration (z4,y,, ¢,)?7 moving around a
known, nominal reference trajectory (. k,¥r k. d)T,k)T. k represents the discrete time index. The actually
executed, modified trajectory is determined by (zx, vk, ¢x)”. The WMR generates its actions by processing
measurement data originating from one or more beacons.

The vehicle motion is described by the model [17]

Tht1 oy, + v ATcos(pr + i) N,k
Ukt1 | = | wo ForATsin(dr + ) | + | nye |,
Pr+1 o + 22T sinyy, N,k

where xp and gy, denote the WMR position coordinates with respect to a fixed frame (Fig. 1), and ¢
represents the orientation angle with respect to the x axis. They form the state vector &3, = (2, yx, é1)7 . L
is the wheel base (the distance between the front steering wheel and the axis of the driving wheels), AT is the
sampling time, and 1, = (Nx.k, ek, No.k). Tepresents the process noise. The WMR is controlled through a
demanded velocity vy and a direction of travel vy, i.e. the control vector is uy = (vg,¥%)?. Due to physical
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Figure 1: WMR coordinates

constraints, both the velocity ’Uk, and the angle ¢, cannot exceed boundary values, namely vy € [0, Vmaz],
Yk € [~ Vmaz Ymaz] (Ymaz < 5 ). The WMR can only perform forward motions.

The vehicle is equipped with a sensor measuring the range r; and bearing 85 to a beacon B, located at
known coordinates, (z5,yg)”. The observation equation for the beacon is given by [17]

()RR )

TB— Tk

where &, = (5,.7k,§97;€)T is the observation noise. The measurement vector is further denoted by z; =
(rk, Or)T. The noise vectors 1, and &, are assumed Gaussian, zero mean, mutually uncorrelated, with
covariances @, and Ry, respectively.

The relative location of the beacon with respect to the moving WMR is of paramount importance for the
active sensing task, for providing accurate and informative sensor data. If more (np) beacons are available,
the observation equation acquires the form

=2 =2
Tk (Z1, k)ylt (91,k) Eri ik
01 1 arctaun(ml k) — dx €0,k
: = + )
TTLB,k,‘ \/(an7 ) + (ynBv ) ngka
Onp arctan (=2 y”B . ) Ok £,k
where Z;, , =B, — Tk, Uik =YB, — Yk, ¢=1,...,np and with a measurement covariance matrix

Ry = diag{R1 x,...,Rnpr}-

3 Trajectory Optimization

Consider the case when the optimization starts from a known, nominal reference trajectory between the
starting and the goal configuration.

The problem of determining the ‘best’ trajectory g* with respect to an optimality criterion J can be
formulated as to find

q* = argmin(J) (1)
subject to constraints

lci k] < ¢ithr (2)
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Figure 2: Lateral Deviation I,

where the variables ¢; , i = 1,...,r are bounded by threshold values ¢; ¢, (e.g. maximal lateral deviation
from a reference trajectory, maximal velocity and acceleration, maximal steering angle, minimum distance
to obstacles, etc.). The optimality criterion to be minimized is a measure of the accuracy of the robot’s
configuration estimate.

The approach is based on a parametrization of the class

Q= 9(p), pEP, (3)

of harmonic functions, where p is a vector of parameters obeying to preset physical constraints. With IV the
number of harmonic functions, the new (modified) robot trajectory is generated on the basis of the reference
one by the lateral deviation Iy (lateral is the orthogonal robot motion deviation from the reference trajectory
in y direction, Fig. 2) as a linear superposition

N
Zk = Z Aisin(i’ﬂ'sr—’k), (4)
i=1

Sy total

of sinusoids, the amplitudes A; of which are constants, s, j is the path length up to instant k, s, ;otq; is the
total path length, and r refers to the reference trajectory. Expressed as a function of the time, the lateral
deviation is

ti

ttotal

N
Iy = Z A;sin(im ), (5)
i=1

where tj, is the current time, and t;,4; is a preset time for reaching the goal configuration.
Clearly, the problem described above can be cast into the problem of trajectory generation of a system
described by equations of the form

Tpyr = [Tk, wp, M) (6)

Zpy1 = M@ry1,€pp1) (7)

with f and h nonlinear functions. In this formulation active sensing is a global optimization problem (on the
whole robot trajectory) with a criterion to be minimized

J= rglin{alu +asxC} (8)
ik

under constraints (2). U characterizes the expected uncertainty to be minimized (or information extraction

and accuracy to be maximized), C is the cost part. As U could be chosen any information function, e.g. the

entropy, or a scalar function of the covariance matrix of the estimated states. Information functions (like

the logarithm of the determinant of the covariance matrix and the maximum eigenvalue of the covariance

matrix) possess the properties of nonnegativity, concavity, etc. that make them suitable for ranking [7].
Here U is in the form

U = trace(W P), )

where P is the covariance matrix of the estimated states (at the goal configuration), W is a weighting
matrix; trace(-) denotes the matrix trace; a; and as above are dimensionless positive weighting constants,
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giving different weight to the information and cost terms of J. C accounts for losses such as time, traveled
distance, etc. Here C is assumed to be the relative time

C= ttotal/tr,totala (10)

where tiotq; is the total time for reaching the goal configuration on the modified trajectory versus the
respective time ¢, totq; Over the reference trajectory. Minimization of J with respect to parameters of
the modified trajectories guarantees trajectories with minimal uncertainty bounds. Within a statistical
framework the covariance matrix P represents an information criterion. The weighting matrix W is presented
as a product of a normalizing matrix IN, and a scaling matrix M, W = M N. The normalizing matrix
N = diag{1/c?}, 1/03,...,02}, (n is the state vector dimension) transforms the criterion into a measure
which is invariant to different physical units. o;, i = 1,...,n, are assumed here to be the standard deviations
at the goal configuration on the reference trajectory. Depending on the particular task, they could be chosen
otherwise. The scaling matrix M = diag{m1,...,m,} gives different weights to the separate terms of the
trace. Without loss of generality, it is assumed that >\ ; m; = n. The criterion J is a dimensionless scalar.
As ‘good’ are considered trajectories which at the goal configuration have U € [0,n], i.e. less than for the
reference trajectory.

When importance is given to accuracy of both the goal configuration, and the intermediate configurations,
the optimization could be performed by averaging over an interval [k,, k),

ky

1
U= p— kzzk trace(Wy Py,). (11)

The o;, participating in the normalizing matrix IN could then be the average standard deviations with
averaging performed on the whole reference trajectory or over a part of it. Other choices of o; are possible,
depending on the task.

For the considered WMR the constraints (2) are of the form

‘lkl < lma:va (12)
Vk é Umazx, (13)
ch\ < '(/)maa:a (14)
‘Qbend - ¢g| < ¢error7 (15)
do_j,k Z do_j,miny (16)

where [, is the lateral deviation of the optimal trajectory from the reference one, l,,,4, is the maximum allowed
lateral deviation. A constraint is introduced for the goal orientation angle, ¢,. The WMR orientation angle
®ena at the end of the path should be close to ¢4, with accuracy, preset by an acceptable error ¢erpor-
The distance d,, r = \/(xk — Z0,5)% + (Yk — Yo,j)? from the WMR to the j-th obstacle, j = 1,2,...,n0ps
(xo,; and y, ; are the obstacle coordinates, ngps is the number of obstacles) should be bigger than a preset
threshold d%min. Other constraints could also be taken into account in a similar way, e.g. about the rate
of change of vy, the rate of change of ¢, or some of the constraints could be omitted, [15, 16]. The problem
of trajectory optimization without a reference trajectory can be solved in a similar way to the case with a
reference trajectory.

4 Simulation Studies

This Section presents simulation results showing the performance of the multisine approach.

The state estimation used throughout the present paper is based on the Unscented Kalman Filter (UKF)
[10], [26]. The unscented transformation approximates a probability distribution based on a small number
of deterministically chosen test points, referred to as sigma points which have the same first, second and
possibly higher moments, as the estimate. The UKF is implemented here in its form with an augmented
state vector (a concatenation of the states and the noises) [26]. The sigma points and their weights are
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calculated using the more accurate scaled Unscented Transform [9]. It does not require linearization, nor
explicit calculation of Jacobians and Hessians and it is numerically stable due to its factorization-based form.

Ezample 1. The WMR is moving in the presence of a reference trajectory straight line in an obstacle-
free environment between starting and goal configurations, respectively x5 = (1 m,15 m, 0 deg)T, x, =
(12.84 m, 15 m, 0 deg)” with a constant velocity v = 0.12 m/sec. The beacon is located in a point with
coordinates g = 9 m, yg = 19 m. It is assumed that v,,4. = 0.2 m/sec, Ymar = 60 deg, lpae = 3 m and
L=05m.

The UKF is implemented with the following parameters, recommendable for systems with Gaussian noises
and of order n = 3 (so that Kk +n =3) [9, 26] : « =1, 8 = 2, kK = 0. The sigma points and their weights
are calculated using the Scaled Unscented Transformation [9], [26]. The initial state estimate vector and
covariance matrix are: o9 = (1 m,15m,0 deg)T and Py = diag{0.3 m?,0.3 m?, 0.0025 deg®}. The system
and measurement noise covariance matrices are taken as

Q,, = diag{10=% m?, 107% m?, 107* deg?},

Ry, = diag{0.0004d;? m?, 100 deg?},

where dj is the distance from the WMR to the beacon. Measured distances dj are used for simulating
the measurements, estimated values are used in the UKF (like in [20]). The covariance matrix Py, of the
estimation error x; — & defines an uncertainty ellipsoid (xy — 1) Pr(x1, — &) = 1 that, with respect to
the positions only represents a confidence ellipse, characterizing the performance of the active sensing.

The reference trajectory and modified trajectory, generated with different numbers of sinusoids N (in
accordance with (4), criterion (8) with terms (9) and (10) ) together with the uncertainty ellipses are shown
on Fig. 3.

y position, [m]
P B [ =
g 9 o N 0
[ (=2} [ ~ [ 0 [ ©
>

[y
o
T

14.51

14 ‘ ‘ ‘ ‘
0 2 4 6 . 8 10 12
X position, [m]

Figure 3: Trajectories, generated with (9) and (10), and different number N of sine terms. Uncertainty
ellipses plotted around the trajectories.

The evolution in time of the weighted covariance trace is presented in Fig. 4. The multisine approach
gives faster increase of the information at the beginning of the modified trajectories, than those on the
straight-line. Constraints (12)—(15) are taken into account. The normalizing and scaling matrices in
the criterion J are chosen in the form: N = diag{1/03,1/0;,1/03}, M = I, where I denotes the
identity matrix. The generated optimal trajectory is required to have a value of J that is smaller than
the straight line trajectory and for this reason it is advisable to choose the elements of the normalizing
matrix IN equal to the standard deviations of P on the straight line (at the final time step), namely
o2 = 0.152 mg,ag = 0.152 mZ,a?5 = 2.162 deg?, computed by setting N = 0. The WMR should finish
with an error for the orientation angle less than ¢¢,ror = 1 deg. The bigger N is, the smaller the value of
J is. Table 1 contains the values of U, C, and J (computed with a; = 1, ag = 0.1). As is obvious from
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Figure 4: Evolution of trace(W P) in time

Table 1: Results with one beacon, U in the form (9)

(v u | c ] J ]
0 [[3.00]1.00]3.10
2 [ 2.92]1.09 [3.03
| 3 ][2.90]1.10 | 3.01 |
| 5 [ 2.81]1.23]2.93 ]|

Fig. 3, Fig. 4 and Table 1 the most accurate results at the goal configuration for ¢ and J are obtained
with N = 5 sinusoids. Better accuracy is provided with bigger N, at the cost of increased computational
load. Nevertheless, even N = 3 terms results in an improved final accuracy. The constrained optimization
is performed using the “FMINCON” function of the Optimization Toolbox of MATLAB [14]. This function
makes use of a sequential quadratic programming method.

Other amplitudes and trajectories have been generated using the criterion (11), by averaging within the
interval [30sec, 100sec]. The normalization is performed with respect to the average standard deviations
squared of the straight line. The trajectories are shown in Fig. 5, the average information criterion (11) is
given in Table 2. For comparison, criterion (9) is also computed (with the obtained optimal amplitudes)
and given in Fig. 6. Evidently, the general performance is considerably improved compared to the reference
trajectory by using (11).

Results with two beacons are given in Fig. 7 and in Table 3. All initial conditions are the same as in the
one beacon experiment, including the beacon position. Additionally another beacon is added. The plotted
ellipses are 30 uncertainty ellipses. The standard deviations squared (at the end point on the straight line)

Table 2: Results with one beacon, U of the form (11)

(N ¥ [ ¢ | J |
0 [[3.00]1.00]3.10
2 [ 2.54[1.11]2.65
| 3 ][ 2.41]1.15 | 2.53 |
| 5 [[2.26 | 1.20 | 2.38 |
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Figure 5: Trajectories, generated with (11) and (10)
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Figure 6: Evolution of U, (9), for N =0,2,3,5

are: 02 = 0.0122 m?, 02 = 0.0122m?2, G‘; = 0.30% deg?. Obviously, more beacons placed in an appropriate way
to cover well the whole area lead to considerable accuracy improvement. On the other side the computational
load is augmented proportionally to the number of beacons.

Example 2. This example illustrates the approach application for a more complex trajectory. It is a point-
to-point optimization. The initial and goal configurations are respectively xs = (1 m, 15 m, —155 deg)?,
xg, = (8 m,18 m,—50 deg)T, keeping the same initial conditions and constants as in Ezample 1. Because
the starting and goal orientation angle differ considerably, the WMR trajectory is generated as composed of
two arcs and a straight line between them. There are few groups of possible robot trajectories, composed of
straight line segments and tangential circular lines [19]. Two circles are passing through the starting point
with a radius R = L/sin(¥mas). At the beginning the WMR performs a turn with a maximum steering
angle, after that it moves on the trajectory, around the straight line connecting the two tangential points,
and finally it turns again on a circular arc. So, this more complex trajectory is generated similarly to the
straight line case, incorporating two extra circular segments. In general, to find the best path for each group
of trajectories an optimization is performed and between the optimized trajectories (possible combinations
of arcs and straight lines) could be chosen the one with the smallest criterion value. Fig. 8 shows one such
generated trajectory, with criterion & in the form (9). A trajectory generated in the presence of a known
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Figure 7: Trajectories, generated with (9) and (10)

Table 3: Results with two beacons, U of the form (9)

N Uu C J

0 | 3.00 | 1.00 | 3.10
2 2.74 | 1.17 | 2.86
3 2.72 |1.24 | 2.84
5 2.59 | 1.34 | 2.72

= I P P
o ~ © ©
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Figure 8: WMR trajectory

10

obstacle, with allowed threshold distance between the WMR and the obstacle’s surface do min = 0.45 m is
plotted in Fig. 9. As it can be seen from Fig. 9, the constraint (16) for the distance to the obstacle is

respected.

The computation of the control parameters (steering angle and linear velocity) for the different types of

trajectories is given in the Appendiz.
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Figure 9: Trajectory in the presence of an obstacle

Discussion

Throughout the paper a multisine approach for trajectory optimization has been developed and applied to
a nonholonomic WMR. As it has been shown the generated trajectories are smooth, always obeying the
position constraints at the starting and goal configurations. The approach has been applied with landmarks
(beacons) with known positions. Nevertheless, generalization for the case of unknown beacons’ positions is
straightforward. The beacons’ positions then should be estimated together with the system states like in
[20]. By active sensing the robot is approaching to the beacons (obvious from the results in the examples),
that is a distinction from a movement over a reference trajectory.

A performance criterion has been defined and applied to trajectory optimization. The criterion for active
sensing has the following features:

it incorporates information and cost parts;
the influence of the different factors is decoupled;

the information term characterizes information extraction and accuracy at the goal configuration, which
the WMR is required to reach;

it is snwariant to physical units and is formulated in an appropriate way to gain information from the
measurements;

the cost term represents the ratio between the final time for reaching the goal configuration and the
respective time for moving over the modified trajectory;

observing the criterion, conclusions can be drawn about the accuracy, as well as the convergence rate
of the optimization procedure;

it provides an optimization over the whole trajectory (global optimization procedure);
the criterion is minimized, while satisfying nonholonomic, physical and boundary constraints;
the presence of known obstacles is accounted by adding additional constraints to the optimization;

the simulation results obtained even with small number of sine functions, N = 3, show very good
accuracy at the goal configuration;

the approach has been applied to a nonholonomic WMR, but it is general and can be implemented to
other systems. It is suitable both for simple trajectories (line segments or arcs), and more complex
ones. Its effectiveness has been demonstrated through simulation studies. A next step for future work
is to implement it in a real experimental set up.
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6 Conclusions

This paper introduces an information-based approach for trajectory optimization of a robot moving between
two configurations. The solution is searched within a preset class of functions, namely those of the harmonics.
The optimal trajectory represents a linear combination of sine functions. The problem has been examined as
a global optimization subject to constraints. Both cases with and without reference trajectory, with one and
more sensors have been considered. It is shown that more sensors located in an appropriate place improve
considerably the accuracy. The effectiveness of the approach is illustrated by different simulation results
with a WMR in environment with and without obstacles.
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A Appendix. Computation of the control parameters for an
arbitrary reference trajectory

Given the reference trajectory, (Z,k,Yrk, drk)?, the angle B between its tangent and the x axis is (Fig. 1)

Ay,
= arctan —— Al
O = arctan Aty (A1)
and the angle aj between the reference and modified trajectory then is
Ayk
= arctan —— — . A2
ay, = arctan Aoy % (A.2)

The modified trajectory is provided by equations

Tk = Ty + lcos(Br + g), (A.3)
. T
Yk = Yrk T lkSZTL(ﬂk + 5) (A4)
y G

N modified trajectory
reference trajectory

Figure 10: WMR trajectory

The steering angle is obtained from

Vi = ¢ — ax — P, (A.5)

and the linear velocity from

1 / 2 2 2 Ali
Vi = f Asrﬁk + Alk = v?",k + W, (A.G)
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where Asr,k = Srk — Sr,k—1, Alk = lk — lk—1~
In particular, for a straight line reference trajectory, not parallel to x axis (Fig. 10), we get Bx = const,
xy # const, Y, = 0. For for a straight line reference trajectory, parallel to = axis, 8; = 0, x, = const,

/l/)r,k =0.
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