
 

Biospectroscopy Investigations  

Into   

Cervical Cytology 

A dissertation submitted in fulfilment of the requirements for the degree of  

Master of Research in Biological Sciences  

By 

 

Diane Elizabeth Halliwell 

MA, BSc. Hons. Applied Biochemistry 

 

 

Centre for Biophotonics  

Lancaster Environment Centre 

June 2016



 

 

 

‘My biggest fear in life is to be forgotten.’ 

Eva Perón 

First Lady of Argentina (1946 – 1952). 

Died from cervical cancer, aged just 33.  

  

 

 

 

 

  



 

i 

 

Table of contents 

Declaration ................................................................................................................... vii 

Acknowledgements ....................................................................................................viii 

Abbreviations ............................................................................................................... ix 

Abstract ......................................................................................................................... xi 

1 Introduction ........................................................................................................... 1 

1.1 The global burden of cervical cancer ............................................................................ 1 

1.2 UK burden of cervical cancer ........................................................................................ 2 

1.2.1 Incidence ............................................................................................................ 2 

1.2.2 Mortality ............................................................................................................ 5 

1.2.3 Economic costs ................................................................................................... 6 

1.3 Structure and function of the cervix ............................................................................. 7 

1.3.1 Squamous epithelium ........................................................................................ 8 

1.3.2 Glandular epithelium ....................................................................................... 10 

1.3.3 The transformation zone ................................................................................. 11 

1.4 Causes of cervical cancer ............................................................................................ 13 

1.5 The HPV genome ......................................................................................................... 16 

1.6 Mechanism of HPV carcinogenesis ............................................................................. 17 

1.6.1 HPV life cycle .................................................................................................... 17 

1.7 Classification of cervical intraepithelial neoplasia ...................................................... 20 

1.7.1 Cervical squamous intraepithelial neoplasia (CIN) .......................................... 20 

1.7.2 Classification of cervical glandular intraepithelial neoplasia (CGIN) ............... 24 

1.8 Conventional screening for cervical cancer ................................................................ 27 

1.8.1 National policy ................................................................................................. 27 

1.8.2 The Papanicolaou smear .................................................................................. 28 

1.8.3 Liquid-based cytology ...................................................................................... 29 

1.8.4 HPV testing ....................................................................................................... 30 

1.9 Alternative screening approaches .............................................................................. 31 

1.9.1 Infrared biospectroscopy ................................................................................. 31 



 

ii 

 

1.9.1.1 Infrared-active and infrared-inactive molecules .......................................... 31 

1.9.1.2 Vibrational modes of biological materials ................................................... 34 

1.9.1.3 Biospectroscopy and cancer studies ............................................................ 36 

1.9.1.4 Spectral acquisition ...................................................................................... 37 

1.9.1.5 Pre-processing of raw spectra ...................................................................... 37 

1.9.1.6 Multivariate analysis .................................................................................... 40 

1.9.1.7 Principal Component Analysis and Linear Discriminant Analysis................. 40 

1.9.2 Alternative infrared techniques ........................................................................... 41 

1.9.2.1 Scanning near field optical microscopy coupled to free electron laser ....... 41 

1.10 Treatment approaches for pre-malignant CIN ............................................................. 45 

1.11 Aims and objectives ..................................................................................................... 47 

1.11.1 Project One objective ........................................................................................... 48 

1.11.2 Project Two objective........................................................................................... 48 

2 Project One ............................................................................................................. 49 

3 Project Two ............................................................................................................ 50 

4 General Discussion ................................................................................................ 51 

4.1 Project One: Tracking the impact of excisional treatment ............................................. 51 

4.1.1 Sample size and variable selection ...................................................................... 52 

4.1.2 The mechanisms of underlying patient characteristics ....................................... 54 

4.1.2.1 Current smoking habit.................................................................................. 56 

4.1.2.2 Parity ............................................................................................................ 57 

4.1.2.3 Menstrual phase .......................................................................................... 59 

4.1.2.4 Combined oral contraceptive use ................................................................ 63 

4.1.2.5 Other factors: genetics of exfoliated cells and cervical tissue ..................... 64 



 

iii 

 

4.1.3 Summary .......................................................................................................... 65 

4.2 Project Two: The future role of SNOM-IR-FEL imaging in cancer studies ................... 67 

4.3 Future work: meta-analysis ........................................................................................ 71 

4.4 Conclusions ................................................................................................................. 72 

References (paper, web pages and images) ............................................................... 74 

Appendix A: Supplementary analyses ...................................................................... 91 

Appendix B: National Research Ethics Service Committee Approval  

(London – Fulham; Approval number 13/LO/0126) ............................................... 99 

Appendix C: Laboratory protocol (preparation of cervical LBC  

samples for ATR-FTIR spectroscopy) .................................................................... 104 

Appendix D: Laboratory protocol (preparation of cervical LBC  

samples for SNOM-IR-FEL imaging) ..................................................................... 110 

Appendix E: Poster presented at The International Society for  

Clinical Spectroscopy (CLIRSPEC) ........................................................................ 113 



 

iv 

 

Table of tables  

Table 1. Number of new cases, crude and European age-standardised (AS) incidence 

rates per 100,000 population, females, UK (reproduced from Cancer Research UK: 

Incidence, 2015). ........................................................................................................................ 2 

Table 2. Number of deaths, crude and European age-standardised (AS) mortality rates 

per 100,000 population, females, UK (reproduced from Cancer Research UK 

[Mortality], 2014a). .................................................................................................................... 5 

Table 3. The BAC/NHSCSP and Bethesda systems for classification of CIN. ................... 21 

Table 4. The BAC/NHSCSP and Bethesda systems for classification of glandular 

neoplasia ................................................................................................................................... 25 

Table 5. Calculating the degrees of freedom for polyatomic molecules. ............................ 35 

Table 6. Tentative assignment of important biomarkers. .................................................... 36 

Table 7. The options for pre-processing of spectra and application of PCA-LDA 

following pre-processing. ........................................................................................................ 38 

Table 8. Additional analyses considered complementary to the current dimensional 

analyses. .................................................................................................................................... 54 

Table 9. Associated function of predominant genes expressed during  

the menstrual cycle. ................................................................................................................. 61 

Table 10. Number of patients (spectra) collected and stored on the  

Biophotonics Server. ................................................................................................................ 71 

Supplementary tables 

Supplementary Table 1. Patient characteristics and Fisher’s exact test for  

significance between characteristics. ..................................................................................... 93 

Supplementary Table 2. Patient characteristics for the dimensional groups  

(Comparison 3). ....................................................................................................................... 94 

  



 

vii 

 

Table of figures  

Figure 1. Glandular cells of the endocervix and squamous cells of the ectocervix. ............ 8 

Figure 2. The differing layers of stratified squamous epithelium (x 20). ............................. 9 

Figure 3. Unstained normal squamous epithelial cells of the superficial layer of the 

ectocervix. .................................................................................................................................. 9 

Figure 4. Glandular (columnar) cells of the endocervix canal (x 40). ................................ 10 

Figure 5. The transformation zone of the cervix located at the ectocervix  

nd endocervix. ......................................................................................................................... 12 

Figure 6. HPV types and associated diseases. ....................................................................... 14 

Figure 7. Structure of HPV. ................................................................................................... 16 

Figure 8. HPV interaction of cell checkpoints, especially G2.............................................. 19 

Figure 9. Normal cervical cells (left) and koliocytes (right). ............................................... 22 

Figure 10. Low-grade dyskaryosis (Bethesda classification: LSIL). .................................. 22 

Figure 11. (1) High-grade dyskaryosis (Bethesda classification: HSIL);  

changes visible at the surface of the cervix (2). .................................................................... 23 

Figure 12. Types of cervical intraepithelial neoplasia (CIN). ............................................. 24 

Figure 13. Adenocarcinoma Stage 1B1: mixed grade are often present. ........................... 26 

Figure 14. An example of a LBC slide (left) and a conventional Pap  

cytology slide (right) after staining and mounting. .............................................................. 30 

Figure 15. The electromagnetic spectrum. ............................................................................ 32 

Figure 16. Potential changes in the dipole moments of a heteronuclear molecule. ........... 33 

Figure 17. An example of an IR-inactive molecule. ............................................................. 33 

Figure 18. Potential vibrations that can contribute to infrared spectra. ........................... 34 

Figure 19. Schematic of SNOM-IR-FEL set-up used to conduct Project Two. ................. 44 

Figure 20. The LLETZ procedure. ........................................................................................ 46 



 

viii 

 

Figure 21. The appearance of the external ostium in A: nulliparous women;  

B: parous women. .................................................................................................................... 58 

Figure 22. Phases of the menstrual cycle. ............................................................................. 60 

Figure 23. Patient characteristics that may affect excisional outcomes determined in 

Project One. ............................................................................................................................. 67 

Figure 24. Topography of normal cells: ‘dolphin-nosed’ cells considered to be tip 

artefacts .................................................................................................................................... 69 

Figure 25. Topography of adenocarcinoma cells: ‘dolphin-nosed’ cells considered  

to be tip artefacts ..................................................................................................................... 69 

Supplementary figures 

Supplementary Figure 1. PCA-LDA scores plot of ATR-FTIR spectra with regards to 

LD1/Absorbance (a.u.) per wavenumber: treated by smoking status. ............................... 95 

Supplementary Figure 2. PCA-LDA scores plot of ATR-FTIR spectra with regards to 

LD1/Absorbance (a.u.) per wavenumber: treated by parity. .............................................. 96 

Supplementary Figure 3. PCA-LDA scores plot of ATR-FTIR spectra with regards to 

LD1/Absorbance (a.u.) per wavenumber: treated by menstrual phase. ............................ 97 

Supplementary Figure 4. PCA-LDA scores plot of ATR-FTIR spectra with regards to 

LD1/Absorbance (a.u.) per wavenumber: treated by COCP status. .................................. 98 

 

 

 

  

 



 

vii 

 

Declaration  

I, Diane Elizabeth Halliwell, confirm that the work presented in this dissertation is my 

own work and has not been submitted in substantially the same form for the award of 

a higher degree elsewhere. Those sections, which have been published with co-authors 

or where data has been derived from other sources, have been clearly identified within 

this dissertation.  

All images used in this dissertation are displayed with their correct attribution and 

include images released into the Public Domain; those purchased under license; 

images used from the Microsoft Office Clip Art & Images Library and used in 

accordance with the Microsoft Office license agreement 

(http://img.labnol.org/di/microsoft-office-license.pdf); images derived from 

WikiMedia Commons and used in accordance with the Creative Commons licence 

agreements (https://wiki.creativecommons.org/wiki/4.0); images used with the 

permission of the owning organisation; images used under the fair use for educational 

and research purposes; and author-created images, where I exert my rights as creator.  

For further information, please consult UK Intellectual Property Office; available at: 

https://www.gov.uk/guidance/exceptions-to-copyright.

http://img.labnol.org/di/microsoft-office-license.pdf
https://wiki.creativecommons.org/wiki/4.0
https://www.gov.uk/guidance/exceptions-to-copyright


 

viii 

 

Acknowledgements  

I would like to express my deepest gratitude to my supervisor Professor Francis 

(‘Frank’) L. Martin, whose continued support, advice and guidance has been 

invaluable throughout this research project. Throughout my time at Lancaster 

University, I have been indebted to my colleagues who provided vital expertise and 

support, especially Dr Georgios Theophilou, Dr Holly Butler and Dr Kelly Heys. I 

would like to extend a special thanks to Dr Maria Kyrgiou at Imperial College, 

London for her patience, collaboration and sharing her valuable experience. My 

gratitude also goes to collaborators from the Physics Department, University of 

Liverpool and Daresbury Laboratory, Warrington for their kind assistance during 

experimental time on the A.L.I.C.E accelerator (Accelerators and Lasers in Combined 

Experiments). Finally, I would like to thank my husband, Paul, who allowed me the 

space, time and finances to start my great adventure. 



 

ix 

 

Abbreviations 

Abbreviation Meaning 

AFM Atomic force microscopy 

A.L.I.C.E ‘ALICE’ Accelerators and Lasers in Combined Experiments 

AS Age-standardised 

ASC-H Atypical squamous cells that cannot exclude high-
grade intraepithelial lesions 

ASCUS Atypical squamous cells of undetermined significance 

ATR-FTIR spectroscopy Attenuated total reflectance/reflection Fourier-
transform infrared spectroscopy 

BSCC British Society Clinical Cytology 

CIN Cervical intraepithelial neoplasia 

CLIRSPEC The International Society for Clinical Spectroscopy  

COCP Combined oral contraceptive pill 

DNA Deoxyribonucleic acid 

EGFR Epidermal growth factor receptor 

FDA Food and Drug Administration 

FSH Follicle Stimulating Hormone 

FTIR Fourier-transform infrared 

HG-CGIN (or HGCGIN) High-grade cervical glandular intraepithelial neoplasia 

HIV Human immunodeficiency virus 

HPV Human papillomavirus 

HSIL High-grade intraepithelial lesion 

ICC Invasive cervical cancer 

IEC Independent Ethics Committee 

IR Infrared 

IRAC International Agency for Research on Cancer 

IR-FEL Infrared free electron laser 

ISD Information Services Division  



 

x 

 

IUD Intrauterine device 

KS Kennard-Stone 

LBC Liquid-based cytology 

LCL Lower confidence limit 

LCR Long control region 

LDA Linear Discriminant Analysis  

LH Luteinizing hormone 

LG-CGIN (or LGCGIN) Low-grade cervical glandular intraepithelial neoplasia 

LLETZ Large loop excision of the transformation zone 

LSIL Low-grade intraepithelial lesion 

MIB-1 Mindbomb E3 ubiquitin protein ligase 1 

NA Not applicable  

NASA National Aeronautics and Space Administration  

NCI National Cancer Institute  

NCIN National Cancer Intelligence Network 

NHS National Health Service 

NHSCSP National Health Service Cervical Screening 
Programme 

Pap test Papanicolaou test 

PCA Principal Component Analysis  

PCA-LDA Principal Component Analysis coupled to Linear 
Discriminant Analysis 

POP Progesterone-only pill 

pRb Protein retinoblastoma  

r.p.m Revolutions per minute 

SCC Squamous cell carcinoma 

SD Standard deviation 

SNOM-IR-FEL Scanning near-field optical microscopy coupled to an 
infrared free electron laser 

SPA Successive Projections Algorithm  



 

xi 

 

UCL Upper confidence limit 

URR Upstream regulatory region 

UK United Kingdom 

USD United States Dollars 

WHO World Health Organisation 

 



 

xi 

 

Abstract 

Local treatment for cervical intra-epithelial neoplasia (CIN) involves the removal of 

the affected part of the tissue and is >95% effective in preventing re-invasive disease. 

However, removal of part of the cervix is linked to significant adverse sequelae, 

including preterm birth; with cone depth and radicality of treatment correlating to the 

frequency and severity of adverse events. Since pre-treatment cervix length vary 

amongst women, the percentage of cervix excised may correlate more accurately to 

risk than absolute dimensions. Attenuated total reflectance, Fourier-transform infra-

red (ATR-FTIR) spectroscopy detected that treatment for CIN significantly alters the 

biochemical fingerprint in the cervix, compared with women who have not had 

treatment; this is due to the excision of cervical tissue rather than a disease controlling 

effect. However, the spectra did not correlate to the cone depth or proportion of 

cervical length excised. Post-hoc analyses of patient characteristics found that spectral 

absorbance was different for treated women according to whether they were 

current/non-smokers; nulliparous/parous; by luteal/follicular phase; and by combined 

oral contraceptive pill use; these patient characteristics are likely to have affected the 

excisional outcomes. As traditional IR techniques are limited by the effect of 

diffraction of ~3 µm to 30 µm, we assessed the potential of scanning near-field optical 

microscopy in combination with an IR free electron laser (SNOM-IR-FEL), in 

determining the biophysical properties of abnormal cervical cells. SNOM-IR-FEL is 

able to distinguish between normal and various grades of cervical abnormalities at 

designated wavelengths associated with DNA, amides I and II and lipids, at spatial 

resolutions below the diffraction limit (≥0.2 µm). 
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1 Introduction 

1.1 The global burden of cervical cancer 

In 2012, around 528,000 new cases of cervical cancer were diagnosed, ranking it the 

fourth most common cancer in women globally after breast, colorectal, and lung 

cancers, and the second most common cancer in developing countries (World Health 

Organization [WHO], 2015; Ferlay et al., 2013a). In Europe, cervical cancer is the 

sixth most common cancer in females with approximately 58,300 new cases in 2012 

and around 24,400 deaths, with Romania having the highest World age-standardised 

rates of incidence and Switzerland the lowest (Cancer Research UK, 2015). Whilst 

immunisation and screening programs have reduced morbidity and mortality in 

developed regions, the global mortality rate remains high at 52%, with 85% of the 

270, 000 deaths each year occurring in developing countries (WHO, 2015).  

The incidence of cervical cancer varies widely by country. High risk regions 

(affecting more than 30 women in every 100, 000 women) include Eastern Africa 

(43%), Melanesia (33%), Southern and Middle Africa (32% and 31%, respectively); 

low risk regions include Australia and New Zealand (6%) and Western Asia (4%); 

(Ferlay et al., 2013a). Almost one fifth of all new cases are diagnosed in India (WHO, 

2013). The increased incidence and high mortality in high risk regions is due to the 

absence of widely available, good quality screening services (Vaccarella et al., 2013). 

With little or no access to care, the death rate was estimated in 2008 to contribute to 



 

2 

 

more than 10% of the economic loss in the developing world (American Cancer 

Society and LIVESTRONG, 2010).  

Cervical cancer is a preventable and treatable disease with an estimated 1.55 million 

women still alive 5 years after diagnosis in 2008 (Anolue et al., 2014; Ferlay et al., 

2008). The Worldwide healthcare costs per year have been valued at 3.2 billion USD, 

with medication costs estimated at 865.4 million USD, and nonmedical costs at 703.6 

million USD (Muka et al., 2015). Absenteeism and the inability to work result in a 

global productivity loss estimated at 1.7 million USD per year. By 2030, cervical 

cancer is expected to kill more than 474, 000 women per year (American Cancer 

Society, 2013), significantly increasing the global economic burden.   

1.2 UK burden of cervical cancer 

1.2.1 Incidence 

In the UK, around 9 new cases per 100,000 females were diagnosed in 2012 (Table 1); 

(Cancer Research UK, 2015).  

 England Wales Scotland Northern  
Ireland UK 

Cases 2482 174 295 93 3044 
Crude Rate 9.1 11.1 10.8 10.0 9.4 
AS Rate 9.3 11.5 10.9 10.2 9.5 
AS Rate - 95% 
LCL 8.9 9.8 9.6 8.1 9.2 

AS Rate - 95% 
UCL 9.6 13.2 12.1 12.2 9.9 

95% LCL and 95% UCL are the 95% lower and upper confidence limits around the AS Rate. AS: Age-

Standardised; LCL: Lower confidence limit; UCL: Upper confidence limit.  

Table 1. Number of new cases, crude and European age-standardised (AS) incidence rates per 

100,000 population, females, UK (reproduced from Cancer Research UK: Incidence, 2015). 
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Cervical cancer is the twelfth most common cancer in the UK with the age-

standardised rates being highest in Wales (Cancer Research UK, 2015). The incidence 

of cervical cancer varies widely by geographical region, with rates being lowest in 

South and East of England, and the highest rates being found in parts of Scotland, 

Northern Ireland and the North of England (Trent Cancer Registry; 2012; National 

Cancer Intelligence Network [NCIN], 2008). The differences may be linked to 

differences in sexual attitudes, an increased prevalence in smoking and higher parity 

at a younger age.  

The incidence of cervical cancer is strongly associated with two, age-specific peaks: 

19 new cases per 100,000 in women aged 25-29 years, and 12 new cases per 100,000 

in women aged 85-89 years (Cancer Research UK, 2015). The first peak is thought to 

be due to women becoming sexually active and subsequently infected with human 

Papillomavirus (HPV), an established risk factor for cervical cancer (Foley et al., 

2011). Between 2010 and 2012 in the UK, 78% of cervical cancers were diagnosed in 

25-64 year olds, with 11% of new cases diagnosed in women aged 75 years and over 

(Cancer Research UK, 2015).  

The reasons for the second peak in older women are not fully understood and may be 

a combination of factors, including a lack of knowledge of what causes cervical 

cancer and who can be affected, or late cytological changes that were not present 

earlier in life and not detected by earlier screening. Additionally, there is the 

perception that this cancer is a younger woman’s disease which promotes a drop off in 

attendance for screening in women aged 60+ years (Sherman et al., 2015). Other 

factors may include an immune system compromised by advancing age and where a 
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latent HPV infection suddenly becomes active, or the onset of other comorbidities and 

the use of associated medications needed to treat and control them.  

Over the last decade, the incidence of cervical cancer has decreased significantly 

overall due to the deployment of the UK’s national cervical screening programme in 

1988, with the lifetime risk of a new-born child developing cervical cancer at some 

point in their life being 1 in 139 (2010 estimate); (Cancer Research UK, 2015). 

However, although the incidence rates for women aged 25-34 initially decreased by 

35% between 1985 and 1987, and again between 2002 and 2004, increased rates of 

HPV infection and smoking prevalence in this age group has seen incidence rates rise 

by 52% (Trent Cancer Registry, 2012; Foley et al., 2011).    

Almost 76% of cervical cancers are reported as squamous cell carcinomas (SCC),  

10-15% are reported as adenocarcinoma (glandular lesions) and adenosquamous cell 

carcinomas (mixed glandular and squamous lesions), with the remaining cases being 

typed as poorly specified (Vizcaino et al., 1998). There is mounting evidence that the 

incidence of SCC is falling worldwide, whilst the incidence of adenocarcinoma is 

increasing, as is the risk of adenocarcinoma per population (Smith et al., 2000; 

Vizcaino et al., 2000; Vizcaino et al., 1998). These results suggest current cytology 

screening practices that were originally developed to identify squamous lesions are 

inadequate in the detection of adenocarcinomas.   

There is some evidence that the incidence of cervical cancer in England is associated 

with ethnicity, with age-standardised incidence rates for White and Black women 

ranging from 8.2 to 8.7 per 100,000 and 6.3 to 11.2 per 100,000, respectively; whilst 

the rates of cervical cancer in Asian women are significantly lower, ranging from 3.6 
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to 6.5 per 100,000 (NCIN and Cancer Research UK, 2009). These differences are 

likely to be caused by different cultural attitudes towards sex. 

1.2.2 Mortality 

In the UK, there were 3 deaths per 100,000 females due to cervical cancer in 2012, 

ranking it the 17th most common cancer death among females, with age-standardised 

mortality rates being highest in Scotland (Table 2); (Cancer Research UK, 2014a). 

  England Wales Scotland Northern 
Ireland UK 

Deaths 742 43 112 22 919 
Crude Rate 2.7 2.7 4.1 2.4 2.8 
AS Rate 2.1 2.1 3.2 2.2 2.2 
AS Rate - 95% LCL 2 1.4 2.6 1.3 2.1 
AS Rate - 95% UCL 2.3 2.7 3.8 3.1 2.4 

95% LCL and 95% UCL are the 95% lower and upper confidence limits around the AS Rate. AS:  

Age-Standardised; LCL: Lower confidence limit; UCL: Upper confidence limit. 

Table 2. Number of deaths, crude and European age-standardised (AS) mortality rates per 

100,000 population, females, UK (reproduced from Cancer Research UK [Mortality], 2014a).  

Mortality rates follow a similar pattern as for incidence and vary by health region. 

Rates are highest in the North of England and lowest in the South of England (NCIN, 

2005). During the period 2010-2012, more than 52% of deaths from cervical cancer 

occurred in women aged 25-64 years, and approximately 30% of deaths occurred in 

women aged 75 years and over (Cancer Research UK, 2014a). Mortality rates overall 

have decreased significantly following improvements to the national screening 

programme in the 1980’s which is estimated to prevent approximately 5,000 deaths 

each year (Peto et al., 2004). Survival rates at 1 and 5 years after diagnosis are 83% 

and 67%, respectively (Bate and Baker, 2015). 
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The significant increase in mortality rates for Scottish women is thought to be due to 

the continuing decline in the number of women participating in the cervical screening 

programme in Scotland, with 70.4% of women aged between 20-60 years attending in 

2014/15, continuing a 10-year fall in uptake since 2005/06, which had 78% 

participation (Information Services Division, Scotland, 2015). These figures suggest 

around 30% of Scottish women are at risk of developing cervical cancer. 

1.2.3 Economic costs 

The NHS spends around £21 million treating cervical cancer per year (2011), 

government loses over £9 million in tax revenue as a result of absenteeism and the 

inability to work, and the combined financial costs to women is approximately £14 

million, with a significant portion of these costs and losses associated with treating 

more advanced cervical cancers (Salter, 2014). Although the percentage of women 

aged 25-64 years in 2013/14 in England who had an adequate cervical screening test 

in the last 5 years was 77.8%, this was significantly lower (63.3%) for those aged 

between 25-29 years who are screened every 3 years (Screening and Immunisations 

team, Health & Social Care Information Centre, 2014), thus leaving a significant 

number of women with an increased risk of developing more serious cervical cancers.  

The reasons behind falling screen rates are varied, often contentious, and include 

difficulty in being able to fit screening attendance around work and family 

commitments; embarrassment; experience of discomfort during the collection of 

cervical cells; poor awareness of what screening is for; and extending services to hard-

to-reach groups such as immigrant and older women. Achieving a 100% screening 

uptake would reduce the incidence of more invasive cervical cancers, NHS costs 
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would fall by almost 50%, tax loses would fall to about a third, and total costs to 

women would fall by approximately 40% (Salter, 2014). Conversely, if national 

screening rates continue to fall to 70%, it is estimated that costs to the NHS alone 

would increase by another £6.5 million per year.   

1.3 Structure and function of the cervix 

The cervix is the tube-shaped opening to the uterus that protrudes into the vagina and 

plays a vital role in the overall reproductive health of women. The key functions of the 

cervix include permitting the passage of menstrual fluid, promoting fertility, and 

protecting the uterus, upper reproductive tract and a developing foetus from pathogens 

(Reproductive Health Technologies Project, 2000). The cervix is approximately 3-4 

cm long and 2.5 cm wide, although the size and shape of the cervix differs among 

women according to age, hormonal status, parity, pregnancy, and surgical treatment 

(Martyn et al., 2014; Mazouni et al., 2005; Pardo et al., 2003). The cervix is 

composed of two parts: the ectocervix is composed squamous epithelium, and the 

endocervix is composed of glandular (columnar) or mucin-secreting epithelium that 

produces mucin glycoproteins (Martyn et al., 2014); (Figure 1). 
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Bliss (Illustrator; source: National Cancer Institute), 2004 

Figure 1. Glandular cells of the endocervix and squamous cells of the ectocervix. 

1.3.1 Squamous epithelium  

The ectocervix is covered by 15-20 layers of glycogen-rich, stratified, non-

keratinizing cells which are opaque and pale pink in colour (International Agency for 

Research on Cancer [IRAC], 2016a). Native epithelium defines tissue that developed 

during embryonic life. Newly formed metaplastic tissue develops as a result of 

physiological influences, such as those experienced at puberty and during the early 

reproductive years. Age and menopausal status also affects the development of 

metaplastic epithelium. The histological makeup of squamous epithelium is composed 

of 4 cellular layers including the basal and parabasal cell layers, and the intermediate 

and superficial cell layers. The basal cells are attached to the basement membrane, and 

feature large nuclei suspended in very little cytoplasm. The membrane separates these 

cells from the stroma, which forms regular projections of papillae (Figure 2). 
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IRAC, 2016b 

Figure 2. The differing layers of stratified squamous epithelium (x 20). 

The basal cells divide, mature and are pushed upwards to form the parabasal layer 

(IRAC, 2016a). As this layer undergoes further maturation to form the intermediate 

layer, the cells become polygonal in shape and their nuclei smaller. Finally, these cells 

mature into flattened cells, with an abundance of cytoplasm containing pyknotic 

nuclei, where the chromatin has undergone irreversible condensation as it prepares for 

programmed cell death (apoptosis); (Figure 3).  

 

Halliwell, 2016a 

Figure 3. Unstained normal squamous epithelial cells of the superficial layer of the ectocervix.  
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The cells of the intermediate and superficial layers have plentiful glycogen, indicative 

of normal maturation and development. Abnormal development is associated with an 

absence of glycogen production (IRAC, 2016a). Proper maturation of the squamous 

epithelium is controlled oestrogen. Following menopause, the cells do not mature 

beyond the parabasal layer or undergo glycogenation.   

1.3.2 Glandular epithelium  

The endocervical canal, which lies just inside the cervix, is composed of a single layer 

of glandular cells (IRAC, 2016a). The underlying blood vessels of the stroma are 

visible through the single layer, making the cells reddish in appearance. These tall 

‘columnar’ cells are long, packed with cytoplasm, with their nuclei occupying the end 

of the cell that is attached to the basement membrane (Figure 4).  

 

(IRAC, 2016c) 

Figure 4. Glandular (columnar) cells of the endocervix canal (x 40).  

Glandular epithelium unites with the endometrial epithelium at its upper margin, and 

fuses with the squamous epithelium at its lower margin, called the squamo-columnar 
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junction.  This junction may appear at different sites within the endocervix as it varies 

according to age, menstrual and pregnancy status, and oral contraceptive use 

(Eurocytology, 2015). Mitosis and glycogen production do not occur in glandular 

cells.  

1.3.3 The transformation zone 

Anaerobic conversion of vaginal glycogen to mainly acetic and lactic acids by micro-

organisms, especially the Lactobacillus spp., maintains normal vaginal pH to between 

3.8 and 4.5 (Boskey et al., 1999). During puberty and at first pregnancy, the influence 

of oestrogen triggers the cervix to increase in volume, causing the endocervix to evert 

onto the ectocervix (portio vaginalis), exposing the delicate glandular cells to the more 

acidic environment (Eurocytology, 2015). The epithelium begins to undergo dynamic 

changes (metaplasia); this is called the ‘transformation zone’ (Figure 5).   

Within the transformation zone, the glandular cells are gradually replaced by the more 

durable squamous epithelial cells (Sun et al., 1992). The transformation zone is the 

common site of cervical neoplasia (Burghardt, 1986), whilst only 3% of cervical 

lesions are reported to arise in native ectocervix epithelium (Abdul-Karim, et al., 

1982).  
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Cancer Research UK, 2014b 

Figure 5. The transformation zone of the cervix located at the ectocervix and endocervix. 

Vaginal acidity destroys the glandular epithelium, which is replaced by newly formed 

squamous epithelium (squamous metaplasia). The process prompts the formation of 

undifferentiated, sub-glandular reserve cells, from which the metaplastic squamous 

epithelium is eventually derived (IRAC, 2016a). Initially, there is no stratification of 

this immature metaplastic squamous epithelium and they are absent of glycogen. 

Following differentiation and stratification, the mature cells appear very similar to the 

original squamous epithelium. The replacement of glandular epithelium by 

metaplastic squamous epithelium is irreversible.  
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In most women, the immature metaplastic epithelium develops into mature squamous 

metaplastic epithelium and is functionally similar to the original squamous epithelium, 

including glycogen production (IRAC, 2016a). However, cervical intraepithelial 

neoplasia (CIN) arises following persistent infection with oncogenic types of HPV, 

which infect the immature basal squamous metaplastic cells, transforming them into 

cells with aberrant cellular functions (Bosch et al., 1995). These cells proliferate to 

form an abnormal epithelium, termed ‘dyskaryosis’ which can spontaneously regress 

to normal, remain static or progress into more invasive lesions (IRAC, 2016a). The 

high turnover rate and low maturation of cells in the transformation zone makes it 

especially vulnerable to pre-cancerous changes (Reproductive Health Technologies 

Project, 2000).  

Both glandular and squamous epithelial cells are collected during cervical screening to 

detect the presence of these atypical cells within the transformation zone. 

1.4 Causes of cervical cancer 

HPV is a group of very common viruses that includes over 100 different types (WHO, 

2015), with approximately 35 types involved in the infection of the genital tract 

(Bosch et al., 1995); (Figure 6).  
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Adobe Systems, 2015 (purchased under licence) 

Figure 6. HPV types and associated diseases.

Cervical cancer is mainly caused through a sexually transmitted infection with HPV, 

with 84.1% of invasive cervical cancers associated with infection with high-risk types 

16 and 18 (Ramakrishnan et al., 2015). Research has shown that HPV 16 is associated 

with SCC, and HPV 18 is more commonly associated with adenocarcinoma (Clifford 

et al., 2003). Genital HPV infection in women is largely acquired in adolescence, 

shortly after commencing sexual activity, although worldwide prevalence varies 

according to geography and is influenced by cultural attitudes to sexual behaviour 

(Smith et al., 2008).  Whilst many HPV infections are transient and clear up without 
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intervention within 1 to 2 years, for some women the infection persists and CIN can 

develop in as little as 2-4 years (Kyrgiou and Shafi, 2014).  

The environmental risk factors for HPV persistence and the development of high-

grade lesions and cervical cancer include high parity, long-term oral contraceptive 

use, and co-infection with other sexually transmitted agents, including chlamydia, 

Herpes simplex virus 2 (HSV-2) and Human immunodeficiency virus (HIV); 

(Castellsagué et al., 2002). Current smoking is associated with a significantly 

increased risk of SCC but not for adenocarcinoma (Berrington de González et al., 

2004). Pure adenocarcinoma has a higher rate of incidence in younger patients 

(Sasieni and Adams, 2001), and is linked with a poorer survival outcome than SCC 

(Liu et al., 2001). Other non-environmental risk factors include the behaviour of the 

host’s immune system, HPV genotypes, and extent of integration into the host’s DNA 

(Castellsagué et al., 2002). Co-infections with taxonomically similar HPV types have 

been found to reduce the likelihood of progression to high-grade lesions in HIV 

positive women, possibly as a result of an immune cross-protection (Sobota et al., 

2014). Research investigating a link between cervical HPV persistence and nutrition 

revealed that a diet rich in fruits, vegetables, Vitamins C and E, beta- and alpha-

carotene, lycopene, and lutein and crytoxanthin (a natural carotenoid pigment), 

showed a ‘possible’ protective effect (García-Closas et al., 2005). Antioxidants may 

play a protective role by influencing the duration of HPV infection, since plasma 

concentrations of some carotenoids such as lutein and Vitamin E, were found to be 

inversely associated with HPV persistence (Castle and Giuliano, 2003). 
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1.5 The HPV genome   

HPV consists of ~8000 base-pair circular DNA molecules packaged inside a protein 

coat Muñoz et al., 2006). The virus is approximately 55 nm in size, with seven 

important coding regions split into three functional coding groups (Faridi et al., 2011); 

(Figure 7). 

           

URR: Upstream regulatory region.                                                              (Microsoft, 2016). 

Figure 7. Structure of HPV. 

The ‘early’ coding genes comprise the first functional group (E group), a long 

upstream regulatory region (URR) or long control region (LCR) comprises the second 

functional group, and separates the ‘early’ genes from the ‘late’ coding genes  

(L group); (Faridi et al., 2011; Muñoz et al., 2006).  

The ‘early’ genes include E1/E2 which code for proteins that control the functionality 

of oncogenic genes E6 and E7; E4 may code for a protein that governs virus release 

from the cell; E5 codes for a protein that enhances cell immortalisation; E6 codes for 

proteins that inhibit p53, suppressing cell apoptosis; E7 codes for a viral protein that 
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binds to tumour suppressor proteins, thus overriding the control of normal cell 

division and keeping the cell in an unscheduled synthesis-phase (S-phase) state 

(Ramakrishnan et al., 2015; Faridi et al., 2011; Muñoz et al., 2006; Tsai and Chen, 

2003). The ‘late’ genes, L1/L2, code for the structural completion of the final virus 

particles, and the URR (or LCR) controls the regulation of gene expression, promotes 

the replication of the viral genome and its eventual packaging into newly formed virus 

particles (Muñoz et al., 2006). Of these seven genes, E5, E6, and E7, are considered 

critical in the carcinogenesis of cervical cancer (Ramakrishnan et al., 2015).  

1.6 Mechanism of HPV carcinogenesis   

1.6.1 HPV life cycle  

The virus is introduced to the body through a micro trauma at the site of the 

epithelium, possibly from small vaginal tears acquired during sexual intercourse, or 

friction caused by clothing. The infectious cycle begins when HPV particles reach the 

basal layer of the epithelium, and are thought to enter epithelial stem cells, which are 

abundant in hair follicles and may be an important site of entry (Doorbar, 2005). In 

early pre-cancerous lesions (CIN1 and CIN2), the viral DNA is present in episomal 

form, thus replicating independently of the host’s genome (Williams et al, 2011). In 

more advanced pre-cancerous lesions (CIN3) and invasive carcinoma, the viral 

genome integrates with the host’s genome. 

The initial infection promotes a proliferative phase, increasing the number of basal 

cells infected with viral episomes. The viral genome is replicated to a low copy 

number of around 10-200 copies per cell and maintained within the infected, but still 
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functional cells. Proteins coded for by E1/E2 are considered critical for DNA 

replication within the basal layer (Williams et al., 2011). The immune system possibly 

keeps the infection in this state during viral persistence (Doorbar, 2005).  

Normal eukaryotic cell cycle consists of four main stages. G1: the cell is metabolically 

active and growing; S phase: DNA replication takes place; G2: the cell prepares for 

division by synthesising a number of important proteins; and M or mitosis phase: the 

chromosomes are duplicated into sister chromatids, separate into two daughter nuclei 

and the cell divides into two, each new cell containing an exact copy of its parent 

DNA (Cooper, 2000).  

G1, G2 and M phases incorporate key cellular checkpoints. These checkpoints can 

detect unfavourable conditions and prevent the cell from passing on the mutated DNA 

into daughter cells by inhibiting division. Critically in HPV infection, the protein 

products of E5, E6 and E7, interact with a number of cellular proteins that inhibit the 

normal function the G2 and M checkpoints (Figure 8).  
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(OpenStax College, 2013). 

HPV: Human papillomavirus.  

Figure 8. HPV interaction of cell checkpoints, especially G2.
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E5 activates epidermal growth factor receptor (EGFR), stimulating biochemical 

cascades that result in an overexpression of proto-oncogenes and stimulate rapid cell 

growth; E5 can also inhibit the expression of tumour suppressor gene p21 and disturb 

normal cell cycle checkpoints (Tsai and Chen, 2003). Protein Retinoblastoma (pRb) is 

a tumour suppressor protein that can prevent the cell from entering S phase (DNA 

replication) by binding to E2F transcription factor. However, E7 binds to pRb and 

displaces E2F, triggering the expression of proteins necessary for DNA replication 

(Doorbar, 2005). This unscheduled S-phase would normally provoke p53, a cellular 

tumour antigen, to schedule the cell for apoptosis (programmed cell death). However, 

E6 inhibits p53 by targeting it for degradation, thus E6 and E7 co-operate together to 

efficiently ‘hijack’ normal cell activity, abolish normal termination and promote cell 

immortalisation (Faridi et al., 2011).  

As part of their natural turnover, aging basal cells of the epithelium are pushed to the 

parabasal layer and lose their ability to divide. As they breakdown, the low copy 

number of virus particles are released to repeat the infectious cycle (Münger et al., 

2004). The loss of control of cell growth coupled to increasing genomic instability and 

oncogenic mutations, lead to the formation of CIN in the transformation zone of the 

cervix.  

1.7 Classification of cervical intraepithelial neoplasia  

1.7.1 Cervical squamous intraepithelial neoplasia (CIN) 

In 2013, the NHS Cervical Screening Programme (NHSCSP) adopted the revised 

British Society Clinical Cytology (BSCC) terminology into their new guidelines for 
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the classification of cervical cytology (NHS Cervical Screening Programme, 2013). 

Outside of the UK, the Bethesda system is widely used (National Cancer Institute 

[NCI], 2001).  The classification systems used both in the UK and the rest of the 

world is summarised in Table 3. 

Cytology Histology 

NHSCSP 2013  
(UK cytology system) 

Bethesda 2001 (cytology 
system widely used outside of 

the UK) 

Used widely 
throughout the world 

Borderline changes in 
squamous/endocervical (glandular) cells 

ASCUS 
ASC-H 

 

HPV 

Low-grade dyskaryosis LSIL CIN1 

High-grade dyskaryosis (moderate) HSIL CIN2 

High-grade dyskaryosis (severe) HSIL CIN3 

High-grade dyskaryosis/?invasive SCC HSIL SCC SCC 

ASCUS: Atypical squamous cells of undetermined significance; ASC-H: Atypical squamous cells that 

cannot exclude HSIL; CIN: Cervical intraepithelial neoplasia; LSIL: Low-grade intraepithelial lesion; 

HSIL: High-grade intraepithelial lesion; SCC: Squamous cell carcinoma.  

Table 3. The BAC/NHSCSP and Bethesda systems for classification of CIN.  

The histogenetic classification of pre-cancerous lesions as CIN was introduced in 

1967 by Richart and now widely adopted, reflects the depth of epithelial involvement. 

CIN is identified through histological diagnosis and defined as the amount of 

squamous epithelium that is dyskaryotic or made up of undifferentiated neoplastic 

cells of basaloid type (Buckley et al., 1982). However, other factors also contribute to 

the classification of CIN, including stratification, the site of mitotic figures within the 

epithelium, and the presence of abnormal mitotic figures (Buckley et al., 1982).  

Examination of cervical cells seeks to identify atypical cells, ‘koliocytes’ that have 
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with a clear halo around the nucleus (Figure 9). The halo is thought to be a reflection 

of HPV infection (Edwards, 2015).  

 

Uthman, 2006a 

Figure 9. Normal cervical cells (left) and koliocytes (right). 

An example of low-grade dyskaryosis (Bethesda classification: LSIL) is shown in 

Figure 10, and high-grade dyskaryosis (Bethesda classification: HSIL), together with 

changes visible at the surface of the cervix, is shown in Figure 11.  

 

Uthman, 2007a 

Figure 10. Low-grade dyskaryosis (Bethesda classification: LSIL). 
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(1); Uthman, 2007b                                                          (2); Honduras Health, no date 

Figure 11. (1) High-grade dyskaryosis (Bethesda classification: HSIL); changes visible at the 

surface of the cervix (2).  

Histological grading of CIN takes into account the level of involvement of the 

epithelium. For CIN1, undifferentiated cells are confined to the lower third of the 

epithelium. Cytological changes may be evident throughout the entire thickness of the 

epithelium but mitotic figures are few, and adequate cell maturation is still evident 

with minimal nuclear abnormalities (IRAC, 2016d). For CIN2, the abnormalities are 

found approximately across one half to two thirds of the thickness of the epithelium. 

Mitotic figures may be evident through the lower half of the tissue and the nuclear 

abnormalities are more prominent. For CIN3, the full thickness of the epithelium is 

usually involved together with abundant mitotic figures, which may have abnormal 

forms. Differentiation and stratification are often absent altogether (Figure 12). 
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           CIN1; Uthman, 2013                              CIN2; Uthman, 2006b                      CIN3: Uthman, 

2006c 

Figure 12. Types of cervical intraepithelial neoplasia (CIN).  

1.7.2 Classification of cervical glandular intraepithelial neoplasia (CGIN) 

Both the NHSCSP and the Bethesda systems (NCI, 2001) have attempted to define the 

range of cellular changes observed in the glandular mucosa (Table 4).    

NHSCSP 2013  

(UK cytology system) 

Bethesda 2001  

(cytology system widely used outside of 

the UK) 

Borderline changes in endocervical cells Atypical glandular cells, not otherwise 

specified 

a. Endocervical  

b. Endometrial 

c. Glandular 

?Glandular neoplasia  

a. ?Glandular neoplasia of 

endocervical type (divided into 

low-grade cervical glandular 

intraepithelial neoplasia [LG-

CGIN], and high-grade cervical 

glandular intraepithelial neoplasia  

Atypical glandular cells favour 

neoplastic  

a. Endocervical 

b. Glandular 



 

25 

 

NHSCSP 2013  

(UK cytology system) 

Bethesda 2001  

(cytology system widely used outside of 

the UK) 

[HG-CGIN]) 

b. ?Glandular neoplasia (non-

cervical) 

 Endocervical adenocarcinoma in situ 

 Adenocarcinoma  

a. Endocervical 

b. Endometrial 

c. Extra uterine 

d. Not otherwise specified 

LG-CGIN: Low-grade cervical glandular intraepithelial neoplasia; HG-CGIN: High-grade cervical 

glandular intraepithelial neoplasia.  

Table 4. The BAC/NHSCSP and Bethesda systems for classification of glandular neoplasia 

The biology of glandular epithelial lesions is less well understood than squamous 

epithelial lesions. Around 60% of adenocarcinomas are pure and involve only the 

glandular cells, with the remaining 40% composed of both squamous and glandular 

cells (adenosquamous carcinoma); (Kyrgiou, 2013). Adenocarcinomas present with 

more histological sub types than squamous carcinomas.  

Low-grade cervical glandular intraepithelial neoplasia (CGIN) affects the basal two 

thirds of the epithelium, may present as altered glandular profiles, and is characterised 

by hyperchromasia with small changes to nuclear size, increased mitosis and loss of 

polarity (Brown, no date). High-grade CGIN, which includes adenocarcinoma in situ, 

affects the whole depth of the epithelium, where the glands are budded or branched, 

and characterised by hyperchromasia, atypical nuclei and increased and abnormal 
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mitosis. These changes are accompanied by an increased bioavailability of the Ki-67 

protein, a marker for cell proliferation, and the enzyme, mindbomb E3 ubiquitin 

protein ligase 1 (MIB-1) which is involved in the control of apoptosis. 

Since cervical screening collects both glandular and squamous cells, they are often 

present together (Figure 13).  

Halliwell, 2016b 

Sampled from adenocarcinoma Stage 1B1 (unstained) a: High-grade cervical glandular 

intraepithelial cell with atypical nuclei and increased hyperchromasia. b: Cellular debris, possibly a 

stray nucleus on top of cell. c: Low-grade squamous cell; elongated nucleus may be indicative of 

metaphase with chromosomes lined up along the metaphase plate.  

Figure 13. Adenocarcinoma Stage 1B1: mixed grade are often present.
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1.8 Conventional screening for cervical cancer  

1.8.1 National policy 

In the UK, the national policy on cervical screening is divided into two age groups. 

Women aged 25-49 years are invited for routine screening every 3 years, and women 

aged 50-64 are invited for screening every 5 years (Screening and Immunisations 

Team, Health & Social Care Information Centre, 2014). Invasive disease in women 

under 25 years is rare, which prompted a revision in 2003 of the screening starting age 

from 20 years to 25 years. 

For women aged 30 years and under, the prevalence of HPV infection is high, whilst 

the risk of cervical cancer is low; these patients often present with clinically 

insignificant lesions that will regress without intervention (Women’s Health and 

Education Centre, 2010).  

For women aged 65 and over, only women who have never been screened, or those 

who have recently had abnormal tests on three occasions are invited for screening 

(Screening and Immunisations Team, Health & Social Care Information Centre, 

2014), despite evidence that approximately 20% of new cases of cervical cancer occur 

in women aged 65 years or over (The Guardian, 2015), and about half of all deaths 

occur in women in this age group (Sherman et al., 2015).  

The diagnosis of celebrity Jade Goody in 2008 and her subsequent death in 2009 at 

the age of 27 from cervical cancer, prompted an extra 478, 000 screening attendances 

in England between 2008/09; with 28% of these attendances occurring in the 25-49 

age group and whose screening was overdue (Lancucki et al., 2012). The high media 
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attention surrounding Goody’s diagnosis focused much attention on lowering the age 

of first screening, and gave rise to the perception of cervical cancer is a disease 

affecting only younger women (Sherman et al., 2015). As the proportion of the UK’s 

population aged 65 and over is predicted to rise to 24.3% by 2037 (Office for National 

Statistics, 2015), and a significant number will be women, the number of women in 

this age group affected by the disease will also increase. UK policy on cervical 

screening in this age group needs to reflect this pattern of predicted change.  

1.8.2 The Papanicolaou smear 

Originally described by Dr George N Papanicolaou and Dr Herbert Traut (1941), the 

Papanicolaou cervical smear test (Pap smear) was the first method of screening for 

cervical cancer in many countries, and has contributed significantly to reducing 

cervical cancer incidence and mortality by 75% (Mehta et al., 2009). The Pap smear 

collects exfoliated cells scraped from the cervix which are spread directly onto a glass 

slide and viewed microscopically to identify atypical cells (dyskaryosis). However, 

the test has a number of important limitations. Inadequate sampling, which accounts 

for around 8% of samples, occurs when the transformation zone is not sampled 

correctly, and only squamous cells are collected (Mehta et al., 2009). Conventional 

cytology screening is subjective, leading to misinterpretation (Nanda et al., 2000). The 

false-negative rate for the test has been reported as high as 36% (Spence et al., 2007), 

with a reported sensitivity of 30% to 87%, and a specificity of 86% to 100% (Nanda et 

al., 2000). The Pap smear can be compromised by contaminants such as blood, 

bacteria and yeast (Mehta et al., 2009).  
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The Pap smear was originally developed to detect squamous cell carcinomas, and has 

a lower sensitivity for adenocarcinoma (Scheiden et al., 2004). Since a quarter of new 

cases of cervical cancer are adenocarcinomas, the Pap smear will become an 

increasingly less useful diagnostic tool. The most important limitation is human error, 

either through inaccurate observer interpretation or bias, and it has a low sensitivity in 

detecting CIN2 and CIN3 (Boone et al., 2012). The sensitivity becomes more variable 

with age, increasing in women aged 50 years and over (Cuzick et al., 2006). Since a 

typical Pap smear slide contains 50,000-150,000 cells with the possibility of only a 

few being abnormal, it is not surprising that underlying atypia is missed (Mehta et al., 

2009).  

1.8.3 Liquid-based cytology 

In many countries, including the UK, the Pap smear has been replaced by liquid-based 

cytology (LBC) which has greatly reduced the number of inadequate samples 

(Safaeian and Solomon, 2007). This technique uses a cervical speculum that brushes 

cells from the cervix and the speculum is then plunged directly into an ethanol-based 

preservative/fixative and vigorously stirred, producing a suspension of filtered cells 

ready for mounting onto a slide. This sampling technique offers some advantages over 

the conventional Pap smear, including providing a higher number of cells in the media 

and the removal of contaminants such as blood.  

LBC is also semi-automated, provides an even layer of cells that are easier to 

interpret, and can be used for testing for HPV DNA and other biomarkers (Safaeian et 

al., 2007), which removes the necessity for the patient to return for an additional visit. 

LBC has been shown to have comparable sensitivity in the detection of CIN2 or worse 
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lesions compared to the conventional Pap smear but can also produce more positive 

findings leading to a lower predictive value (Ronco et al, 2007).  This higher rate of 

satisfactory LBC smears reduces both the patient’s anxiety and financial costs 

associated with repeat Pap smears (Figure 14). 

 

Continuing Medical Education, 2014 

Figure 14. An example of a LBC slide (left) and a conventional Pap cytology slide (right) after 

staining and mounting. 

1.8.4 HPV testing  

An investigation of HPV testing showed that it was not cost-effective nor did it add 

any significant benefit when used in combination with LBC; however, it was shown to 

be highly effective as sole primary screening method reported to provide 60-70% 

better protection against invasive cervical cancer when compared with LBC 
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(Kitchener et al., 2009). HPV testing has other advantages over LBC in terms of a 

high negative predictive value and is based on fully automated platforms enabling 

high throughput. In the UK, it is likely that HPV-based screening will eventually 

replace LBC screening and may optimise the screening interval to 5 years for women 

aged 30 years and above (Kyrgiou and Shafi, 2014).   

1.9 Alternative screening approaches  

1.9.1 Infrared biospectroscopy  

Infrared (IR) radiation was discovered in 1800 by Sir William Hershel and most IR 

instruments were at that time dependent on prisms or grating monochromators. Albert 

Michelson developed the interferometer in 1881 and by 1949; Peter Fellgett obtained 

the first IR spectrum by using a Fourier-transform IR (FTIR) spectrometer. ‘Fellgett's 

advantage’ as it became known, improved the signal-to-noise ratio by means of the 

simultaneous measurement at different wavelengths (Fellgett, 1949). By the 1960’s, 

FTIR spectrometers became commercially available, and in 1965, an algorithm was 

developed to quickly compute a Fourier transform (Cooley and Tukey, 1965). Since 

then, FTIR spectroscopy has greatly improved the quality of IR spectra and reduced 

the operational time in gathering spectral data. Today, depending upon the machine’s 

settings, a single Fourier-transform spectrum can be obtained in as little as ~30 

seconds.  

1.9.1.1 Infrared-active and infrared-inactive molecules  

Infrared spectroscopy exploits the light properties of a specific part of the 

electromagnetic spectrum (Figure 15), which is composed of 7 main types of 
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radiation: gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves and 

radio waves. The IR part of the spectrum is longer in wavelength and lower in 

frequency than visible light and is divided into 4 main regions: the near IR region 

(~14286 to ~7143 cm-1); the shortwave IR region (~7143 to 4000 cm-1); the mid IR 

region (~4000 to 400 cm-1); and the far IR region (< ~400 cm-1). 

 

National Aeronautics and Space Administration (NASA), 2007 

Figure 15. The electromagnetic spectrum. 

When exposed to frequencies within the mid-IR spectrum (4000-400 cm-1), biological 

materials vibrate with distinct frequencies that can be detected. For a molecule to be 

IR-active, a change must occur in the permanent electric dipole moment of the 

molecule that is non-zero as the bond expands and contracts as result of being flooded 

with IR light. This is called the ‘selection rule’ for infrared spectroscopy (Stuart, 

2004). Figure 16 illustrates an example of an IR-active heteronuclear molecule.  
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Halliwell, 2016c 

Figure 16. Potential changes in the dipole moments of a heteronuclear molecule.  

By contrast, an example of an IR-inactive molecule is a mononuclear diatomic 

molecule, where molecules are composed of only one type of element such as O2, and 

where the bond is symmetrical and IR light has no effect on the dipole moment 

(Figure 17).  

 

Halliwell, 2016d 

Figure 17. An example of an IR-inactive molecule. 
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This molecule has no permanent dipole, has only a single motion and therefore its 

dipole moment will always remain at zero no matter how long the bond.  

1.9.1.2 Vibrational modes of biological materials  

The atoms in a polyatomic molecule are in constant motion causing the molecule to 

undergo translational and rotational motions, known as ‘normal modes’. Atoms in 

molecules can also move relative to each other, promoting changes in bond length or 

move out of their current plane. These stretching and bending movements of 

molecules irradiated with IR light are collectively referred to as ‘vibrations’ (Stuart, 

2004). Some vibrations are due to bonds stretching in-phase (i.e., symmetrical 

stretching) or out-of-phase (i.e., asymmetrical stretching); other bending vibrations 

can also occur that add to IR spectra and including rocking and scissoring (Figure 18).  

 

 
UC Davis ChemWiki, no date 

Figure 18. Potential vibrations that can contribute to infrared spectra. 
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The degrees of freedom for a polyatomic molecule containing many atoms (N) are 

governed by whether it is a linear or non-linear molecule. For both types of molecule, 

the degrees of freedom describe the translational, rotational, and vibrational motions 

of the molecule around the three Cartesian axes: x, y, and z (i.e., 3N degrees of 

freedom). A linear molecule can only rotate around 2 of the Cartesian axes whilst a 

non-linear can rotate around all three. Obtaining the vibrational degrees of freedom 

for molecules is performed by subtracting the number of translational and rotational 

degrees of freedom from the number of atoms in the molecules (Table 5).  

Types of degrees of freedom Linear  
(Example:  

hydrogen cyanide; HCN) 

Non-linear  
(Example:  

chloroform; CHCl3) 
Number of atoms  3 5 
Translational  3 3 
Rotational  2 3 
Vibrational 3N - 5 3N - 6 
Formula  3N = (3 x 3 – 5) 3N = (3 x 5 – 6) 
Total number of vibrational modes 4 9 

Table 5. Calculating the degrees of freedom for polyatomic molecules. 

A common unit used to present data collected at spectral regions include the 

‘wavelength’ expressed as metres or microns (e.g., 1 µm = 10-6 m) and are typically 

used by physicists. For spectroscopists, the ‘wavenumber’ is the preferred unit of 

choice and is the number of waves in a length of one centimetre: 

Ṽ = 1/λ = ν/c 

The wavelength unit (cm-1) is used extensively in the following chapters. 
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1.9.1.3 Biospectroscopy and cancer studies   

The application of Fourier-transform biospectroscopy to cancer cytology and 

histology is a rapidly expanding area of research (Bellisola and Sorio, 2012; Diem et 

al., 2004). Since the rapid synthesis of proteins, lipids and nucleic acids is a condition 

for the proliferation of cancer cells (Baenke et al, 2013), changes in these biomarkers 

can be detected by infrared spectroscopy.  

The most important spectral regions of biological interest are found within the 

biochemical ‘fingerprint region’ (1800 cm-1 to 900 cm-1); (Purandare et al., 2013), and 

contain features specific lipids, DNA, polypeptides (as suggested by bonding types 

amide I and amide II), glycomaterials and collagen (Table 6); (Movasaghi et al., 

2008). As the bioavailability of these biomarkers increases or decreases, the area 

under the curve of a peak associated with the relevant wavenumber within a spectrum 

will increase or decrease accordingly, and can be quantified by IR spectroscopy to 

reveal important patterns in intracellular change (Griffiths and De Haseth, 2007). 

Tentative assignment of biomarkers to wavenumbera Wavenumber (cm-1) 

Lipids, fatty acids ~1750 

Amide I – predominantly in α helix formation ~1651 

Protein Amide II – predominantly β sheet ~1550 

Methylene chains in lipids ~1470 

Phosphate I - asymmetric (DNA)  ~1223 

C-O bands from glycomaterials and proteins ~1169 

Phosphate I  - asymmetric (DNA) ~1072 

Glycogen & collagen ~1030 
a Movasaghi et al, 2008; N.B.: other biomarkers may also be associated with wavenumbers.  

 Table 6. Tentative assignment of important biomarkers.  
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Of the three main forms of FTIR-spectroscopic sampling modes (transmission, 

transflection and attenuated total reflectance/reflection [ATR]); (Baker et al., 2014), 

this dissertation focuses on the proven advantages of the application of attenuated total 

reflectance, Fourier-transform infra-red (ATR-FTIR) spectroscopy to cervical 

cytology. ATR-FTIR spectroscopy has demonstrated advantages over 

conventional cervical cytology screening, proving to be an inexpensive and 

robust method. Previous research has shown this technique is able to segregate 

grades of cervical cytology (Purandare et al., 2014), classify cervical cytology 

based on HPV infection with low- or high-risk types and according to the 

patient’s age (Lima et al., 2014), and diagnose underlying disease more accurately 

that conventional cytology screening (Gajjar et al., 2014).  

Other applications of ATR-FTIR include being used to differentiate the different 

stages of the cell cycle (Stuart, 2004), complement histological classification of skin 

cancer (Lima et al., 2015), detect the recurrence of bladder from bladder wash (Gok et 

al., 2016), and  differentiate brain tumours, including severity and organ of metastatic 

disease, from human serum (Hands et al., 2016).  

1.9.1.4 Spectral acquisition  

Detailed instructions for spectral acquisition are given in Project One, and the 

laboratory protocol for the preparation of liquid-based cervical cytology 

samples in provided in Appendix C.  

1.9.1.5 Pre-processing of raw spectra  

Pre-processing aims to correct problems associated with spectral data 

acquisition, thereby improving the robustness and accuracy of any subsequent 
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multivariate analysis by data mining relevant features and removing redundant 

data (Lasch, 2012). A typical spectrum collected by ATR-FTIR spectroscopy 

contains 32 scans collecting some 235 data points. The result is a very large 

array of absorbance which is difficult to work with and extract meaningful 

outcomes. Following initial visual inspection of the raw spectra to identify 

errors (e.g., mounting the sample onto the wrong slide of the slide, which will 

produce spectra specific to glass and show as a distinctive ‘quiff’ to the far 

right), feature selection is applied and the spectra are cut to the ‘fingerprint 

region.’ This process discards irrelevant data that lies outside the region of 

interest. A baseline correction is then applied to the cut spectra, followed by a 

normalisation technique (Table 7).  

Baseline correction techniques Normalisation techniques 

Rubber-band correction Normalise to Amide I/II or other (including Vector) 
1st Order Differentiation correction Normalise to Vector 
2nd Order Differentiation correction Normalise to Vector 

Table 7. The options for pre-processing of spectra and application of PCA-LDA following pre-

processing.  

Rubber-band baseline correction is based on the idea that a spectrum is divided 

into n ranges (n = number of baseline points) of equal size. The minima y-value 

of each baseline is determined. Connecting the minima with straight lines 

creates a baseline. Starting from below the baseline, a rubber-band is stretched 

over this curve, making it the baseline. Any points that do not lie on the rubber-

band are discarded.  
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The application of differentiation as a baseline correction serves to segregate 

the gradients of spectral bands, making them more prominent (Trevisan et al., 

2012). First-order differentiation is the most widely used, although second-

order differentiation can also be used. The limitation of this approach is that 

with each successive order of differentiation, the method augments any spectral 

noise by one order of magnitude (Griffiths and Haseth, 2007).  

Differences in sample thickness or concentration can contribute a significant 

amount of spectral variation between samples. Normalizing to Amide I, Amide 

II, etc, forces all spectra to have the same absorbance intensity at the Amide I/II 

peaks (Baker et al., 2014). The disadvantage of normalising this way is that any 

changes at peaks associated with Amide I/II may be disguised. Vector 

normalisation (formally referred to as Euclidean), is the preferred choice as it 

will not disguise changes in biologically important peaks. It is the only 

available normalisation technique application following 1st and 2nd Order 

differentiation.   

Normalising is critical to allow us to make data comparable. Without it, the data 

will remain distorted. The technique assists in compensating for differences in 

sample quality. The choice of baseline and normalisation approaches should be 

based upon the characteristics of each data set (Trevisan et al., 2012) and for 

this reason, the spectra should be initially explored comparing several 

techniques to determine the method that best suits the data.    
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1.9.1.6 Multivariate analysis  

Multivariate analysis is the statistical technique used to analyse data that arises from 

more than one variable. Once the spectral datasets have been baseline corrected and 

normalised, multivariate analysis techniques such as Principal Component Analysis 

(PCA) and Linear Discriminant Analysis (LDA), can be applied to reduce a large 

number of data into small data sets or clusters, making them easier to compare.  

1.9.1.7 Principal Component Analysis and Linear Discriminant Analysis 

PCA is an unsupervised technique commonly used as the first step in analysing large, 

multivariate data sets. Unsupervised techniques require no information from the user 

but rely instead on an internal criterion to guide learning. In unsupervised learning, the 

system forms clusters (groupings, regions of data space). In general terms, PCA 

reduces the dimensionality of large data sets and using mathematical projection, the 

original data set which may have involved many variables, can often be interpreted in 

just a few variables (the Principal Components; PCs). This reduced dimensional data 

set will allow the user to spot trends, patterns and outliers in the data, far more easily 

than would have been possible without performing the PCA. When applied to spectra, 

PCA identifies common sources of variance across spectra and collates them into a 

small number of dimensions. PCA is often not enough to segregate out data classes or 

clusters sufficiently, since the heterogeneity within the data is often due to within-

class variability rather than between-class variability. Since PCA is unsupervised and 

has had no instruction from the user, it cannot distinguish between these sorts of 

variability (Martin et al., 2010). By applying a supervised technique such as LDA to 

the PCA output, it promotes inter-class variation to be identified whilst preventing 

over-fitting of the data.  
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LDA is supervised technique because it takes into account the nomination of classes 

determined by the user. It is a generalization of Fisher's linear discriminant, a method 

used in statistics, pattern recognition and machine learning, to find a linear 

combination of features that separates two or more classes of objects or events. The 

resulting combination may be used as a linear classifier or, more commonly, for 

dimensionality reduction before later classification. LDA works when the 

measurements made on independent variables for each observation are continuous 

quantities.  

1.9.2 Alternative infrared techniques 

1.9.2.1 Scanning near field optical microscopy coupled to free electron laser  

Although ATR-FTIR spectroscopy has proven advantages over conventional cervical 

cytology screening, it is limited in spatial resolution by the effect of diffraction. 

Diffraction describes the phenomenon of the bending of light waves around obstacles 

in its path causing it to spread out. This effect restricts the spatial resolution of ATR-

FTIR spectroscopy to about half the wavelength of light or ~3 µm to 30 µm (Harrison 

et al., 2013). Resolution is a measure of how closely the lines of an image can be 

resolved (i.e., the number of independent pixels per value per unit length).  

The nanoscopic technique of scanning near field optical microscopy (SNOM) has 

shown  promise in providing detailed information on cell topography and cytoplasmic 

structures. SNOM has a clear advantage over conventional infrared IR microscopy in 

terms of spatial resolution because it is able to overcome the diffraction limit, by 

employing an apertured fibre optic scanning tip. However, the SNOM technique 

requires relatively high photon intensities such as those provided by an IR free 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Features_(pattern_recognition)
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Statistical_classification


 

42 

 

electron laser (IR-FEL) which allows the simultaneous collection of topography and 

optical features at scales not normally achieved with conventional IR techniques to 

produce high quality, chemically-rich images at designated wavelengths with a spatial 

resolution of ≥0.2 µm (Smith et al, 2013; Cricenti et al., 2002).   

The IR-FEL on the ALICE accelerator at Daresbury Laboratory (Warrington, UK) is 

tuneable over the range of 5.5 µm to 8.8 µm (~1818 cm-1 to ~1136 cm-1), which 

includes a number of biologically important biomarkers as previously mentioned (see 

Table 6), at designated wavenumbers (Movasaghi et al., 2008). Many of these 

biomarkers have previously been used to separate normal, low- and high-grade 

dyskaryosis and cancer cells from each other (Gajjar et al., 2014). 

SNOM has been used to investigate the localisation of molecules within cell 

membranes of prostate cancer cells (Walker et al., 2012). Further research 

demonstrated SNOM can accurately define both the cell surface and internal 

structures in both healthy and anomalous sperm, including the acrosome, nucleus and 

the organisation of mitochondria in the mid-piece region of the tail (Andolfi et al., 

2015). Furthermore, it has demonstrated the potential for single molecule imaging 

(Zhong et al., 2008).  

The application of SNOM to oesophageal cancer tissue studies provided evidence of 

its potentiality for cancer diagnosis (Smith et al, 2013). The increased spatial 

resolution of SNOM has the potential to reveal and quantify highly localised cancer-

related changes in cervical cells at the sub-cellular level (1 - 0.1 µm), and more 

accurately and precisely than conventional IR techniques. The majority of the above 

described IR-SNOM-FEL studies were all carried out in reflection mode.  



 

43 

 

This dissertation reports the collection of data obtained using a SNOM-IR-FEL in 

transmission mode at the ALICE facility in Daresbury, Warrington, to image whole 

cervical cells. The experimental period ran from February to May 2015 ( Project 

Two). The set-up of the SNOM-IR-FEL used to collect data for this project is 

presented in Figure 19.  



 

44 

 

 

 

 
    IR: Infrared; SNOM: Scanning near-field optical microscopy. CaF2: Calcium fluoride: MCT: Mercury Cadmium Telluride (HgCdTe); SNOM: Scanning near-field 
optical      
   microscopy. 

Used with kind permission from Dr M.R.F Siggel-King (Department of Physics, Liverpool University), 2016 

Figure 19. Schematic of SNOM-IR-FEL set-up used to conduct Project Two. 



 

45 

 

1.10 Treatment approaches for pre-malignant CIN 

In the UK, the choice of treatment for pre-malignant CIN takes into account both the 

level of dyskaryosis and the histological classification of CIN (Cancer Research UK, 

2014c). Ablative techniques, such as laser therapy and cryotherapy, destroy abnormal 

cells at the surface of the cervix, allowing normal cells to re-populate the treated area. 

Excisional treatments to remove the area of the transformation zone that contains 

abnormal cells that could develop into cervical cancer, include cold knife conisation, 

laser conisation and large loop excision of the transformation zone (LLETZ). Since 

LLETZ offers many advantages including low cost, high success rate and ease of use 

(Carcopino et al., 2013), it is the preferred treatment in most countries. Local 

conservative treatments for pre-invasive CIN are highly effective in preventing 

recurrent cervical disease and future invasion (95% or better, with the exception of 

cryotherapy which has a lower clearance rate of 85%); (Wai and Patil, 2008). 

The LLETZ technique involves using a wire loop, available in different sizes, through 

which an electrical current is passed. The loop is applied to the transformation zone of 

the cervix to a depth of around 7-8 mm and extending 4-5 mm beyond the lesion 

itself; the transformation zone can vary in size and shape, but for most patients, the 

entire zone can be removed by a loop 2 cm in diameter and 1.5 cm in depth 

(Prendiville et al., 1989); (Figure 20).  
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LLETZ: large loop excision of the transformation zone.  

Used with kind permission from Jo’s Cervical Cancer Trust, 2016  

Figure 20. The LLETZ procedure.  

However, there is a substantial amount of evidence to suggest that excisional 

treatment is coupled to a significant risk to future pregnancies, including preterm birth 

and mid-trimester loss (Kyrgiou et al., 2015a; Kyrgiou et al., 2015b; Kyrgiou et al., 

2014; Arbyn et al, 2008; Kyrgiou et al., 2006). Further research also found that 

women with a shorter time interval between excision treatment and subsequent 

pregnancy, have an increased risk of spontaneous abortion (Connor et al., 2013).  

Removal of part of the cervix may undermine the mechanical integrity of the cervix as 

a result of collagen disruption (Stout et al., 2014; Phadnis et al., 2011). Additionally, a 

function of the endocervical glands is to produce the mucus plug during pregnancy, 
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which has antimicrobial properties against Gram positive and negative bacteria; thus 

their removal may damage the host defence mechanism against ascending infections 

when pregnant (Hein et al., 2001). The length of cone removed is directly correlated 

to the frequency and severity of the adverse events (Kyrgiou et al., 2015a).  

Pre-treatment cervical length and dimensions vary amongst women (Kyrgiou et 

al., 2015a), as does the does the volume of cervical tissue excised. The 

assessment of the proportion (percentage) of excised cervical tissue may 

correlate more accurately to the chances of adverse sequelae than the absolute 

dimensions (i.e., cone depth and volume), and therefore provide a clinical cut-

off that signifies women at risk (Arbyn et al., 2014; Khalid et al., 2012; 

Kyrgiou et al, 2012., Founta et al., 2010).   

Given that ATR-FTIR spectroscopy is able to detect underlying disease more 

accurately than conventional cytology (Lima et al., 2014), the ‘biochemical 

fingerprint’ produced for normal or dysplastic cells, and cells before and after 

treatment, may differ based on changes in availability of lipids, proteins, 

carbohydrates and so on. This may arise from altered biochemical processes as 

a result of excision or treatment of the disease. 

1.11 Aims and objectives  

This research project was conducted via two studies using samples from the 

same cohort of patients. Both studies involved using whole cervical cells 

collected from women attending colposcopy. The objectives of each study are 

given below.  
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1.11.1 Project One objective 

The aim of this study was to assess the impact that local treatment may have on 

the cervix by comparing the spectral absorbance within the ‘fingerprint region’ 

of cervical cells before and after treatment, and to evaluate how these changes 

may be affected by the absolute cone dimensions or the proportion (percentage) 

of cervix excised. 

1.11.2 Project Two objective 

The aim of this pilot study was to assess the potential of SNOM in combination with 

an IR-FEL in the detection of the biophysical properties of cervical cell abnormalities. 

Spectra were also collected using traditional ATR-FTIR biospectroscopy to 

investigate the differences between the techniques. 
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2 Project One 

This paper is to be submitted for publication to Nature Communications as: 

 “Tracking the Impact of Excisional Cervical Treatment on the 

Cervix using Biospectroscopy.” 

Diane E. Halliwell, Maria Kyrgiou, Anita Mitra, Ilkka Kalliala, Evangelos 

Paraskevaidis, Georgios Theophilou, Pierre L. Martin-Hirsch and Francis L. Martin. 

 

Contribution:  

I collaborated with the co-authors on this project by preparing the samples for spectral 

acquisition; obtaining the spectra; pre-processing of the spectra and applying 

multivariate analysis; performing the statistical comparisons of the spectra; extracting 

the demography of the patient population; and helping to prepare the manuscript for 

publication.  

 

…………………………………  ………………………………………… 

Diane E. Halliwell     Professor Francis L. Martin 
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Abstract 

Local excisional treatment for cervical intra-epithelial neoplasia (CIN) is linked 

to significant adverse sequelae including preterm birth, with cone depth and 

radicality of treatment correlating to the frequency and severity of adverse 

events. Attenuated total reflectance Fourier-transform infra-red (ATR-FTIR) 

spectroscopy can detect underlying cervical disease more accurately than 

conventional cytology. The biochemical ‘fingerprint’ produced for cells before 

and after treatment may differ as a result of altered biochemical processes due 

to excision, or treatment of the disease. Since pre-treatment cervix length vary 

amongst women, the percentage of cervix excised may correlate more 

accurately to risk than absolute dimensions. We show that treatment for CIN 

significantly alters the biochemical fingerprint in the cervix, compared with 

women who have not had treatment; this is due to the excision of cervical tissue 

rather than a disease controlling effect. However, the spectra do seem to 

correlate to the cone depth or proportion of cervical length excised. Future 

research should aim to explore the impact of treatment on the biochemical 

‘fingerprint’ in a larger cohort.  

 

Keywords: cervical intraepithelial neoplasia, CIN; preterm birth; excisional 

treatment; LLETZ; biospectroscopy; biochemical fingerprint 
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The introduction of systematic call and recall screening programs in the UK 

over the past 20 years has resulted in a profound decrease in the incidence and 

mortality from invasive cervical cancer, since pre-invasive lesions (cervical 

intra-epithelial neoplasia; CIN) can be detected by the screening program and 

treated appropriately1,2. The choice of treatment technique varies across 

countries, although outpatient large loop excision of the transformation zone 

(LLETZ) is the preferred treatment in most. This preference is because LLETZ 

offers many advantages including low cost, high success rate and ease of use.3 

The mean age of women undergoing treatment for pre-invasive cervical 

disease is similar to the age of women having their first child. Although local 

conservative treatments for pre-invasive cervical lesions are highly effective in 

preventing recurrent cervical disease and future invasion2, there is mounting 

evidence that excisional treatment is associated with a significant risk to future 

pregnancies, including preterm birth and mid-trimester loss4,5,6. It has been 

postulated that removal of part of the cervix possibly leads to acquired 

mechanical weakness as a result of collagen disruption7,8. Furthermore, 

endocervical glands produce the mucus plug during pregnancy which has 

antimicrobial properties against Gram positive and negative bacteria; thus their 

removal may damage the host defence mechanism against ascending infections 

when pregnant9.  

The cone depth and radicality of treatment have been found to be directly 

correlated to the frequency and severity of the adverse events10. Given that the 

pre-treatment cervix length and dimensions vary amongst women11, it is 
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biologically plausible that the proportion (percentage) of the cervix excised may 

more accurately correlate to the chances of adverse sequelae than the absolute 

dimensions, and that there may be a cut-off for the proportion of excision that 

signifies women at risk12,13,14,15.  

Attenuated total reflectance Fourier-transform infra-red (ATR-FTIR) 

spectroscopy has shown potential in the field of cancer screening, being an 

inexpensive but robust technique. Previous research demonstrated that the 

technique is able to segregate grades of cervical cytology16,17, classify cervical 

cytology based on HPV infection with low- or high-risk types18, and diagnose 

underlying disease more accurately that conventional cytology screening19. 

Infra-red (IR) spectroscopy exploits the molecular vibrations of biologically 

active molecules that are created by dipole moments as a result of being flooded 

with IR light. The ‘biochemical fingerprint’ produced for normal or dysplastic 

cells, and cells before and after treatment may differ based on changes in 

availability of lipids, proteins, carbohydrates and so on. This may arise from 

altered biochemical processes as a result of excision or treatment of the disease. 

The aim of this study was to assess the impact that local treatment may have 

on the cervix by comparing the spectral absorbance within the ‘fingerprint 

region’ of cervical cells before and after treatment, and to evaluate how these 

changes may be affected by the absolute cone dimensions or the proportion 

(percentage) of cervix excised. 
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Results 

We enrolled a total of 58 women planned to undergo cervical treatment into the 

study and 27 healthy controls (cytology negative); 20 of these were also HPV 

test negative. Out of the 58 treated women, 34 women had paired samples 

before and after treatment and 58 had at least post-treatment samples; 39 out of 

these 58 women had normal results post-treatment (cytology and HPV DNA 

test negative). The depth of the excised cone was available for all 58 women 

who underwent treatment and the proportion of cervical length removed 

available for 53 of these (91%). The different clinical groups are described in 

Figure 1.  

Out of the 34 women with paired samples before and after treatment 

(Comparison 1), 3 samples pre- and 1 sample post-treatment did not provide 

reliable spectra, allowing 29 and 33 samples for analysis, respectively. There 

were no major differences between the pre- and post-treatment samples. The 

rate of women who had sexual intercourse less than 48 hours from the sample 

collection was 90% and 85%, at pre- and post-treatment sampling, respectively 

(p=0.71). None of the patients reported the use of vaginal douching. 

Thirty-nine out of 58 women that had at least a post-treatment sample were 

normal with negative cytology and a negative HPV test post-treatment. The 

characteristics of this subgroup (n=39) were largely similar to the normal 

healthy controls (cytology/HPV test negative) that have had no local cervical 

treatment (n=20); (Comparison 2). The mean age (SD) for treated and control 

groups was 30.8 years (4.5), and 30.6 years (4.2), respectively. The rate of 
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women who were current smokers was significantly greater in the treated group 

(31%), compared with controls (5%); (p=0.04), as was the proportion of women 

taking combined oral contraceptives (51% vs 15% respectively, p=0.01). Fewer 

controls were of Caucasian race (55% vs 77%), and a greater proportion of 

women in the treated group had been sampled in the luteal phase (54%) 

compared with controls (30%), although neither of these differences however 

were statistically significant. The proportion of women reporting recent 

intercourse (75% vs 87%), with bacterial vaginosis diagnoses on high-vaginal 

swabs (10% vs 8%) and vaginal pH was also comparable between the control 

and treated group.  

A total of 58 women had data on the cone depth and proportion of depth 

excised; of these 5 were lacking data on the percentage of excision but had data 

on the depth. Mean depth (SD) of excision for the 58 women was 10.41 mm 

(3.8 mm); (range 2 – 17 mm), and the mean proportion of excision (SD) in the 

53 women for whom this data was available was 29.13% (9.9%); (range 2% – 

56%). Seven of the 58 treated women (12%) had involvement of the cone 

margins at histopathological analysis; 6/58 (10%) with HSIL and 1/58 (2%) 

with LSIL, however, only two of these 7 patients (3%) had abnormal cytology 

at 6 month follow-up. The characteristics of this group were overall similar to 

healthy controls with normal cytology irrespective of HPV status (n=27); 

(Comparison 3); (Table 1 and Supplementary Table 2).  

Once again the proportion of women using combined oral contraceptive pills 

was significantly greater in treated women (48% vs 15%, p=0.003), and a 
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higher percentage of women in the treated group had been sampled in the luteal 

phase (50%) compared with controls (26%), which did not reach statistical 

significance. The groups were otherwise similar with respect to age, ethnicity, 

smoking, parity, recent intercourse, vaginal pH, bacterial vaginosis and HPV 

DNA status. 

Treatment for CIN significantly changes the biochemical fingerprint in 

the cervix, compared with women who have not had treatment. When we 

compared the absorbance spectra before and after local excisional cervical 

treatment, we detected a statistically significant difference between the pre- and 

post-treatment paired samples (p<0.0001; 95 CI = -0.17 to -0.08; Fig. 2 [a]). A 

significant positive rate of change was found for absorbance associated with 

lipids (p=0.0015), and for glycomaterials/proteins (p=0.0006) for the pre-

treatment samples as compared to the post-treatment samples, indicating higher 

bioavailability in the former group (Fig. 2 [b]). A significant positive rate of 

change was found for absorbance associated with proteins featuring amide I 

(p=0.034) and amide II (p=0.0004) type bonding for post-treatment samples as 

compared the pre-treatment ones, indicating higher bioavailability of 

polypeptides in the post-treatment group. A significant negative rate of change 

was detected for absorbance associated with glycogen/collagen (p=0.0008) and 

symmetric phosphate of DNA (p=0.0001) in pre- as opposed to the post-

treatment group, signifying lower bioavailability in the pre-treatment group. 

Similarly, absorbance associated asymmetric phosphate for DNA was shown to 

have a significant negative rate of change for post- as opposed to pre-treatment 
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samples (p=0.0001); (Fig. 1[b]). The steps for pre-processing, multivariate 

analysis and extraction of wavenumbers are summarized in Supplementary 

Figures 1, 2 and 3.  

Changes in the biochemical fingerprint are due to the excision of cervical 

tissue rather than the removal of the disease. In order to explore whether the 

observed differences before and after treatment were attributed to the treatment 

rather than the removal of a disease, we performed a subgroup analysis 

comparing all women that had at least one post-treatment sample with negative 

cytology and HPV DNA test (n=39) versus healthy controls negative for 

cytology and HPV (n=20). We found that the difference in the spectra post-

treatment remained significant, evidencing that the difference observed before 

and after treatment was due to treatment intervention rather than the treatment 

of the disease (p<0.0001; 95% CI = -0.18 to -0.07; Fig 3 [a]). A significant 

positive rate of change was found for absorbance associated with proteins 

featuring amide II bonding (p=0.001) in the treated group compared with 

controls; no other significant changes were detected (Fig. 3 [b]).  

Spectra do not seem to correlate to the cone depth or proportion of 

cervical length excised. We further assessed whether the observed difference 

in the absorbance spectra correlated to the depth of the cone and the proportion 

of the depth excised in the pre-specified treated groups and compared these to 

healthy controls that were cytology negative irrespective of HPV status (n=27). 

We found overall that the spectra of treated women were different to the spectra 

of healthy controls but this did not seem to correlate to the cone depth and 



 

Nature Communications 

Page 9 of 46  

 

proportion of cervical length excised. More specifically, we detected 

statistically significant differences in the spectra when the healthy samples was 

compared to samples from treated patients with a cone depth of <10 mm 

(p=0.0008; 95% CI = 0.03 to 0.12), a cone depth of ≥ 15 mm (p=0.001; 95% CI 

= 0.03 to 0.15), but not for a cone depth between 10-14 mm (Fig. 4 [a]). A 

significant positive rate of change was observed for absorbance associated with 

proteins featuring amide II bonding for both the <10 mm and ≥ 15 mm groups 

compared to healthy samples (p=0.004, p=0.0004, respectively). Cone depth ≥ 

15 mm also had a significant positive rate of change for absorbance associated 

with polypeptides featuring amide I bonding (p=0.008), and a significantly 

negative rate of change for asymmetric phosphate of DNA (p=0.0009) as 

compared to healthy controls (Fig. 4 [b]).  

The results were similar when we correlated the spectra to the percentage of 

excision. The group of women that had <10% of their cervix excised included 

only 2 patients and was therefore excluded from the analysis. For all the 

remaining groups, we detected significant differences as compared with healthy 

cervix [11-20% (p=0.002, mean rank difference = 31.11); 21-30% (p=0.03, 

mean rank difference = 17.85); 31-40% (p=0.007, mean rank difference = 

23.33); and for >40% (p=0.023, mean rank difference = 27.24)]; (Fig. 5 [a]). A 

significant positive rate of change in absorbance associated with biomarkers 

was found only for 11-20% compared with healthy cervix (lipids: p=0.008) and 

polypeptides featuring amide II bonding (p=0.003); (Fig. 5 [b]).  
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The in-between group comparisons of the absorbance spectra demonstrated 

significant differences for most comparisons, apart from, rather surprisingly, the 

comparison of the most extreme values (<10 mm with >=15 mm). Most of the 

comparisons between the clinical groups of the proportional cervical length excised 

did not show a significant difference. (Supplementary Figures 4 and 5). 

The high variability of polypeptides featuring amide I bonding appeared to 

be consistent across untreated, treated and healthy controls, suggesting it is 

unlikely to be due to human sampling error (either through collection of liquid-

based cytological samples or acquisition of spectra), and may suggest that 

synthesis of these molecules is independent of disease status.  

Discussion 

Local conservative treatment for CIN has been associated with significant 

adverse sequelae in subsequent pregnancies4,5,6. The frequency and severity of 

these effects seem to correlate directly to the radicality and depth of the 

treatment10. 

The analysis of the biochemical fingerprints obtained from samples collected 

from the cervix before and 6 months post-treatment revealed that excision of 

cervical tissue and endocervical glands impact on the absorbance spectra that 

appeared to be significantly different after treatment. The significant increase in 

polypeptides in the post-treatment group, as evidenced by amide I/II bonding, 

may be a response to localized injury caused by the excisional treatment. 

Normal wound healing is typified by three overlapping phases; the 

inflammatory phase, the proliferation phase and the maturation phase20,21. At 
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around 30 days following the initial injury and when the wound is closed, the 

maturation phase begins and cellular activity diminishes, the number of blood 

vessels regress and collagen is remodelled from type III to type 1. Although 

previous work has shown that cervical regeneration is almost complete 6 

months after excisional treatment22, our findings suggests that cellular function 

remains elevated at this time point. The presence of scar tissue at the site of 

injury may account for the increased polypeptides, since collagen is composed 

of three separate polypeptide chains23, and production is increased 2-3 times 

more in fibroblasts isolated from scar tissue than from normal tissue24. Despite 

this, a healed wound will only achieve a maximum of 80% of the tensile 

strength of normal epithelium. Further follow up may have shown the 

differences resolve with time or, the distinction is a true reflection of the newly 

formed epithelium capping the original wound. Additionally, the number of 

endocervical cells collected in post-LLETZ liquid-based cytology samples has 

been shown to be significantly decreased25. Therefore, any changes in 

biochemical function following treatment are likely to be a reflection of the 

cellular function largely associated with squamous cells.    

When the spectra in healthy controls post-treatment were compared to 

healthy untreated controls, the differences remained significant, suggesting that 

it is the treatment rather than the excision of the disease that alters the 

biochemical balance within the cervix. Cervical regeneration is dependent upon 

the depth of excision, the percentage of cervix excised and/or the remaining 

cervical tissue immediately after treatment26. Our findings show that patients 
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who were classified as cytologically free of cervical abnormality and HPV 

negative, remained biochemically distinct from healthy controls, with an 

increase in polypeptides (amide II bonding) remaining elevated in the treated 

group, which may be due to the previously hypothesized causes.  

When the absorbance spectra were assessed for different treatment cone 

depths and proportions of cervical lengths excised, we found no direct influence 

of the different clinical groups on the spectra, although the number of samples 

was small in each group. 

The mechanism behind the high variability associated with the production of 

polypeptides that appears to be independent of disease status is unknown, and 

may be a reflection genetic variation or other patient-specific characteristics.    

Several reports have assessed the impact of cervical excision on subsequent 

clinical reproductive outcomes; others suggested that it is the presence of the 

pre-cancer itself that also contributes to the adverse sequelae27. It is likely that 

excision of cervical tissue causes a disruption of the immune defence 

mechanisms, the natural production of antimicrobials and the mucus secretion 

from endocervical glands. These changes together with alterations caused by 

the disease are likely to interact with genetic, viral and microbial factors in a 

complex interplay within the vagina28,29.  

This is the first report that assessed the impact that local excisional treatment 

for cervical pre-invasive disease has on the biochemical fingerprint and 

molecular processes within the cervix. We were able to show that excision 

causes major alterations in the cervico-vaginal environment and further research 
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should establish the pathophysiological processes that may be correlated to 

adverse obstetric sequelae. We did not identify direct correlation of the changes 

to the radicality of the excision measured by cone depth and cervical proportion 

excised, but the numbers in each group were small and the results should be 

interpreted with caution. Further research should explore in more detail the 

impact of the severity/grade of CIN and/or presence of HPV infection on the 

biochemical spectra and should further describe the biochemical alterations in 

treated individuals with or without positive cytology and/or HPV infection post-

treatment in larger cohort. This will allow a more comprehensive exploration of 

the impact of treatment; this was not feasible in this analysis as the number of 

samples in these subgroups was small for any valid comparisons. 

The mechanism that accounts for the increased risk of second trimester loss 

and preterm birth associated with CIN and its treatment is not yet clarified. 

While acquired mechanical weakness of the cervix secondary to surgery might 

seem a logical assumption, more subtle mechanisms may be involved. 

Histological changes in the healed cervix affecting the tensile strength or 

changes in the innate immune system and vaginal microenvironment may also 

be involved. Removing part of the cervix or simply being infected with human 

papillomavirus (HPV) may impair the host’s defence mechanisms, change the 

chemical microenvironment and prevent a pregnancy being maintained to full 

term. Conversely, it may be that women at risk have intrinsic compromised 

defences that promote the persistence of oncogenic HPV infections and the 

development of ascending infections during pregnancy. All these interactions 
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may be best described in the absorbance spectra of the metabolic changes in the 

vagina as described in this study.  

Ascending infection from the vagina into the fetoplacental unit and 

associated inflammation are presumed to be causative in preterm labour. The 

uterus in pregnancy is protected by the cervix via its mucous plug, the local 

synthesis of antimicrobial peptides and proteins and by a ‘benign’ 

Lactobacillus-dominated vaginal microbiota. Lactobacilli spp. inhibits pathogen 

growth by maintaining a hostile pH and secreting species-specific metabolites 

and bacteriocins that limit the growth of other organisms30. By causing scarring 

and a change in the histological structure of the cervix, it is likely that the 

protein expression and metabolites of the cervix are also altered after treatment, 

resulting in an environment, which is more or less hospitable to particular 

bacterial species. It remains unknown whether these changes underlie the 

increased risk of adverse obstetric sequelae, but are a priority area of research. 

FTIR spectroscopy is capable of detecting alterations in the microbiota 

composition31, and thus spectral information should be correlated with 16s 

ribosomal RNA gene sequencing data, as well as proteomic data in future 

prospective studies to facilitate a better understanding of the structural, 

biochemical, metabolic and microbiological changes that result from excisional 

treatment for CIN.  

In conclusion, this study clearly demonstrates that local treatment for cervical 

pre-invasive disease has a direct impact on the biological and biochemical 

processes within the cervix, and this may correlate to the adverse sequelae 
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described in future pregnancies that include preterm birth and premature rupture 

of the membranes, possibly as a results of ascending infections and disruption 

of the immune defence mechanisms. Correlation of the specific biochemical 

markers in the produced spectra with the outcomes of subsequent pregnancies 

in the future may allow the detection of women at high risk of preterm birth and 

enable the selection of women at high risk that would benefit from intensive 

antenatal surveillance when pregnant32. Furthermore, further exploration of the 

mechanistic aspects leading to these changes in the metabolic spectra may 

permit the use of more targeted cause-directed preventative treatment in the 

future. 

Materials and methods 

Study population – Inclusion and Exclusion criteria  

Ethical approval was obtained from the National Research Ethics Service 

Committee London – Fulham (Approval number 13/LO/0126). This study was 

conducted according to the principles of the Declaration of Helsinki and all 

other applicable national or local laws and regulations. All patients gave written 

informed consent before any protocol-specific procedure was performed.  

We included pre-menopausal, non-pregnant women of reproductive age (18-

45 years of age) who attended the colposcopy and were planned to undergo 

local cervical treatment at Imperial College NHS Healthcare Trust.  We 

collected samples before treatment, and a repeat sample 6 months after 

treatment. We also recruited a population of women with normal cytology (+/- 

negative HPV DNA test) attending the colposcopy or general gynaecology 



 

Nature Communications 

Page 16 of 46  

 

clinics that would serve as healthy controls. The samples for the healthy group 

were collected at one time point. The recruitment commenced in May 2013 and 

was completed in May 2015.  

Women were included irrespective of their ethnicity, parity, smoking habits, 

phase in their cycle and use of contraception. The type of contraception and the 

time of their cycle (follicular or luteal) were documented. Women who were 

HIV or hepatitis B/C positive, women with autoimmune disorders, and women 

that received antibiotics or pessaries within 14 days of sampling were excluded. 

Detailed medical and gynaecological history was collected for each patient 

including time since last sexual intercourse. Ethnicity was self-reported as 

Caucasian, Asian or Black.  

Patients were anonymized and assigned a unique identifier. For each patient and 

visit, we collected data on the cytology, HPV DNA test and typing and histology, if 

available. The cytology result was classified as normal, borderline or mild dyskaryosis 

(low-grade squamous intraepithelial lesion [LSIL]), moderate or severe dyskaryosis 

(high-grade squamous intraepithelial lesions [HSIL]) and invasive cervical cancer 

(ICC). The histology was defined as normal, CIN1, CIN2, CIN3 or invasive cervical 

cancer.  

Transvaginal ultrasound (Voluson E6 with a 5-9 MHz(RIC5-9-RS series) 

transvaginal probe (GE Healthcare, Zipf, Austria) was used to measure the cervical 

length and volume immediately prior to excision. The dimensions of the cervical cone 

were measured using electronic callipers. The volume was also determined by water 

displacement, using a 50ml syringe. These measurements were taken prior to fixation 
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in formaldehyde, which may result in a degree of sample shrinkage, and thus 

underestimate the size of the excised specimen. These data were used to calculate the 

proportion (percentage) of the length or volume excised. Patients included in the 

analysis of cone depth were categorized according to 1 of 4 categories (untreated 

healthy cervix; treated/cone depth: 1 = <10 mm, 2 = 10-14 mm, 3 = ≥15 mm). Patients 

included in the analysis of percentage excision were categorized according to 1 of 6 

categories (untreated healthy cervix; treated/percentage excision: 1 = 0-10%, 2 = 11-

20%, 3 = 21-30%, 4 = 31-40%, 5 = >40%). 

Sample collection and processing 

A sterile, disposable speculum was inserted, without lubricant, and a cervical sample 

of ThinPrep, liquid-based cytology (LBC) was taken from the cervix (ThinPrep, 

HOLOGIC Inc., Bedford, USA). This was analysed for cytological diagnosis and 

HPV DNA test and typing. HPV DNA test and 16/18 genotyping was carried out 

according to manufacturer’s guidelines using the Abbott RealTime High Risk (HR) 

HPV assay on Abbott M2000 platform; a clinically validated in vitro polymerase 

chain reaction (PCR) assay with identification of HPV-16, -18 or any other of 12 HR 

HPV subtypes (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68)33. From the remaining 

methanol-based fluid, 1 ml was stored at 4° centigrade and was used for 

biospectroscopy analysis at the Centre for Biophotonics, Lancaster University, 

England. Routine high vaginal microbiology swabs were taken and sent for 

microscopy, culture and sensitivity. These swabs were also used to diagnose bacterial 

vaginosis based on the Hay/Ison criteria34. Vaginal pH was measured using CarePlan 

VpH gloves (Inverness Medical, Unipath Ltd., Bedford, UK). 
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Biospectroscopy: slide preparation 

Each sample was agitated to disperse the cell pellet, then a 500µl aliquot 

collected into a clean micro tube. Samples were centrifuged at 2000 rpm for 5 

minutes and the ThinPrep supernatant was aspirated to remove its spectral 

signature (i.e., the methanol fixative). Each sample was then immersed in 500 

µl of distilled H2O, agitated and centrifuged again. The supernatant was 

removed again and the wash step repeated once more. The final pellet was 

immersed in 100 µl of distilled H2O, agitated and dispensed onto IR-reflective 

glass slides (Low-E; Kevley Technologies Inc., Chesterland, OH, USA) and 

allowed to bench dry for a minimum of 24 hours. Samples were then stored in a 

desiccator for a minimum of 48 hours to remove any residual water before 

spectral analysis. For those samples with a resultant poor spectral signal 

considered to be due to fewer cells on the slide, repeat samples were prepared 

using the remaining 500 µl of the original sample and prepared as described 

above. However, the final 100 µl solution was dispensed as 2 x 50 µl aliquots, 

with a 24-hour drying period in between each dispensing, and each aliquot 

being dispensed directly on top of the previous one to achieve a uniform spread 

and thickness of cells. These samples were then desiccated as described above.  

ATR-FTIR spectroscopy, computational and statistical analyses   

Spectral acquisition  

Spectra were acquired using a Tensor 27 FTIR spectrometer with a Helios ATR 

attachment (Bruker Optik GmbH). The instrument was set to take 32 scans at 8 

cm-1 wavenumber spacing with 2 x interferogram zero-filling. Before the 
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spectra were taken, the crystal was cleaned with distilled H2O and inspected by 

video camera to be free of any contaminants. A background spectrum was 

acquired before the sample slide was mounted and stage moved to bring the 

cervical cells in contact with the diamond. Spectra were collected from ten 

random sites on the slide. Spectra were converted to absorbance by Bruker 

OPUS software (Bruker Inc., Billerica, MA, USA). 

Pre-processing and multivariate analysis of spectra 

Each spectrum was classed, cut to the ‘fingerprint region’ (1800-900 cm-1), 

Savitsky Golay differentiated to 1st order and vector normalized. Combining 

vector normalization with differentiation is a typical pre-processing approach35. 

This was followed by Principal Component Analysis coupled to Linear 

Discriminant Analysis (PCA-LDA) cascade using MATLAB R2014a software 

(Mathworks Inc., Natick, MA, USA) together with the toolbox ‘IRootLab’ 

(http://trevisanj.github.io/irootlab/). The number of principal components (nPCS) 

for PCA was calculated to guarantee a ratio of 20 between the number of 

spectra and the number of variables inputted into LDA, to avoid potential 

arbitrary class separation. Typically, the number of PCs was either 9 or 10. The 

PCA-LDA output provided a ‘feature’ for each spectrum for each patient (i.e., 

10 for each patient). An average of these 10 features was taken and used to 

conduct the statistical analyses.  

Peaks found within the ‘biochemical fingerprint’ region contain features 

specific to biomarkers as shown in Supplementary Table 136. Changes in the 

availability of these biomarkers will result in changes in peaks (absorbance), 
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which can reveal patterns of intracellular change. We therefore extracted 7 

wavenumbers associated with biologically important biomarkers for each 

analysis, using means, SD and multiple t tests (corrected for multiple t testing 

using the Holm-Sidak method) to produce a rate of change for each 

wavenumber. These were extracted from pre-processed data (i.e., cut, 1st order 

differentiated, vector normalized) at specified wavelengths within MATLAB.  

Impact of treatment 

Demographic data were summarized using RStudio Version 3.2.1 (RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA, USA). Differences 

in the patient characteristics between the compared groups were assessed using 

Fishers exact test (GraphPad Prism 6, [GraphPad Software Inc., La Jolla, CA, 

USA]). P-value <0.05 was considered to be statistically significant.  

We assessed the impact that local treatment may have on the cervix by 

comparing the cervical cell spectral absorbance of women with paired samples 

before and after treatment using means, standard deviations (SD) and a 

Student’s t test (Comparison 1). In order to control whether the observed 

differences were a result of the treatment itself or due to the removal of the 

disease (CIN), we performed an additional subgroup analysis to compare 

normal women post-treatment (negative cytology and negative HPV DNA test), 

to untreated normal controls (negative cytology and negative HPV DNA test). 

This was also done using means, SD and a Student’s t test (Comparison 2). We 

further assessed whether the changes in the biochemical fingerprint of the 

cervix correlated to the absolute cone depth (mm) and the proportion 
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(percentage) of cervical length excised. We compared the different cone 

depth/proportions groups and also compared these with healthy controls with 

negative cytology irrespective of HPV status by means, SD and one-way 

ANOVA (Comparison 3). All statistical analyses of spectra were conducted 

using GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA, USA).  
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Figure legends 

Figure 1: Flowchart of the included population and different comparison groups.  

Figure 2. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1: Pre- vs Post-treatment (a) 

together with absorbance per wavenumber (b). The paired samples pre- and post-treatment were significantly 

different along LD1 (Mean/SD (a): 0.004/0.10 for ‘A’; -0.12/0.08 for ‘B’; p<0.0001, 95% CI = -0.17 to -0.08). 

Absorbance associated with lipids, glycomaterials and proteins was shown to have a significant positive rate of 

change for the pre-treatment group compared with the post-treatment group, indicating their higher bioavailability. 

Similarly, absorbance associated amide I and amide II was shown to have a significant positive rate of change for 

the post-treatment group compared within the pre-treatment group. Absorbance associated with glycogen, collagen 

and symmetric phosphate of DNA was shown to have a significant negative rate of change for the pre-treatment 

group compared with the post-treatment group, suggesting lower bioavailability. Similarly, absorbance associated 

asymmetric phosphate for DNA was shown to have a significant negative rate of change for the post-treatment 

group compared with the pre-treatment group (b). ATR-FTIR: Attenuated total reflectance, Fourier-transform 

Infrared; CI: Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis coupled 

to Linear Discriminant Analysis; SD: Standard deviation.  

Figure 3. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1: controls vs treated (normal 

cytology and HPV –ve); (a) together with absorbance per wavenumber (b). The 2 groups were significantly 

different along LD1 (Mean/SD (a): 0.32/0.10 for Controls; 0.20/0.11 for Treated; p<0.0001, 95% CI = -0.18 to -

0.07). These results evidence that the difference in LD1 was due to the impact of treatment. Absorbance associated 

with amide II was shown to have a significant positive rate of change for the treated group compared with controls, 

indicating higher bioavailability (b). No other significant changes were detected. ATR-FTIR: Attenuated total 

reflectance, Fourier-transform Infrared; CI: Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal 

Component Analysis coupled to Linear Discriminant Analysis; SD: Standard deviation.  

Figure 4. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1: Healthy Cervix vs Cone Depth 

(a) together with absorbance per wavenumber (b). Mean/SD (a) for each group was: 0.22/0.07 for healthy 

cervix; 0.15/0.07 for <10 mm; 0.19/0.07 for 10-14 mm; 0.13/0.04 for ≥15 mm. A significant difference along LD1 

was detected for healthy cervix vs <10 mm (p=0.0008; 95 CI = 0.03 to 0.12); and for healthy cervix vs ≥15 mm 

(p=0.001; 95 CI = 0.03 to 0.15). No significant difference along LD1 was detected for healthy cervix vs 10-14 mm 

(p=0.13; 95 CI = -0.01 to 0.08). Absorbance associated with amide II was shown to have a significant positive rate 
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of change for <10 mm group compared with healthy cervix, indicating higher bioavailability (b). Similarly, 

absorbance associated with amides I and II were shown to have a significant positive rate of change for ≥15 mm 

compared with healthy cervix, whilst absorbance associated with DNA was shown to have a negative rate of 

change, indicating lower bioavailability. ATR-FTIR: Attenuated total reflectance, Fourier-transform Infrared; CI: 

Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis coupled to Linear 

Discriminant Analysis; SD: Standard deviation.  

Figure 5.  PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1: Healthy Cervix vs Percentage 

Excision (a) together with absorbance per wavenumber (b). Mean/SD (a) for each group was: 0.30/0.07 for 

healthy cervix; 0.16/0.12 for 11-20%; 0.24/0.06 for 21-30%; 0.22/0.09 for 31-40%; 0.21/0.07 for >40%. A 

significant difference along LD1 was detected for healthy cervix vs 11-20% (p=0.002; mean rank difference: 

31.11); for healthy cervix vs 21-30% (p=0.03; mean rank difference: 17.85); for healthy cervix vs 31-40% 

(p=0.007; mean rank difference 23.33; and for healthy cervix vs >40% (p=0.023; mean rank difference: 27.24). 

Absorbance associated with lipids and amide II was shown to have a significant positive rate of change for 11-20% 

compared with healthy cervix, indicating higher bioavailability (b). No other significant differences were detected 

for healthy cervix vs all other groups. ATR-FTIR: Attenuated total reflectance, Fourier-transform Infrared; CI: 

Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis coupled to Linear 

Discriminant Analysis; SD: Standard deviation.  
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Table 1. Patient characteristics 
 Comparison 1: Treated women with 

paired samples 
 Comparison 2 : Normal post-treatment 

vs. normal untreated controls 
 Comparison 3: Treated by cone 

depth/proportion vs. normal untreated 
controls 

 

 
Characteristics 

Pre-treatment  
 

 
 

(n= 29) 

Post treatment  
 

 
 

(n= 33) 

P-value Normal post-
treatment, 

(Cytology negative, 
HPV negative) 

(n = 39) 

Normal controls 
(Cytology 

negative, HPV 
negative) 

(n=20) 

P-value Post treatment 
 
 

 
(n=58) 

Controls (Cytology 
negative; HPV 
status ignored) 

 
(n=27) 

P-value 

Age, years   0.69   0.87   0.50 
Mean (SD, range) 30.3  

(4.9, 25-43) 
30.8  

(5.0, 25-43) 
 30.8  

(4.5, 25-43) 
30.6  

(4.2, 24-37) 
 30.7 

(4.5, 25-42) 
30.0  

(4.4, 22-37) 
 

Ethnicity, n/N (%)   1.00   0.12   0.24 
Caucasian 22/29 (76) 25/33 (76)  30/39 (77) 11/20 (55)  46/58 (79) 18/27 (67)  
Asian 5/29 (17) 6/33 (18)  6/39 (15) 4/20 (20)  8/58 (14) 4/27 (15)  
Black 2/29 (7) 2/33 (6)  3/39 (8) 5/20 (25)  4/58 (7) 5/27 (18)  
Smoking status, n/N (%)   0.77   0.04*   0.18 
Non-smoker 23/29 (79) 25/33 (76)  27/39 (69) 19/20 (95)  41/58 (71) 23/27 (85)  
Current smoker 6/29 (21) 8/33 (24)  12/39 (31) 1/20 (5)  17/58 (29) 4/27 (15)  
Contraception, n/N (%)   0.98   0.05   0.06 
Nil 11/29 (37) 11/33 (33)  10/39 (25) 13/20 (65)  16/58 (28) 16/27 (59)  
Condoms 1/29 (4) 2/33 (6)  6/39 (15) 2/20 (10)  8/58 (14) 4/27 (15)  
COCP 14/29 (48) 17/33 (52)  20/39 (51) 3/20 (15)  28/58 (48) 4/27 (15)  
POP 2/29 (7) 2/33 (6)  1/39 (3) 1/20 (5)  2/58 (3) 1/27 (4)  
Implant 0/20 (0) 0/33 (0)  0/39 (0) 0/20 (0)  0/58 (0) 1/27 (4)  
Mirena IUS 1/29 (4) 1/33 (3)  1/39 (3) 1/20 (5)  2/58 (3) 1/27 (4)  
Copper IUD 0/29 (0) 0/33 (0)  0/39 (0) 0/20 (0)  1/58 (2) 0/27 (0)  
Vaginal ring 0/29 (0) 0/33 (0)  1/39 (3) 0/20 (0)  1/58 (2) 0/27 (0)  
Parity, n/N (%)   1.00   0.52   0.51 
Nulliparous 21/29 (72) 24/33 (73)  32/39 (82) 15/20 (75)  45/58 (78) 22/27 (81)  
Parous 8/29 (28) 9/33 (27)  7/39 (18) 5/20 (25)  13/58 (22) 5/27 (19)  
Time since last intercourse, 
n/N (%) 

  0.71   0.28   0.31 

>48 hours 26/29 (90) 28/33 (85)  34/39 (87) 15/20 (75)  52/58 (90) 22/27 (81)  
<48 hours 3/29 (10) 5/33 (15)  5/39 (13) 5/20 (25)  6/58 (10) 5/27 (19)  
Phase of menstrual cycle, n/N 
(%) 

  0.40   0.14   0.08 

Luteal 15/29 (52) 18/33 (55)  21/39 (54) 6/20 (30)  29/58 (50) 7/27 (26)  
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 Comparison 1: Treated women with 
paired samples 

 Comparison 2 : Normal post-treatment 
vs. normal untreated controls 

 Comparison 3: Treated by cone 
depth/proportion vs. normal untreated 

controls 

 

Follicular 13/29 (45) 11/33 (33)  14/39 (36) 9/20 (45)  23/58 (40) 14/27 (52)  
Unknown 1/29 (3) 4/33 (12)  4/39 (10) 5/20 (25)  6/58 (10) 6/27 (22)  
Vaginal pH   0.61   0.92   0.37 
<4.5 12/29 (41.5) 13/33 (39)  16/39 (41) 9/20 (45)  24/58 (41) 15/27 (56)  
≥4.5 16/29 (55) 20/33 (61)  21/39 (54) 9/20 (45)  31/58 (53) 10/27 (37)  
Unknown 1/29 (3.5) 0/33 (0)  2/39 (5) 2/20 (10)  3/58 (6) 2/27 (7)  
Bacterial vaginosis, n/N (%)   1.00   0.13   0.16 
No 27/29 (93) 31/33 (94)  35/39 (89) 15/20 (75)  52/58 (89) 21/27 (78)  
Yes 2/29 (7) 2/33 (6)  3/39 (8) 2/20 (10)  5/58 (9) 3/27 (11)  
Unknown 0/29 (0) 0/33 (0)  1/39 (3) 3/20 (15)  1/58 (2) 3/27 (11)  
HPV DNA test, n/N (%)   0.0001*   1.00   0.59 
Negative 1/29 (3) 27/33 (82)  39/39 (100) 20/20 (100)  46/58 (79) 20/27 (74)  
Positive 28/29 (97) 6/33 (18)  0/39 (100) 0/20 (0)  12/58 (21) 7/27 (26)  

 
COCP: Combined oral contraceptive pill; HPV: Human Papillomavirus; HSIL: High-grade intraepithelial lesion; IUD: Intrauterine device; IUS: Intrauterine system; POP: Progesterone-only 

pill; SD: Standard deviation.  
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Supplementary Figure 1. Processing steps for spectra obtained using ATR-FTIR spectroscopy. Step 1: Classifying the data by treatment group; Step 2: Cutting the  

spectra to the fingerprint region (1800-900 cm-1). ATR-FTIR: Attenuated total reflectance, Fourier-transform Infrared.  
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Supplementary Figure 2. Processing steps for spectra obtained using ATR-FTIR spectroscopy. Step 3: 1st order differentiated, followed by vector normalisation; Step 3A: Wavenumber 

extraction using previous data; Step 4: Calculation of percentage variance (i.e., number of Principal Components [PCs] to take forward for PCA-LDA cascade) using the Pareto chart. ATR-

FTIR: Attenuated total reflectance, Fourier-transform Infrared. PCA-LDA: Principal Components Analysis coupled to Linear Discriminant Analysis.
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Supplementary Figure 3. Processing steps for spectra obtained using ATR-FTIR spectroscopy. Step 5: Applying PCA-LDA-Cascade using the previously defined 

number of principal components identified from Pareto plotting. ATR-FTIR: Attenuated total reflectance, Fourier-transform Infrared. PCA-LDA: Principal Components 

Analysis coupled to Linear Discriminant Analysis; LD: Linear Discriminant.  
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Supplementary Figure 3. Processing steps for spectra obtained using ATR-FTIR spectroscopy. Step 5: Applying PCA-LDA-Cascade using the previously defined 

number of principal components identified from Pareto plotting. ATR-FTIR: Attenuated total reflectance, Fourier-transform Infrared. PCA-LDA: Principal Components 

Analysis coupled to Linear Discriminant Analysis; LD: Linear Discriminant.  
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Supplementary Figure 4. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1: Cone depth (a) together with absorbance per wavenumber (b). Comparison of 

<10 mm with >=15 mm was not significantly different along LD1 (Mean/SD (a): -0.11/0.14 for <10 mm; -0.05/0.16 for >=15 mm; p=0.489, 95% CI = -0.19 to 0.07). Comparison of 

<10 mm with 10-14 mm was significantly different along LD1 (Mean/SD: -0.11/0.14 for <10 mm; -0.24/0.13 for 10-14 mm; p=0.006). Comparison of 10-14 mm with >=15 mm was 

significantly different along LD1 (Mean/SD: -0.24/0.13 for 10-14 mm; -0.05/0.16 for >=15 mm; p=0.002). Absorbance associated lipids were shown to have a significant positive rate 

of change for the 10-14 mm group compared with the >=15 mm group, evidencing their higher bioavailability. No significant differences were detected for wavenumbers associated 

with other biomarkers between all 3 groups (b). ATR-FTIR: Attenuated total reflectance, Fourier-transform Infrared; CI: Confidence interval; SD: Standard deviation.  
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Supplementary Figure 5. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1: Percentage Excision (a) together with absorbance per wavenumber (b). 

Comparison of 11-20% with 21-30% was not significantly different along LD1 (Mean/SD (a): 0.47/0.07, 0.41/0.08 respectively; p=0.16; 95 CI -0.02 to -0.14). Comparison of 11-20% 

with 31-40% was not significantly different along LD1 (Mean/SD: 0.47/0.07, 0.51/0.07 respectively; p=0.69; -0.12 to 0.05). Comparison of 11-20% with >40% was not significantly 

different along LD1 (Mean/SD: 0.47/0.07, 0.49/0.05 respectively; p=0.98; 95 CI -0.11 to 0.09). Comparison of 21-30% with >40% was not significantly different along LD1 

(Mean/SD: 0.41/0.08; 0.49/0.05 respectively, p=0.10; 95 CI -0.16 to 0.01). Comparison of 31-40% with >40% was not significantly different along LD1 (Mean/SD: 0.51/0.07, 

0.49/0.05 respectively; p=0.92; CI -0.07 to 0.11). A significant difference was detected along LD1 for 21-30% vs 31-40% (Mean/SD: 0.41/0.08, 0.51/0.07, respectively; p=0.0016; 95 

CI -0.16 to -0.03). No significant differences were detected for wavenumbers associated with the 7 biomarkers between all 4 groups (b). ATR-FTIR: Attenuated total reflectance, 

Fourier-transform Infrared; CI: Confidence interval; SD: Standard deviation. 
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Supplementary Table 1.  Important biomarkers 
 
Tentative assignment of Biomarkersa Wavenumber (cm-1) 

Amide I (of proteins predominantly in α helix 
conformation) ~1651 

Amide II (of proteins predominantly in β sheet 
conformation) ~1550 

Methylene chains in lipids ~1470 

Phosphate I - asymmetric (DNA) ~1223 

C-O bands from glycomaterials and proteins ~1170 

Phosphate I - symmetric (DNA) ~1072 

Glycogen & collagen ~1030 
a Movasaghi et al, 200836; N.B.: The signal at a particular wavenumber could have contributions from more than 

one biomarker. Amides I and II are linked to the secondary structure of proteins and are indicative of their 

bioavailability.  
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Supplementary Table 2:  Patient characteristics for the different cone depth and cervical proportion excised clinical groups (Comparison 3) 

 
Characteristics 
 

Normal 
controls 
(n=27) 

Cone Deptha 
(n=58) 

Percentage Excisionb  
(n=53) 

 
 Category 1:  

<10 mm  
(n=24) 

Category 2:  
10-14 mm  

(n=24) 

Category 3:  
>= 15 mm 

(n=10) 

Category 2:  
11-20% 

(n=9) 

Category 3:  
21-30%  
(n=22) 

Category 4:  
31-40%  
(n=15) 

Category 5: 
>40% 
(n=7) 

Age, years         

   Mean (SD, range) 30.0  
(4.4, 22-37) 

30.6  
(5.2, 25-42) 

29.8  
(3.1, 25-36) 

33.5  
(4.5, 25-43) 

31.1  
(4.0, 26-38) 

30.3  
(4.4, 25-42) 

30.6  
(5.1, 25-43) 

33.0  
(3.6, 25-38) 

Ethnicity, n/N (%)         
   Caucasian 18/27 (67) 19/24 (79) 20/24 (83) 7/10 (70) 5/9 (56) 19/22 (86) 14/14 (93) 6/7 (86) 
   Asian 4/27 (15) 4/24 (17) 3/24 (13) 2/10 (20) 4/9 (44) 2/22 (9) 0/15 (0) 0/7 (0) 
   Black 5/27 (18) 1/24 (4) 1/24 (4) 1/10 (10) 0/9 (0) 1/22 (5) 1/14 (7) 1/7 (14) 
Smoking status, n/N (%)         
   Non-smoker 23/27 (85) 19/24 (79) 15/24 (63) 7/10 (70) 7/9 (78) 17/22 (77) 8/15 (53) 5/7 (71) 
   Current smoker 4/27 (15) 5/24 (21) 9/24 (37) 3/10 (30) 2/9 (22) 5/22 (23) 7/15 (47) 2/7 (29) 
Contraception, n/N (%)         
   Nil 16/27 (59) 6/24 (25) 8/24 (33.5) 2/10 (20) 3/9 (33) 7/22 (32) 4/15 (26) 0/7 (0) 
   Condoms 4/27 (15) 4/24 (17) 2/24 (8.5) 2/10 (20) 1/9 (11) 2/22 (9) 3/15 (20) 2/7 (29) 
   COCP 4/27 (15) 12/24 (50) 12/24 (50) 4/10 (40) 5/9 (56) 12/22 (54) 6/15 (40) 4/7 (57) 
   POP 1/27 (4) 1/24 (4) 0/24 (0) 1/10 (10) 0/9 (0) 0/22 (0) 1/15 (7) 0/7 (0) 
   Implant 1/27 (4) 0/24 (0) 0/24 (0) 0/10 (0) 0/9 (0) 0/22 (0) 0/15 (0) 0/7 (0) 
   Mirena IUS 1/27 (4) 1/24 (4) 1/24 (4) 0/10 (0) 0/9 (0) 1/22 (5) 0/15 (0) 0/7 (0) 
   Copper IUD 0/27 (0) 0/24 (0) 0/24 (0) 1/10 (10) 0/9 (0) 0/22 (0) 0/15 (0) 1/7 (14) 
   Vaginal ring 0/27 (0) 0/24 (0) 1/24 (4) 0/10 (0) 0/9 (0) 0/22 (0) 1/15 (7) 0/7 (0) 
Parity, n/N (%)         
   Nulliparous 22/27 (81) 19/24 (79) 20/24 (83) 6/10 (60) 8/9 (89) 18/22 (82) 12/15 (80) 5/7 (71) 
   Parous 5/27 (19) 5/24 (21) 4/24 (17) 4/10 (40) 1/9 (11) 4/22 (18) 3/15 (20) 2/7 (29) 
Time since last intercourse, n/N (%)         
   >48 hours 22/27 (81) 19/24 (79) 24/24 (100) 9/10 (90) 6/9 (67) 21/22 (95) 15/15 (100) 7/7 (100) 
   <48 hours 5/27 (19) 5/24 (21) 0/24 (0) 1/10 (10) 3/9 (33) 1/22 (5) 0/15 (0) 0/7 (0) 
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Characteristics 
 

Normal 
controls 
(n=27) 

Cone Deptha 
(n=58) 

Percentage Excisionb  
(n=53) 

Phase of menstrual cycle, n/N (%)         
   Luteal 7/27 (26) 14/24 (58) 9/24 (38) 6/10 (60) 6/9 (67) 12/22 (55) 6/15 (40) 3/7 (43) 
   Follicular 14/27 (52) 8/24 (34) 12/12 (50) 3/10 (30) 3/9 (33) 10/22 (45) 6/15 (40) 3/7 (43) 
   Unknown 6/27 (22) 2/24 (8) 3/24 (12) 1/10 (10) 0/9 (0) 0/22 (0) 3/15 (20) 1/7 (14) 
Vaginal pH         
   <4.5 15/27 (56) 12/24 (50) 9/24 (38) 3/10 (30) 4/9 (44) 9/22 (41) 8/15 (53) 2/7 (29) 
   >=4.5 10/27 (37) 11/24 (46) 14/24 (58) 6/10 (60) 5/9 (56) 12/22 (55) 6/15 (40) 4/7 (57) 
   Unknown/NA 2/27 (7) 1/24 (4) 1/24 (4) 1/10 (10) 0/9 (0) 1/22 (4) 1/15 (7) 1/7 (14) 
Bacterial vaginosis, n/N (%)         
   No 21/27 (78) 22/24 (92) 22/24 (92) 8/10 (80) 8/9 (89) 22/22 (100) 14/15 (94) 5/7 (71) 
   Yes 3/27 (11) 2/24 (8) 1/24 (4) 2/10 (20) 1/9 (11) 0/22 (0) 0/15 (0) 2/7 (29) 
   Unknown 3/27 (11) 0/24 (0) 1/24 (4) 0/10 (0) 0/9 (0) 0/22 (0) 1/15 (6) 0/7 (0) 
Follow up cytology/HPV, n/N (%)         
   Normal & HPV -ve NA 14/24 (58) 19/24 (79) 6/10 (60) 8/9 (89) 10/22 (45) 14/15 (93) 4/7 (58) 
   Normal & HPV +ve NA 4/24 (17) 4/24 (17) 1/10 (10) 1/9 (11) 7/22 (32) 0/15 (0) 1/7 (14) 
   LSIL & HPV –ve NA 3/24 (13) 1/24 (4) 2/10 (20) 0/9 (0) 3/22 (13) 1/15 (7) 1/7 (14) 
   LSIL & HPV +ve NA 1/24 (4) 0/24 (0) 1/10 (10) 0/9 (0) 1/22 (5) 0/15 (0) 1/7 (14) 
   HSIL & HPV -ve NA 1/24 (4) 0/24 (0) 0/10 (0) 0/9 (0) 1/22 (5) 0/15 (0) 0/7 (0) 
   HSIL & HPV +ve NA 1/24 (4) 0/24 (0) 0/10 (0) 0/9 (0) 0/22 (0) 0/15 (0) 0/7 (0) 
HPV DNA test, n/N (%)         
   Negative 20/27 (74) 18/24 (75) 20/24 (83) 8/10 (80) 8/9 (89) 14/22 (64) 15/15 (100) 5/7 (72) 
   Positive 7/27 (26) 6/24 (25) 4/24 (17) 2/10 (20) 1/9 (11) 8/22 (36) 0/15 (0) 2/7 (28) 

a Patients were included in the dimensional analyses if they had had treatment and had follow up data at 6 months after treatment. b There was insufficient patients in Category 1 to include in 

the analysis. No segregation was made based on histology, cytology or HPV testing. COCP: Combined oral contraceptive pill: IUD: Intrauterine device; IUS: Intrauterine system; NA: Not 

applicable; POP: Progesterone-only pill; SD: Standard deviation.  

 

 

 

 

 



 

50 

 

3 Project Two  

This paper has been accepted for publication by Scientific Reports as: 

“Imaging cervical cytology with scanning near-field microscopy 

(SNOM) coupled with an IR-FEL”  

Diane E. Halliwell, Camilo L. M. Morais,  Kássio M. G. Lima, Julio Trevisan, Michele 

R. F. Siggel-King, Tim Craig, James Ingham, David S. Martin, Kelly Heys, Maria 

Kyrgiou, Anita Mitra, Evangelos Paraskevaidis, Georgios Theophilou,  Pierre L. 

Martin-Hirsch, Antonio Cricenti, Marco Luce, Peter Weightman, and Francis L. 

Martin. 

 

Contribution:  

I collaborated with the co-authors on this project by preparing the samples for 

imaging; acting as biological consultant during experimental shifts; acting as Second 

Commissioner during experimental shifts at the ALICE facility at Daresbury during 

2015; and helping to prepare the manuscript for publication. This work was performed 

under the supervision of Professor Francis L. Martin.  

…………………………………  ………………………………………… 

Diane E. Halliwell     Professor Francis L. Martin 

 



 

Scientific Reports 

 

 

Dear Prof Martin,  
 
We are delighted to accept your manuscript entitled "Imaging cervical cytology with scanning near-
field optical microscopy (SNOM) coupled with an IR-FEL" for publication in Scientific Reports. Thank 
you for choosing to publish your work with us.  
 
You should have just received another email from scientificreports@nature.com with instructions for 
the next step, which is to complete your publication agreements. To continue with your publication 
agreements you will need to create a new account on this new system. Please complete these as soon as 
possible so we can start preparing your manuscript for publication. The agreements include the licence, 
which defines the terms of publication, and billing information for your Open Access article.  
 
After we've prepared your paper for publication, you will receive a PDF proof for checking. At that 
point, please check the author list and affiliations to ensure that they are correct. For the main text, only 
errors that have been introduced during the production process or those that directly compromise the 
scientific integrity of the paper may be corrected at this stage. Please ensure that only one author 
communicates with us and that only one set of corrections is returned. The corresponding (or 
nominated) author is responsible on behalf of all co-authors for the accuracy of all content, including 
spelling of names and current affiliations.  
 
To ensure prompt publication, your proofs should be returned within two working days; please let us 
know immediately if there is any period within the next two weeks in which you (or the nominated 
author) won't be available.  
 
Acceptance of your manuscript is conditional on all authors' agreement with our publication policies 
(seehttp://www.nature.com/srep/policies/index.html). In particular, your manuscript must not be 
published elsewhere and there must be no announcement of this work to any media outlet until the 
publication date is confirmed. We will inform you by email as soon as your manuscript is scheduled for 
publication, which will be after we have received and approved your proof corrections. Advice about 
media relations is available from NPG's press office at press@nature.com.  
 
Your article will be open for online commenting on the Scientific Reports website. You may use the 
report facility if you see any comments which you consider inappropriate, and of course, you can 
contribute to discussions yourself. If you wish to track comments on your article, please register for this 
service by visiting the 'Comments' section in the full text (HTML) version of your paper.  
 
**A form to order reprints of your article is available at http://www.nature.com/reprints/author-
reprints.html. To obtain the special author reprint rate, orders must be made within a month of the 
publication date. After that, reprints are charged at the normal (commercial) rate.**  
 
We look forward to publishing your article.  
 
Best regards,  
 
Christian Eggeling  
Editorial Board Member  
Scientific Reports 

mailto:scientificreports@nature.com
http://redir.aspx/?REF=7zlilvqS-CM3kxgPCB3y5hcS8Ve-1tjYIdqRV07nOIDGJ36mWpnTCAFodHRwOi8vd3d3Lm5hdHVyZS5jb20vc3JlcC9wb2xpY2llcy9pbmRleC5odG1s
mailto:press@nature.com
http://redir.aspx/?REF=sT4e16aima30-seJ1NTILKRJZP2YOOHf11aNpOxegvLGJ36mWpnTCAFodHRwOi8vd3d3Lm5hdHVyZS5jb20vcmVwcmludHMvYXV0aG9yLXJlcHJpbnRzLmh0bWwu
http://redir.aspx/?REF=sT4e16aima30-seJ1NTILKRJZP2YOOHf11aNpOxegvLGJ36mWpnTCAFodHRwOi8vd3d3Lm5hdHVyZS5jb20vcmVwcmludHMvYXV0aG9yLXJlcHJpbnRzLmh0bWwu


 

Scientific Reports 

Page 1 of 48 

 

Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled 

with an IR-FEL   

Diane E. Halliwell,a Camilo L. M. Morais,b Kássio M. G. Lima,b Julio Trevisan,c Michele R. F. 

Siggel-King,de Tim Craig,d James Ingham,d David S. Martin,d Kelly Heys,a Maria Kyrgiou,f,g 

Anita Mitra,f,g Evangelos Paraskevaidis,h Georgios Theophilou,i Pierre L. Martin-Hirsch,aj 

Antonio Cricenti,k Marco Luce,k Peter Weightman,d and *Francis L. Martina 

 

a Centre for Biophotonics, LEC, Lancaster University, Lancaster, UK; b Biological Chemistry 

and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 

59072-970, RN, Brazil; c Institute of Astronomy, Geophysics and Atmospheric Sciences 

University of São Paulo, Brazil; d Department of Physics, University of Liverpool, Oliver 

Lodge Building, Liverpool, UK; e Accelerator Science and Technology Centre (ASTEC), 

STFC Daresbury Laboratory, UK; f Institute of Reproductive and Developmental Biology, 

Department of Surgery & Cancer, Faculty of Medicine, Imperial College, London, UK; g West 

London Gynaecological Cancer Centre, Imperial College NHS Healthcare, London, UK; h 

Department of Obstetrics and Gynaecology, University of Ioannina, Ioannina, Greece; i St 

James Hospital, Leeds, West Yorkshire, UK; j Department of Obstetrics and Gynaecology, 

Lancashire Teaching Hospitals NHS Trust Foundation, Preston, UK. k Istituto di Struttura 

della Materia, CNR, via del Fosso del Cavaliere 100, Rome, Italy.  

*Correspondence and request for materials should be addressed to Professor Martin, Centre 

for Biophotonics, LEC, Lancaster University, Lancaster LA1 4YQ, UK; Email: 

f.martin@lancaster.ac.uk; Tel: +44(0)1524 51020.  

mailto:f.martin@lancaster.ac.uk


Scientific Reports 

Page 2 of 48 

 

Abstract 

Cervical cancer remains a major cause of morbidity and mortality among women, especially 

in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a condition 

for the rapid proliferation of cancer cells. We show that scanning near-field optical 

microscopy in combination with an infrared  free electron laser (SNOM-IR-FEL), is able to 

distinguish between normal and squamous low-grade and high-grade dyskaryosis, and 

between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical 

lesions, at designated wavelengths associated with DNA, amides I and II and lipids. These 

findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical 

information relevant to the detection of cervical cell abnormalities and cancer diagnosis at 

spatial resolutions below the diffraction limit (≥0.2 µm). We compare these results with 

analyses following attenuated total reflectance Fourier-transform infrared (ATR-FTIR) 

spectroscopy; although this latter approach has been demonstrated to detect underlying 

cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 µm 

to 30 µm.  
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Cervical cancer is associated with the persistent infection of high-risk types of Human 

papillomavirus (HPV), together with other socioeconomic co-factors1. Screening involves 

cytological and histological classification of cervical cells. In the UK, cytological examination 

of cervical squamous cells is classified as normal, borderline or mild dyskaryosis, moderate or 

severe dyskaryosis and invasive cervical cancer (ICC). Histology is defined as normal, 

cervical intra-epithelial neoplasia (CIN): CIN1, CIN2, CIN3, or invasive cervical cancer.  For 

atypical cells found in the glandular cells of the cervix, the pre-invasive lesion of 

adenocarcinoma is defined by changes termed cervical glandular intraepithelial neoplasia 

(CGIN), and sub-classified as low-grade cervical intra-epithelial glandular neoplasia 

(LGCGIN) and high-grade cervical intra-epithelial glandular neoplasia (HGCGIN). Squamous 

and glandular lesions may co-exist together and are defined by the level of CIN together with 

either LGCGIN or HGCGIN. Conventional screening is flawed as it is dependent on the 

subjective visual inspection of cytology; this often results in mis-diagnoses when grading 

samples2.   

Attenuated total reflectance, Fourier-transform infrared (ATR-FTIR) spectroscopy has 

shown potential over conventional screening methods, demonstrating it can segregate grades 

of cervical cytology more accurately than conventional cytological screening3,4, classify 

cervical cytology based on HPV infection with low- or high-risk types5, and can diagnose 

underlying disease more accurately that conventional cytology screening2. However, FTIR 

spectroscopy is limited in spatial resolution by the effect of diffraction, defined as the 

interference of waves when they hit an obstacle or slit. This effect restricts the spatial 

resolution of FTIR to about half the wavelength of light or ~3 µm to 30 µm6, with the 

resolution being a measure of how closely the lines of an image can be resolved (i.e., the 

number of independent pixels per value per unit length).  
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Scanning near field optical microscopy (SNOM) belongs to a family of nanoscopic 

techniques that have shown potential in providing detailed information on cell topography and 

cytoplasmic structures.  

SNOM has a clear advantage over conventional infrared IR microscopy in terms of spatial 

resolution because it is able to overcome the diffraction limit; this is achieved by the use of an 

apertured fibre optic scanning tip. The SNOM technique requires relatively high photon 

intensities such as those provided by an IR free electron laser (IR-FEL). The SNOM-IR-FEL 

enables the simultaneous collection of topography and optical features at scales not normally 

achieved with conventional IR techniques to produce high quality, chemically-rich images at 

designated wavelengths with a spatial resolution of ≥0.2 µm7,8.   

Increased synthesis of proteins, lipids and nucleic acids is a condition for the rapid 

proliferation of cancer cells9, and changes in the bioavailability of these biomarkers can reveal 

important patterns of intracellular change. The IR-FEL on the ALICE accelerator at 

Daresbury Laboratory (Warrington, UK) is tuneable over the range of 5.5 µm to 8.8 µm 

(~1818 cm-1 to ~1136 cm-1), which includes a number of biologically important biomarkers10 

at designated wavenumbers or wavelengths (Table 1). These biomarkers have previously been 

used to separate normal, low- and high-grade dyskaryosis and cancer cells from each other2. 

SNOM has been used to investigate the localisation of molecules within cell membranes of 

prostate cancer cells11. Further research demonstrated SNOM can accurately define both the 

cell surface and internal structures in both healthy and anomalous sperm, including the 

acrosome, nucleus and the organisation of mitochondria12, and has demonstrated potential for 

single molecule imaging13. The application of SNOM to oesophageal cancer tissue studies 

provided evidence of its potentiality for cancer diagnosis8. The increased spatial resolution of 

SNOM has the potential to reveal and quantify highly localised cancer-related changes in 

cervical cells at the sub-cellular level (1-0.1 µm), and more accurately and precisely than 
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conventional IR techniques. The above described IR-SNOM studies were all carried out in 

reflection mode. To be best of our knowledge this is the first publication reporting data 

obtained using IR-SNOM in transmission mode, and using IR-SNOM to image whole cervical 

cells. 

The aim of this pilot study was to assess the potential of SNOM in combination with an 

IR-FEL in the detection of the biophysical properties of cervical cell abnormalities. Spectra 

were also collected using traditional ATR-FTIR biospectroscopy to investigate the differences 

between techniques. 

Results 

We recruited 5 patients into this pilot study; the youngest aged 25 years (squamous & 

glandular pre-invasive lesions [CIN2, HGCGIN]) and the oldest 42 years (squamous lesion; 

low-grade dyskaryosis). Table 2 shows the characteristics for each patient; limited 

demography was available for the patient diagnosed with high-grade dyskaryosis.  

Two out of the 5 patients were current smokers (high-grade dyskaryosis and CIN2 

HGCGIN), and 1 patient was taking antibiotics (CIN2, HGCGIN). Four patients tested 

positive for HPV; none for HPV 18 and 2 for HPV 16. Both normal and high-grade 

dyskaryosis tested positive for HPV ‘other’ type (i.e., not high-risk HPV types 16 or 18); only 

normal had an abnormal high vaginal swab. All patients were tested for bacterial vaginosis 

and were normal.  

A total of 34 cells were included in the SNOM images. The number of cells was evenly 

distributed for low-grade dyskaryosis, CIN2, HGCGIN and adenocarcinoma stage 1B1 (6, 5, 

and 5 cells each, respectively). Sixteen cells were imaged for normal and 2 for high-grade 

dyskaryosis, which was limited by the number of acceptable cells on the slide. Each SNOM 

scan comprised topographic, raw transmission (SNOM light) and IR (light) intensity reference 

images all collected simultaneously at a fixed wavelength. Example SNOM-IR-FEL 
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topography and associated transmission images for the pre-invasive lesion (CIN2, HGCGIN) 

is presented in Figure 6 (Methods; computational analysis). The topography and associated 

transmission images for the other 4 cells types is presented in Supplementary Figs: 1-4.  

Changes in biomarkers at different grades of cervical dyskaryosis detected by 

SNOM-IR-FEL. When applied to spectra, Principal Component Analysis (PCA) identifies 

common sources of variance across spectra and collates them into a small number of 

dimensions (i.e., Principal Components [PCs]). Similar behaviour between samples ‘nests’ 

them closer together. PC score plots (Figure. 1) showed adequate separation for amide I 

between normal, high-grade dyskaryosis and CIN2, HGCGIN, with PC1 representing 84.19% 

and PC2 8.22% of the data variance (Figure. 1 [a]). The overlap observed for low-grade 

dyskaryosis and adenocarcinoma Stage 1B1 in the amide I band indicates there was 

insufficient information to achieve complete class segregation. Clean separation was observed 

for amide II between all samples, with the exception of normal and high-grade dyskaryosis, 

with PC1 and PC2 signifying 74.99% and 17.41%, respectively of the data variation (Figure. 

1 [b]). There was considerable overlap for lipids for low- and high-grade dyskaryosis and 

adenocarcinoma Stage 1B1, with good separation observed between normal and CIN2, 

HGCGIN; PC1 was 76.39%, and PC2 was 16.75% (Figure. 1 [c]). All five cell types were 

distinguishable for DNA, although low- and high-grade dyskaryosis were very close to each 

other, with PC1 representing 84.28% and PC2 7.81% of the data variance (Figure. 1 [d]). 

Hotelling T2 versus Q Residuals were plotted to assess how well the model described the 

samples with the optimal score for Hotelling T2 being 100%, and the optimum score for Q 

Residuals being 0%. These plots show that all the samples fell with the 95% confidence limits 

and that no outliers were detected (Supplementary Fig.5). Validation of the PCA model was 

performed using Q Residuals to measure variation outside the PCA model for each sample 

according each biomarker response (Supplementary Fig. 6); and Hotelling T2 was used to 
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measure variation within the PCA model for each sample according each biomarker response 

(Supplementary Fig. 7). All values fell within the 95% confidence limit and show there were 

no outliers.  The T2 and Q residuals plots show the data fits the model well.  

The area of absorbance for each biomarker for each cell type is shown in Figure 2, with the 

percentage of area variation compared with normal shown in Table 3. For low-grade 

dyskaryosis, amide I and lipids were lower than normal cells (-73% and -31%, respectively) 

with large increases detected for amide II and DNA (143% and 111%, respectively). This 

pattern of decreased amide I and lipids was also observed for high-grade dyskaryosis (amide I: 

-94%, lipids: -78%), and similarly, amide II and DNA were higher (40% and 132%, 

respectively). All four biomarkers were higher for the pre-invasive squamous/glandular cells 

(CIN2, HGCGIN) than normal cells, with dramatic increases observed for amide II (509%) 

and DNA (1272%). Amide I was 38% higher and lipids were 93% higher. Conversely, the 

profile for adenocarcinoma Stage 1B1 was similar to low-grade dyskaryosis for amide I (-

66%) and lipids (-47%).  Adenocarcinoma Stage 1B1 was the only cell type in which a 

decrease in amide II was detected (-46%), and DNA availability was approximately half that 

detected for CIN2, HGCGIN (585%).  

Spectra collected by ATR-FTIR spectroscopy for each cell type were very similar to each 

other, where the signal’s difference appeared to be close to the instrument noise 

(Supplementary Fig. 8). However, the application of PCA was able to discriminate each cell 

type by class (Supplementary Fig. 9). PCA alone is often not enough to segregate out data 

classes or clusters sufficiently. By applying a supervised technique such as Linear 

Discriminant Analysis (LDA) to the PCA output as above (PCA-LDA), it promotes inter-class 

variation to be identified whilst preventing over-fitting of the data. PCA-LDA revealed good 

separation of classes, although 2 spectra from the normal set appeared within the CIN2, 

HGCGIN class (Figure 3).  
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Successive Projections Algorithm (SPA) is a variable selection technique that can produce 

models with good prediction ability. Used together with LDA (SPA-LDA), this technique 

produced similar results to PCA-LDA, although the clustering of cell types was more acute 

(Figure. 4), with discriminant wavenumbers being 1022, 1157, 1184, 1234, 1331, 1512, 1566, 

1662, 2345 and 2939 cm-1, and 8 of these occupying the fingerprint region (1800-900 cm-1); 

(Figure 5).  The tentative assignment of these wavenumbers in the fingerprint region to 

associated biomarkers is given in Table 4.  

Discussion 

Although the number of cells per patient per cell type is small, the results evidence the 

promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the 

detection of cervical cell abnormalities and cancer diagnosis at high spatial resolution. Clear 

trends in increased bioavailability of DNA were seen across all four disease cell types 

comparative to normal, with dramatic increases observed for the pre-invasive lesion of 

squamous/glandular neoplasia and for adenocarcinoma Stage 1B1. Both of these patients were 

infected with HPV 16, which is known to integrate into the host’s DNA and produce a range 

of proteins that accelerate biochemical cascades that result in an overexpression of proto-

oncogenes, stimulate rapid cell growth and increase the expression of proteins necessary for 

DNA replication14,15. It is possible that the increased DNA expressed in these cell types may 

be a combination of increased human and viral DNA. The dramatic increase in all biomarkers 

for the pre-invasive squamous/glandular lesion suggests a ‘commitment’ to carcinogenesis, 

whilst the mechanism behind the downregulation in proteins and lipids in adenocarcinoma is 

unclear, and may reflect the tumour achieving some form of steady-state, or that energy 

supply is exhausted. It should also be noted that ‘normal’ cells were infected with HPV 

‘other’ type (i.e., not high-risk HPV type 16 or 18), and this patient had an abnormal high 

vaginal swab which may have influenced the profile observed here.  
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For the squamous lesions (low- and high-grade dyskaryosis), the results suggests the 

production of lipids and specific proteins featuring amide I bonding has been down-regulated.  

An amide bond is formed when two amino acids are joined at the C=O and N-H junction. 

Amide I is associated with the stretching of C=O bonds in polypeptides, whilst amide II is 

associated with the bending of the N-H bond. Previous vibrational work has established 

correlations between the frequencies of amides I/II to the secondary structure of polypeptides, 

which include α helices, β sheets, turns and undefined structure16. The increases in amide II 

for low-grade and high-grade dyskaryosis and the pre-invasive squamous/glandular lesion 

may be due to the increased production of specific polypeptides that feature amide II bonding 

in their secondary structures, and may represent a singular biomarker of importance. Previous 

work has shown the presence of proteins in the β sheet conformation has been linked in 

formation of the protein aggregates and fibrils observed in many human diseases, notably the 

amyloids seen in Alzheimer's disease17. 

Whilst lipids are associated with the proliferation of cancer cells9, we detected increases 

only for the mixed pre-invasive squamous/glandular lesion. However, it should be noted that 

the wavelength for lipids at 5.71 µm lies near the limit of the IR-FEL where the beam 

intensity was low and shot-to-shot stability less good than for other wavelengths, which 

resulted in SNOM transmission images that had a lower signal-to-noise ratio. Overall, 

although the SNOM-IR-FEL technique was able to distinguish different cell types according 

to biomarkers, the delineation was less distinctive between low- and high-grade dyskaryosis 

than for normal, pre-invasive squamous/glandular lesion and adenocarcinoma Stage 1B1, 

which may be influenced by the small number of cells imaged. Given that the underlying 

normal cellular activity of squamous cells is different to mucus-producing glandular cells, it is 

not unreasonable to assume that the biological processes involved in the development of 

squamous cervical lesions may be different to glandular lesions.  
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As expected, spectra collected the traditional way using ATR-FTIR coupled with 

multivariate analysis, was able to segregate the cell types clearly into classes. Spectra for the 

normal sample were collected the day before those collected for the pre-invasive 

squamous/glandular sample; thus the appearance of two spectra within the pre-invasive class 

is likely due to natural variation of the normal sample rather than cross-contamination. The 

range of biomarkers available for investigation with ATR-FTIR was broader than that 

available for the SNOM-IR-FEL measurements in this experiment and encompasses the whole 

of the fingerprint region. Nonetheless, a large portion of this region was still available for 

investigation with SNOM-IR-FEL, where the wavelength range is dictated by the ALICE 

accelerator beam energy and FEL undulator gap settings. 

Although SNOM has been shown to reveal cytoplasmic structures in previous studies12, the 

SNOM-IR-FEL images obtained in this study were difficult to interpret in terms of structures. 

This was due to the use of a cleaved fibre for the SNOM imaging, which added significant tip 

artefacts to the topographical image and often off-set the topographic from the transmission 

images. Additionally, the method used to prepare the slides (cytospinning) resulted in many 

cells rupturing upon impact with the BaF2 slide and left very few whole cells that were free of 

debris. However, care was taken to avoid any debris within the field of images as much as 

possible, and to ensure that all images contained the whole cells.  

In terms of a diagnostic tool for use in routine patient screening, the technique of ATR-

FTIR has low running costs and inexpensive consumables, together with a turnaround of 15-

20 minutes per sample. The SNOM-IR-FEL technique has higher running (estimated at 

£250/hour) and consumables costs, and requires specialised fibre optics that need to be 

replaced regularly. In this experiment, the time required to collect each SNOM scan, at each 

wavelength, was approximately 80-100 minutes, depending upon the number of pixels 

obtained per image. Although building small accelerators on hospital sites is achievable, their 
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installation would require specialised personnel and a safe location away from the main 

hospital thoroughfare. Therefore, between the two techniques studied here, ATR-FTIR 

spectroscopy is the technique of choice for routine screening applications.   

The results presented here demonstrate that the SNOM-IR-FEL technique is able to 

correctly identify cervical cell abnormalities using whole cells. In this study, the SNOM 

technique was used in ‘low resolution’ mode, which enabled direct comparison with the ATR-

FTIR method. SNOM has a clear advantage over ATR-FTIR in terms of being a ‘precision 

tool’ that can be used to identify the location of biomarkers within the cell, leading to further 

understanding of how cancer develops and in identifying targets of therapeutic potential. It 

can be tuned to specific wavenumbers/wavelengths, which may help to exclude the ‘noise’ of 

other biomarkers that lie within close proximity, and makes the extraction of specific 

biomarkers more accessible.  

Methods  

Study population 

Ethical approval was obtained from the National Research Ethics Service Committee London 

– Fulham (Approval number 13/LO/0126). This study was conducted according to the 

principles of the Declaration of Helsinki and all other applicable national or local laws and 

regulations. All patients gave written informed consent before any protocol-specific procedure 

was performed.  

Patients were selected from a larger cohort of patients taking part in a larger study and 

were chosen based on their cytology and histology typing (worse grade) to match a diagnosis 

of ‘normal’, squamous lesions (low-grade dyskaryosis and high-grade dyskaryosis), pre-

invasive mixed lesions involving both squamous and glandular cells (CIN2, HGCGIN), or 

developed glandular lesions (adenocarcinoma). We selected pre-menopausal, non-pregnant 

women of reproductive age (18-45 years of age) who were scheduled, if necessary, to undergo 
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local cervical treatment at Imperial College NHS Healthcare Trust. All samples were collected 

prior to treatment. The recruitment commenced in May 2013 and was completed in May 

2015. 

Patients were anonymised and assigned a unique identifier. We collected patient 

characteristics that included ethnicity, parity, smoking habits, antibiotic use within the last 2 

weeks, phase in their cycle and use of contraception. The type of contraception and the time of 

their cycle (follicular or luteal) were documented. Medical and gynaecological history was 

collected for each patient including time since last sexual intercourse. For each patient, we 

collected data on the cytology, HPV DNA test and typing and histology, if available. Ethnicity 

was self-reported as Caucasian, Asian or Black. 

Women who were HIV or hepatitis B/C positive, women with autoimmune disorders, and 

women that received pessaries within 14 days of sampling were excluded. Women with a 

previous history of cervical treatment were also excluded. 

Sample collection  

A sterile, disposable speculum was inserted, without lubricant, and a cervical sample of 

ThinPrep, liquid-based cytology (LBC) was taken from the cervix (ThinPrep, HOLOGIC Inc., 

Bedford, USA). This was analysed for cytological diagnosis and HPV DNA test and typing. 

HPV DNA test and 16/18 genotyping was carried out according to manufacturer’s guidelines 

using the Abbott RealTime High Risk (HR) HPV assay on Abbott M2000 platform; a 

clinically validated in vitro polymerase chain reaction (PCR) assay with identification of 

HPV-16, -18 and 12 other HR HPV subtypes (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68)18. 

From the remaining methanol-based fluid, 1 ml was stored at 4° centigrade at the Centre for 

Biophotonics, Lancaster University, England, until preparation for SNOM-IR-FEL and ATR-

FTIR analysis.  

Slide preparation  
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Each sample was agitated to disperse the cell pellet, and then a 500 µl aliquot was collected 

from the 1 ml sample into a clean micro tube. The 500 µl aliquots were centrifuged at 2000 

rpm for 5 minutes and the ThinPrep supernatant was aspirated from above the pellet to 

remove its spectral signature (i.e., the methanol fixative). Each sample was re-suspended in 

500 µl of distilled H2O, agitated and centrifuged again. The supernatant was removed again 

and the wash step was repeated once more. For ATR-FTIR analysis, the final pellet was 

immersed in 100 µl of distilled H2O, agitated and dispensed onto IR-reflective glass slides 

(Low-E; Kevley Technologies Inc., Chesterland, OH, USA) in a uniform spread of whole 

cells and allowed to bench dry for a minimum of 24 hours. Samples were then stored in a 

desiccator for a minimum of 48 hours to remove any residual water before spectral analysis. 

For SNOM-IR-FEL analysis, the remaining 500 µl aliquot was washed as described above. 

If the final pellet was small, it was suspended in 500 µl of distilled H2O, and larger pellets in 

1000 µl of distilled H2O. Each suspension was then agitated to disperse the pellet, and 5-6 

drops added to a cytofunnel held in a cytoclip that had been pre-loaded with a barium fluoride 

(BaF2)  slide; (Crystan Ltd, Dorset, UK). Samples were spun at 3000 rpm for 5 minutes in a 

Cytospin™ 4 Cytocentrifuge (Thermo Fisher Scientific Inc., MA, USA) to disperse the cells 

in a single layer onto the slide. Slides were then housed in slide cartridges and kept in a 

desiccator until required.    

SNOM and IR-FEL experimental set-up 

The experiments were performed on the IR-FEL beamline at the ALICE energy recovery 

linear accelerator at Daresbury Laboratory19, 20. The wavelength of light from the FEL was 

selected by changing the undulator gap and, at the present accelerator settings, could be varied 

continuously from about 5.5 µm to 8.8 µm (~1818 cm-1 to ~1136 cm-1), a range which covers 

a number of biologically important absorption bands. The IR-FEL operates at a macro-pulse 

repetition rate of 10 Hz, which limits, and determines, the rate of data collection. The IR light 
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from the FEL was transported to the experimental area via an evacuated beamline and exited 

the beamline through a KBr window. The intensity of the FEL radiation was attenuated using 

a set of polarisers and focussed onto the sample. A CaF2 beam-splitter enables the FEL 

radiation to be split so that approximately 80% went to the SNOM and 20% was used as a 

reference signal. The reference signal was monitored with a single-element pyro detector. 

The general principal of operation for the SNOM used in these experiments has been 

previously described7. In brief, the scanning tip is a specially prepared infrared-transmitting 

Chalcogenide glass fibre, where one end is etched to a sharp tip. Gold is then evaporated onto 

the tip so that it covers all but the very end, forming an aperture of 0.1-1 µm in diameter 

through which the light is collected. The fibre tip is then rastered over the surface of the 

sample, keeping the tip-to-sample distance constant with shear-force feedback. A single IR-

FEL macro-pulse is used for each pixel of the images. The standard mode of operation for IR-

SNOM is reflection, where the light approaches the sample at a grazing incidence angle of 

approximately 15° and the reflected light is collected by the fibre, transmitted through the 

fibre and detected using a liquid nitrogen cooled mercury-cadmium-telluride (MCT) detector.  

Here we report the first measurements made in transmission mode, where the sample was 

illuminated through the slide; the light that was transmitted through the sample was collected 

by the fibre. For the measurements reported here, the fibre was cleaved and the entire 6-mm  

diameter fibre core was used to collect the infrared light signal so that a direct comparison 

could be made with standard IR techniques such as ATR-FTIR. The SNOM was incorporated 

into an inverted optical microscope, which was used to locate specific cells of interest on the 

sample and to position them within the SNOM scan area. 

A BaF2 slide containing the cells was mounted onto the SNOM and scans acquired at fixed 

wavelengths of 5.71 µm/~1750 cm-1 (lipids), 6.06 µm/~1650 cm-1 (amide I), 6.46 µm/~1550 

cm-1 (amide II) and 8.16 µm/~1225 cm-1 (DNA-asymmetric phosphate) for each set of cells. 
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Topographic, raw transmission and intensity reference data were collected simultaneously, at 

a fixed wavelength, for each SNOM image scan. 

Atomic force microscopy (AFM) imaging of cells 

To further evidence that whole cervical cells had been used to collect the SNOM-IR-FEL 

data, atomic force microscopy (AFM) was performed on the adenocarcinoma stage 1B1 

sample, using a Bruker Innova AFM in contact mode using silicon nitride probes of nominal 

spring constant 0.07 N/m (Supplementary Fig. 10). Topography and deflection (error signal) 

channels were recorded simultaneously. The contact force of the AFM tip on the cells was 

minimised to optimise image quality.  

ATR-FTIR spectroscopy  

Spectra were acquired using a Tensor 27 FTIR spectrometer with a Helios ATR attachment 

(Bruker Optik GmbH). Each spectrum comprised 32 scans at 8 cm-1 wavenumber spacing 

with 2 x interferogram zero-filling. Before the spectra were taken, the crystal was cleaned 

with distilled H2O and inspected by video camera to be free of any contaminants. A 

background spectrum was acquired before the sample slide was mounted and the stage moved 

to bring the cervical cells in contact with the diamond. Spectra were collected from ten 

random sites on the slide. Spectra were converted to absorbance by Bruker OPUS software 

(Bruker Inc., Billerica, MA, USA). 

Pre-processing of SNOM-IR-FEL images  

The raw forward and backward SNOM transmission images were loaded into the freely 

available software Gwyddion 2.40, available at http://gwyddion.net/, and converted into text 

files ready for importing into MATLAB. A second set of raw data files and topographical 

images were converted into jpgs for image enhancement. No other pre-processing was 

performed other than file conversion.  

SNOM-IR-FEL image enhancement   
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The images presented in Figure 6 and Supplementary Figures 1-4 were processed for 

presentation using Gwyddion 2.40 and a median height line correction in the horizontal (fast 

scan) axis, followed by the removal of high frequency noise using a two-dimensional Fourier 

transform. The computational analysis was performed using raw data.   

Computational analysis:  

SNOM-IR-FEL transmission images 

The SNOM-IR-FEL transmission images were processed using MATLAB software 2014a 

and PLS Toolbox version 7.9.3 (Eigenvector Research, Inc., WA, USA). Each SNOM-IR-

FEL data set (transmission images) comprised four matrixes with size of 150 x 150 

corresponding to each biomarker response (Figure. 6). To obtain a spectrum-like signal profile 

from the biomarker response, the biomarker data matrix was converted into a vector by the 

mean calculation of the matrix in the column-mode direction (Equation. 1), where, sj is an 

element of the row-vector s {1 x 150}, corresponding to the spectrum-like signal; m is the size 

of the image on column-mode direction; and xij is an element of the biomarker matrix X. 

𝑠𝑠𝑗𝑗 =
1
𝑚𝑚
�𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 

Equation. 1 

Thereafter, the spectrum-like signal was normalized by mean-centring and absolute value. The 

bar charts were made with the area of the spectrum-like signal integrated into an interval of 

spatial distribution according to the cell content position (Figure. 6).  

PCA was performed with the whole spectrum-like signal using only mean-centring and 

absolute value as pre-processing. A summary of the computational steps in processing the 

data is given in Supplementary Fig. 11. PCA is an unsupervised technique commonly used as 

the first step in analysing large, multivariate data sets. Unsupervised techniques require no 



 

Scientific Reports 

Page 17 of 46 

 

information from the user but rely instead on an internal criterion to guide learning. In 

unsupervised learning, the system forms clusters (groupings, regions of data space). In general 

terms, PCA reduces the dimensionality of large data sets and using mathematical projection, 

the original data set which may have involved many variables, can often be interpreted in just 

a few variables (the principal components; PCs). This reduced dimensional data set will allow 

the user to spot trends, patterns and outliers in the data, far more easily than would have been 

possible without performing the PCA. When applied to spectra, PCA identifies common 

sources of variance across spectra and collates them into a small number of dimensions. PCA 

is often not enough to segregate out data classes or clusters sufficiently. By applying a 

supervised technique such as LDA to the PCA output, it promotes inter-class variation to be 

identified whilst preventing over-fitting of the data. 

PCA was executed using the average signal of each biomarker (triplicate) for five samples, 

one for each type of cell morphology: normal, low-grade dyskaryosis, high-grade dyskaryosis, 

CIN2, HGCGIN and adenocarcinoma Stage 1B1. Additionally, the area for each biomarker 

for each cell type was determined, as was the percentage area variation from ‘normal’ for each 

biomarker for each cell type.  

ATR-FTIR spectra 

The ATR-FTIR data were analysed using multivariate techniques of PCA for preliminary 

data reduction, and the output was processed using LDA and a variable selection technique 

employing Successive Projections Algorithm (SPA)21, in conjunction with LDA for selecting 

an appropriate subset of wavenumbers for classification purposes. SPA is a variable selection 

technique specifically designed to improve the conditioning of multiple linear regression by 

minimizing collinearity effects in the calibration data set and can result in models with good 

prediction ability22. 
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The classic Kennard–Stone (KS) uniform sampling algorithm23 was adopted to divide the 

available samples into training (70%), validation (15%) and prediction sets (15%) for 

construction and validation of the PCA-LDA and SPA-LDA models. The training set was 

used to obtain model parameters (including variable selection for LDA), and the validation set 

was employed to choose the best number of the PCs for PCA model and to guide the variable 

selection. The optimum number of variables for SPA–LDA was used to select variables 

employing the G function as cost function23.
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Figure legends 

Figure 1. Transmission SNOM-IR-FEL: PC score plots. Scores for 1st and 2nd PCs for the type of 

cells according to each biomarker response: (a) Amide I; (b) Amide II; (c) Lipids; (d) DNA. Dotted 

line indicates 95% confidence limits and shows there were no outliers. CIN2, HGCGIN: Cervical 

intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; PC: Principal 

components; SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free 

electron laser.  

Figure 2. Transmission SNOM-IR-FEL: bar chart for each type of cell according to the 

biomarker responses. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical 

glandular intraepithelial neoplasia; SNOM-IR-FEL: Scanning near-field optical microscopy coupled 

with an infrared-free electron laser. 

Figure 3. ATR-FTIR Spectroscopy: Discriminant Function (DF) plot for PCA-LDA (6 PC’s). This 

technique promoted a better clustering of the cell types than using PCA alone (Supplementary Fig. 9). 

Dotted regions indicate each class. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade 

cervical glandular intraepithelial neoplasia; PCA-LDA: Principal component analysis coupled to linear 

discriminant analysis.  

Figure 4. ATR-FTIR spectroscopy: Discriminant Function (DF) plot for SPA-LDA. Using this 

technique, cells types were clustered more acutely than that observed for PCA-LDA. Dotted regions 

indicate each class. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular 

intraepithelial neoplasia; SPA-LDA: Successive projections algorithm in conjunction with linear 

discriminant analysis. 

Figure 5. ATR-FTIR spectroscopy: average raw spectrum and its selected variables (circled) by 

SPA-LDA. SPA-LDA: Successive projections algorithm in conjunction with linear discriminant 

analysis.  
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Figure 6. Transmission IR-SNOM images (400 µm x 400 µm) of the same cell sampled from pre-

invasive lesion (CIN2, HGCGIN) at the different biomarker wavelengths: (a) Amide I - 6.06 µm 

(~1650 cm-1), the horizontal line in (a) is shown in cross section in (b), (c) Amide II - 6.46 µm (~1550 

cm-1), (d) DNA - 8.16 µm (~1225 cm-1) and (E) Lipids - 5.71 µm (1750 cm-1).  The colour scale bar 

arrow indicates increasing biomarker absorption. The shaded region in (b) corresponds to the interval 

selected for area calculation according to the cell content. CIN2, HGCGIN: Cervical intra-epithelial 

neoplasia, high-grade cervical glandular intraepithelial neoplasia.  
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Tables 

Table 1. Important biomarkers (wavenumbers and associated wavelength). a Movasaghi et al, 

200810;  

N.B.: The signal at a particular wavenumber could have contributions from more than one biomarker. 

Amides I and II are linked to the secondary structure of proteins and are indicative of their 

bioavailability.  

Wavenumber (cm-1) and associated biomarker Wavelength (μm) 

~1225 (DNA – asymmetric phosphate)a 8.16  
~1650 (Amide I of proteins predominantly in α helix 
conformation)a 6.06 

~1550 (Amide II of proteins predominantly in β sheet 
conformation)a 6.46 

~1750 (Lipids)a 5.71 
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Characteristics 
 

Normal  
 
 
 
 
 

(n=1) 

Low-grade 
dyskaryosis   

 
(Squamous) 

 
 

(n=1) 

High-grade 
dyskaryosisa 

 
(Squamous) 

 
 

(n=1) 

CIN2, HGCGIN 
Pre-invasive 

(Squamous & 
glandular) 

 
 

(n=1) 

Adenocarcinoma 
Stage 1B1  

 
(Glandular) 

 
 

(n=1) 
No of cells 
imaged 16 6 2 5 5 

Age 31 42 Unknown 25 36 

Ethnicity Caucasia
n Caucasian Unknown Caucasian Caucasian 

Smoker No No Yes Yes No 

Co-morbidities  Reflux No No Acne No 
Current 
medications 

Omepraz
ole Nil Unknown Erythromycin Nil 

Recent 
antibiotics 
(within last 2 
weeks) 

No No No Yes No 

Recent pessaries  No No No No No 

Contraception  Nil Copper IUD COCP COCP Condoms 
48 hours since 
last intercourse  Yes Yes Unknown Yes Yes 

Phase of 
menstrual cycle Follicular Follicular Luteal Luteal Unknown 

Vaginal pH 4.4 5 Unknown 4.4 4.4 
Mid-stream 
specimen of 
urine  

Mixed 
growth Mixed growth No growth No growth No growth 

High vaginal 
swab 

Abnorma
l Normal Normal Normal  Normal 

Cytology, histology, HPV 

Referral smear Negative Moderate Unknown Severe Severe 

Biopsy NA CIN1 CIN2 Micro-invasive 
SMILE HGCGIN 

Cone  NA HPV CIN3 CIN2, HGCGIN Adenocarcinoma 
Stage 1B1 

HPV positive 
test Positive Unknown Positive Positive Positive 

HPV 18  No Unknown No No No 

HPV 16  No Unknown Unknown Yes Yes 

HPV other type  Yes Unknown Yes No No 

Table 2. Patient characteristics. a There was limited data available for the patient diagnosed with High-grade 

dyskaryosis. COCP: Combined oral contraceptive pill: HPV: Human Papillomavirus; CIN2, HGCGIN: Cervical 

intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; IUD: Intrauterine device; POP: 

Progesterone-only pill: NA: Not applicable; SMILE: Stratified Mucinous Intraepithelial Lesion.
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Cell type 
ΔA (%) 

Amide I Amide II Lipids DNA 

Normal -- -- -- -- 

Low-grade dyskaryosis  -73 143 -31 111 

High-grade dyskaryosis -94 40 -78 132 

CIN2, HGCGIN  38 509  93 1272 

Adenocarcinoma Stage 1B1 -66 -46 -47 585 

Table 3. Percentage of area variation (ΔA (%)) from the ‘normal’ cell morphology for each 

biomarker for the type of cell. CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-grade 

cervical glandular intraepithelial neoplasia. 
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Table 4. Tentative assignment of biomarkers to wavenumbers. a Movasaghi et al, 20089; N.B.: The 

signal at a particular wavenumber could have contributions from more than one biomarker. 

  
Wavenumber (cm-1) Corresponding 

wavelength (µm) 
Tentative assignment  

of biomarkersa 
~1022 9.8 Glycogen 

~1157 8.6 C-O Proteins and carbohydrates 

~1184 8.4 Amide III; deoxyribose 

~1234 8.1 Amide III as well as phosphate 

~1331 7.5 vibration of nucleic acids 

~1512 6.6 Polysaccharides; collagen 

~1566 6.4 Amide II 

~1662 6.02 Amide I; ring base 
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Supplementary Figure 1. SNOM-IR-FEL images of normal cells: (a) topography; transmission images: 

(b) Amide I; (c) Amide II; (d) Lipids; (e) DNA. The colour scale bar arrow in (b) applies to  

(b-e) and indicates increasing biomarker absorption. SNOM-IR-FEL: Scanning near-field optical 

microscopy coupled with an infrared-free electron laser. 
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Supplementary Figure 2. SNOM-IR-FEL images of low-grade dyskaryosis: (a) 

topography; transmission images: (b) Amide I; (c) Amide II; (d) Lipids; (e) DNA. The 

colour scale bar arrow in (b) applies to (b-e) and indicates increasing biomarker 

absorption. SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an 

infrared-free electron laser. 
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Supplementary Figure 3. SNOM-IR-FEL images of high-grade dyskaryosis: (a) topography; 

transmission images: (b) Amide I; (c) Amide II; (d) Lipids; (e) DNA. The colour scale bar arrow 

in (b) applies to (b-e) and indicates increasing biomarker absorption. SNOM-IR-FEL: Scanning 

near-field optical microscopy coupled with an infrared-free electron laser. 

 
 
 
 
 
 
 
 
 
 
 
 
The SNOM-IR-FEL images and associated topography of the pre-invasive lesion (CIN2, HGCGIN) 

are presented in the main body of the text (see Figure 6). 
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Supplementary Figure 4. SNOM-IR-FEL images of adenocarcinoma Stage 1B1: (a) 

topography; transmission images: (b) Amide I (imaged from different site to topography shown 

here); (c) Amide II; (d) Lipids. (e) Topography of cells from a second area and (f) the 

corresponding SNOM transmission image for the DNA biomarker. The colour scale bar arrow in 

(b) applies to (b-d, f) and indicates increasing biomarker absorption. SNOM-IR-FEL: Scanning 

near-field optical microscopy coupled to an infrared-free electron laser. 
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Supplementary Figure 5. Transmission SNOM-IR-FEL: Hotelling T2 versus Q Residuals 

graphs for the type of cells according to each biomarker response: (a) Amide I; (b) Amide II; (c) 

Lipids; (d) DNA. All 5 samples fell within the 95% confidence limits (blue dotted line), and 

shows there were no outliers. The score for Hotelling T2 ranged from 96.51% to 97.56%; whilst 

the score for Q residuals ranged from 2.44% and 3.49%. CIN2, HGCGIN: Cervical 

intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; SNOM-IR-

FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser. 
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Supplementary Figure 6. Transmission SNOM-IR-FEL: Validation of the PCA model using Q 

Residuals to measure variation outside the PCA model for each sample according each biomarker 

response: (a) Amide I; (b) Amide II; (c) Lipids; (d) DNA. The optimal score for Q Residuals is 0% 

and here ranged from 2.44% to 3.49%. All 5 samples fell within the 95% confidence limits (blue 

dotted line), shows there were no outliers and that the data fits the model well. CIN2, HGCGIN: 

Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia; SNOM-

IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free electron laser. 
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Supplementary Figure 7. Transmission SNOM-IR-FEL: Validation of the PCA model using 

Hotelling T2 to measure variation within the PCA model for each sample according each biomarker 

response: (a) Amide I; (b) Amide II; (c) Lipids; (d) DNA. The optimal score for Hotelling T2 is 

100% and here ranged from 96.51% to 97.56%. All 5 samples fell within the 95% confidence limits 

(blue dotted line), shows there were no outliers and that the data fits the model well. CIN2, 

HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial 

neoplasia; SNOM-IR-FEL: Scanning near-field optical microscopy coupled with an infrared-free 

electron laser. 
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Supplementary Figure 8: ATR-FTIR spectroscopy: Average infrared spectra of cell types. 
 
ATR-FTIR spectroscopy: Attenuated total reflectance, Fourier-transform infrared spectroscopy; CIN2, 

HGCGIN: Cervical intraepithelial neoplasia 2, high-grade cervical glandular intraepithelial neoplasia. 
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Supplementary Figure 9. ATR-FTIR spectroscopy: Scores plot of 1st and 2nd principal 

components at a 95% confidence level. ATR-FTIR spectroscopy: Attenuated total reflectance, 

Fourier-transform infrared spectroscopy; CIN2, HGCGIN: Cervical intraepithelial neoplasia 2, high-

grade cervical glandular intraepithelial neoplasia; Principal components. 
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Supplementary Figure 10. AFM imaging of adenocarcinoma Stage 1B1: (a) Optical image (x10 

magnification) identifying cells for investigation by AFM. (b) AFM topography image of two 

intermediate glandular cells [area 2 in (a)], the lower cell has two nuclei. The cells exhibit a long 

axis of ~75 microns. The cell thickness was measured at ~200 nm, whereas the nuclei protruded  ~1 

micron in height from the substrate. (c) AFM topography and (d) deflection image of a cell 

identified [area 1 in (a)] as having a single enlarged nucleus separated from the rest of the cell by a 

halo. AFM: Atomic force microscopy. 
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Supplemental Figure 11. The computational steps taken in processing the data. 
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4 General Discussion  

4.1 Project One: Tracking the impact of excisional treatment        

Many women undergoing excisional treatments for pre-invasive CIN are of child-

bearing age (Jakobsson and Bruinsma, 2008), yet considerable evidence suggests that 

these types of treatment intervention have an impact on future pregnancy outcomes. 

Cold knife conisation has been shown to be significantly associated with perinatal 

mortality, low birth weight and severe preterm delivery, including Caesarean Section 

(Arbyn et al., 2008; Kyrgiou et al., 2006). LLETZ is associated with a significant 

increased risk of premature rupture of the membranes (Kyrgiou et al., 2006; Sadler et 

al., 2004), and miscarriage in the second trimester (Kyrgiou et al., 2015b), although 

the latter meta-analysis was compromised by the inclusion of non-randomised trials, 

some of which were deemed to be of low quality. Ablative treatments have been 

shown to be associated with fewer adverse sequelae than excisional treatments (Arbyn 

et al, 2008; Bruinsma et al., 2007; Kyrgiou et al., 2006). Therefore, the amount of 

tissue excised appears to have a critical impact on the structure and function of the 

cervix during future pregnancies.  

The findings of our study using biospectroscopy to track the impact of 

excisional treatment for pre-invasive CIN (Project One), showed that treatment 

significantly alters the biochemistry of the cervix, compared with women who 
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have not had local treatment of the cervix. These changes were directly due to 

excision of cervical tissue, rather than the removal of disease.  

It was hoped that different cone depth and/or percentage excisions would be reflected 

in a matched pattern of change in the spectral absorbance and associated biomarkers. 

This pattern of change could then be used to identify women at high risk of adverse 

pregnancy outcomes, who would then benefit from intensive antenatal surveillance 

when pregnant. The original premise of this study was to attempt to identify a clinical 

cut off for excision by comparing one cone depth variable with another, and likewise 

for percentage excision. Where a comparison was found not to be different between a 

higher dimension compared with a lower dimension, the lower dimension was 

proposed to be the optimal clinical cut off (i.e., where excising more tissue conferred 

no additional clinical benefit). Later discussions led to comparisons of absorbance for 

each dimension against that obtained for a healthy cervix population, in addition to the 

multi-comparisons described above. Although the authors concluded that absorbance 

did not seem to correlate to the cone depth or proportion of cervical length 

excised, there are several factors that are likely to have influenced the accuracy 

of the data. Some of these are obvious, such as small sample size; others are 

more confounding and relate to the mechanisms behind underlying patient 

characteristics.  

4.1.1 Sample size and variable selection  

The selection of the amount of cone depth removed as a variable for comparison was 

based upon previously published data that evidenced this dimension correlated to the 

frequency and severity of the adverse events (Arbyn et al., 2008). The selection of 
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percentage of tissue excised as a second variable was based upon the fact that pre-

treatment cervical dimensions vary amongst women (Kyrgiou et al., 2015b), and the 

belief that percentage excision may provide a more accurate cut-off for excision than 

absolute dimensions (Founta et al., 2010). However, our study was not sufficiently 

powered to enable comparisons across all the percentage excision groups, leading to 

the 0-20% group being excluded. Secondly, the number of patients in the remaining 

four groups ranged from 7 to 22 patients. Although the number of patients in the 

groups used in the comparison by cone depth removed was marginally better, with 24, 

24 and 10 patients in the <10 mm, 10-14 mm, and ≥ 15 mm groups, respectively, it 

was acknowledged that the sample sizes were small.  

Scott (2012) stated that ‘even the most rigorously executed study may fail to answer 

its research question if the sample size is too small.’ The overall goal of calculating 

sample size is to estimate a suitable number of subjects that will determine the answer 

of the clinical question(s) of a study. The author of this dissertation was not involved 

in the development of the clinical protocol or the determination of sample size, and it 

is clear that the study was underpowered and unable to address some of the clinical 

questions.   

Furthermore, this study collected additional dimensional data obtained by ultrasound, 

including cone volume removed (cm3), 2D and 3D volume of cervix, and 2D and 3D 

percentage excision. It is feasible that additional analyses using these variables may 

have contributed to defining a more explicit picture with regards to optimal excision 

and off-set some of the limitations of sample size. Potential complementary analyses 

to support the current ones reported here are suggested in Table 8.  
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The limitations of study size should be considered alongside the findings of the post-

hoc analyses of selected underlying patient characteristics (see Section 4.1.2).   

Current analyses Suggested complementary analyses 

Healthy Cervix versus  

Treated by Cone Depth Removed (mm) 

(Individual dimensional groups by 

category) 

Healthy Cervix versus  

Treated by Cone Volume Removed (cm3) 

(Individual dimensional groups by category) 

Not performed Healthy Cervix 2D Volume versus Treated by 2D 

Volume 

(Individual dimensional groups by category) 

Not performed Healthy Cervix 3D Volume versus Treated by 3D 

Volume 

(Individual dimensional groups by category) 

Healthy Cervix versus  

Treated by Percentage Excision 

(Individual dimensional groups by 

category) 

Healthy Cervix versus  

Treated by 2D Percentage Excision 

(Individual dimensional groups by category) 

Healthy Cervix versus  

Treated by 3D Percentage Excision 

(Individual dimensional groups by category) 

Table 8. Additional analyses considered complementary to the current dimensional analyses.  

4.1.2 The mechanisms of underlying patient characteristics  

Several groups have found evidence that an increased risk of pre-term delivery is 

associated with a diagnosis of precancerous changes together with a positive HPV 

status, even in women with an untreated cervix (Huang et al., 2014; Bruninsma et al., 

2007), suggesting that other factors, including patient-specific characteristics and/or 

the HPV infection itself, may contribute to adverse pregnancy outcomes and that 

excisional treatments may exacerbate them.  
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Known risk factors for pre-term birth in women without pre-malignant CIN, include a 

history of induced abortion or miscarriage, previous pre-term birth, infertility 

treatment, current or previous infection with a sexually transmitted disease, being a 

single mother, intimate partner violence, physical workload and those with jobs that 

involves standing for greater than 6 hours a day, alcohol, drug use and cigarette 

smoking (Vicedo-Cabrera et al., 20016; Lumley, 2005; Lumley, 1993). A number of 

these factors, including a current smoking habit, are also associated with an increased 

risk for the development of pre-malignant CIN if present with persistent infection of 

high-risk HPV types (Castellsagué, et al., 2002). It has been suggested that any study 

that does adequately account for these factors in the study design, then any detected 

association with treatment may be due to these other factors rather than the treatment 

itself (Bruinsma et al., 2007).  

Considering the findings of Project One, it was reasoned that a current smoking habit 

may alter the absorbance profile that is distinguishable from non-smokers, and thus 

may have the potential to affect the excisional outcomes. Other patient characteristics 

are known to directly affect the size of the cervix and include age, menstrual phase, 

hormonal status, and parity (IRAC, 2016a).  

Although previous research has shown that Raman spectroscopy can improve the 

classification of LSIL stratified by menopausal and hormonal status from 74% to 97% 

(Kanter et al., 2009), and that ATR-FTIR spectroscopy can discern women infected 

with HPV high-risk types 16 or 18 based upon their age (Kelly et al., 2010), no studies 

have been conducted using ATR-FTIR spectroscopy to determine if the absorbance 
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profile within the ‘fingerprint region’ is different according to a patient’s smoking 

status, menstrual phase, combined oral contraceptive pill (COCP) use, or parity.   

Four post-hoc analyses were performed using the treated group of women used in the 

analysis of cone depth. Patients were classed according to each of the four patient 

characteristics (smoking habit, parity, menstrual phase and COCP use). The analyses 

also included the extraction and comparison of the seven biomarkers used in the main 

analyses. The statistical analyses used have been previously described (see Project 

One); the results are presented in Appendix A.  

4.1.2.1 Current smoking habit 

A post-hoc analysis of treated women detected a significant difference between LD1 

for smokers, compared with non-smokers (Supplementary Figure 1 [A]). No 

significant differences were detected between smokers and non-smokers for 

absorbance associated with the seven biomarkers selected (Supplementary Figure 1 

[B]).  

Fisher’s exact test had previously detected that the number of women in each group 

who were either non-smokers or current smokers was statistically different only for 

Comparison 2 (i.e., treated women with negative cytology and negative HPV versus 

untreated controls with negative cytology and negative HPV); (Supplementary Table 

1). This comparison sought to prove that the difference observed between pre- and 

post-treated patients was due to excisional treatment. The groups were matched by 

cytology and HPV status, but not smoking status. The number of smokers in the 

treated group (segregated by dimensional groups; Supplementary Table 2), ranged 

from 21% to 47%, and all were higher than normal controls (15%).  
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Whilst smoking status is unlikely to affect the physical dimensions of a treated cervix, 

the data suggests that a current smoking habit, although not detected in the seven 

biomarkers selected, alters cervical cell biochemistry. In healthy female smokers, 

nicotine levels are increased by up to 40 times in cervical mucus, with cotinine, 

nicotine’s major metabolite, increased by 4 times, compared with serum levels 

(Sasson et al., 1985). Benzo-alpha-pyrene, an aromatic hydrocarbon found in cigarette 

smoke known to affect DNA repair mechanisms, is listed as a ‘Group 1 carcinogen’ 

by IRAC (2015), and has also been detected in cervical tissue (Melikian et al., 1999). 

Spectra obtained from samples collected from treated women who are current smokers 

are likely to include spectral signatures associated with these compounds. Therefore, 

two confounders are at work here with the potential to affect Comparison 2, and well 

as the dimensional comparisons to normal controls and the individual dimensional 

comparisons to each other: the presence of tobacco-related carcinogens that are likely 

to have an absorbance profile peculiar to them; and the associated effects of these 

carcinogens on cervical cell functionality.  

Analyses to compare smokers and non-smokers within normal controls and in the Pre-

treatment ‘A’ group, would have been preferable to evidence any difference in the 

absence of treatment or pre-invasive CIN. However, there were insufficient numbers 

of patients with a current smoking habit in either group to power the comparisons.  

4.1.2.2 Parity 

Parity, defined as the number of births with >20 weeks gestation (viable and non-

viable [i.e., still born]), has a direct impact on the physical properties of the cervix 
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(IARC, 2016a), changing the physical appearance that can be visualised directly 

(Figure 21).   

 

A     B 

Atlas Human Anatomy (2016).  

Figure 21. The appearance of the external ostium in A: nulliparous women; B: parous women.   

In nulliparous women, the external ostium of the cervix appears as a small external 

opening. In parous women, the cervix is more bulky and the external ostium is 

transformed into a transverse gaping slit.   

A statically significant difference was detected in LD1 between treated nulliparous 

and treated parous women; the result was more significant than that detected for 

smoking status within the same group (Supplementary Figure 2 [A]). However, the 

number of women who were nulliparous in this comparison was >3 times the number 

of women in the parous group; thus significance it likely to be influenced by the 

unequal populations compared. Whilst there were no significant differences detected 

between treated nulliparous and treated parous women for absorbance associated with 

the seven biomarkers (Supplementary Figure 2 [B]), the data suggests parity may 
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permanently alter the function of cervical cells, if not the entire uterus, that is still 

evident even after treatment for pre-invasive CIN.  

Fisher’s exact test found no differences across all three comparisons when comparing 

the number of women in each group who were for parous/nulliparous (Supplementary 

Table 1). However, the number of parous women in the treated group (segregated by 

dimensional groups; Supplementary Table 2), ranged from 17% to 40%, and was 19% 

for normal controls.  Therefore, although the three comparisons were well balanced in 

terms of parous/nulliparous women, the comparison of individual dimensions to each 

other and to normal controls is likely to be affected by the uneven numbers across the 

groups.  

No comparison between nulliparous/parous women within normal controls or the Pre-

treatment ‘A’ group was possible due to an insufficient number of parous women in 

both groups. Therefore, the impact of parity in the absence of pre-invasive CIN or 

treatment, could not be determined. 

4.1.2.3 Menstrual phase  

Menstruation signals the beginning of the follicular phase which culminates in 

ovulation. During this phase, the pituitary gland secretes Follicle Stimulating 

Hormone (FSH) and Luteinizing Hormone (LH), which promotes the maturation of 

around 10-20 follicles in the ovaries. In turn, the maturing follicles secrete oestrogen 

(estradiol) and, as the levels of oestrogen rise over the next 7 days, this causes the 

lining of the uterus to thicken. One follicle becomes dominant and as oestrogen levels 

reach a threshold, the pituitary gland releases a surge of LH, causing the dominant 

follicle to erupt, releasing a mature ovum (ovulation); (Figure 22). 
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FSH: Follicle Stimulating Hormone; LH Luteinizing Hormone.  

Isometrik, 2009 

Figure 22. Phases of the menstrual cycle.  

During the lead up to ovulation, oestrogen causes the ligaments of the uterus to tighten 

which draws the cervix deeper into the vagina. The cervix may appear more centrally 

aligned, feel softer with the external ostium slightly parted. The erupted follicle 

(corpus luteum) begins to produces significant amounts of progesterone, signalling the 

beginning of the luteal phase which lasts for about 14 days. The released ovum is 
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swept into the oviduct, where it will survive for approximately 24 hours. If the ovum 

is not fertilised, the corpus luteum shrinks after 14 days, triggering a sharp decline in 

both oestrogen and progesterone. The cervix returns to its original position, feels 

firmer to the touch with the external ostium closed until the onset of menses. Thus, the 

menstrual phase influences the physical size and location of the cervix. It is unknown 

whether menstrual phase may have affected the determination of cervical dimensions 

by ultrasound as collected in our study.  

Additionally, a recently published study showed that the differential expression of 110 

genes located in endocervix (glandular) tissues is dependent upon the phase of 

menstrual cycle (Yildiz-Arlan et al., 2016); (Table 9).   

 
Associated functions of genes  

expressed in endocervical tissues  

during the follicular phasea 

(Estrogen/pre-ovulation) 

Associated functions of genes  

expressed in endocervical tissues  

during the luteal phasea 

(Progesterone/post-ovulation) 

Extracellular matrix remodelling Chromatin re-modelling 

Cell-matrix interactions Inflammation 

Amino acid and lipid metabolism  Angiogenesis  

Immune regulation Oxidative stress 

 Immune cell regulation 
a Yildiz-Arlan et al., 2016.  

Table 9. Associated function of predominant genes expressed during the menstrual cycle.   

The extracellular matrix of an organ represents the dynamical system that cooperates 

with cells to regulate a range of diverse functions, including proliferation, migration 

and differentiation (Bonnans et al., 2014). Remodelling of the extracellular matrix is 

crucial in many tissues. Dysregulation of the extracellular matrix, including 
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composition, stiffness and structure, are important in several diseases, including 

invasive cancer.  

The follicular phase is predominantly controlled by oestrogen under the influence of 

FSH and LH. Genes expressed by glandular cells during this phase will control re-

modelling of matrix,  cell-matrix interactions, immune function and lipid and amino 

acid metabolism. By contrast, the luteal phase is predominantly controlled by 

progesterone. Genes preferentially expressed during this phase control the remodelling 

of tightly bound DNA (chromatin) to enable gene expression, the development of new 

blood vessels (angiogenesis), together with the management of oxidative stress, 

inflammation and immune cell regulation.  

A statistically significant difference was detected for LD1 between treated patients in 

the luteal phase, compared with treated patients in the follicular phase; this difference 

was the most significant of all four patient characteristics analysed (Supplementary 

Figure 3 [A]). No significant differences were detected between the groups for 

absorbance associated with the seven biomarkers (Supplementary Figure 3 [B]).  

Fisher’s exact test found no significant differences when the comparison groups were 

compared by the number of women in either the luteal or follicular phase 

(Supplementary Table 1). However, the number of women in either the 

luteal/follicular phase in the treated group (segregated by dimensional groups; 

Supplementary Table 2), ranged from 38% to 67%, and was 26% for normal controls.   

Since the number of glandular cells has been found to be significantly lower following 

treatment with LLETZ (Maguire et al., 2008), it is reasonable to assume that the 

number of glandular cells collected during our study at 6 months follow-up after 
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excisional treatment, are likely to contain fewer glandular cells. Although a literature 

search did not find any publication detailing differential gene expression during the 

menstrual phase for squamous cells, it is plausible that cellular function of these cells 

also differs according to each phase.  

Whilst the groups of women in the follicular/luteal phases were reasonably well 

balanced across the three comparisons (Supplementary Table 1); the number of 

women in each phase fluctuated greatly across the treated group (segregated by 

dimensions, Supplementary Table 2), compared to normal controls. Therefore, the 

comparison of dimensional groups to normal controls and to each other, are likely to 

be affected several factors: the effect of circulating hormones on cell activity as 

determined by menstrual phase; the differential gene expression of different cell types 

within each phase; the biochemical behaviour of the tissue and cells as a result of 

different gene expression; and the reduced number of glandular cells collected post 

treatment.  

It was not possible to compare the groups within the normal or Pre-treatment ‘A’ 

group due to insufficient numbers of patients in groups segregated by menstrual phase.   

4.1.2.4 Combined oral contraceptive use   

During the normal menstrual cycle, oestrogen dominates the follicular phase and 

progesterone dominates the luteal phase (Figure 22). The COCP provides an 

exogenous supply of both hormones that together suppress gonadotrophins and inhibit 

the release of FSH, thereby preventing the maturation of follicles in the ovaries and 

ovulation. In doing so, the major effect of progesterone keeps the cycle in an artificial 

‘luteal-like’ phase. It is plausible that genes controlled by progesterone during this 
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phase in glandular cells and potentially squamous cells, would be expressed for 

longer. However, the effect of both hormones combined upon gene expression in 

either cell is currently unknown.   

A statistically significant difference was detected for LD1 between treated women 

who were not taking the COCP, compared with women who used this form of 

contraception (Supplementary Figure 4 [A]). No significant differences were detected 

between the two groups for absorbance associated with the seven biomarkers selected 

(Supplementary Figure 4 [B]).  

The number of women in each group who were non-COCP users or current COCP 

users was found to be statistically different for Comparison 2 (i.e., treated women with 

negative cytology and negative HPV versus untreated controls with negative cytology 

and negative HPV); (Supplementary Table 1); and for Comparison 3. The number of 

current COCP users in the treated group (segregated by dimensional groups; 

Supplementary Table 2), ranged from 40% to 57%, and all were higher than normal 

controls (15%). These findings suggest that COCP use possibly alters differential gene 

expression and related cellular and extra-cellular functions; thus impacting the 

excisional outcomes of our study.   

It was not possible to compare the groups within the normal or Pre-treatment ‘A’ 

group due to insufficient numbers of patients in groups segregated by COCP use.   

4.1.2.5 Other factors: genetics of exfoliated cells and cervical tissue  

The number of genes of exfoliated squamous cervical cells collected from the 

terminally differentiated superficial layers of the cervix has been found to be lower 

than in underlying tissue (Steinau et al., 2005). Of the 25,353 genes of the transcribed 
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human genome, 57% of these genes were found in cervical tissue and 40% were found 

in exfoliated cells, with 7320 genes found in both tissue and exfoliated cells, 

suggesting that exfoliated squamous cells have a more conservative genetic makeup 

than associated tissue. Genes found only in tissue were associated with a range of 

molecular functions, including those of the extracellular matrix. Genes found only in 

exfoliated cells were also associated with a range of functions, including protein 

phosphatase activity.  

Although the healing process following excisional treatments like LLETZ is 

considered to be almost complete around 6 months after treatment (Paraskevaidis et 

al., 2002), cervical regeneration is dependent upon both the percentage of tissue 

remaining immediately after treatment, and the percentage of cone volume removed 

(Papoutsis et al., 2012); less remaining tissue and larger cone removal are associated 

with less regeneration. The effect of treatment on the genetic makeup of cells at the 

superficial layers of the remaining cervix is unknown, as is the effect of treatment 

upon the genetic makeup of deeper tissue and may directly impact on the 

bioavailability of biomarkers. Therefore, the results of our study are complicated 

further by unknown genetic traits of treated tissue.      

4.1.3 Summary 

Although the groups were reasonably well matched in Comparison 1 (same patients 

pre- and post-treatment) for smoking status, parity, menstrual phase and COCP use, 

the groups were not well matched for smoking status and COCP use in Comparison 2. 

This comparison sought to evidence that the difference in absorbance (LD1) was due 

to the excisional treatment. Comparison 3, which compared dimensions against 
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normal controls and with each another, was not well matched for COCP use 

(Supplementary Table 1).  

The findings of the post-hoc analyses suggest there is a complex interplay of 

underlying patient characteristics involving genetics, carcinogens, hormones, and the 

features of regenerated cervical tissue, in addition to other factors that can affect the 

physical aspects of the cervix such as parity. Of note, was that smoking, previous 

parity and COCP use all depressed LD1; the reasons are unknown. In Comparison 2, 

the LD1 of treated patients was lower than normal controls. It is likely that the effects 

of smoking and COCP use in this  group contributed to the result.  

Future studies should aim to investigate the full range of patient characteristics that 

can influence cell biochemistry and function, and contribute to spectral absorbance. 

Comparison groups should be well matched by characteristics.  

A summary of potential factors that may influence the biochemical functions of 

remaining cervical tissue following treatment is summarised in Figure 23.  
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COCP: Combined oral contraceptive pill; IRAC: International Agency for Reach on Cancer.  

Jo’s Cervical Trust, 2016 (modified by D. E. Halliwell) 

Figure 23. Patient characteristics that may affect excisional outcomes determined in Project One. 

4.2 Project Two: The future role of SNOM-IR-FEL imaging in 

cancer studies 

The results of the SNOM-IR-FEL pilot study were promising in terms of tracking the 

changes associated with various degrees of cervical dyskaryosis, although limited by 

the number of patients and individual cells imaged. However, at the time of the 

experimental period (February to May, 2015), the effect of the underlying patient 

characteristics had not been determined.   
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The samples had been collected from one normal patient and four patients with 

increasing grades of dyskaryosis. Although the last four samples were collected prior 

to treatment, it is reasonable to assume that the same patient characteristics 

investigated post-hoc in treated patients, also affect the spectra of untreated patients 

and may, in the presence of HPV infection, be more exaggerated. Two of the five 

patients were current smokers (high-grade dyskaryosis and the mixed pre-invasive 

lesion). Only one patient was parous (low-grade dyskaryosis); two patients were 

sampled in the luteal phase of their cycle (high-grade dyskaryosis and the mixed pre-

invasive lesion), and two patients had been sampled in the follicular phase of their 

cycle; the other was unknown. Finally, two patients were using the COCP (high-grade 

dyskaryosis and the mixed pre-invasive lesion). Although, the small number of 

patients in this study was acceptable for a pilot study, it is clear that the chemical 

images collected are likely to be affected by differences in smoking habit, parity 

history, menstrual phase and COCP use. Other, currently undetermined patient 

characteristics such as vaginal pH and the microbiome of the cervicovagina, are also 

likely to influence the chemistry profiles of different lesions.  

Previous work using SNOM-IR-FEL used in reflection mode, revealed the 

organisation of mitochondria within the mid-piece region of the tail of human sperm 

as well as acrosome and nucleus (Andolfi et al., 2015). However, to an untrained eye 

these individual structures are not obvious. Indeed, the SNOM topography obtained 

during Project Two revealed little in terms of cellular structures and was affected by 

significant tip artefacts (Figure 24 and Figure 25).  
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Project Two 

Figure 24. Topography of normal cells: ‘dolphin-nosed’ cells considered to be tip artefacts 

 

Project Two 

Figure 25. Topography of adenocarcinoma cells: ‘dolphin-nosed’ cells considered to be tip 

artefacts 
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Despite the less than ideal topography, the potential of SNOM-IR-FEL is that the IR-

FEL on the ALICE accelerator at Daresbury Laboratory (Warrington, UK) is tuneable 

over the range of 5.5 µm to 8.8 µm (~1818 cm-1 to ~1136 cm-1), which includes a 

number of biologically important biomarkers (Movasaghi et al., 2008). Although no 

formal statistical tests were performed on the data due to the small data set, clear 

differences in each biomarker was evident and appeared dependent on the 

biochemistry of each cell type. However, any future studies using this technology 

should aim to match samples at least by smoking status, parity, menstrual phase and 

COCP use.  

Further studies using the Daresbury facility should aim to address several issues, 

including achieving a higher resolution than that achieved in this pilot study (currently 

~6 µm); the refinement of tips to minimise tip artefacts; and preparation of samples to 

minimise the loss of available cells to image. The latter may be achieved by 

experimenting with manual mounting onto slides rather than using the cytospinner. 

Researchers should aim to image a consistent number of cells per patient and if time 

allows, a higher number of cells per patient, and at the same wavenumbers and 

associated wavelengths documented here to build up a more explicit picture of 

chemical changes within various grades of cervical dyskaryosis.  

All technologies are entitled to their birth right, and SNOM-IR-FEL is no exception. 

The technique, although fraught with early development limitations, is tuneable to 

specific wavelengths, which offers researchers a unique opportunity to investigate 

chemical changes within cells with precision. Whilst only four biomarkers were 

investigated during the pilot study, the range available with the IR-FEL on the ALICE 
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accelerator offers the opportunity to investigate other biomarkers of significance, 

including the N-H bond of thymine (~1272 cm-1), the C=N bond of guanine (~1528 

cm-1), the C=N bond of adenine (~1571 cm-1), and the C=N bond of cytosine (~1602 

cm-1). Investigation of these biomarkers may reveal patterns of change within the 

structure of DNA. The value of Project Two is strategic in that the published paper 

from the 2015 beam time will be used to support a new grant application to fund 

further studies.  

4.3 Future work: meta-analysis  

Despite the limitations of the two projects, the value of Project One lies in its potential 

to contribute to a future meta-analysis. Previous research conducted by Martin’s 

Biophotonics Group has amalgamated spectra obtained from cervical cells collected 

from over 1300 patients (Table 10). 

Number of patients (spectraa) Associated publication  

220 (220) Present study 

350 (322) Gajjar et al., 2014 

67 (67) Purandare et al., 2014 

529 (529) Purandare et al., 2013 

147 (147) Kelly et al., 2010a 

30 (30) Kelly et al., 2010b 

20 (20) Walsh et al., 2007 

Total: 1363 (1268)  
a Ten spectra are typically collected per patient and then an average of these taken.  

Table 10. Number of patients (spectra) collected and stored on the Biophotonics Server.  
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These data provide a rich opportunity to overcome the limitations of sample size, 

investigate a range of patient characteristics, and provide a substantial study 

population where patterns of cellular change can be more accurately matched to 

excisional data. However, the demographic data collected for Project One was 

considerable (63 variables). The other studies listed in Table 10 are thought to have 

more limiting demographic data associated with them, but if the data can be collected 

retrospectively, it would provide a substantial dataset to support addressing key 

clinical questions.   

Suggested approaches for the meta-analysis include:  

• Initially, define patient characteristics within a normal population, including 

the ‘normal’ microbiome diversity of the cervicovagina  

Then determine the changes within the following populations: 

• Women with HPV infection but without any obvious cytological change 

• Women with low-grade dyskaryosis  

• Women with high-grade dyskaryosis  

• Women before and after excisional treatment for pre-invasive CIN 

• Women with invasive cervical carcinomas and adenocarcinomas.  

4.4 Conclusions 

ATR-FTIR biospectroscopy detected changes in cervical cells pre- and post-treatment 

following excisional intervention for pre-invasive CIN. Although it was concluded 

that these changes were directly due to excisional treatment, and the spectra did 
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not seem to correlate to the cone depth or proportion (percentage) of cervical 

length excised, the study findings are hampered by the limitation of sample size 

and the previously undetermined effects of underlying patient characteristics. 

However, the extensive database of cervical cell spectra could support a meta-

analysis involving over 1300 patients that would enable many of these problems to be 

overcome.  

The future of SNOM-IR-FEL lies in the precise investigation of chemical changes in 

cervical cells in different stages of dyskaryosis, with an emphasis on changes within 

the four previously selected biomarkers (DNA, lipids and amide I and amide II bands), 

with potential explorations investigating changes in the four nucleobases of DNA.      
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Appendix A: Supplementary analyses 
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The full statistical methodology has been previously described (see Project One). In 

brief, the treated group used in the aforementioned project (cone depth removed) was 

segregated by smoking status, menstrual phase (luteal or follicular) and parity. These 

four groups were  compared using means, SD and a student’s t test. The same seven 

individual biomarkers at the following wavelengths were also extracted and compared 

using multiple t tests and corrected for using the Holm-Sidak method: ~1030 cm-1 

(glycogen/collagen); ~1072 cm-1 (symmetric phosphate I of DNA); ~1170 cm-1 

(glycomaterials and proteins); ~1223 cm-1 (asymmetric phosphate I of DNA); ~1470 

cm-1 (lipids); ~1550 cm-1 (amide II) and ~1651 cm1 (amide I). The results for smoking 

status, parity, menstrual phase and COCP use are presented in Supplementary Figure 

1, Supplementary Figure 2, Supplementary Figure 3, and Supplementary Figure 4, 

respectively.  

Supplementary Tables 1 and 2 present the patient characteristics (smoking, parity, 

menstrual phase, and COCP use) for each group. Characteristics were tested for 

significance (alpha value = 0.05), using Fisher’s exact test.  
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 Comparison 1: Treated 
women with paired 

samples 

Fisher’ 
exact 
test 

Comparison 2 : Normal post-
treatment vs. normal untreated 

controls 

Fisher’s 
exact 
test 

Comparison 3: Treated by cone 
depth/proportion vs. normal 

untreated controls 

Fisher’s 
exact  
test 

 
Characteristics 

Pre-
treatment  

 
 
 
 

(n= 29) 

Post 
treatment  

 
 
 
 

(n= 33) 

P-value Normal post-
treatment, 
(Cytology 

negative, HPV 
negative) 

 
(n = 39) 

Normal controls 
(Cytology 

negative, HPV 
negative) 

 
 

(n=20) 

P-value Post 
treatment 

 
 

 
 

(n=58) 

Controls 
(Cytology 

negative; HPV 
status ignored) 

 
 

(n=27) 

P-value 

Smoking status, n/N (%)   0.77   0.04*   0.18 
   Non-smoker 23/29 (79) 25/33 (76)  27/39 (69) 19/20 (95)  41/58 (71) 23/27 (85)  
   Current smoker 6/29 (21) 8/33 (24)  12/39 (31) 1/20 (5)  17/58 (29) 4/27 (15)  
Parity, n/N (%)   1.00   0.52   0.51 
   Nulliparous 21/29 (72) 24/33 (73)  32/39 (82) 15/20 (75)  45/58 (78) 22/27 (81)  
   Parous 8/29 (28) 9/33 (27)  7/39 (18) 5/20 (25)  13/58 (22) 5/27 (19)  
Phase of menstrual cycle, 
n/N (%) 

  0.40   0.14   0.08 

   Luteal 15/29 (52) 18/33 (55) 0.60 21/39 (54) 6/20 (30) 0.23 29/58 (50) 7/27 (26) 0.12 
   Follicular 13/29 (45) 11/33 (33)  14/39 (36) 9/20 (45)  23/58 (40) 14/27 (52)  
   Unknown 1/29 (3) 4/33 (12)  4/39 (10) 5/20 (25)  6/58 (10) 6/27 (22)  
Contraceptive use, n/N 
(%) 

         

  COCP 14/29 (48) 17/33 (52) 1.00 20/39 (51) 3/20 (15) 0.01** 28/58 (48) 4/27 (15) 0.004** 
  Other 15/29 (52) 16/33 (48)  19/39 (49) 17/20 (85)  30/58 (52) 23/27 (85)  

COCP: Combined oral contraceptive pill; HPV: Human papillomavirus.  

Supplementary Table 1. Patient characteristics and Fisher’s exact test for significance between characteristics. 
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Characteristics 
 

Normal 
controls 
(n=27) 

Cone Deptha 
(n=58) 

Percentage Excisionb  
(n=53) 

 
 Category 1:  

<10 mm  
(n=24) 

Category 2:  
10-14 mm  

(n=24) 

Category 3:  
>= 15 mm 

(n=10) 

Category 2:  
11-20% 

(n=9) 

Category 3:  
21-30%  
(n=22) 

Category 4:  
31-40%  
(n=15) 

Category 5: 
>40% 
(n=7) 

Smoking status, n/N (%)         
   Non-smoker 23/27 (85) 19/24 (79) 15/24 (63) 7/10 (70) 7/9 (78) 17/22 (77) 8/15 (53) 5/7 (71) 
   Current smoker 4/27 (15) 5/24 (21) 9/24 (37) 3/10 (30) 2/9 (22) 5/22 (23) 7/15 (47) 2/7 (29) 
Parity, n/N (%)         
   Nulliparous 22/27 (81) 19/24 (79) 20/24 (83) 6/10 (60) 8/9 (89) 18/22 (82) 12/15 (80) 5/7 (71) 
   Parous 5/27 (19) 5/24 (21) 4/24 (17) 4/10 (40) 1/9 (11) 4/22 (18) 3/15 (20) 2/7 (29) 
Phase of menstrual cycle, 
n/N (%) 

        

   Luteal 7/27 (26) 14/24 (58) 9/24 (38) 6/10 (60) 6/9 (67) 12/22 (55) 6/15 (40) 3/7 (43) 
   Follicular 14/27 (52) 8/24 (34) 12/12 (50) 3/10 (30) 3/9 (33) 10/22 (45) 6/15 (40) 3/7 (43) 
   Unknown 6/27 (22) 2/24 (8) 3/24 (12) 1/10 (10) 0/9 (0) 0/22 (0) 3/15 (20) 1/7 (14) 
Contraceptive use, n/N 
(%)         

   COCP 4/27 (15) 12/24 (50) 12/24 (50) 4/10 (40) 5/9 (56) 12/22 (54) 6/15 (40) 4/7 (57) 
   Other  23/27 (85) 12/24 (50) 12/24 (50) 6/10 (60) 3/9 (44) 10/22 (46) 7/15 (60) 3/7 (33) 

a Patients were included in the dimensional analyses if they had had treatment and had follow up data at 6 months after treatment. b There was insufficient patients in 

Category 1 to include in the analysis. No segregation was made based on histology, cytology or HPV testing. COCP: Combined oral contraceptive pill.  

 

 

 

 

 

Supplementary Table 2. Patient characteristics for the dimensional groups (Comparison 3). 
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Supplementary Figure 1. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1/Absorbance (a.u.) per wavenumber: treated by smoking status.  

The two groups were significantly different along LD1 (Mean/SD: Non-Smoking = 0.14/0.09; Smoking = 0.06/0.12; p=0.01, 95% CI = -0.013 to -0.02). There was no 

significant difference in absorbance associated with each of the seven biomarkers between non-smokers and smokers. ATR-FTIR: Attenuated total reflectance Fourier-

transform; CI: Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis-Linear Discriminant Analysis cascade; SD: Standard deviation.  
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Supplementary Figure 2. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1/Absorbance (a.u.) per wavenumber: treated by parity.  

The two groups were significantly different along LD1 (Mean/SD: Nulliparous = 0.50/0.08; parous = 0.42/0.08; p=0.002, 95% CI = -0.133 to -0.031). There was no 

significant difference in absorbance associated with each of the seven biomarkers between nulliparous and parous women. ATR-FTIR: Attenuated total reflectance Fourier-

transform; CI: Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis-Linear Discriminant Analysis cascade; SD: Standard deviation. 
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Supplementary Figure 3. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1/Absorbance (a.u.) per wavenumber: treated by menstrual phase.   

The two groups were significantly different along LD1 (Mean/SD: follicular phase = 0.07/0.07; luteal phase = 0.14/0.07; p=0.0007, 95% CI = -0.11 to -0.03). There was no 

significant difference in absorbance associated with each of the seven biomarkers between women in the luteal phase compared with women in the follicular phase. ATR-

FTIR: Attenuated total reflectance Fourier-transform; CI: Confidence interval; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis-Linear Discriminant 

Analysis cascade; SD: Standard deviation. * Menstrual phase was unknown for 6 patients; patients were excluded from analysis.  
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Supplementary Figure 4. PCA-LDA scores plot of ATR-FTIR spectra with regards to LD1/Absorbance (a.u.) per wavenumber: treated by COCP status.   

The two groups were significantly different along LD1 (Mean/SD: Non-COCP = 0.82/0.03; COCP = 0.78/0.06; p=0.004, 95% CI = -0.07 to -0.02). There was no significant 

difference in absorbance associated with each of the seven biomarkers between non-COCP compared with COCP. ATR-FTIR: Attenuated total reflectance Fourier-transform; 

CI: Confidence interval; COCP: Combined oral contraceptive pill; LD1: Linear Discriminant 1; PCA-LDA: Principal Component Analysis-Linear Discriminant Analysis 

cascade; SD: Standard deviation. * Contraception status was unknown for 5 patients; patients were excluded from analysis.  
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Appendix B: National Research Ethics Service Committee 

Approval (London – Fulham; Approval number 

13/LO/0126) 
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Appendix C: Laboratory protocol (preparation of cervical 

LBC samples for ATR-FTIR spectroscopy) 
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Protocol for LBC Samples – lab preparation 

Aim: This protocol aims to wash cervical cells collected at colposcopy clinic and 

immediately fixed into an alcohol-based fixative. The washing stage removes the 

alcohol (and therefore any spectral signature associated with it), rehydrates the cells 

and helps remove other cofounding factors, such as blood.  

Safety:  

Wear protective gloves/Howie/safety glasses if cutting.  

Use the clinical bin for waste disposal; decant any collected suspension into the liquid 

waste.   

Materials:  

Bench top centrifuge with a 2000 rpm setting.  

dH2O. 

Low-e slides (cut into 3) for economy. 

Mini petri dishes.  

Non-sterile pipette tips. 

Pipettes.  

Blue roll. 

Marker pen.  
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Method: 

1. Decide how many samples you wish to process and pre-label micro tubes and 

mini petri dishes with the sample number (label bottom of petri dish as well as top).  

2. If cutting slides, ensure white tip is facing upwards and place a cut segment 

into each  petri dish.   

3. Agitate selected samples to re-distribute the cells.  

4. Decant 500 µl from sample into clean, pre-labelled micro tube. Replace 

original samples into fridge.  

5. Washing stages:  

a. Wash #1: Centrifuge sample at 2000 rpm for 5 minutes to draw a pellet at 

the bottom of the tube.  

b. Wash #2: Decant the ThinPrep from above the pellet using clean tip, taking 

care not to disturb it. Discard tip, replace with clean tip and add 500 µl of clean 

distilled water to tube. Repeat centrifuge step.  

c. Wash #3: repeat step b.  

6. Decant the water from above the pellet and add 100 µl of clean distilled water 

to tube.  

7. Agitate sample to redistribute the cells.  

8. Draw up cells using 100-200 µl setting, ensuring you have the entire sample. 
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9. Discharge sample onto slide in mini petri dish and allow to air dry for 24 

hours. (Optional: leave lid ajar to promote faster drying). Discard micro tube into 

clinical waste.  

10. For repeat samples where the pellet is small and therefore the number of cells 

less, dispense the final 100 µl as two x 50 µl aliquots, allowing a 24-hour drying 

period in between each application, and dispense the second aliquot directly on top of 

the first to promote a uniform spread of cells.  

11. Once air dried, replace lids and collect into small batches and tape together. 

Label and place in a desiccator for a minimum of 24 hours to remove any remaining 

water.  

12. Aim to prepare and collect spectra in within the same time window for each 

batch.  

13. Once spectroscopy has been performed, replace samples back into desiccator.  

Spectroscopy analysis 

Pre-testing: 

Click measure/advanced/Check signal – click save – dot should be in middle.  

14. Humidity test each run should be zero% (click internet 

explorer/diagnostics/check detectors should be zero%. 

15. However, 10% is acceptable. Click on diagnostics and detectors to check 

humidity – above 10% change desiccator (see below). 

16. Close diagnostics down before running tests. 
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17. If prompted run tests but you need to remove unit. 

18. Open video control panel – PW = ‘OPUS.’ 

19. Open video control panel to view diamond. 

20. Clean diamond with distilled water to remove any debris and dry.  

21. Click ‘Advanced measurement,’ then ‘background signal channel.’ Wait for 

the scan to finish.  

22. Load slide – click ‘advanced’ tab and add in details of the sample name.  

23. Change the pathway to the folder where you want to store your spectra. 

24. Click ‘single channel scan’ to view the spectral image and adjust as necessary 

to get the water peak around 0.17-0.2. The amide groups should be clear. The trick is 

consistency. Use the same machine for all samples.  

25. When you are ready to start, click ‘start measurement’ and it will take 32 scans 

containing 235 data points.  

26. The slide needs to be touching the diamond. The water peaks should be peaks 

and not curves. If curves, return to desiccator for further drying.  

27. When the scan has finished, move the slide a little and re-scan. You need to do 

this 10 times but as the count starts from zero, it will run from 0-9.  

28. The area we are interested in is between 900-1800.  

29. If the machine becomes stuck, unload you files first to send them to your 

folder. Switch off the machine and clean, then run background check again. 
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30. To unload files, click the number above image ‘0’, right mouse click, then 

click on last image, the right click to get unload menu, click unload. These images will 

then be sent to your folder.  

31. You are looking to achieve consistency across the images. The density of the 

cells in contact with the diamond influence the resulting image. Better density 

improves the image output.  

Changing the desiccator  

32. Turn off machine at switch. 

33. Use large Allen key to remove hood.  

34. Remove desiccator tube and replace hood without locking.  

35. If using grey pellets, these are reusable. Replace with dried our pellets kept 

warm in oven. Pour old desiccant into pot and replace to over.  

36. Fill tube with fresh desiccator nearly to top, leaving about an inch.  

37. Replace tube in holder and apply bolt with Allen key to hood.  

38. Leave for about 15 minutes to settle. Re-run detectors. If 10% or under, ready 

to use.  



 

110 

 

Appendix D: Laboratory protocol (preparation of cervical 

LBC samples for SNOM-IR-FEL imaging) 

 

 

 



 

111 

 

Lancaster Mini Protocol – SNOM-IR-FEL experiment 

Aim: This protocol aims to prepare cervical cells on a barium fluoride window as a 

single layer of cells with a minimum of debris.  

Safety:  

Wear protective gloves/Howie/safety glasses if cutting.  

Use the clinical bin for waste disposal; decant any collected suspension into the liquid 

waste.   

Materials: 

LBC samples. 

Barium fluoride windows. 

Barium fluoride slide holders (to hold 3 windows per slide). 

Tissue/slide cases.  

Method 

Two slides per sample 

1. Wash the samples as described in Appendix C, but instead of suspending the final 

pellet in 100 µl of distilled water, if the pellet is large, re-suspend it in 1000 µl of 

dH2O. For smaller pellets, re-suspend the pellet into in 500 µl of dH2O.  

2. Transfer the samples securely to the Pathology Department, Preston Hospital along 

with the appropriate number of barium fluoride windows, slide case and window 

holders. 
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3. The pathologist/cytologist will prepare each window and sample for centrifuging tin 

the cytospinner. The samples will be agitated to disperse the cells and then 5/6 drops 

will be added to the cytofunnel. The samples will be spun onto the barium fluoride 

windows using 3000 rpm for 5 minutes.   

Method for mounting onto the SNOM 

Mount duplicate slides at the same time and fix with blue tack.  

Rotate through 1 area per slide (depending on time) collecting the following 

wavelengths: 

• 8.16 um (DNA) 

• 6.06 um (Amide I) 

• 6.46 um (Amide II) 

• 5.71 um (Lipids) 

• Include 1 repeat scan in addition to above per area for quality control/repeatability 

• If time allows, select a 2nd area on one of the slides.  
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Appendix E: Poster presented at The International Society 

for Clinical Spectroscopy (CLIRSPEC) 

This poster was presented it at the “CLIRSPEC Summer School” conference in 

Windermere, 7-10th July 2015 as: 

“CERVICAL CANCER: Can attenuated total reflection 

Fourier-transform infrared spectroscopy replace 

conventional cytology?”  

Diane E. Halliwell, Georgios Theophilou, Pierre L. Martin-Hirsch, Maria Kyrgiou, 

and Francis L. Martin.  

 

 

Contribution:  

I created this poster based on my ongoing studies (at that time). 

 

…………………………………  ………………………………………… 

Diane E. Halliwell    Professor Francis L. Martin   
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