Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes

Mahieu, E. and Chipperfield, M. P. and Notholt, J. and Reddmann, T. and Anderson, J. and Bernath, P. F. and Blumenstock, T. and Coffey, M. T. and Dhomse, S. S. and Feng, W. and Franco, B. and Froidevaux, L. and Griffith, D. W. T. and Hannigan, J. W. and Hase, F. and Hossaini, R. and Jones, N. B. and Morino, I. and Murata, I. and Nakajima, H. and Palm, M. and Paton-Walsh, C. and Russell, J. M. and Schneider, M. and Servais, C. and Smale, D. and Walker, K. A. (2014) Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 515 (7525). pp. 104-107. ISSN 0028-0836

Full text not available from this repository.

Abstract

The abundance of chlorine in the Earth's atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the chlorofluorocarbons. The chemical inertness of chlorofluorocarbons allows their transport and mixing throughout the troposphere on a global scale(1), before they reach the stratosphere where they release chlorine atoms that cause ozone depletion(2). The large ozone loss over Antarctica(3) was the key observation that stimulated the definition and signing in 1987 of the Montreal Protocol, an international treaty establishing a schedule to reduce the production of the major chlorine-and bromine-containing halocarbons. Owing to its implementation, the near-surface total chlorine concentration showed a maximum in 1993, followed by a decrease of half a per cent to one per cent per year(4), in line with expectations. Remote-sensing data have revealed a peak in stratospheric chlorine after 1996(5), then a decrease of close to one per cent per year(6,7), in agreement with the surface observations of the chlorine source gases and model calculations(7). Here we present ground-based and satellite data that show a recent and significant increase, at the 2 sigma level, in hydrogen chloride (HCl), the main stratospheric chlorine reservoir, starting around 2007 in the lower stratosphere of the Northern Hemisphere, in contrast with the ongoing monotonic decrease of near-surface source gases. Using model simulations, we attribute this trend anomaly to a slow down in the Northern Hemisphere atmospheric circulation, occurring over several consecutive years, transporting more aged air to the lower stratosphere, and characterized by a larger relative conversion of source gases to HCl. This short-term dynamical variability will also affect other stratospheric tracers and needs to be accounted for when studying the evolution of the stratospheric ozone layer.

Item Type:
Journal Article
Journal or Publication Title:
Nature
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1000
Subjects:
?? inorganic chlorineozoneevolutionsystemairagegeneral ??
ID Code:
82372
Deposited By:
Deposited On:
24 Oct 2016 10:08
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 16:11