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Abstract. Widespread flooding, such as the events in the winter of 2013/2014 in the UK and early summer 2013 in 
Central Europe, demonstrate clearly how important it  is to understand the characteristics of floods in which multiple 
locations experience extreme river flows.  Recent developments in multivariate statistical modelling help to place such 
events in a probabilistic framework. It  is now possible to perform joint probability analysis of events defined in terms 
of physical variables at hundreds of locations simultaneously, over multiple variables (including river flows, rainfall 
and sea levels), combined with analysis of temporal dependence to capture the evolution of events over a large domain. 
Critical constraints on such data-driven methods are the problems of missing data, especially where records over a 
network are not all concurrent, the joint analysis of several different physical variables, and the choice of suitable time 
scales when combining information from those variables. This paper presents new developments of a high-dimensional 
conditional probability model for extreme river flow events conditioned on flow and r ainfall observations. These are: a 
new computationally efficient parametric approach to account for missing data in the joint analysis of ex tremes over a 
large hydrometric network; a robust approach for the spatial interpolation of extreme events throughout a large river 
network,; generation of realistic estimates of extremes at ungauged locations; and, exploiting rainfall information 
rationally within the statistical model to help improve efficiency. These methodological advances will be illustrated 
with data from the UK river network and recent events to show how they contribute to a flexible and effective 
framework for flood risk assessment, with applications in the insurance sector and for national-scale emergency 
planning.  

1 Introduction  

Understanding the risks of widespread flooding is a 
vital part of flood risk management. Given that we are then 
interested in understanding the chance of multiple 
locations experiencing flooding concurrently, we can use 
a joint probability analysis to understand the statistical 
characteristics of previous events. This joint probability  
analysis then can provide us with predictions of plausible 
future flood events , subject either to stationarity 
assumptions or explicit modelling of any underlying 
changes in the environment.  

Statistical extreme value models provide a natural 
way of parametrising complex relationships between 
environmental variables at a number of different locations.  

There are a number of possible statistical models that 
can be used to characterise the spatial and temporal 
distribution of flood events. Exploring one potential 
approach, some recent research has explored the 
development of models based on max-stable processes for 
river network data [1]. However max-stable processes are 
only suitable for spatial extreme data sets that exhibit  
asymptotic dependence [1], a property where the largest 

values in each variable can occur concurrently. Therefore 
they are practically infeasible for higher-dimension  
problems such as models of national scale river flow or 
rain gauge networks, because simultaneous extreme flows  
are unlikely in any one event over all sites.  

Instead, the statistical model that we adopt is the 
conditional exceedance model of Heffernan and Tawn [2]. 
The conditional exceedance model is adopted as it is able 
to handle the range of extremal dependence structures, 
including both asymptotic independence and asymptotic 
dependence, which are observed within the extremes of a 
river flow data set [3]. Previous extensions to the 
conditional exceedance model were developed by Keef et 
al. [4], to account for missing data and temporal 
dependence and Keef et al. [5], to obtain an improvement  
in the estimation of the dependence parameters under 
negative dependence.    

Our proposed extensions to the conditional extreme 
value model are illustrated through a case study, which  
uses data from the River Severn in the UK.  

Stochastic realisations generated from the 
conditional exceedance model hold for the � flow 
variables used in the analysis ; however many reaches of a 
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river network will typically not have a measurement  
gauge, therefore a spatial extension is needed in order to 
characterise the full extent of a flood event. It is possible 
that the most severe river flow in a flood event may occur
at such an ungauged location, and as a result events need 
to be interpolated so as to produce realistic predictions of 
extremes at ungauged locations along the river network.

Many existing interpolation methods use 
information solely about river flow, however we propose 
to also use information about rainfall. Rainfall is the main  
driver of river flow, so exploiting this known relationship 
is likely to be productive in improving the current 
interpolation methods.  

The paper is structured as follows, Section 2 provides 
a review of the available river flow and rainfall data. 
Section 3 provides a review of the spatial extreme model 
we use to generate flood events; with details of the 
simulation algorithm as well as the different extensions 
that are adopted to handle missing values. Section 4 
illustrates these different methods and the benefits of our 
proposed approach. 

Section 5 details different interpolation techniques 
that can be used to obtain realisations along the river 
network as well as applications of the techniques to the 
River Severn data. Existing interpolation methods are first 
presented and then a new method is developed, which 
incorporates information about the behaviour of rainfall. 
Rainfall data are likely to help in the explanation of flood 
events at ungauged locations, as these gauges are likely to 
have smaller catchments, and are typically affected by 
flash flooding caused by heavy rainfall events.  Finally  
conclusions and potential extensions are given in 
Section 6. 

2 Data

For our study, the River Severn was chosen; the 
Severn is one of the largest rivers in the UK. The Severn 
has several gauging stations along its length, which allows 
us to explore how the extremal dependence between the 
gauges changes as a function of time and distance. 

Daily mean river flow data and catchment 
boundaries were accessed from the National River Flow 
Archive (NRFA) at CEH Wallingford. The catchment 
boundaries were used to determine whether the river flow 
gauges lie within the catchment of the River Severn as well 
as to determine the nested structure of the gauging stations.

Daily rainfall data were obtained from CEH-GEA R
(Centre for Ecology & Hydrology – Gridded Estimates of 
Areal Rainfall), a 1km resolution data set containing 
gridded estimates of daily rainfall [6]. For this analysis, a 
crossover period of the river flow and rainfall data was 
considered for the period 1990-2010.

Figure 1: Outline of the Severn catchment. The solid black line 
shows the catchment boundary as defined by the most 

downstream gauge X54057. The purple line shows the main 
stem of the River Severn catchment. Gauging stations used in 

the analysis are labelled with their National River Flow Archive 
catalogue numbers. Shading represents terrain elevation (darker 

is higher ground).

Figure 1 provides an illustration of our study region 
and the gauges used on the main River Severn. We do not 
include gauges that are on tributaries within the catchment 
of gauge X54057 (Haw Bridge, near Gloucester) to 
simplify presentation. 

3 Methodology

3.1 Statistical model

Standard multivariate extreme value models, 
corresponding to families of copula, typically only handle 
one class of extremal dependence (either asymptotic 
dependence or asymptotic independence) and this 
dependence structure has to be pre-determined before the 
model is fitted. 

Asymptotic dependence means that there is a non-
zero probability that extreme events of the same size occur 
simultaneously, whereas for asymptotic independence the 
probability of two extreme events of the same size 
occurring simultaneously is zero. 

For example consider two sites, in the case of 
asymptotic dependence if one site observed a 1 in 100 year 
event, it is possible that the other site will also observe a 1 
in 100 year event. However, for the case of asymptotic 
independence if one site observed a 1 in 100 year event, 
the other site is likely to observe an event with a much 
reduced level, for example at worst 1 in 10 year event. If 
an asymptotically dependent copula model is fitted to 
asymptotically independent data then the probability that 
two sites concurrently observe their 100 year levels will be 
over-estimated, and vice versa.

An alternative approach is the conditional extreme 
value model of Heffernan and Tawn [2], which estimates 
the form of extremal dependence structure as part of the 
fitting procedure so covers both asymptotic dependence 
and asymptotic independence.
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Like other multivariate extreme value models, the 
conditional extreme value model is a two-step approach 
that models the marginal and dependence characteris tics of 
a data set separately.  

3.1.1 Marginal transformation 

Consider � independent and identically vectors of � = (��, … , �� ) representing values of flow variables at � sites at different times.
Our model for the marginal distributions of � has 

two components, separated using a predetermined 
threshold level �	 for variable �	 . For those points below 
the threshold �	, the empirical distribution of �	 is used 
and above the threshold, the generalised Pareto 
distribution (GPD) is adopted. Thus we have 


	 (�) = � 
	 (�)                                                     , � < �	1 − �(�	)[1 + �	(� − �	)/�	]��/�� , � ≥ �	
equation 1 

where 
	 (�)  is a kernel smoothed empirical cumulative 
distribution function and �(�	) = 1 − 
	 (�	) is the 
probability of an exceedance above the threshold �	. The 
GPD is a two parameter distribution, with the scale 
parameter �	 > 0 and the shape parameter �	 ∈ ℝ.

To estimate the dependence structure of the random 
variables �, the data are transformed componentwise to 
common Laplace margins via the transform, 

�	 = � log{2
	 (�	 )}           , 
	 (�	 ) < 0.5
-log{2[1 − 
	 (�	)]}, 
	 (�	 ) ≥ 0.5, for � = 1 … , � 

equation 2 

where 
	 is given in equation 1. The resulting variable � =(��,… , �� ) has Laplace margins, e.g. marginal densities  �(�) = 12 � �|�| , for − ∞ < � < ∞.
The transformation to Laplace margins means that ℙ(�	 > " + #|�	 > #) = ��$  for " > 0, and # > 0.

Therefore, the random variables � = (��,… , �� ) now have 
an exponential upper tail, similarly lower tail, which is of 
importance when we consider the convergence of the 
conditional distribution.  

3.1.2 Conditional dependence model 

After making the transformation given in equation 2,
the extremal behaviour of the joint tail of the random 
variables � can now be determined. A key element of the 
conditional extreme value model is the conditioning 
variable to fit the model. This variable we denote by �� and 
consider the extremal dependence of the (� − 1)
remaining variables ��� conditional on �� being above a 
sufficiently large value #, which we call the dependence 
threshold. The approach is motivated by the following  
asymptotic result, we assume that there exists normalising  
functions %|�(��) and &|�(��)>0 such that for "� >0 the 
following limit probability holds for ��� = (�',… , ��)

*�-3→6 ℙ 7��� − %|�(��)&|�(��) ≤ 9, �� − # > "� |�� > #:
= exp{−"� };|�(9)

equation 3     

where vector algebra is interpreted as componentwise and  ;|�(9) is non-degenerate in each margin. The first term in 
the limit given in equation 3 arises from the fact that �� follows a standard Laplace distribution. The second 
term in the limit characterises the behaviour of ���|�� ># in terms of the limiting distribution function ;|�(9)
along with the location %|�(��) and scale function &|�(��)>0.  

As a result of equation 3, ;|�(9) is the limiting  
conditional distribution of 

?|� = �@A�%|A(BA)
&|A(BA) , given �� > # as # → ∞,

equation 4

where ?|�~;|� and we call ?|� the residual of the 
conditional extreme value model. The result of the limits  
given in equation 3 and equation 4 is that ?|� and �� are 
independent given that �� > # in the limit as # → ∞. 

Heffernan and Tawn [2] found that although the 
different classes of extremal dependence have different  
forms for %|�(��) and &|�(��)>0, they all can be written 
in a simple parametric form. Through assuming Laplace 
margins, this form simplifies to %|�(��) = C�"�   and &|�(��) = "�DE  where −E ≤ C� ≤ E and −∞ < F� < E
[5].  We further assume that the limiting assumptions hold 
exactly above a sufficiently large dependence threshold #. 
This leads to the following model: 

��� = C��� + "�DE ?|� for �� > #, where − 1 ≤ C� ≤ 1 and − ∞ < F� < 1, 
  

where ;|�(9) is a marginal non-degenerate distribution 
function and the ?|� is independent of ��. When G =1, H = 0 the data are asymptotically independent.  

There is no known general distributional form for ?|�, so we adopt the same approach as Heffernan and 
Tawn [2] by estimating the distribution of ?|� non-
parametrically. In order to do this we assume that ?|� has 
a mean I� and variance J�'. 

As a result, the following expressions for the 
conditional expectation and variance of �	 can be 
determined 

K[���|�� = L�] = C�"� + "�FE I� MN�[���|�� = L�] = O"�DE P�QR
equation 5

for "� > #. 
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3.1.3 Inference

In order to estimate the dependence parameters C�
and F�, the working assumption is made that the ?|�’s 
stated in equation 4 follow a Gaussian distribution with  
mean and variance stated in equation 5 and are 
independent across components of ?|�. The estimation of 
these dependence parameters is performed through 
pairwise maximum likelihood for the �3  pairs with "� >#, where � = 2, … , �. The likelihood is S(C, F, I, P)

= T 1√2V("	WDX�X)
YZ

W\� exp ^− _"	W − `G	"�W + bX"�WDXcg'
2V("	WDX�X)R i

equation 6

where −∞ < b	 < ∞, �	 > 0, −1 ≤ G	 ≤ 1, and −∞ <H	 < 1, where "	W   denotes component � for the j kl  exceedance of # by "� . The forms of the mean and 
variance parameter given in equation 6 arises from the 
conditional expectation and variance given in equation 5.

Once maximum likelihood estimates for the 
parameters b	, �	, G	 and H	 are determined, realisations of m	, the �kl component of q|� corresponding to �	 can 
obtained by using equation 7,m	W =  "	W − Gt	"�W"�WDu � , for  "�W > #, vℎ��� j = 1, … , �3 .
equation 7

In order to account for spatial dependence the 
following expression is used to generate a temporally 
coherent vector of residuals.?|�(W) =  L��,W − Gt�"�W"�WDu � , for  "�W > #, where j = 1, … , �3 .
equation 8

Once a sample of ?|� is obtained from equation 8,
this is used to obtain an empirical estimate of the joint 
distribution function ;|�. This estimated conditional model 
now enables us to model the distribution of ���|�� >#.  The same inference procedure holds for any ��W|�W ># for j = 1, … , �. Consequently we have a model for the 
joint tail behaviour of �, when at least one component is 
large. This enables us to make predictions beyond the 
range of the observed data. 

3.2 Handling missing values in the conditional 
extreme value model

In what follows, different ways of handling the 
residual distribution are discussed in Section 3.2.1. A 
detailed review of the set-up of the Keef et al. [4] modelled  
infill approach is given in Section 3.2.2 and this is 
compared with our approach in Section 3.2.3, which uses 
a Gaussian copula. The general simulation procedure of 
the conditional extreme value model is given in Section 

3.2.1; this simulation procedure holds only for the � sites 
included in the analysis .

3.2.1 Handling missing values in the residual 
distribution of the conditional extreme value model

The standard methods given in Heffernan and Tawn 
[2] only consider vectors of complete observations
(referred to as the Heffernan method in Tables 1 and 2). 
In many environmental applications, data are likely to be 
missing. As observed data can be very sparse, the 
Heffernan and Tawn [2] method is therefore restrictive and 
inefficient when modelling the extremes of network river 
flows. 

Keef et al. [4] developed a strategy to estimate the 
distribution of the missing variables ; we call this approach 
the Modelled Infill. We extend this approach by adopting 
what is known as a Gaussian copula based approach. 

The two extensions of the methods, the Model led 

Infill and the Gaussian copula have some similarities as 
both model the residual distributions copula by using a 
Gaussian copula, missing data and all data respectively. A 
Gaussian copula is chosen because it is computationally 
feasible in higher dimensions and the dependence between 
variables requires only pairwise data. It is easiest to 
understand the model for the joint distribution of the 
resulting ?|� if we marginally have to transform the (?' … , ?� ) to have standard Normal margins. The 
probability integral transform for  mz is

m	� = Φ��[
	 (m	)] = Φ�� �1� � � �m	 − �	Wℎ	 �Y
W\�

� ,
� = 2, … , �

equation 9

where m	� represent the residuals on Normal margins, and Φ is the cumulative distribution function of a standard 
Normal, 
	 is the kernel smoothed marginal distribution 
function of standard Normal res iduals  ?z . Here m�	�, … , mY	�
denote the � realisations of  ?z and  ℎz is the bandwidth [7]. 
Unlike the standard Heffernan and Tawn [2] approach the 
residuals are no longer restricted to the sample as the 
kernel smoothing allows both interpolation and limited  
extrapolation of the residuals. 

The use of the probability integral transformation in  
equation 9 results in each m	�~N(0,1) and we make the 
assumption that the copula is Gaussian with distribution

�m2�⋮m��
� ~���� ��0⋮0� , � 1 … �'�⋮ 1 ⋮��' … 1 ��, 

equation 10

the assumption that the copula is Gaussian gives us a 
pairwise relationship between each pair of residuals. A 
formal test to check this whether the copula is Gaussian is 
given in Section 3.2.5.
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The concurrent pairs of observations of q � =OZ'� ,… , Z��Q are used to estimate the correlation  
parameters provided that data exists for a given Zz� and Z��.
This gives the following estimated correlation matrix Σ�

Σ� = � 1 … �t��⋮ 1 ⋮�t�� … 1 �
where

�t	W = Σ� (�	,� − �̅	)(�W,� −  �̅W)�Σ� (�	,� −  �̅	)'Σ� (�W,� − �̅W)'
 � relates to the sum over the parts of the time series when 
both �	 and �W are observed, an estimate of the correlation . 
The sets over which � is summed will change for different  
pairs of sites. 

As the correlation matrix is estimated for non-
overlapping data sets, there is a possibility that the matrix 
is not positive semi-definite, however there are eigen-
decomposition methods that can solve this problem [8].  

3.2.2 Modelled infill approach

If the residual data set ?� can be modelled by using 
a Gaussian copula, we can use standard results to impute 
missing values. For example, we partition the incomplete 
data such that the observed subset of data q�� is of 
dimension � and the remaining missing data in the 
incomplete data set q'� are of dimension (� − 1 − �).
This results in the mean and covariance matrix of the 
Gaussian copula being partitioned as follows,b = `00c , where b has ` �(� − 1 − �)c  dimensions

with the following covariance matrix,

∑  =  ∑�� ∑�'∑'� ∑''¡ ,  
equation 11

where Σ has   � × � � × (� − 1 − �)(� − 1 − �) × � (� − 1 − �) × (� − 1 − �)¡  ,
equation 12

dimensions. Using the definitions in equation 11 and 
equation 12 the conditional distribution is defined as 
follows, q'� ¢q�� = £�� ~MVN(b̅, Σ¦),
equation 13

where b̅ = Σ'� Σ����£�� and Σ¦ = Σ'' − Σ'� Σ����Σ�'. The 
result given in equation 13 allows us to model those 
observations that are missing, and hence to infill their 
values.

Using the conditional Gaussian copula given in 
equation 13 produces a simulated sample of q'� together 
with the observed q�� . Before these simulated residuals 
can be used to simulate samples from the Heffernan and 
Tawn model we need to convert the residual back to their 
original margins. In order to do this, we solve equation 14
to find Zz , � = 2, … ,� .

�(m	� ) = 1� � � �m	 − �	Wℎ	 �Y
W\� . 

equation 14

This sample of residuals ? can be used as part of the 
simulation procedure given in Section 3.2.4. 

3.2.3 Gaussian copula approach

The methodology in Section 3.2.2 details the set-up 
of the Modelled Infill approach as the missing values 
within the incomplete data set are modelled by using the 
conditional Gaussian copula as defined in equation 13.
This Modelled Infill approach can become 
computationally costly when large scale data sets are 
considered as there will be a large number of missing 
values. 

The Gaussian copula instead uses the estimated 
covariance matrix defined in equation 12 to simulate a new 
residual distribution on Normal margins. This residual 
distribution ?� is based on the observed dependence 
between pairs of residuals by using the distributional 
assumption given in equation 10. Equation 14 is used to 
transform ?� to ?, variables on their original margins. 

Simulating directly from the Gaussian copula rather 
than the conditional distribution of the observed residuals 
becomes increasingly computationally efficient when a 
larger percentage of data are missing. Furthermore, the 
Gaussian copula allows us to simulate plausible 
combinations of residuals that we have not observed. 

To verify the assumption that the dependence of the 
residuals on Normal margins ?� can be represented by a 
Gaussian copula, the following tests in Section 3.2.5 can 
be performed. The Gaussian copula has an asymptotically  
independent extremal dependence structure, however this 
assumption of asymptotic independence is not restrictive 
as the tails of ? are not vital for determining the joint tails  
of �.

3.2.4 General simulation procedure with missing 
values

The general simulation procedure detailed is an 
adaptation of the algorithm in Keef et al [4]. Simulations  
are typically generated such that the conditioning variable �� is above a certain level, for example the 1 in 100 year 
level. We denote this level by #§ . The steps of the 
simulation procedure are outlined as follows:

1. Draw a value of residual ?|� this is where the 
different methods deviate as in some cases there 
are missing values in the observed residual data. 
This step changes depending on the method used:

a. Block resampling from the residual 
distribution q and infilling the missing 
values using the conditional multivariate 
Normal distribution: this is the 
Modelled Infill approach

b. Simulate from a Gaussian copula with  
correlation matrix Σ�, to produce a 
sample ?� , which is transformed to 
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Laplace margins to give q: this is used 
in the Gaussian copula approach

2. Draw a value of conditioning variable �� from a 
standard Exponential distribution above the level 
of interest #§ > #, where # is the dependence 
threshold. For example, �� = #§ +  Exp(1).

3. Derive the simulated value of the unconditioned 
variates ���, which is a function of ��,?|� and the 
estimate of the dependence parameters C|� and F|�. The formula is given below,��� = Gt|��� + ��DuA ?|�,  for �� > #

4. The sample of � have common Laplace margins;  
the probability integral transform as given in 
equation 2 can be used to transform the sample 
back to its original margins.  

3.2.5 Testing whether the residual distribution can be 
characterised by a Gaussian copula

In order to assess whether the residual distribution ?� can be characterised using a Gaussian copula a formal 
test can be conducted, which can handle both complete and 
incomplete data. In both cases the null hypothesis is that 
on Normal margins the residual distribution follows a 
multivariate Normal distribution. In order to assess the 
higher order dependence structure of the residual 
distribution, we adopt methods developed by Bortot et al. 
[9].

Consider the set of observations q � = OZ'� ,… , Z��Q,
which have standard Normal margins and covariance Σ,
with the square of the Mahalanobis distance defined 

© = q � Σ��q�ª. 
If ?� follows a multivariate Normal distribution with  

covariance matrix Σ then © follows a «� ��R distribution, 
where � − 1 is the dimension and with K¬«���R  = � − 1
and M%®¬«���R  = 2� − 1.

In reality, missing values are present in the residual 
distribution of ?�and the percentage of missing values is 
not consistent across locations. Therefore the test statistic © has to account for the different record lengths of data. If 
we consider a particular vector of the data qz� with  
dimension �	 ≤ �. Then qz� ~MVN(¯,°X), where dim(°X) = �	 × �	 corresponding to the rows/columns of ?� that are observed in qz� . Then©	 = ?X� ³	��?X�
equation 15

follows a «´XR distribution with K¬«´XR  = �	 and M%®¬«´XR  = 2�	. Through using equation 16, we can 
define the test statistic to be

©µ	�� = 1� � ©	 − �	�2�	
Y

	\�
equation 16

where � corresponds to the number of observations of ?� . If a particularly large value of ©µ	�� is observed then 

there is a deviation away from the assumption of 
multivariate Normality. The sampling distribution of ©µ	�� under the null hypothesis for a given pattern of 
missing data is easily derived by Monte Carlo methods .

4 Application of the missing values 
methods to generate values of the 
conditioned variates

4.1 Outline

We now apply the methodology given in Section 3 
to the River Severn flow data described in Section 2. 
Conditional probabilities relating to certain scenarios are 
calculated to illustrate how these missing value methods 
aid in the calculation of probabilities for flood risk 
management. Finally, the section also illustrates the added 
benefit of modelling the residual distribution in the 
Heffernan and Tawn model with a Gaussian copula.

The application given here is an illustration of the 
developed methodology given in Section 3.2. As the 
application is an illustration, we only focus on spatial 
dependence and consider concurrent observations. The 
derived methodology can easily be extended to incorporate 
temporal dependence, details of this can be found in Keef 
et al. [4] and Lamb et al. [3].

The seven daily mean flow gauges as given in  
Figure 1 were used in the analysis . The most upstream 
gauge, X54022, was chosen as the conditioning location ��. The daily mean flow data set has very few missing 
values (1% of the total observations) for the time period of 
interest. 

4.2 Statistical analysis of the River Severn flow 
data

4.2.1 Calculations of the conditional probabilities for 
flood risk  management

The main benefits of modelling the missing values is 
best illustrated when we calculate probabilities of 
particular events. For example, one question that might be 
of interest is as follows: if the flow is large at the most 
upstream gauge (��), what is the probability that one of the 
remaining river flow gauges is also large? To answer this, 
let �(�) > ⋯ > �(·) be the ordered values of (�',… , �¸ ).
Then we are interested in the following probability,

¹§ = ℙO�(�) > "§ | �� > "§ Q,
equation 17

whereby "§  corresponds to a sufficiently large value such 
as the 1 in 100 year event. As the �’s are on the same 
scale, if �� exceed a 100 year event, it is easy to 
determine whether any of ��� also exceeds the same 
level. The probability given in equation 17 corresponds to 
there being at least one of the sites (�',… , �¸ ) being 
larger than "§ given �� > "§ . Here "§ is chosen to be 
either a 100, 500, 1000 or 10000 year return period with 
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corresponding conditional probabilities pº.º�, pº.ºº' ,pº.ºº� , pº.ººº� . The corresponding estimates
and 95% confidence intervals are given in Table 1.

An estimate of the 95% confidence interval 
conditional probability given in equation 17 cannot be 
obtained empirically. This clearly emphasises the need to 
fit a statistical model and in particular the use of extreme 
value theory to provide us with reliable predictions of 
events we have not yet observed. 

4.2.2 Second example of the calculation of 
conditional probability for flood risk  management

The conditional probability given in equation 17 is 
again calculated, but for this particular example, a larger 
percentage of missing values are observed. A naive 
application of Heffernan and Tawn [2] would consider 
only the times in which all of the variables are observed.
However from Figure 2 note that there are no periods of 
time in which all seven river flow gauges have observed 
data, and so the existing method of Heffernan and Tawn 
[2] cannot be applied because, for example, if we condition 
on gauge X54022 (��), we would need the empirical joint 
distribution of the remaining gauges, which cannot be 
estimated for these data.

For many applications this naive approach is 
therefore highly restrictive as it leaves a small proportion 
of data from which to make predictions of extreme events.

4.2.3 Further benefits of the Gaussian copula based 
approach 

The existing modelled infill approach of Keef et al. 
[4] uses the empirical distribution to model the marginal 
distribution of the observed residuals, i.e. it assumes the 
only future values for residuals are the observed values. 
The Gaussian copula based approach instead uses a kernel 
smoothed distribution function to capture the marginal 
behaviour and the Gaussian copula marginal and joint 
residuals can both differ from observed values .

This smoothed distribution function allows smooth 
interpolation between observed data points as well as 
limited extrapolation. Furthermore, extreme events 
simulated under the Heffernan and Tawn [2] model are no 
longer restricted to deterministic functions of events 
already observed and instead a cloud of possible 
combinations can be simulated.  The effects of this 
development can be seen in Figure 3. Here we show 
simulated values for gauges X54032 and X54057 given 
that gauge X54095 observed a 100 year event from using 
both the Keef et al. [4] approach and our method. Pairwis e 
plots of the two gauges are compared in Figure 3 with the 
gauges plotted on the same scale to make the comparison 
easier. In Figure 3 the new method is able to capture the 
variability in the extremes unlike the existing method. The 
starkest contrast between the two methods in Figure 3 is 
that the spread of the simulated points in the right hand plot 
is much wider. This additional variation seems realistic 
given the extremal behaviour of the observed data set. In 
the existing method only 7.1% of the simulated sample are 
unique, whereas for the new method 100% of the points 
are unique. 

Figure 3: Observed (black) and joint behaviour of gauge 
X54032 and X54057 and simulated (red) given that a 1 in 100 
year event was observed at X54095. Left: the existing method 

(modelled infill); right the newly developed approach (Gaussian 
copula). In both figures the data are shown after transformation 

to Laplace margins.

Prob Obs Heffernan Modelled 

Infill

Gaussian 

copula¹º.º� 0 (NA) 0.053
(0.026, 0.116)

0.060
(0.025,0.132)

0.059
(0.027,0.118)¹º.ºº' 0 (NA) 0.036

(0.017,0.080)
0.043

(0.017,0.098)
0.039

(0.018,0.085)¹º.ºº� 0 (NA) 0.031
(0.014,0.070)

0.037
(0.015,0.088)

0.036
(0.016,0.076)¹º.ººº� 0 (NA) 0.023

(0.005,0.031)
0.025

(0.007,0.041)
0.023

(0.007,0.033)
Table 1: The estimates with the 95% confidence intervals for the 

conditional probability given in equation 16.

Prob Obs Heffernan Modelled 

Infill

Gaussian 

copula¹º.º� NA NA 0.026
(0.007,0.978)

0.029
(0.007,0.091)¹º.ºº' NA NA 0.014

(0.002,0.076)
0.017

(0.002,0.066)¹º.ºº� NA NA 0.011
(0.001,0.068)

0.012
(0.001,0.057)¹º.ººº� NA NA 0.006

(0.000,0.036)
0.006

(0.000,0.024)
Table 2: The estimates with the 95% confidence intervals for the 

conditional probability given in equation 16.

Figure 2: The time series plot shows the seven river flow 
gauges for the River Severn, with a larger percentage of missing 
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5 Interpolation of flood events using 
information about rainfall

The River Severn catchment is well gauged.
However, there are still many reaches within the 
catchment that are not gauges, and many smaller river 
catchments are likely to be ungauged. Therefore, a 
methodology needs to be developed that produces reliable 
predictions of river flow in both gauged and ungauged 
catchments. 

If a particular catchment is ungauged or the only 
upstream flow gauge is contained in the headwaters of the 
catchment then an alternative source of information is to 
use rainfall data. This study aims to show that an increase 
in the predictive performance of a spatial interpolation 
scheme for extremes modelled at gauges can be obtained 
by using the extra information provided by the rainfall 
data.   

The interpolation scheme study in this paper focuses 
on river flow gauges contained with the catchment of 
gauging station of X54057. The aim of the analysis in 
Section 5 is to develop a flexible methodology to produce 
reliable predictions of future river flow at X54057 and 
ultimately for future simulated events at a number of sites 
along the river network.  

The methodology for the interpolation scheme is 
constructed with the data being on common margins, the 
choice of Laplace margins is the same marginal 
distribution as used in the dependence model of Heffernan 
and Tawn [2]. The choice of modelling the data on Laplace 
margins is approximately equivalent to modelling the data 
on the log-return period scale. 

5.1 Interpolation methods

There are three interpolation methods that are 
primarily compared; the nearest neighbour approach, an 
inverse distance weighted approach and finally the 
proposed approach, which combines information about 
river flow and rainfall. Each of these three interpolation 
methods are introduced in turn in Sections 5.1.1 to 5.1.3. 

5.1.1 Method 1: Nearest neighbour approach

The simplest interpolation method would be to use 
the river flow from the nearest gauging station. The nearest 
river flow gauge is typically determined by a metric such 
as the Euclidean or the hydrological distance.

5.1.2 Method 2: Inverse distance weighted approach

An alternative approach was adopted by Keef et al. 
[4], this approach is otherwise known as an inverse 
distance weighted (IDW) approach, The approach uses a 
weighted sum of the nearby gauges . For example consider 
that �∗ is the flow gauge that we wish to predict with 
observations ��∗,… , �µ∗ and that there are � gauges, �E , … , �¼  , which provide covariate information; the 
prediction of the river flow at gauge �W∗observed at time j becomes

�� = K¬�W∗ = ½ � v	
Y

	 \� �	W
equation 18

where v�, … , vY are the corresponding positive weights 
that satisfy the constraint ∑ v	 = 1Y	\� and ½ > 0 is an 
estimated parameter. The weights defined in equation 18
are obtained as followsv	 = ��@A

∑ ��@A¾� ¿A ,

where �	 is a distance metric between each gauge �	 and �∗.   There are also extensions to the IDW approach that 
account for the proportion of the catchments that overlap
[3].

5.1.3 Method 3: Proposed approach

The interpolation approaches given in Section 5.1.1 
and 5.1.2 only use available information about river flow. 
However, other important information can be obtained 
from the rainfall that falls within the catchment of the flow 
gauging station that defines the catchment. For example ,
let �W be the rainfall that fell within the catchment at time j, with each term �W having common Laplace margins
(equation 1). Therefore, the statistical model becomes 

�� = K¬�W∗ = G + ½ � v	
Y

	\� �	W + � HÀ�W�À
À¾

À\º ,
equation 19

where G ∈ ℝ is the intercept term and the FÀ ∈ ℝ are the 
contribution of each of the days of rainfall. The value *Y
represents the number of lags of rainfall days included in 
the regression model.  

5.1.4 Estimation procedure of the proposed approach

The unknown parameters in equation 18 have to be 
estimated. Least absolute deviations (LAD) is used to 
obtain parameter estimates of OG, ½, Hº ,… , HÀ¾ Q. The LAD 
is similar to the least squares estimation but instead 
minimises the sum of absolute errors. For the j = 1, … , -
observations of river flow at site �∗, the estimation is 
defined as follows

SÁÂ = � Ã�W∗ − �G + ½ � v	
Y

	\� �	W + � HÀ�W�À
À¾

À\º
�Ãµ

W\�
equation 20

the minimisation given in equation 20 is equivalent to a 
maximum likelihood estimation as the errors of the 
regression model given in equation 19 have a Laplace 
distribution.

The methodology stated so far in Section 5.1.3 has 
dealt with statistical models that are fitted to the whole 
distribution of �∗, however the main focus of the 
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interpolation technique is to improve the predictions of 
flood event footprints.

In order to do this we only focus on a subset of the 
largest �∗’s and repeat the optimisation given in equation 
20. For example let �(�)∗ > ⋯ > �(µ)∗ be the ordered 
values of �∗and we only consider those -Ä points �∗greater than an arbitrarily large threshold �. The subset 
of points �(�)∗ > ⋯ > �(µÅ)∗ satisfy the constraint that �(µÅ)∗ > � and are taken along with the respective values 
of � and �k such that SÁÂ is now minimised above the 
value �SÁÂÄ  = ∑ ¢�(W)∗ − OG + ½ ∑ v	Y	\� �	W + ∑ HÀ �W�ÀÀ¾À\º Q¢µÅW\� .

equation 21

The estimated parameters given in equation 21 are likely 
to be different to those in equation 20.

5.2 Statistical summaries to assess the predictive 
performance of the interpolation methods

Section 5.1 proposed a number of interpolation  
techniques, an initial comparison is to plot up the proposed 
predictions �u against the response of interest �∗. However, 
other more robust test statistics need to be considered to 
fairly compare between the three interpolation techniques. 
Suitable statistics include the Mean Absolute Error and the 
coefficient of determination otherwise known as the R'.
5.2.1 Mean Absolute Error

The mean absolute error (MAE) is a typical statistic 
that is used to measure the difference between a set of 
predictions and outcome. The mean absolute error is 
defined as follows

�ÁÇ = 1-Ä �¢"W∗ − "tW¢µÅ

W\�
equation 22

where "t are predictions obtained from the regression 
model. If -Ä = - the MAE is calculated for the entire 
data set. The optimal value of the MAE is obtained 
through the objective function given in equation 20.

5.2.2 Coefficient of determination

The MAE given in Section 5.2.1 gives us an 
indication of the performance of our proposed regression 
model, however it is insufficient in determining the 
relative performance against the other candidate regression 
models in Section 5.1. In order to fairly compare the 
performance of the proposed methods, statistics such as 
the coefficient of determination can be calculated, which  
is denoted by R'. The coefficient of determination is 
defined as

�' = 1 − ∑ O"W∗ − "tWQ'-�W\�∑ O"W∗ − "¦Q'-�W\�
equation 23

where "∗  are the -Ä observations of flow at the gauging 
station location of interest. The "t are the estimated 
predictions from the fitted regression model. In the
denominator, the mean of the observations  " È is subtracted 
from the predictions  "∗. If �' = 1 then the fitted 
regression model perfectly fits the data; if �' = 0 the 
regression model does not fit the data at all. The coefficient  
of determination �' given in equation 23 gives a statistical 
summary of the performance of the fitted regression 
model. An issue is that the statistic does not account for if 
the model is over parameterised.

To account for this possibility, the adjusted 
coefficient of determination �¦ ' is used and is typically  
defined as �¦ ' = 1 − (1 − �') -� − 1-� − ¹ − 1,
equation 24

where ¹ is the number of explanatory variables and  -Ä the 
number of observations. 

If an explanatory variable is unnecessarily 
incorporated into the regression model, the adjusted  �È '
will decrease. The optimal regression model will have the 
largest adjusted   �È ' but not necessarily the largest �'.

The unadjusted and adjusted �' given in Section 
5.2.2 is defined only for data on the S' norm, in other 
words for data that are Normally distributed. As our 
dependence modelling is performed on Laplace margins, 
this assumption does not hold and we need to consider test 
statistics that hold on the S� norm.

5.2.3 Coefficient of determination for Laplace data

The previous R' given in equation 23 is defined only 
for data on the S' norm and results in considering squared 
differences between the response and corresponding 
predictions. As we are now working on the S� norm, we 
instead consider absolute deviations. This change in metric 
in determining the distance between points, results in the R' becoming |�|, in reference to the change in norm,

|�| = 1 − ∑ É"j∗ − "tjÉ-�W \�∑ É"j∗ − "ÊÉ-�W\�
equation where "Ê is the median of the observed 
responses. The adjusted |�¦| is then similarly as in 
equation 24 but with  R' replaced with |�|.
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5.3 Exploratory analysis of the different 
interpolation methods

5.3.1 River Severn case study 

In order to compare the predictive performance of the 
three different interpolation methods. The furthest 
downstream gauge, X54057 is selected as our prediction 
location �∗. The combination of the other river flow 
gauges are used as explanatory variables. From 
exploratory analysis, it was found that it was beneficial to 
use the intervening area catchment to define �k instead of 
the entire catchment of X54057. The map given in Figure 
4 illustrates what we define as the intervening area if we 
had river flow observations at gauge X54032.

An initial comparison of the three different  
interpolation techniques is shown as a scatterplot of the 
predictions against the response of interest. The third 
method requires an upfront determination of the number of 
rainfall days, for this example *Y was chosen to be equal to 
30. More consideration into the choice of *Yis given in 
Section 5.2.2. The scatterplots shown in Figure 5 are 
shown for a range of quantiles, specifically for the 0th, 50th,
90th and 95th percentiles; the parameters are obtained 
through the optimisation given in equation 21. The pattern 
of the scatterplots given in Figure 5 clearly changes across 
the range of quantiles, for the whole data set (�º) there 
seems to very little difference between the three methods,
however for the highest threshold (�º.ËÌ), the new method 
shown by the blue is outperforming the other two methods.
In order to formally assess the behaviour seen in Figure 5
the MAE (defined in equation 22) is calculated for each of 
the four percentiles. The estimated values of MAE are 

given in Table 3, for the lowest percentile, the nearest 
neighbour approach performs best. However, when 
predictions of the largest values of �∗are produced the 
approach (method 3) that combines both river flow and 
rainfall performs best.

Figure 5: The four scatterplots left to right show the predictions 
above the 0th, 50th, 90th and 95th percentile. The three 

interpolation methods are the nearest neighbour approach 
(black), the inverse distance weighted approach (red) and the 

combined river flow and rainfall approach (blue).

The predictions obtained from method 3 in both 
Figure 5 and Table 3 were estimated from 31 lagged days 
if rainfall information. The choice of 31 days’ worth of 
rainfall information was purely an arbitrary choice, in 
fact another regression model may be preferred with 
fewer days of rainfall information.

5.3.2 Coefficient of determination

The newly proposed model given in equation 19 is 
investigated further to determine the optimal number of 
days of rainfall information. This comparison is performed  
by fitting the regression model given in equation 19 for *Y = 0, … ,30 and the value of the unadjusted and adjusted |�| is recorded (given in Section 5.2.3). The latter will help 
to determine the optimal number days of rainfall to include 
in the regression model. 

Percentile Method 1 Method 2 Method 3�º 0.247 0.266 0.265�º.Ì 0.190 0.211 0.205�º.Ë 0.451 0.452 0.417�º.ËÌ 0.629 0.572 0.461

Table 3: The three columns show the three different methods as 
given in Section 5.1. The four different rows correspond to the 

0th, 50th, 90th and 95th percentile.

Figure 4: Illustration of the River Severn catchment as defined 
by gauge X54057. The solid grey area shows the catchment as 
defined by the upstream gauge X54032. The light grey area is 
what we define as the intervening area, in other words the part 

of X54057’s catchment that is not gauged by X54032.
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The coefficient of determination |�|, given in Figure 
6 illustrates the pattern seen in Table 3 as for the lowest 
percentiles, the nearest neighbour approach (method 1) 
performs best). However, when we consider the higher 
percentiles, the addition of rainfall (method 3) is most 
beneficial and outperforms the two existing methods. 
Reassuringly the rainfall and river flow method 
outperforms the method that solely uses information about 
river flow. A general pattern also arises in the estimated |�|, this is that as the percentile increases, the value of |�|
decreases. This is to be expected as there is likely to be 
more unexplained variability in the extremes that relate to 
pluvial flood events. 

The comparisons of the statistics given in Figure 6
are useful, however they do not account for the possibility 
that superfluous covariates have been included in the 
regression model given in equation 19. As a result, the 
adjusted |�¦| is calculated and compared. The pattern in  
Figure 7 is similar with that in Figure 6, as method 3 is still 
consistently outperforms method 2. For the lower 
percentiles (0th and 50th), there is still evidence to include 
more days of rainfall information. However, for the higher 
percentiles (90th and 95th), accounting for the number of 
parameters in the regression model has had a clear impact . 
In both cases, there is evidence to include rainfall
information for a period of up to 11 days. Ultimately, for 
the 5% largest values observations of river flow, the 
inclusion of these rainfall data results in an extra 10% of 
the variability of �∗ being explained. 

6 Concluding remarks

This paper has illustrated how the conditional 
exceedance model of Heffernan and Tawn [2] can be used 
to aid flood risk assessment. Extensions to the model have 
been outlined and illustrated by using a case study related 
to the River Severn. 

The conditional probabilities calculated in Section 3 
consider equally extreme events at different sites, however 
the methodology can easily be extended to consider more 
general extreme events. 

The existing approach of Keef et al. [4] resampled  
from the residual distribution and simulated missing 
values by conditioning on the gauges that were observed. 
This modelled infill approach becomes incredibly  
computationally expensive when the dimension of the data 
increases. The Gaussian copula, proposed here, offers a 
more efficient alternative as it is still relatively easy to 
simulate from the residual distribution even for data sets 
of a high dimension.

An issue of the methodology is that if there are no 
time overlap between data at different gauges there is no 
clear way of estimating the covariance matrix. A solution 
to this is to create an artificial time series from 
neighbouring time series and use that to estimate the 
correlation with the other sites in the analysis.

The benefits of the Gaussian copula based approach 
are improved marginal distributional modelling by using a 
kernel smoothed instead of an empirical distribution 
function. This allows for the generation of the physically 
realistic events that we have not yet observed. So we are 
no longer restricted to resampling from the residual 
distribution and the rays present in the left hand plot of 
Figure 3 will no longer occur.

The assumption of the Gaussian copula means that 
the residual distribution can be represented by a number of 
correlation parameters. In higher dimensional examples , 
the number of correlation parameters can become 

Figure 6: The four figures left to right show the unadjusted 
coefficient of determination |�| for percentiles 0th, 50th, 90th and 
95th. In each figure, the black line shows method 1, the red line 

shows method 2 and the blue method 3.

Figure 7: The four figures left to right show the adjusted 
coefficient of determination |�| for percentiles 0th, 50th, 90th

and 95th. In each figure, the black line shows method 1, the red 
line shows method 2 and the blue method 3.
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increasingly large, for example for � =  100 gauges there 
would be a total of ∑ �Y ��	\�   =  4950 parameters. There 
exists ways of simplifying this correlation matrix, for 
example if we assume the residual distribution is a 
Gaussian process.

The methodology given in Section 5 provides an 
initial outline into how existing interpolation techniques
can be extended to include information about rainfall .
Using rainfall data from intervening areas of the catchment 
rather than the entire catchment proved the most 
beneficial, as it does not result in double counting the same 
covariate information. A possible extension is to simplify
the regression model given in equation 19, as the model 
has an individual parameter for each lagged day of rainfall. 

In conclusion, this paper has proposed a new more 
computationally efficient to deal with missing values in the 
residual distribution of the conditional extreme value 
model as well as illustrations of how rainfall data can be 
used to interpolate flood events across the river network. 
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