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Abstract—Modern applications involve green communication
technologies motivating well optimisation in the power–limited
regime. In comparison to most of existing related work that as-
sumes perfect channel state information (CSI) is always available,
which is unfortunately not true in reality, this work focuses on
an optimal energy efficient solution for resource allocation in
multiuser orthogonal frequency division multiple access (OFDMA)
networks in the presence of imperfect CSI and data outage
conditions. Particularly, in view that wireless channel conditions,
circuit power consumptions and users’ quality–of–service (QoS)
requirements are heterogeneous in nature, we enable attractive
tuning options by letting energy efficiency optimisation objective
to assign weights to each allocation link. Also, we interpret
effects of data outage due to imperfect CSI using a profound
insight on the monotonicity of noncentral chi-squared inverse
distribution function, which reveals that our design complies
with expected physics and mechanics of conventional energy
efficiency approach and that it can be successfully degenerated
to the energy efficiency model with perfect CSI. Furthermore, we
formulate a mixed combinatorial problem towards maximising
the energy efficiency subject to a minimum QoS requirement,
channel interference and transmitting power constraints. The
problem is transformed into an equivalent quasiconcave prob-
lem with respect to power, and concave problem with respect
to the subcarrier indexing coefficients using the concept of
subcarrier time–sharing. We optimise through a simple and
versatile methodology, which uses standard–Lagrangian optimi-
sation technique to obtain joint dynamic subcarrier and adaptive
power allocations by means of final formulas. We also examine
key properties of the introduced optimal solution in terms of
implementation convergence and complexity, level of optimality,
and impact of imperfect CSI coefficients and circuit power
on network performance. The simulation results demonstrate
the effectiveness of our allocation scheme for achieving higher
energy efficiency performance with the guaranteed QoS support
and lower complexity than existing approaches especially when
perfect CSI is not available.

Index terms— Convex optimisation, CSI, data outage, energy
efficiency, multiuser, multicarrier, OFDMA, QoS, resource
scheduling

I. INTRODUCTION

The rapid growth of requirements for high–speed wireless
communication services and ubiquitous access escalates dra-
matically energy consumption. In addition to this issue, slow
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advancements on energy–storage technology bound the power
supply of portable devices with limited battery capacity [1].
Such matters convey critical financial and environmental con-
cerns, like high operation expenditure and large amount of
greenhouse gas emissions [2]. A promising solution capable
to guarantee certain levels of energy efficiency and quality–
of–service (QoS) support is the intelligent management of
wireless resources considering features of green networking
and orthogonal frequency division multiple access (OFDMA)
technologies [3].

A. Related Work and Open Challenges

Traditionally, OFDMA resource schedulers attain the required
QoS by either maximising sum–throughput or minimising total
transmission power, e.g., [4]–[5]. Even so, [6] reveals that
such efforts are far apart the optimality from the perspective
of energy efficiency defined as the ratio between offered
throughput over transmit and circuit power (in bit/Joule).
Therefore, [7]–[13] strove to optimise energy efficiency using
power adaptations within multi–user channel coordination to
improve QoS maintenance. Within same direction, [14]–[17]
examine the tradeoff between spectral and energy efficiency
to reveal fundamental impacts of channel power gain and
circuit power on energy performance. Further insights are
given in [18]–[22], which show that the amount of data
bits successfully delivered to the receiver for each energy
unit used for transmission should be maximised on joint
subcarrier and transmitting power level considerations. The
fundamental assumption of all above studies is that channel
state information (CSI) is always perfectly known. In practice
this is challenging because schedulers cannot perfectly obtain
the CSI due to noisy channel conditions, delayed CSI feedback
and/or channel outage, etc. With imperfect CSI, data could be
corrupted if scheduled data rate exceeds the maximum channel
capacity resulting in poor energy efficiency. For this reason,
recent studies in [23]–[26] account properties of Marcum Q-
and Bessel functions to interpret imperfect CSI in energy
efficiency. Particularly, [23] and [24] consider quantisation
errors and/or limited feedback information to improve energy
efficiency in coordinated multi-cell networks and cognitive
radio systems, respectively. Deterministic bounded channel
modelling is adopted in [25] and [26] to address worst
case beamforming strategies that optimise downlink energy
efficient transmissions in single-cell and coordinated multi-cell
multiple-inputmultiple-output (MIMO) networks, correspond-
ingly. It is demonstrated that imperfect–CSI–awareness can
bring energy improvements compared to previous attempts
with perfect CSI considerations. An issue however, is that
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imperfect CSI coefficients in [23]–[26] are interpreted using
exponential–type approximations, which can be calculated
numerically either with infinite series expansions or through
recursive relations. Such approximations very often require a
large number of iterations to yield sufficient accuracy for very
small error probabilities, whereas asymptotic expressions may
give values that lie above or below the exact value of the
function. For example, the generalised Marcum Q-function in
[23]–[26] is expressed as an integral with finite limits, which
cannot be solved analytically. Hence, complex numerical in-
tegration techniques have to be applied introducing thereby,
approximation errors over the large domain. How to avoid such
errors and improve recursive procedures towards more optimal
solution with the existence of imperfect CSI is a non–trivial
question and remains challenging.

Furthermore, since the energy efficiency optimisation prob-
lems lead to fractional models, relevant literatures [7]–[26]
apply fractional programming to facilitate dual Lagrangian
optimisation, which exploits the underlying linearity of the
linear fractional model. The resulting algorithms can be seen
as specialisations to Dinkelbach-type algorithm for gener-
alised fractional programs [27], which parametrises the master
problem into a series of concave secondary problems that
are solved using dual decomposition, where each secondary
problem is further decomposed into a number of similar
subproblems. The challenge is that dual methods often lead to
sub–optimal solutions due to uncontrollable duality gap [28].
Given that the gap cannot be explicitly calculated [28], dual
methods aim to reduce the gap assuming that each concave
secondary problem has a strictly feasible point such that the
Slater’s condition is satisfied (see [18], [23], [29] for example).
Also, dual methods call for an application of rather complex
searching processes for obtaining the subgradients of each
possible optimal point (e.g., ellipsoid method). Such processes
increase complexity and cannot always guarantee convergence
since they may result in more than one subgradient or even
non [28]. Commenting on the high complexity and potential
inaccuracy caused by the duality gap from those Lagrangian
dual methods, a recent study in [30] attempts to use La-
grangian optimisation with numerical approach. It shows that
the Karush-Kuhn-Tucker (KKT) optimality conditions of the
energy efficiency problem lead to transcendental equations in
the form of (1 + x) ⋅ ln (1 + x) + x = 0, which are challenging
to be solved analytically. Thus, authors propose a numerical
method, which achieves higher performance than existing
dual approaches by means of convergence, complexity and
accuracy. Despite the promising results in [30], how to exploit
assets of standard–Lagrangian optimisation analysis towards
further energy efficiency improvements is still in early stage.

B. Motivation and Contributions

This study identifies the importance of recent attempts in
[23]–[26] and [30] to step forward by investigating new
potentials for improving energy efficiency through standard–
Lagrangian analysis in OFDMA systems with the existence of
imperfect CSI. Our viewpoint is that new analytical solutions,
which get rid of the duality–gap and subgradient seeking
processes can improve optimality, convergence and complexity

of the energy efficiency problem. In addition, the negative
impact of imperfect CSI can be addressed through poring
into fundamental properties of noncentral chi-squared inverse
cumulative distribution function (c.d.f.), which can address the
issues caused by Marcum Q- and Bessel functions. To this end,
we focus on investigating potentials of an uncommon figure
of merit, known as weighted sum energy efficiency (WSEE),
which allows to control the energy efficiency of each allocation
link over the available spectrum. Compared to conventional
average sum energy efficiency (ASEE), which considers the
energy efficiency of the entire network, WSEE is useful in
heterogeneous networks wherein different users have diverse
QoS requirements and channels have different quality levels.
The key contributions of this paper are summarised as follows:

● In view that channel conditions, circuit power consump-
tions and users’ QoS vary in nature, we focus on max-
imising WSEE to enable attractive tuning options in
energy efficient communication systems. Related efforts
mainly investigate ASEE performance [7]–[15], [18]–
[26], while the works that consider the scenario similar
to ours are [16]–[17], to the best of our knowledge. How-
ever, [16]–[17] optimise using power adaptation only,
while subcarrier assignments are assumed to be fixed.
Instead, this work proposes a joint subcarrier and power
allocation solution. The joint approach captures different
features of energy performance than unilateral power
optimisations. Furthermore, we design WSEE by accom-
modating the case when CSI is not perfectly available,
which had not been considered previously.

● We investigate the effect of data outage due to imper-
fect CSI on energy efficient allocations. This topic is
still in its infancy as most related work (e.g. [7]–[22],
[30]) assumes that CSI is perfectly available, which is
unrealistic and may lead to poor performance. Although
some recent works [23]–[26] consider studying the impact
of imperfect CSI on the ASEE metric, they use recursive
methods to compute the wireless channel, which intro-
duce statistical approximation errors. We contribute by
expressing for the first time the statistics of imperfect CSI
in WSEE using inverse chi-squared c.d.f., which avoids
recursive computations and can improve approximation
accuracy compared to [23]–[26]. This is achieved through
a profound insight on the monotonicity of noncentral
chi-squared inverse c.d.f. with respect to its noncentral
parameter. To the best of our knowledge, such insight has
not been examined previously. Instead, the monotonicity
has been examined with respect to the random variable
(not with respect to its noncentral parameter), e.g., [31]–
[32]. We expect our insight to be a useful tool for the
green communication and networking research field as
well as wider communication engineering fields.

● Different from dual Lagrangian approach [7]–[26], we
apply an intelligent solution methodology to enable
standard–Lagrangian optimisation. The idea relies on
Maclaurin theorem, which incurs the polynomial form of
transcendental equations issued by the fractional origin
of energy efficiency objectives. We show that trunca-
tion error of our optimal solution can be expressed in
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closed–form, while duality gap in related work is non-
tractable and may impact optimality. Moreover, it is the
first attempt to consider that subcarriers can be time–
shared in energy efficient scheduling. Although, time–
sharing is a well-studied technique capable to reduce im-
plementation complexity in spectral efficiency problem,
e.g., [4]–[5], [31]–[32], it has been rarely used in the
energy efficiency area, whereas conventional approach
fosters to seek for the subgradient of each dual optimal
subcarrier allocation, i.e., [7]–[26]. We also contribute by
exploring the boundary points of our optimal solution and
its key properties with proofs regarding its monotonicity,
complexity, feasibility, implementation and optimality.

Simulation comparisons demonstrate that the proposed re-
source scheduling approach has significantly lower complexity
than dual approaches and achieves higher optimality. It is
also shown that the introduced modelling of energy efficiency
with imperfect CSI can be successfully degenerated to the
energy efficiency model when perfect CSI is available. The
new objective and solution methodology can be applied to
a large class of energy efficiency problems under various
system constraints, and offer useful insights to theoretic and
algorithmic developments for wireless utility maximisation.

Remark: The main target of this work is to investigate the po-
tential gain on energy efficiency from exploiting the statistical
CSI when CSI is not perfectly known. This is achieved by
the design and the solution of an energy efficient allocation
problem subject to outage constraints. By contrast, our previ-
ous work [33] relied on a different energy efficiency metric
(i.e. ASEE) than the energy efficiency we address in this paper
(i.e. WSEE). As discussed previously the two definitions have
fundamental structure differences. Thus, the corresponding
properties/proofs presented in this work and the work in [33]
are radically different. Apart from the different energy effi-
ciency definitions and properties, the key differences between
the current work and [33] lie in the optimisation problem, the
solution approach, the algorithm design, and the performance
analysis. In this paper, we present the properties not only of
the energy efficiency objective but also of the joint solution.
Along with that, we present the implementation process of
our proposal as well as extended performance comparisons
with relevant studies through simulations. It is also noted that
our previous work [32] addresses the impact of imperfect
CSI relying on conventional Marcum Q-function properties.
Instead, for the first time in this paper we investigate the energy
efficiency optimisation with the existence of imperfect CSI
using attributes on the monotonicity of noncentral chi-squared
inverse c.d.f.

The remainder of this paper is structured as follows. Section
II presents the OFDMA system model, with Section III
to introduce the new energy efficiency objective with key
properties. Section IV formulates the optimisation problem
with Section V to present the joint optimal allocation solution.
Section VI provides main attributes of the joint solution, with
Section VII to present various simulation comparisons with
relevant schemes. Finally, Section VIII concludes the paper.
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Fig. 1: Multiuser OFDMA system model.

II. SYSTEM MODELLING

We focus on downlink transmissions of a single-cell OFDMA
system shown in Fig. 1. In the system, K total number
of mobile users (each with a single antenna) share NF
total number of orthogonal subcarriers of total bandwidth
BW . Users feedback CSI to a base station (BS), which is
equipped with a single antenna and determines the subcarrier
and power allocation decision. The CSI is imperfect due to
channel feedback delays, transmission errors, etc., and it is
estimated at the BS prior to the allocation decision of each
transmission circle. The allocation decision aims to maximise
energy efficiency subject to the minimum QoS requirements
of each user, interference constraints among NF subcarriers
and the transmitting power limit.

A. Wireless Channel Modelling & Estimation Process

The wireless channel is frequency–selective with complex cir-
cularly symmetric Gaussian (CCSG) noise of spectral density
N0. The channel estimation is performed in time division
duplex (TDD) operation through uplink dedicated training
blocks sent by all the K users to the BS. Let hij to denote
the complex Gaussian and identically independent distributed
(i.i.d) actual channel gain of user j = 1, ...,K on subcarrier
i = 1, ...,NF . Then the received OFDM symbol can be
represented by

yij = hij ⋅ xij + zij . (1)

Variable xij in (1) signifies the transmitted orthogonal
frequency division multiplexing (OFDM) symbol to user j on
subcarrier i, while zij ∼ CN (0, σ2

Z) symbolises the corre-
sponding CCSG channel noise with zero mean and variance
σ2
Z = BW ⋅N0

NF
. Also, let the estimated channel gain coefficient

ĥij = hij + ∆hij to represent the imperfect CSI, with ∆hij
the i.i.d channel gain estimation error term and σ2

∆h the
channel gain error variance. Then hij ∼ CN (ĥij , σ

2
∆h) and the

evaluation of actual channel gains h = {hij} can be performed
according to the estimation process proposed in [31]–[32],
which ensures that:
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1) channel gain estimation error terms ∆h = {∆hij} are
correlated on different subcarriers with same channel
gain error variance σ2

∆h and

2) ∆h and estimated channel gain realisations ĥ = {ĥij}s
are uncorrelated with zero covariance.

B. Physical Layer Modelling
In view of (1), we define the system transmitting power
allocation policy by P [ĤNF×K] = [pij], with matrix element
the averaged (or expected) instantaneous transmitting power
pij = E [∣xij ∣

2
] , pij ≥ 0,∀i, j 1 and ĤNF×K = [ĥij] the im-

perfect CSI knowledge matrix from physical layer. In addition,
we represent the subcarrier allocation policy by S [ĤNF×K] =

[sij], with sij ∈ {0,1} the subcarrier index, i.e., sij = 1 when
subcarrier i is allocated to user j and sij = 0, otherwise. In
our system the instantaneous transmitting power pij can be
adjusted according to the combined subcarrier gains {ĥij}
by using M-ary Quadrature Amplitude Modulation (M-QAM)
[34]. Thus, the maximum instantaneous channel capacity cij
can be then computed as cij = BW ⋅log2 (1 + (η ⋅ pij ⋅ ∣hij ∣

2
)),

with variable η = − 1.5
σ2
Z
⋅ln(5⋅BER) to be added for notational

brevity, BER = 0.5 ⋅ erf (
Eb
N0

) to define the normalised bit-

error-ratio (BER), Eb the energy-per-bit and CNR =
pij ⋅∣hij ∣
σ2
Z

the channel-to-noise-ratio (CNR). Furthermore, we represent
the throughput allocation policy by R [ĤNF×K] = [rij] with
matrix element the instantaneous scheduled throughput rij ≤
cij , ∀i, j, which is a function of actual channel gains h = {hij}
that are unknown to the BS. Having specified power, subcarrier
and throughput policies we define the instantaneous energy
efficiency as the ratio of achievable instantaneous scheduled
throughput over the corresponding power consumption, i.e.,
EEij = sij ⋅ rij/ (ζ ⋅ sij ⋅ pij + P

C
ij ). Particularly, the power

consumption model of the BS is formulated in linear fashion2

ζ ⋅ sij ⋅ pij + P
C
ij [7]–[18], where coefficient ζ refers to the

power consumption due to amplifier inefficiency, feeder losses,
etc., and PCij symbolises the digital power consumed at the
BS’s transmitter and the distant receiver for each allocation
link due to signal processing, battery backup, etc. Hence,
EEij can be quantified as the number of successfully de-
livered data bits to user j on subcarrier i per unit power
(in bit per Joule) and it is equivalent to the throughput
weighted by the inverse of the sum of circuit and transmitting
power. Furthermore, the scheduling process is constrained on
E [∑

NF
i=1 (sij ⋅ rij)] ≥ qj , ∀j to guarantee that each user j

1The expectation operator E⋅ [⋅] refers to the average of a quantity over the
ergodic realisations, e.g., {xij}, {hij}, {ĥij}, etc. To avoid confusion, from
this point forward we omit its characterisation as ”averaged” or ”expected”.
Also, notation ∣⋅∣

2 indicates the absolute squared value of a complex number,
e.g., ∣xij ∣

2
= xij [xij]

†, and [⋅]
† is the complex conjugate [28].

2In practical setting, power consumption can be modelled in more so-
phisticated fashion, where PCij can vary with throughput and ζ can change
with the bandwidth used, e.g., [35]–[36]. Note that more digital processing
is done at the receiver than at the transmitter, whereas analogue circuit
power consumption is mostly accounted by coefficient ζ. How to model
more complex power model is beyond the scope of this study, which aims to
pore into the impact of imperfect CSI on energy efficiency. For the ease of
presentation and the fair comparisons with conventional schedulers we adopt
the same type of power dissipation modelling as our related work (see [7]–
[18]).

meets its minimum QoS rate requirement qj . Also, scheduler
ensures the total transmitting power upper bound at BS is
met, i.e., E [∑

K
j=1∑

NF
i=1 (sij ⋅ pij)] ≤ PTOTAL, where PTOTAL

denotes the total available power supplied at the BS. Finally,
we restrict channel interference by considering ∑Kj=1 sij = 1,
∀i, which imposes that each subcarrier can be only assigned
to one user at a time.

III. DEFINITION AND PROPERTIES OF
EFFECTIVE–WEIGHTED ENERGY EFFICIENCY

PERFORMANCE METRIC

This Section designs an attractive energy performance metric
to account practical effects of data outage and imperfect
CSI. The performance metric considers weights to facilitate
addressing energy efficiency achieved in each allocation. Key
structural determinants of the proposed design are also clar-
ified to offer a unique insight on the monotonicity of the
noncentral chi-squared inverse cdf.

A. Definition of Weighted Sum Energy Efficiency

Most literature defines energy efficiency as the ratio between
network sum rate and corresponding power consumption, i.e.,
[7]–[26],

ASEE =
∑Kj=1∑

NF
i=1 rij

∑Kj=1∑
NF
i=1 (ζ⋅sij ⋅pij)+PC

, (2)

with PC = ∑
K
j=1∑

NF
i=1 P

C
ij the overall circuit power consump-

tion at the BS. However, ASEE in (2) is not able to manage
the individual energy efficiencies of each (i, j) allocation link,
which are needed when different QoS requirements, power
consumption levels and spectrum usage are demanded. To
solve this issue, we adopt the weighted sum of the individual
energy efficiencies as:

WSEE = ∑
K
j=1∑

NF
i=1 (wij ⋅EEij)

= ∑
K
j=1∑

NF
i=1 (wij ⋅

rij
ζ⋅sij ⋅pij+PCij

) ,
(3)

with wij ≥ 0 the weight of each (i, j) link. WSEE provides
more degrees of freedom for system design than conventional
ASEE because the corresponding weights in (3) can give
priority to specific (i, j) allocation links [14], [37]–[39].
For instance, user weighting has been extensively applied in
networks with heterogeneous QoS applications to prioritise
the most energy–hungry users (with higher QoS than others),
which permits obtaining resource allocation solutions that
privilege the energy efficiencies for such users. In addition,
subcarrier weighting has been accounted in networks, where
subcarriers are reserved for different pricing policies and/or
spectrum usage [14], [37]. In such networks, subcarrier–
dependent weights are used to opportunistically allocate more
power to subcarriers (or groups of subcarriers) experiencing a
good channel state, or alternatively, to force a uniform power
split in order to avoid well-known phenomena with negative
effects on network’s performance such as sidelobes in OFDM,
high value of peak-to-average-power-ratio (PAPR), high out-
of-band-power (OBP), etc. [40]–[41]. Remark that in reality
the reliability of subcarriers depends not only on their physical
channel coefficients (which can be seen as physical weights)
but it is also affected by the signal processing process and
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circuit of the receiver. For example, during the analogue-to-
digital conversion of the OFDM signal, quantisation noise is
introduced by the modulators, e.g., QAM in our case. The
noise degrades signal reliability by means of reducing the CNR
and/or increasing the BER in some subcarriers [42], which
can give rise to high sidelobe, PAPR, OBP, etc. To improve
reliability the likelihood of the received symbols on subcarriers
for decoding can be adjusted by weighting subcarriers based
on real-valued coefficients (e.g. CNR, BER), which can be
calculated3 from the output noise spectrum of the modulator
using, e.g., soft-decision Viterbi process [43]. As a result, the
weights in WSEE can be adjusted considering multiple criteria
that lead to more realistic interpretations of each subcarrier’s
quality and hierarchy than considering the physical channel
coefficients only. This can be particularly useful in 5G systems,
where different groups of frequency bands are required to rely
on separate radio frequency (RF) chains, e.g., cellular multiple-
input multiple-output (MIMO) cognitive radios (CRs) utilising
carrier aggregation and millimeter waves. In this situation, the
RF chains may have different energy consumption levels, and
a proper adjustment of the weights permits obtaining different
system tradeoffs to privilege the most energy–consuming sub-
carriers in selected users [37], [44]. Last, but not least, proper
adjustments of joint user and subcarrier weights in WSEE
can control the spread of the individual energy efficiencies
over the available spectrum. Thereby, energy concentration or
energy dispersal (entropy) can be controlled over the available
spectrum. As shown later in our simulation results, the option
of controlling the entropy energy of wireless transmissions
improves performance, which matches with well-known laws
of physics.

Hence, while ASEE in (2) accounts for the energy efficiency
of the entire network, WSEE in (3) provides additional tuning
options to optimise the energy efficiencies of each (i, j)
link by considering the heterogeneous user requirements and
subcarrier fidelity. Tuning options in WSEE can promote
employing dynamic power dissipation, which is not avail-
able in ASEE. For example, PCij in WSEE can vary with
throughput, which is particularly convenient upon considering
heterogeneous power consumptions due to different hardware
equipment of users. Also, weights in WSEE can facilitate
applying game theoretical concepts such as Nash bargaining
[45], Max-Min fairness, etc. to enable the fair cooperation
among users, which is more effortful in ASEE.

This work focuses on adopting the energy efficiency metric
WSEE as defined in (3). Notice that both ASEE in (2)
and WSEE in (3) have been mostly formulated assuming
perfect CSI is always known, i.e., in the fashion of EE =

throughput
(radiated + circuit) power

[7]–[22], [27], [30]–[33]. However,
under imperfect CSI, the actual channel gain realisations
h = {hij} in (1) are unknown to the BS and therefore,
energy efficiency is random. To address this issue the next
sub–Section designs energy efficiency in the fashion of EE =

effective−throughput
(radiated + circuit) power

, to represent the effective WSEE con-
sidering the impact of imperfect CSI.

3Discussing actual policies to calculate user and subcarrier weights is
outside the scope of this work. For example, see [37]–[39], [40]–[41] and
references within.

B. Design of Effective–Weighted Sum Energy Efficiency with
imperfect CSI Considerations

Transmission errors are contributed by two factors, namely,
channel noise and channel outage. Channel noise is usually
caused by nonideal channel coding and/or finite block length
of the channel, which can be normally addressed using strong
coding (e.g., turbo code) and/or longer OFDM frame length.
On the other hand, channel outage is a systematic effect caused
whenever scheduled data rate exceeds maximum capacity, i.e.,
rij > cij , due to inaccurate realisations of actual channel
gains h = {hij}. We calculate the channel outage probability

by initially letting index I [rij ≤ cij] = {
1, if rij ≤ cij
0, if rij > cij

to

denote the throughput–capacity violation in binary form. The
channel outage probability can be then accounted as the com-
plementary probability of error-free transmissions conditioned
on the estimated channel gain realisations ĥ = {ĥij}, i.e.,
Pout,ij = 1 − Pr [rij ≤ cij ∣ ĥ]. With the definition of Pout,ij
and recalling (3), the average WSEE (averaged over ergodic
realisations of {hij} and {ĥij}) can be calculated as

EE = Eh [WSEE]

= Eĥ [E
h∣ĥ ∑

K
j=1∑

NF
i=1 (wij ⋅

sij ⋅rij ⋅I[rij≤cij]
ζ⋅sij ⋅pij+PCij

)]

= Eĥ [∑
K
j=1∑

NF
i=1 (wij ⋅

sij ⋅rij ⋅Eh∣ĥ [I[rij≤cij]]

ζ⋅sij ⋅pij+PCij
)]

= Eĥ [∑
K
j=1∑

NF
i=1 (wij ⋅

(1−Pout,ij)⋅sij ⋅rij
ζ⋅sij ⋅pij+PCij

)] .

(4)

EE in (4) is random due to the unknown coefficients
of actual channel gains h = {hij} in rij ≤ BW ⋅

log2 (1 + (η ⋅ pij ⋅ ∣hij ∣
2
)). To make EE tractable we corre-

late rij with Pout,ij following a twofold rationality. Firstly,
given any estimated channel gain ĥij , the actual chan-
nel gain hij is Gaussian with mean E

h∣ĥ [hij ∣ĥ] = ĥij

and variance E
h∣ĥ [(hij − ĥij) ⋅ (hij − ĥij) ∣ĥ] = σ2

∆h, i.e.,

hij ∼ CN (ĥij , σ
2
∆h). Therefore, term ∣hij ∣2

σ2
∆h

is non-central
chi-squared random with two degrees of freedom and non-

centrality parameter
∣ĥij ∣

2

σ2
∆h

. Secondly, we let Fx2(⋅) (x) to
denote the c.d.f. of non-central chi-squared random variables
x ∈ R ( R is the set of real numbers) with two degrees
of freedom and F −1

x2(⋅) (x) its inverse c.d.f. Hence, we can
calculate Pout,ij as

Pout,ij = 1 −Pr [rij ≤ cij ∣ ĥ]

= Pr [rij > BW ⋅ log2 (1 + η ⋅ pij ⋅ ∣hij ∣
2
)∣ ĥ]

= Pr [∣ĥij ∣
2
≤ 2

rij
BW −1
η⋅pij ] .

(5)

From (5) we resolve

rij = BW ⋅ log2(1 + η ⋅ σ2
∆h ⋅ F

−1

(
∣ĥij ∣

2

σ2
∆h

)
(Pout,ij) ⋅ pij),

which correlates rij with Pout,ij . Then, we obtain the defini-
tion of EE in Theorem 1 as follows.

Theorem 1. Given the imperfect CSI realisation matrix
ĤNF×K = [ĥij] the effective–weighted sum energy efficiency
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is defined as

EE = Eĥ[∑
K
j=1∑

NF
i=1 wij ⋅

BW ⋅(1−Pout,ij)⋅sij ⋅log2(1+ϕij ⋅pij)
ζ⋅sij ⋅pij+PCij

],

(6)
with the term ϕij = η ⋅σ

2
∆h ⋅F

−1

(
∣ĥij ∣

2

σ2
∆h

)
(Pout,ij) to be added for

synopsis.

EE in Theorem 1 is designed in a relatively simple manner
accounting practical effects of data outage due to imperfect
CSI using properties of inverse chi-squared c.d.f. Instead,
existing efforts rely on exponential–type approximations of
Marcum Q- and Bessel functions, which increase complexity
and require recursive procedures to implement [23]–[26].
Also, our approach refers to the wide-ranging case of multi-
user multi-carrier OFDMA transmissions to provide exten-
sive perspectives of research and development in the green
communication field. However, we comment that although
similar interpretation of imperfect CSI has been applied to
spectral efficiency problems in [4]–[5], [31]–[33], some key
properties of inverse chi-squared c.d.f. still remain unexplored.
For instance, even though literature provides evidences for
the impact of Pout,ij on F −1

(
∣ĥij ∣

2

σ2
∆h

)
(Pout,ij) in (6), no study

examines the impact of the non-centrality parameter
∣ĥij ∣

2

σ2
∆h

neither on energy nor on spectral efficiency. Next sub-Section,
provides such insights through inspecting the monotonicity
of noncentral chi-squared inverse c.d.f. with respect to its

noncentral parameter, which clarifies the impact of
∣ĥij ∣

2

σ2
∆h

on

EE and helps to present main properties of Theorem 1.

C. Properties of the Proposed Effective Weighted Sum Energy
Efficiency

This sub–Section investigates the user and channel selection
principles of EE aiming to show that the proposed objective
in Theorem 1 complies with fundamental properties of con-
ventional ASEE. Particularly, it can be intuitively perceived
by the analysis in [18] and [46] that with perfect CSI, ASEE
in (2) is non-decreasing with respect to the actual channel
gain realisation h = {hij}, i.e., larger {hij} (better channel
conditions) lead to higher ASEE. The challenge is that EE
is a function of ĥ = {ĥij} (not {hij} directly) and hence, we
shall prove that with imperfect CSI and by given σ2

∆h and
Pout,ij , EE is non-decreasing with respect to both actual and
estimated channel gain realisations. In the following, we utilise
the First-order logic theory [47] to introduce some lemma and
theorem, which help to present the properties.

Lemma 1. Let G (χ, θ), χ ∈ R denote a c.d.f. depending
on a parameter θ ∈ Ω ⊂ R, which is continuous and strictly
increasing over χ ∈ {χ ∈ R ∶ G (χ, θ) > 0} for each θ ∈ Ω and
non–increasing over θ ∈ Ω for χ ∈ {χ ∈ R ∶ G (χ, θ) > 0}. Then
the inverse G−1 (ψ, θ), ψ ∈ (0,1) of G (⋅, θ) is non–decreasing
over θ.

Theorem 2. Let F (χ, θ), χ ∈ R denote the c.d.f. of a non–
centralised chi–squared random variable with κ degrees of
freedom and parameter θ > 0. If F −1 (ψ, θ), ψ ∈ (0,1), is

the inverse of F (χ, θ), χ ∈ (0,∞), then F −1 (ψ, θ) is non–
decreasing with respect to θ ∈ (0,∞).

Proof. The proofs of Lemma 1 and Theorem 2 are presented
in Appendix A.

With Lemma 1 and Theorem 2 we investigate the mono-
tonicity of the noncentral chi-squared inverse c.d.f. Within the
analysis presented in Appendix A we show that the inverse
function of a c.d.f. is non-decreasing not only over its random
variable but also over its chi-squared non-centrality parameter.
To our best knowledge, this aspect was not investigated previ-
ously and offers a unique insight into the structural determi-
nants of energy and spectral efficiency objectives as considered
in, e.g., [4]–[26], [30], [31]–[33]. Moreover, Property 1 and
Property 2 follow readily from Lemma 1 and Theorem 2.

Property 1. [Impact of the estimated channel coefficient ∣ĥij ∣
2

on EE] The EE objective in Theorem 1 is non–decreasing
with the estimated channel coefficient ∣ĥij ∣

2
.

Property 2. [Impact of the channel error variance σ2
∆h on

EE] The EE objective in Theorem 1 is non-decreasing
with respect to large error variance σ2

∆h, while for small to
intermediate σ2

∆h has small increase ratio.

Proof. The proofs of Property 1 and Property 2 are presented
in Appendix A.

Property 1 coincides with intuition. From it, EE will
increase when the realisation of imperfect channel gain ĥij
is more accurate and the actual channel gain hij is large. In
physical terms, choosing the users with better channel quality
helps to improve the overall energy efficiency like in ASEE.
Property 2 specifies that as the variance σ2

∆h of actual channel
gain hij ∼ CN (ĥij , σ

2
∆h) increases, EE also increases.

This is because it is well-known in physics that energy is
proportional to the amplitude variations, which in our case is
the variance σ2

∆h. The two properties reveal that fundamental
user and channel selection principles of the proposed objective
in Theorem 1 comply with the expected physics and mechanics
of conventional ASEE in (2). Next Section adopts EE in (6)
to formulate the energy efficiency maximisation problem with
constraints on user QoS requirements, channel interference
restrictions and transmitting power limitations.

IV. FORMULATION OF EFFECTIVE –WEIGHTED SUM
ENERGY EFFICIENCY PROBLEM WITH IMPERFECT

CSI

This section formulates the energy efficiency problem as a
constrained maximisation problem and provides insights on
its convexity considering subcarrier time–sharing relaxation.

A. Initial (Non–Convex) Optimisation Problem

The problem we consider is to jointly optimise subcarrier and
power allocation so as to maximise WSEE of all users and
subcarriers under imperfect CSI. Also, the problem aims to
satisfy suppression of channel interference, a total transmitting
power regulation and the individual QoS requirement of each
user. In view of the EE definition in (6) and the system
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modelling in Section II, the mathematical representation of
the optimisation problem is as follows:

Find optimal policies P∗ [ĤNF×K] and S∗ [ĤNF×K]

such that: max
S,P

EE (bit/Joule) (7)

subject to: sij ∈ {0,1} , ∀i, j, (8)
K

∑
j=1

sij = 1, ∀i, (9)

wij ≥ 0, ∀i, j, (10)
pij ≥ 0, ∀i, j, (11)

E
⎡
⎢
⎢
⎢
⎣

K

∑
j=1

NF

∑
i=1

(sij ⋅ pij)
⎤
⎥
⎥
⎥
⎦
≤ PTOTAL, (12)

E[
NF

∑
i=1

((1 − Pout,ij) ⋅ sij ×

BW ⋅ log2(1 + ϕij ⋅ pij))] ≥ qj , ∀j. (13)

Constraint (8) ensures the interference avoidance among
system subcarriers while, constraint (9) certifies the exclusive
use of each subcarrier by one user only. Also, constraints (10)
and (11) assure that weights and power allocations, respec-
tively are non–negative, while (12) confirms the transmitting
power feasibility through the upper power bound PTOTAL for
the BS. Finally, QoS constraint (13) guarantees the satisfaction
of the minimum user throughput requirement qj .

Problem (7)–(13) is mixed combinatorial because {pij} are
continuous and {sij} are discrete variables. One solution is
to perform an exhaustive search (ES) among all users and
subcarriers such that for each subcarrier assignment, power
is allocated to meet the individual user requirement and at
the same time to maximise the energy efficiency [4], [6], [30],
[36]. Although the optimal energy efficiency of the ES method,
e.g., EEES , is the actual optimal solution of problem (7)–(13),
it is well-known that ES method is inapplicable in reality due
to its exceptionally high complexity of O (KNF ).

B. Transformed (Convex) Optimisation Problem
To make the problem (7)–(13) more tractable we introduce the
continuous variables s̃ij ∈ [0,1] and p̃ij = pij ⋅s̃ij . The physical
meaning of s̃ij is that a subcarrier can be shared in time among
more than one user, while p̃ij indicates the corresponding
power, which scales by s̃ij . With s̃ij and p̃ij we can transform
the subcarrier allocation constraints (8) and (9) from discrete
to continuous, which relaxes the initial problem (7)–(13) into a
potential convex problem. This relaxation technique is known
as subcarrier time–sharing and has been extensively used
to reduce complexity of spectral efficiency problems, where
optimisation objectives are not in fractional forms, e.g., [4]–
[5]. Remark that subcarrier time–sharing has not been applied
in energy efficiency maximisation problems, where objectives
are in fractional forms, to the best of our knowledge. Instead,
relevant studies track solutions of problems similar to (7)–(13)
through applying fractional programming as done in [7]–[26],
where subcarrier time–sharing is not useful. For example,

with fractional programming the EE objective (7) could be
modified to obtain the dual problem of problem (7)–(13) which
however, would be likely to introduce uncontrollable duality
gap and high complexity. By contrast, we use subcarrier
time–sharing for first time to relax the subcarrier assignment
constraint (8). We specify later that the difficulty in subcarrier
time–sharing is that it results to transcendental equations,
which require innovative analysis to derive feasible solutions.

Then, using the variables s̃ij and p̃ij we reformulate prob-
lem (7)–(13) as follows.

Find optimal policies P̃∗ [ĤNF×K] and S̃∗ [ĤNF×K]

such that: maxEE
S(s̃ij∈[0,1],∑Kj=1 s̃ij=1),P(p̃ij≥0),wij≥0

(14)

subject to: E
⎡
⎢
⎢
⎢
⎣

K

∑
j=1

NF

∑
i=1

p̃ij
⎤
⎥
⎥
⎥
⎦
≤ PTOTAL, (15)

E[
NF

∑
i=1

((1 − Pout,ij) ⋅ s̃ij ×

BW ⋅ log2(1 + ϕij ⋅
p̃ij

s̃ij
))] ≥ qj , ∀j. (16)

The convexity of the reformulated problem (14)–(16) is
examined in Proposition 1.

Proposition 1. The reformulated problem (14)–(16) is qua-
siconcave and determines the optimal solutions in the space
(s̃ij , p̃ij), which is convex and non–empty.

Proof. The proof of Proposition 1 is presented in Appendix
B.

Proposition 1 verifies that the proposed energy efficiency
problem (14)–(16) has same features to conventional dual
problem in terms of convexity. Notice that for strictly qua-
siconcave and strictly concave functions, if a local maximum
exists, it is also the global maximum [28], [47]. Therefore, the
reformulated problem (14)–(16) has a unique global optimal
solution, which always exists. Next section applies standard–
Lagrangian optimisation to obtain the optimal solution of the
reformulated problem (14)–(16) by means of final formulas.

V. JOINT OPTIMAL ALLOCATION SOLUTION BASED ON
STANDARD–LAGRANGIAN OPTIMISATION

This Section presents a step-by-step analysis to obtain the joint
optimal allocation solution of the proposed problem (14)–(16).
We utilise standard–Lagrangian optimisation to apply an inno-
vative mathematical method, which resolves the transcendental
expressions issued due to the fractional nature of the EE
objective (14). For the ease of presentation, we initially present
the adaptive distribution of the optimal transmitting power
and then the dynamic assignments of the optimal subcarrier
indexing.

A. Optimal Transmitting Power Allocation Solution

The standard–Lagrangian function L̃ of the reformulated en-
ergy efficiency problem (14)–(16) is
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L̃ = ∑
K
j=1∑

NF
i=1

⎛

⎝
wij ⋅

(BW ⋅(1−Pout,ij)⋅s̃ij ⋅log2(1+ϕij ⋅
p̃ij
s̃ij

))

ζ⋅p̃ij+PCij
⎞

⎠
−

µ ⋅ (∑
K
j=1∑

NF
i=1 p̃ij −NF ⋅ PTOT ) −∑

NF
i=1 νi ⋅ (∑

K
j=1 s̃ij − 1)+

∑
K
j=1 ξj ⋅ (∑

NF
i=1((1 − Pout,ij) ⋅ s̃ij ×

BW ⋅ log2(1 + ϕij ⋅
p̃ij
s̃ij

)) − qj),

where µ ≥ 0, ξj ≥ 0, ∀j, νi ≥ 0, ∀i are the Lagrangian mul-
tipliers associated with power constraint (15), QoS constraint
(16) and relaxed subcarrier constraint (9), i.e., ∑Kj=1 s̃ij = 1,
respectively. Recall that relevant work either perform optimisa-
tion using dual–Lagrangian functions (e.g. the dual version of
L̃) or develop numerical searching methods such as the generic
algorithm in [30]. To avoid the uncontrollable duality gap of
dual solutions [28], [47] and the practical issues on accuracy,
complexity and convergence of numerical methods we shall
build our analysis on the standard–Lagrangian function L̃.

According to the KKT conditions [28], the partial derivative
of L̃ over p̃ij yields the optimal instantaneous transmitting

power p̃∗ij , i.e., ∂L̃
∂p̃ij

RRRRRRRRRRRRR(p̃ij ,s̃ij ,νi,µ,ξj,)=(p̃
∗
ij
,s̃∗
ij
,ν∗
i
,µ∗,ξ∗

j
)

= 0. We

perform some calculations to conclude:

Ξ (p̃∗ij)

ln 2 ⋅ (ζ ⋅ p̃∗ij + P
C
ij )

2
⋅ (1 +

ϕij ⋅p̃∗ij
s∗ij

)

= 0, (17)

where

Ξ (p̃∗ij) =
− ln 2 ⋅BW ⋅ (1 − Pout,ij) ⋅ ζ ⋅wij ⋅ s

∗
ij ×

(1 +
ϕij ⋅p̃∗ij
s̃∗ij

) ⋅ log2 (1 +
ϕij ⋅p̃∗ij
s̃∗ij

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Υ(p̃∗ij)

+

BW ⋅ (1 − Pout,ij) ⋅ ζ ⋅wij ⋅ ϕij ⋅ p̃
∗
ij+

BW ⋅ (1 − Pout,ij) ⋅wij ⋅ P
C
ij ⋅ ϕij−

ln 2 ⋅ µ∗ ⋅ (ζ ⋅ p̃∗ij + P
C
ij )

2
⋅ (1 +

ϕij ⋅p̃∗ij
s̃∗ij

)+

BW ⋅ ξ∗j ⋅ ϕij ⋅ (1 − Pout,ij) ⋅ (ζ ⋅ p̃
∗
ij + P

C
ij )

2
.

Since the denominator item in (17) is positive, we examine the
numerator item Ξ (p̃∗ij). Equation Ξ (p̃∗ij) = 0 is transcendental
with respect to p̃∗ij given that Υ (p̃∗ij) is a transcendental
function, which cannot be directly solved. To solve (17) over
p̃∗ij we determine the polynomial expression of Ξ (p̃∗ij) using
its Maclaurin series expansion [47].

Theorem 3. The transcendental function Ξ (p̃∗ij) = 0 in (17)
resolves the optimal instantaneous transmitting power p̃∗ij as

p̃∗ij = (
s∗ij

η⋅σ2
∆h

⋅F−1

⎛
⎜
⎝

∣ĥij ∣
2

σ2
∆h

⎞
⎟
⎠

(Pout,ij)
⋅ χ∗ij)

+

, (18)

where χ∗ij is the radical solution of the cubic Maclaurin poly-
nomial of Ξ (p̃∗ij) = 0 given in (29) and (x)

+
= max (0, x).

Proof. The proof of Theorem 3 is presented in Appendix C.

With Theorem 3 and the analysis in Appendix C we show
that the optimal instantaneous transmitting power p̃∗ij in (18) is
a non–dual solution, which is originated by the transcendental
function (17). Having defined p̃∗ij , we focus next on the
corresponding dynamic assignments of the optimal subcarrier
indexing.

B. Optimal Subcarrier Allocation Solution

With the relaxed subcarrier index s̃∗ij , the KKT conditions
yield that the partial derivative of the Lagrangian function

L̃ with respect to s̃ij is ∂L̃
∂s̃ij

RRRRRRRRRRRRR(p̃ij ,s̃ij ,νi,µ,ξj)=(p̃
∗
ij
,s̃∗
ij
,ν∗
i
,µ∗,ξ∗

j
)

=

{
0, if 0 < s̃∗ij < 1
> 0, if s̃∗ij = 1

. With some calculations we obtain:

BW ⋅ (1 − Pout,ij)×

(
ϕ̃ij ⋅wij

ζ⋅s̃∗ij ⋅χ
∗
ij+ϕ̃ij ⋅P

C
ij

+ ξ∗j ) ⋅ (
ln(1+χ∗ij)

1+χ∗
ij−χ∗ij

1+χ∗ij
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ωij

−

ν∗i = {
0, if 0 < s̃∗ij < 1
> 0, if s̃∗ij = 1

.

(19)

Given χ∗ij > 0, function Ωij in (19) is always positive since

ln (1 + χ∗ij)
1+χ∗ij

− χ∗ij > 0. The interpretation of function Ωij
is to classify the weight of each subcarrier index among the
NF × K allocation combinations. Thus, we can use Ωij to
evaluate the spectrum usage advantage of each of the K users
on the same subcarrier. Furthermore, recalling that s∗ij is the
relaxed subcarrier index s̃∗ij ∈ [0,1], its explicit definition
is redundant to the initial problem (7)–(13) because EE

∗
is

maximised when one subcarrier is assigned to one user only,
i.e., s∗ij ∈ {0,1}. Note that the convex relaxation assumption
introduced an intermediate coefficient to resolve the evaluation
function Ωij , which must now consider the binary s∗ij ∈ {0,1}
in order to ensure channel interference cancellation and at
the same time to allocate the subcarriers to the users that
achieve the maximum EE

∗
increase. This can be done through

searching among the NF system subcarriers for the user with
the maximum spectrum usage advantage, provided that the
relaxed coefficients are identical. Therefore, (19) resolves to
s∗ij = 0 if ν∗i > Ωij , and s∗ij = 1 if ν∗i < Ωij , with Ωij the
discrete version of Ωij to identify the weight of each binary
subcarrier index s∗ij ∈ {0,1}. Having defined s̃∗ij and p̃∗ij we
can now readily obtain the joint optimal allocation solution.

C. Joint Optimal Transmitting Power and Subcarrier Alloca-
tion Solution

Theorem 4. The optimal transmitting power allocation policy
P̃∗ [ĤNF×K] = [p̃∗ij] of the energy efficiency problem (14)–
(16) has individual matrix element the optimal instantaneous
transmitting power in (18). The corresponding optimal sub-
carrier allocation policy S̃∗ [ĤNF×K] = [s∗ij] has individual
matrix element the optimal subcarrier allocation index

s∗ij = {
1, j = j∗

0, otherwise
, (20)



9

where j∗ notates the optimal user selected by the linear search

For each i within 1 ∶ NF
j∗ = arg max

j
Ωij

, (21)

and Ωij is the subcarrier evaluation function in (19).

The results from Theorem 4 are substituted in WSEE
objective (6) to determine the optimal effective–weighted sum
energy efficiency EE

∗
of problem (7)–(13). The joint solution

in Theorem 4 is independent from duality-gap and subgradi-
ent searching processes. This enables resolving to schemes
with significantly lower complexity than dual approaches and
achieving higher optimality. Also, with the analysis in Ap-
pendix C we show that our joint solution attains near-optimal
points by radicals, which result to rather simple optimisation
algorithms with guaranteed convergence. Then, EE

∗
can be

obtained after having derived the Lagrangian multipliers ξ∗j
and µ∗, which are associated with the QoS constraint (13)
and the power constraint (12), respectively. Next Section
presents main properties of the introduced EE

∗
along with

the searching process for ξ∗j and µ∗.

VI. PROPERTIES OF THE PROPOSED JOINT OPTIMAL
ALLOCATION SOLUTION

This Section provides detailed mathematical proofs to clar-
ify that the joint optimal solution in Theorem 4 and the
introduced EE

∗
comply with main properties of the general

energy efficiency framework [7]–[26]. We study the global
optimality, the impact of imperfect CSI, the effect of circuit
power consumption, the scheduling implementation process,
the practical feasibility and the complexity of our proposal in
the following sub–sections.

A. Properties of the Proposed Joint Optimal Solution on
Global Optimality and Practical Feasibility

Property 3. [Global optimality of the joint optimal solution]
The optimal transmitting power and subcarrier allocation
policies P̃∗ [ĤNF×K] = [p̃∗ij] and S̃∗ [ĤNF×K] = [s̃∗ij],
respectively in Theorem 3 converge towards global optimum
points with sufficiently small deviation.

Property 4. [Impact of the estimated channel gain ∣ĥij ∣
2

on
EE

∗
] Given P̃∗ [ĤNF×K] = [p̃∗ij] and S̃∗ [ĤNF×K] = [s̃∗ij],

the optimal effective–weighted sum energy efficiency EE
∗

in
(14) is non–decreasing with the estimated channel coefficient
∣ĥij ∣

2
.

Property 5. [Impact of the circuit power PCij on EE
∗
] Given

P̃∗ [ĤNF×K] = [p̃∗ij] and S̃∗ [ĤNF×K] = [s̃∗ij], the optimal
effective–weighted sum energy efficiency EE

∗
in (14) strictly

decreases with the circuit power PCij .

Property 6. [Impact of the circuit power PCij on p̃∗ij] The
optimal instantaneous transmitting power p̃∗ij in (18) increases
strictly with the circuit power PCij .

Proof. The proof of Property 3 is similar to the proof pre-
sented in our previous work [33] and has been omitted due to

space limitations. The proofs of Property 4, Property 5 and
Property 6 are presented in Appendix D.

Property 3 specifies scheduling feasibility and global opti-
mality of the proposed joint optimal solution. It shows that
Theorem 4 provides solutions close enough to the global opti-
mum point, with practically negligible difference, i.e., within
a controllable maximum truncation error of the approximation
in (28) (see Appendix C). Later in Section VII we demonstrate
with simulations that our joint optimal solution has sufficiently
higher optimality than the relative dual approaches in [18]–
[19], [33], [48].

Property 4 signifies that scheduler tends to select channels
with higher realisation of imperfect channel ĥij than others.
This also matches the conclusion of Property 1. Another
outcome of Property 4 is that as σ2

∆h is related to ĥ = {ĥij},
the impact of the error variance σ2

∆h on EE can be seen
through examining the channel gain (or loss) of the system
due to multiuser diversity. The main idea is based on the
fact that the number of users that participate in the system
plays significant role regarding the gain magnitude, which
increases as more users exist since the scheduler selects
the best user among a large pool of candidates according
to the qualities of each channel. Recalling Lemma 1, fac-
tor F −1

(
∣ĥij ∣

2

σ2
∆h

)
(Pout,ij) grows in the same rate as parameter

∣ĥij ∣
2

σ2
∆h

. Thus, φij in Theorem 1 does not affect the growth

order of multiuser diversity gain of EE
∗
, which scales by

Θ ((1 − σ2
∆h) ⋅ log(K)) for large K (see [31] for example)4.

Similarly, when σ2
∆h → 1 (no CSI) and the growth of users

is limited, e.g., (1 − σ2
∆h) ⋅ log(K) → η, η > 0, the multiuser

diversity gain is given by Θ((
σ2

∆h

2
) ⋅ F −1

⎛
⎜
⎝

η

σ2
∆h
2

⎞
⎟
⎠

(Pout,ij)) as

shown in [49]. In general, for intermediate channel errors,
the multiuser diversity gain of EE

∗
decreases linearly as

σ2
∆h increases exponentially when more users K is needed

to compensate for the penalty of poor channel quality σ2
∆h.

Furthermore, the intuition behind Property 5 is that as
circuit power increases, the optimal effective–weighted sum
energy efficiency decreases. Also, the main point of Property 6
is that as circuit power increases, higher power should be
allocated to achieve higher throughput such that each infor-
mation bit can be transmitted faster and less circuit energy is
consumed. With Property 3 – Property 6 we can verify that the
proposed joint optimal solution in Theorem 4 complies with
practical properties of the general energy efficiency frame-
work by means of global optimality and practical feasibility.
Next, we present the implementation process of the proposed
scheduling scheme.

B. Implementation Process of the Joint Optimal Solution

For many practical scenarios, the scheduler’s ability to con-
verge towards the optimal points is a very important feature.
The convergence of the proposed scheduler depends on the

4ak = Θ(bk) if lim supK→∞ =
∣ak ∣
∣bk ∣ <∞ and lim supK→∞ =

∣bk ∣
∣ak ∣ <∞
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evaluation process of the K+1 optimal Lagrangian multipliers
µ∗ and {ξ∗j }, which are associated with the power and QoS
constraints (15) and (16), respectively. To obtain µ∗ and {ξ∗j }
we use the KKT conditions of the energy efficiency problem
(14)–(16) [28]:

Primal feasibility ∶ ∑Kj=1∑
NF
i=1 p̃

∗
ij − PTOTAL ≤ 0,

Dual feasibility ∶ ξ∗j ≥ 0, ∀j,

Complementary slackness ∶ ξ∗j ⋅ (∑
NF
i=1 ((1 − Pout,ij) ⋅ s̃ij ×

BW ⋅ log2 (1 + χ∗ij)) − qj) = 0, ∀j.

From the KKT conditions we build the below system of
equations:
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Fj (ξ
∗, µ∗) = ξ∗j ⋅ (∑

NF
i=1 ((1 − Pout,ij) ⋅ s

∗
ij ×

log2 (1 + χ∗ij)) − qj) = 0, ∀j,

G (ξ∗, µ∗) = PTOTAL −∑
K
j=1∑

NF
i=1 p̃

∗
ij = 0.

(22)

where vector ξ∗ indicates the set of the K optimal ξ∗j s, i.e.,
ξ∗ = {ξ∗1 , ξ

∗
2 , ..., ξ

∗
K}, j = 1, ...K. The equation system (22) is

solvable over µ∗ and {ξ∗j } because it includes K+1 equations
with K + 1 unknown variables. For instance, Fig 2 presents
our algorithm in flowchart and discusses how the Lagrangian
multiplier searching process can be carried to solve (22).

Description of the Lagrangian multipliers searching process:
The process aims to obtain the joint optimal allocation solu-
tion in Theorem 4 considering the effects of imperfect CSI
ĤNF×K = [ĥij], the minimum users’ throughput require-
ments {qj} and the total available power supplied at the BS
PTOTAL. In the beginning, it sets initial values for µ and {ξj}
and uses (19) and Theorem 4 to obtain the first estimation
of the NF × K (potentially optimal) subcarrier allocations
S̃ [ĤNF×K] = [s̃ij]. In part A, the K multipliers {ξj} are
updated using the Secant root-finding method (RFM) [28] such
that the QoS constraint (16) of each user j is satisfied. If
resources are insufficient, i.e., G (ξ∗, µ∗) < 0, the process exits.
Else if G (ξ∗, µ∗) ≥ 0 an inner loop in part B is initialised
to redistribute the remaining power by updating µ using the
bisection RFM [28]. With the new µ, the loop adjusts {ξj}
according to (22) and obtains the new S̃ [ĤNF×K] = [s̃ij]. The
loop stops when all the available power is totally exploited,
i.e., G (ξ∗, µ∗) = 0, and the QoS of each user is satisfied, i.e.,
F (ξ∗, µ∗) < δ.

The proposed process in Fig.2 ensures the geometric inter-
pretation of the energy efficiency problem (14)–(16) because
it considers satisfying the power and QoS constraints (15) and
(16), respectively based on the necessary and sufficient KKT
optimality conditions. Recalling from sub–Section II.A that
actual channel gains {hij} (and thus {∣hij ∣

2
}) are i.i.d. for

each user, it is also ensured that the subcarrier indexes s∗ijs
(20) would be either 1 or 0. Therefore, the proposed searching
process will always converge towards p̃∗ij and s∗ij with QoS
guarantee and total exploitation of the total available power
PTOTAL supplied at the BS. In addition, the convergence of
the RFM in part A (find {ξ∗j } for fixed µ∗) is ensured as a
similar mechanism is used in [50], where its convergence is
proven. Also, as G (ξ∗, µ∗) in (22) is monotonic in µ∗, we find
µ∗ for fixed {ξ∗j } via the bisection RFM in part B, which also

0

20

1

: ,  0,

ˆ      min ,  .
F

j ij
i N

h j

set

0 0 00
: ,  using Eq.(20)

F
j ijN K

S ssolve

1

1

1

ˆ:  using , ,  in Eq.(23),

           e.g., (Secant method)

             1, ...,  :

           

,
             

, ,

ˆ 

F

m m m m

j j K N j

m m

j j

m m m m

j j j j

m mm m

j j j j

m

j

S H

for each j K

S

update

do

until
2

, , .
F

m m

K N jH

ˆ , , 0
F

m m m

K N jS H
   : infeasible

"Not enough "TOTALP

Exit

0

0

0 0 0

: ,  0,  ,  (iteration number)

          ,

          , , .
F F

m

m

j j

m m m

j jN K N K

m m

S S

update

1

1

1

ˆ:  using , ,  in Eq.(23),

           e.g., (bisection method)

          ,  with
2

 for , 0
                 

 for , 0

                 

F

m mm m

K N j

m m

m

mm m

jm

mm m

j

m

S Hupdate

1

1

2

 for , 0

 for , 0

ˆ , , .
F

mm m

j

mm m

j

m m m

K N jS Huntil

ˆ , , 0

           (stopping  criterion)
F

m m m

K N jS H

: ,
F

m m mm

j ijN K
S sobtain

: feasibleExit

* *

* * *

* * *

* * *

: ,  

:

ˆ    , ,  using Eq.(20)-(22)

ˆ    , ,  using Eq.(19)

    ,  using Eq.(6)

F

F

mm

j j

K N j

K N j

H

H

EE

define

obtain

02 2
,

* * * *

* * * * *

: , , , , , , , , , ,

ˆ ˆ            ,

ˆ: , , ,

ˆ ˆ            , , ,

F

F

F F F F

C
F h out ij j ij Z

K N ij TOTAL

j K N ij

K N ij K N N K N K

BW K N P q P

H h P

H p

H s EE H

Input

Output

Fig. 2: Flowchart of the Lagrangian multiplier searching process in
Algorithm 1.

converges once the initial range gives a bracketing interval.
Property 7 follows readily.

Property 7. The joint optimal allocation solution in Theo-
rem 4 satisfies the QoS and power constraints of the energy
efficiency problem (14)–(16) and converges towards the global
optimum points.

C. Complexity of the Joint Optimal Allocation Solution
In continue, we examine the theoretical and practical com-
plexity of the proposed joint optimal allocation solution. To
obtain the subcarrier allocation policy, the implementation
process defines the optimal user j∗ through the linear search
in (21). The search is on the number of users and subcar-
riers, which can be theoretically estimated by O (NF ⋅K).
Moreover, the search for the optimal multipliers µ∗ and ξ∗

lies in the number of iterations needed to update Fj (ξ
∗, µ∗)

and G (ξ∗, µ∗) in (22). Assuming that the RFMs have υ
optimality, they require log2 (υ−1) iterations to converge.
Hence, the total computational complexity in practice becomes
O (NF ⋅K ⋅ log2 (υ−1)). Property 8 follows readily.
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Property 8. The total complexity of the joint optimal solution
in Theorem 4 is of the order O (NF ⋅K ⋅ log2 (υ−1)).

The proposed scheme facilitates practical implementations
as it has polynomial complexity with respect to the problem
scale (NF and K). The related study in [18] proposes a
Dinkelbach’s–type dual energy efficient algorithm with com-
plexity O (NF ⋅K ⋅ (K + 1)

2
⋅ log2 (υ−1)), which is consid-

erably higher than ours. The high complexity of [18] is due
to the ellipsoid method that requires O ((K + 1)

2
) time to

obtain the (K + 1) dual variables. Some modifications of
Dinkelbach’s–type algorithm can be found in [19]–[22], which
maximise energy efficiency with algorithmic complexity of
O (Idual ⋅ 2 ⋅NF ⋅K), where Idual is the total number of inner
iterations required for reaching convergence (e.g. [22], pp.7).
Other relevant QoS-aware schemes based on dual–Lagrangian
optimisation can be found in [4] and [48]. The algorithm in
[4] maximises the throughput in O (K3 ⋅

√
NF ⋅ log2 (υ−1)),

while power in [48] is minimised in O (NF ⋅K
3 ⋅ log2 (υ−1))

time. As pointed out by the literature, the computational
complexity of dual approaches is significantly higher than that
of solutions based on convex optimisation.

VII. PERFORMANCE EVALUATIONS

For the fair comparisons, we adopt the similar simulation
model and configurations in [18], [19] and [33], which max-
imise the energy efficiency subject to QoS constraints. The
study in [18] proposes a QoS-aware energy efficient resource
scheduler (QA-ERS), which differs from our scheme because
it uses fractional programming to obtain dual optimal solutions
under perfect CSI assumption. The algorithm in [19] uses
Dinkelbachs-based energy efficient joint allocation (DEEJA),
which has been employed finding an optimal solution similar
to [18] at a lower complexity. Also, our previous efforts in
[33] introduce another Lagrangian-based error inconsiderate
energy efficient scheduler (SLEI–EE) assuming perfect CSI is
availble. For performance comparison analysis, the simulation
results of the dual-optimal throughput maximisation scheme
[4] (maxRx) and the power minimisation scheme in [48]
(minPx) have also been included. The system settings are given
in Table 1 considering long term evolution (LTE)–based links.
Our simulations focus on average sum improvements of WSEE
performance metric, which is the arithmetical mean of EE
in (3) across all K users and NF subcarriers by choosing
wij = (K ⋅ NF )−1, ∀i, j in case of uniform weights. The
impact of different weights is also shown in Section VII-D.
For the ease of presentations we name our scheme as joint
subcarrier & power, QoS & imperfect channel–aware energy
efficient scheduler (JSPQ–IC–EE).

A. Evaluations under Perfect Channel Conditions

Fig.3(a) plots the energy efficiency vs. channel–to–noise–rate
(CNR) considering perfect channel conditions, i.e., Pout,ij = 0,
σ2

∆h = 10−8. We see JSPQ–IC–EE and SLEI–EE to out-
perform the other four schemes with significant gains in
energy efficiency. Such performance gain mainly comes from
the fact that the proposed solution method searches for the
optimal points in a space larger than the space where the

TABLE 1. OFDMA SYSTEM SETTINGS FOR SIMULATION
Channel model 6-tap Rayleigh frequency-selective
Path loss (same from BS to all users) Hata urban propagation model [52]
Channel estimation method nonsphericity–MMSE [32]
Channel power delay profile parameter 0.1
Cell radius 0.5 Km
Noise spectral density (N0) −174 dBm/Hz
Total channel bandwidth (BW ) 0.96 MHz
Total number of subcarriers (NF ) 64
Total number of users (K) 8
QoS of each user j (qj) 8 bit/sec/Hz
Channel outage probability (Pout,ij) 0.01 − 0.3

Channel error variance (σ2
∆h) 0.01 − 0.15

Power inefficiency coefficient (ζ) 0.22

Total circuit consumption at BS (PC) 412.4 W

Circuit consumption per (i, j) link (PCij ) PC

K⋅NF
W

Total available Tx power (PTOTAL) 45 W
Weight of each (i, j) link (wij) 1

K⋅NF
, or varies according to Table 2

CNR {4,−2,0,2,4,6,8} dB,

dual energy efficiency problem is determined. In JSPQ–IC–
EE and SLEI–EE, the space is large because the schemes
obtain EE

∗
imposing the total satisfaction for both power and

QoS constraints. By contrast, QA-ERS and DEEJA determine
a smaller space because dual solutions exploit a part of the
available transmitting power, which means the QoS constraint
in QA–ERS and DEEJA is weak (see [18], p.p 76–77 for
example). Thus, more optimal points are excluded from the
actual feasible space of the dual problem resulting to lower
performance. It should be noted that Dinkelbach’s–type ap-
proach in [19] enables DEEJA to achieve marginal gains over
the conventional dual optimisation in QA-ERS. This reveals
that the multiple parameterised subproblems in Dinkelbach’s
method can represent the actual feasible space more accurately
than the conventional dual approach. On the other hand,
maxRx and minPx seek within even smaller spaces, which
correspond to the determination sets the QoS constraint (13)
and the power constraint (12), respectively.

Furthermore, Fig.3(b) plots the satisfaction index (SI) of
each scheme. SI is considered as a reliable metric for QoS per-
formance and it is given by SI = 1

K
⋅∑

K
j=1 (

r̃j
qj
,1), with r̃j the

allocated rate to each user j. We see JSPQ–IC–EE and SLEI–
EE guarantee users’ QoS, while QA-ERS, DEEJA, maxRx
and minPx cannot provide the required service when channel
is noisy. This is because dual solutions cannot completely
satisfy the QoS constraint (13) as allocation is done with power
upper bound obtained at each scheduling slot, which may be
either smaller or larger than the actual available power at the
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Fig. 3: System performances vs. CNR under perfect channel condi-
tions, i.e., Pout,ij = 0, σ2

∆h = 0.
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Fig. 4: System performances vs. CNR under imperfect channel, i.e.,
Pout,ij = 0.1, σ2

∆h = 0.01.

BS. The corresponding performances of total throughout and
total transmitting (Tx) power are illustrated in Fig.3(c) and
Fig.3(d), respectively. From the graphs we can further observe
the impact of the duality gap on system performances. Energy
efficiency, QoS, throughput and power performances achieved
by Lagrangian dual optimisation are lower than JSPQ–IC–EE
and SLEI–EE because the duality gap does exist.

B. Evaluations under Imperfect Channel Conditions
Fig.4 plots system performances vs. CNR considering im-
perfect channel conditions5, i.e., Pout,ij = 0.1, σ2

∆h = 0.01.
With the existence of imperfect CSI, all performances are
degraded compared to the case of perfectly known CSI.
Interestingly, JSPQ–IC–EE in Fig.4(a) provides substantial
energy enhancements over error-inconsiderate schedulers. This
is because our design is able to perceive the channel estimate
∣ĥij ∣

2
and the probability of data outage of each subcar-

rier Pout,ij , which enables effective optimisation of energy
efficiency. By contrast, error–inconsiderate designs treat the
imperfect channel estimate ∣ĥij ∣

2
as perfect (i.e. ∣hij ∣

2), which
results to lower energy efficiency. We also observe SLEI–EE
to slightly outperform QA–ERS and DEEJA, which reveals
that upon applying our solution method on error–inconsiderate
scheduling, more effective optimisations than Dinkelbachs
method and conventional dual approaches can be obtained
even under imperfect CSI conditions.

Furthermore, Fig.4(b) plots the corresponding SIs to ex-
amine the impact of imperfect CSI on QoS performances.
The resilience of JSPQ–IC–EE to CSI errors enables total
satisfaction of minimum QoS required by each user. As
expected, the error–inconsiderate schedulers have lower QoS
performances than JSPQ–IC–EE but not significantly lower
than their corresponding QoS performances with perfect CSI
in Fig.3(b). For example, comparing Fig.3(b) with Fig.4(b)
at CNR = 2 dB, we see JSPQ–IC–EE, SLEI–EE, QA–ERS,
DEEJA satisfy all users but on the other hand their corre-
sponding energy efficiencies in Fig.3(a) and Fig.4(a) degrade
significantly by about 2 Kbit/Joule. The phenomenon can be
also observed in Fig.4(c) and Fig.4(d), i.e., when resources are
limited, the schemes prioritise consuming most of the avail-
able power (decrease energy efficiency) to obtain minimum

5The impact of channel imperfectness on error–inconsiderate schemes has
been thoroughly studied in [32]–[31].
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Fig. 5: Energy–efficiency vs. channel error variance σ2
∆h and channel

outage probability Pout,ij .

required throughput. In conclusion, the impact of imperfect
CSI is greater on energy efficiency than on throughput and
power performances.

To further examine the practical impact of CSI imperfect-
ness on system performances, Fig.5 plots the energy efficiency
of each scheme with respect to the channel error variance σ2

∆h

and outage probability Pout,ij . As expected, energy efficien-
cies decrease as either σ2

∆h or Pout,ij increase. However, σ2
∆h

in Fig.5(a) has less impact on energy efficiencies than Pout,ij
in Fig.5(b). This is because energy in general is proportional
to amplitude variations, which means increments of error
variance can slightly increase the energy performance in an
asymptotic manner. For this reason, all energy efficiencies
in Fig.5(a) have lower reduction pace than energy efficiency
in Fig.5(b). Nevertheless, JSPQ–IC–EE brings substantially
higher energy efficiency than the other schemes within all
regions of σ2

∆h and Pout,ij .

C. Evaluations on Computational Time and Optimality

Fig.6(a) utilises the ”PROFILE” function in MatLab to include
crude average computational time measurements vs. the num-
ber of subcarriers. For the fair comparison, the optimality
of all schemes is set to υ = 10−6. We see JSPQ–IC–EE
and SLEI–EE need significantly lower computational time
compared to all other examined schemes. This is because the
optimal subcarrier assignments in (21) are decoupled between
all NF subcarriers (linear complexity with respect to NF ) and
thus, the complexity of the optimal solution in Theorem 4 is
considerably low since it is depended only on the accuracy of
the RFMs in part A and part B of Fig. 2. By contrast, the search
for subgradients of each dual optimal subcarrier assignment
in QA–ERS, DEEJA, maxRx and minPx scheduling imposes
higher computational cost mainly due to the complexity of
ellipsoid method. It should be noted that the decomposition
of problem (7)–(13) into multiple parameterised problems in
Dinkelbach’s method can significantly reduce complexity of
DEEJA compared to the conventional dual approach used in
QA–ERS.

Fig.6(b) examines the accuracy of JSPQ–IC–EE and QA–
ERS in relation to the exhaustive search under imperfect CSI
conditions. The results of the exhaustive search are derived
using the method in [28] and are considered as metrics of
the theoretical optimality. For this experiment we set ζ = 1

0.38
,
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Fig. 6: Computational complexity: Normalised CPU time vs. number
of subcarriers NF . Optimality: Energy-efficiency vs. average CNR.

PC = 1W , PTOTAL = 2W and we represent the imperfect CSI
considering Pout,ij = 0.1 and σ2

∆h = 0.01. We see JSPQ–IC–
EE performs similarly to the exhaustive search, which means
that firstly, our EE∗ approximation in (28) is particularly
accurate and secondly, the formative elements Pout,ij and σ2

∆h

of the imperfect CSI knowledge are correctly acknowledged
by the proposed EE objective in Theorem 1. By contrast,
QA–ERS deviates from the actual results by approximately
2 Kbit/Joule, which means the presence of imperfect CSI
has considerable negative impacts on the accuracy of error-
inconsiderate scheduling.

D. Evaluations under Various User and Subcarrier Weights
Fig.7 presents the impact of weights on the optimisation of
JSPQ-IC-EE under perfect CSI (Pout,ij = 0, σ2

∆h = 0) and
CNR = 2dB. For this experiment, we consider fixed alloca-
tions of NF = 24 subcarriers to K = 3 users, i.e, subcarriers
1-8, 9-16, and 17-24 are for users 1, 2, and 3, respectively. In
each sub-figure, we examine three different distribution scenar-
ios: i. uniform weights (wij = 1

K⋅NF , ∀i, j); ii. user–dependent
weights (wi1 = 0.05

K⋅NF , wi2 = 0.6
K⋅NF , and wi3 = 2.35

K⋅NF , ∀i);
and iii. subcarrier–dependent weights (wij = 0.2

K⋅NF for i =
{1,2,3,4}, {9,10,11,12}, {17,18,19,20} and wij = 1.8

K⋅NF
for i = {5,6,7,8}, {13,14,15,16}, {21,22,23,24}, ∀j).

In Fig.7(a) we assume that users have equal circuit power
consumptions, i.e., PCij = PC

K⋅NF . As expected, with uniform
weights (distribution i.) the individual energy efficiencies are
approximately similar, whereas non-uniform distributions ii.
and iii. allow prioritising the energy efficiencies to specific
users and subcarriers, respectively. More precisely, the user–
dependent weight distribution ii. achieves highest energy
efficiencies on subcarriers 17-24 (for user 3 with largest
weight), whereas smallest energy efficiencies are observed on
subcarriers 1-8 (for user 1 with lowest weight). Similarly,
subcarrier–dependent weight distribution iii. leads to highest
energy efficiencies on subcarriers 1–4, 9–12 and 17–20 (with
largest weights), whereas smallest energy efficiencies are
achieved on subcarriers 5–8, 13–16 and 21–24 (with lowest
weights). In conclusion, Fig.7(a) shows that with equal circuit
power consumptions, the energy efficiencies are dictated by
the weight of each user and/or subcarrier.

In Fig.7(b) we assume that users have unequal circuit
power, i.e., PCi1 = 0.25⋅PC

K⋅NF , PCi2 = 0.5⋅PC
K⋅NF and PCi3 = 0.75⋅PC

K⋅NF .
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Fig. 7: Energy-efficiency vs. subcarrier index under a) equal user
circuit power consumptions (no tuning), b) unequal user circuit
power consumptions (no tuning) and c) unequal user circuit power
consumptions (with tuning).

Different from the previous results in Fig.7(a), in this case
although the hierarchy of weights (e.g. wi1 > wi2 > wi3 or
w1−4,j < w5−8,j) the energy efficiencies are dictated by the
circuit power consumption of each user (e.g. PCi1 < PCi2 < PCi3 ).
For instance, with uniform weights (option i.), highest energy
efficiencies are achieved on subcarriers 1–8 (for user 1 with the
best/smallest power consumption PCi1 ), where lowest energy
efficiencies are attained on subcarriers 17–24 (for user 3 with
the worst/highest power consumption PCi3 ). Similarly, with
user–dependent weights (option ii.), highest energy efficiencies
are achieved on subcarriers 1–8 for user 1 and lowest energy
efficiencies on subcarriers 19–24 for user 3. Notice that when
considering option ii., the spread of the individual energy
efficiencies across users is reduced as compared to option i.,
where option iii. allows to further reduce the energy spread
acquiring the highest efficiencies to the selected (groups of)
subcarriers. This means that by assigning weights over users
and/or subcarriers, the energy spent by the system for each in-
dividual (i, j) allocation link can be controlled and hence, the
energy concentration or the energy dispersal can be controlled
over the available spectrum. In conclusion, Fig.7(b) shows
that the impact of circuit power consumption on network
performance is greater than the impact of weights, whereas
weights allow to control the spread of energies (entropy
energy) over the available spectrum.

Let us now gain insights on how the control of entropy en-
ergy can affect network performance. For this experiment, we
perform dynamic allocations of subcarriers (not fixed as previ-
ously) by taking into consideration the various circuit power
consumptions, channel coefficients and weighting factors as
presented in Table 2. Our aim is to establish allocations such
that entropy is reduced. We take as benchmark performance
metric the energy efficiency performances achieved by the
uniform weight distribution i. in Fig.7(a), where equal circuit
power consumptions were considered. We initially observe
that adjusting either user weights (i.e. wi,{1−3}) or subcarrier
weights (i.e. w{1−24},j), the highest energy efficiencies are
achieved on subcarriers with better physical coefficients than
others. Notably, in both cases entropy is significantly reduced
compared to the corresponding graphs in Fig.7(b). Also, ad-
justing subcarrier weights lead to slightly higher performance
than adjusting user weights. This is because in the former case
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TABLE 2. WEIGHTS AND CHANNEL GAINS FOR FIG.7(C)
User-dep.
weights
wi,{1−3}

Subc.-dep. weights
w{1−24},j

Joint user-subc.
weights
wi,j

Norm. channel
gains
(dBm)

wi,1 = 0.15 w1,j = 0.0189 w1,1 = 0.0200 h1,1 = −6.5892
wi,2 = 0.35 w2,1 = 0.0604 w7,1 = 0.0467 h7,1 = 5.0291
wi,3 = 0.50 w3,j = 0.0859 w8,1 = 0.0700 h8,1 = 8.5511

w4,j = 0.0058 w11,1 = 0.0233 h11,1 = −18.4022
w5,j = 0.0251 w12,1 = 0.0300 h12,1 = −3.7521
w6,j = 0.0438 w18,1 = 0.0400 h18,1 = 1.8156
w7,j = 0.0642 w21,1 = 0.0500 h21,1 = 5.6393
w8,j = 0.0678 w23,1 = 0.0533 h23,1 = 6.1848
w9,j = 0.0287 w3,2 = 0.0333 h3,2 = −2.4118
w10,j = 0.0259 w4,2 = 0.0267 h3,2 = −3.4383
w11,j = 0.0321 w9,2 = 0.0500 h9,2 = −1.2922
w12,j = 0.0409 w10,2 = 0.0300 h10,2 = 1.1305
w13,j = 0.0496 w15,2 = 0.0433 h15,2 = 3.0591
w14,j = 0.0463 w16,2 = 0.0500 h16,2 = 2.3706
w15,j = 0.0467 w19,2 = 0.0467 h19,2 = 2.4567
w16,j = 0.0484 w24,2 = 0.0533 h24,2 = 2.8142
w17,j = 0.0221 w2,3 = 0.0300 h2,3 = −5.0250
w18,j = 0.0312 w5,3 = 0.0400 h5,3 = −1.5766
w19,j = 0.0280 w6,3 = 0.0500 h6,3 = −2.6587
w20,j = 0.0397 w13,3 = 0.0333 h13,3 = 0.8327
w21,j = 0.0559 w14,3 = 0.0367 h14,3 = 4.2549
w22,j = 0.0600 w17,3 = 0.0400 h17,3 = 4.9627
w23,j = 0.0341 w20,3 = 0.0600 h20,3 = −0.6878
w24,j = 0.0383 w22,3 = 0.0433 h22,3 = 0.4730

we adjust 24 tuning parameters, whereas in the latter case
only 3 parameters meaning that the less entropy the higher
performance, and vice versa, which matches with the Second
Law of Thermodynamics in Physics. Furthermore, by adjusting
user and subcarrier weights jointly we utilise the maximum
possible tuning parameters. In this situation, the network
performance is higher not only than the cases of independent
user/subcarriers adjustments but also than the case of uniform
weight distribution i., where circuit power consumptions are
equal. In conclusion, Fig.7(c) shows that joint adjustments
of user and subcarrier weights can significantly reduce the
entropy energy over the available spectrum to increase system
performance.

VIII. CONCLUSION

This work considered the impact of imperfect CSI to propose
an energy efficient resource scheduling solution for downlink
transmissions in multiuser OFDMA networks. Unlike existing
approaches, a new figure of merit for energy efficiency was
proposed to address practical effects of priority considering
heterogeneity between allocation links and data outage due
to channel errors. It was shown that the proposed objec-
tive owns the similar user and channel selection properties
with conventional definition of energy efficiency and that
it can be degenerated to the energy efficiency model with
perfect CSI. Additionally, the presented analysis examined the
monotonicity of the noncentral chi-squared inverse c.d.f. to
offer a unique insight into the structural determinants of the
proposed objective. Furthermore, the study considered QoS,
power and channel interference constraints to formulate an
energy efficiency maximisation problem, which was shown to
be quasiconcave with respect to power operands and convex
with respect to subcarrier indexes over a convex non–empty
set. Optimisation was then employed to resolve a rather simple
optimal solution, which is capable of allocating the available
powers and subcarriers jointly. We show that the joint optimal
solution has guaranteed convergence, low complexity and
high optimality due to its contemporary solution methodology,

which combines standard–Lagrangian analysis with Maclaurin
polynomial approximations to attain the near-optimal points
by radicals. The study conducted detailed examination on
key properties of the joint optimal solution to show that it
complies with fundamental features of conventional energy
efficiency frameworks. Finally, fair evaluations were presented
through simulations, which adopted similar system settings
with related approaches. Illustrations confirmed the theoretical
findings presenting significantly increased performances of the
proposed scheme over relevant schedulers by means of energy
efficiency, system throughput, transmitting power, QoS pro-
vision, implementation complexity and solution’s optimality.
The inclusion of multiple antennas will be considered in our
future work.

APPENDIX A
PROOFS OF LEMMA 1, THEOREM 2, PROPERTY 1 AND

PROPERTY 2

Proof of Lemma 1: Assume that θ1 < θ2. Since the c.d.f. G
is monotone and continuous with respect to χ, for arbitrary
ψ ∈ (0,1) then there is some χ such that ψ = G (χ, θ1).
Consequently, from the definition of the inverse function we
obtain that G−1 (G (χ, θ1) , θ1) = χ = G−1 (G (χ, θ2) , θ2).
Furthermore, since G is non–increasing with respect to θ it
stands that G (χ, θ2) ≤ G (χ, θ1), θ1 < θ2. As it is well–known
that G−1 (ψ, θ) strictly increases with respect to ψ, we obtain
that G−1 (G (χ, θ2) , θ2) ≤ G

−1 (G (χ, θ1) , θ2). Therefore, we
conclude that G−1 (G (χ, θ1) , θ1) ≤ G−1 (G (χ, θ1) , θ2) and
thus G−1 (ψ, θ1) ≤ G

−1 (ψ, θ2) for ψ ∈ (0,1). This completes
the proof of Lemma 1. ◻

Proof of Theorem 2: According to Lemma 1 it is sufficient
to show that F (χ, θ) is non–increasing over θ. Suppose that
X is a random variable that follows non–centralised chi–
squared distribution with κ degrees of freedom and parameter
θ, symbolically X ∼ X2

κ (θ). Then by definition X = X2
1 +

∑
κ
m=2 X2

m, where variables Xm, m = 1, ...κ, are independent
with X1 ∼ N (

√
θ,1) and Xm ∼ N (0,1), m = 2, ...κ.

Therefore, F (χ, θ) = Pr (X ≤ χ) = E [Pr (X ≤ χ∣Ψ)], where
Ψ = ∑

κ
m=2 X2

m. Since Pr (X ≤ χ∣Ψ) = Pr (X2
1 +Ψ ≤ χ∣Ψ) =

Pr (X2
1 + ψ ≤ χ)∣

ψ=Ψ
we obtain that

F (χ, θ) = E [g (Ψ, θ)] , (23)

with g (ψ, θ) = Pr (X2
1 + ψ ≤ χ) and the random variable

Ψ = ∑
κ
m=2 X2

m to have a centralised chi–squared distribution
with κ−1 degrees of freedom (note: independent of θ). More-

over, g (ψ, θ) = {
Pr (X2

1 ≤ χ − ψ) , ψ ≤ χ
0, ψ > χ

. For the special

case ψ ≤ χ it stands that g (ψ, θ) = Pr (∣X1∣ ≤
√
χ − ψ) =

Pr (−
√
χ − ψ −

√
θ ≤ X1 −

√
θ ≤

√
χ − ψ −

√
θ). But X1 −

√
θ ∼ N (0,1) and consequently if Φ is the c.d.f. of N (0,1),

then for ψ ≤ χ we obtain that g (ψ, θ) = Φ (
√
χ − ψ −

√
θ) −

Φ (−
√
χ − ψ −

√
θ) . Thus, g (ψ, θ) = Φ (

√
χ − ψ +

√
θ) +

Φ (
√
χ − ψ −

√
θ)−1, ψ ≤ χ and so, if f is the density function

of N (0,1) then
∂g
∂θ

= 1
2ε

(f (α + ε) − f (α − ε)) , (24)

where α =
√
χ − ψ and ε =

√
θ. For the reason that f is sym-
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metrical, non–decreasing within (−∞,0) and non–increasing
within (0,∞), it is easy to verify that f (α + ε)−f (α − ε) < 0,
which accounting (24) yields that function g is non–increasing
with respect to θ. Then by invoking (23) and Lemma 1 we
can conclude that F −1 (ψ, θ) is non–decreasing with respect
to θ ∈ (0,∞). This completes the proof of Theorem 2. ◻

Proof of Property 1: To prove Property 1 it is sufficient to
show that ϕij = η ⋅ σ2

∆h ⋅ F
−1

(
∣ĥij ∣

2

σ2
∆h

)
(Pout,ij) is non–decreasing

with respect to ∣ĥij ∣
2
. We set θ =

∣ĥij ∣
2

σ2
∆h

and use Lemma 1
and Theorem 2 to finally show that term ϕij and the optimal
effective–weighted sum energy efficiency objective EE (6)
are non–decreasing with respect to ∣ĥij ∣

2
. This completes the

proof of Property 1. ◻

Proof of Property 2: To prove Property 2 it is sufficient to
verify that term ϕij is non-decreasing with respect to large
σ2

∆h. For simplicity of calculations, we shall focus on the
monotonicity of F−1(ψ,θ)

θ
over σ2

∆h, which is the same with
the monotonicity of the term ϕij . Calculating the derivative
of F−1(ψ,θ)

θ
we find that (details are omitted due to space

limitations)

∂
∂θ

[
F−1(ψ,θ)

θ
] =

−θ⋅ ∂F (χ,θ)∂θ −χ⋅ ∂F (χ,θ)∂χ

θ2⋅ ∂F (χ,θ)∂χ

, θ > 0, χ > 0. (25)

Using the Marcum Q-function, the nominator of (25) is
obtained as

1
2
⋅ [∫

∞√
χ u ⋅ e

−u
2+θ
2 ⋅ [u ⋅

√
θ ⋅ I1 (u ⋅

√
θ)−

θ ⋅ I0 (u ⋅
√
θ)]du − χ ⋅ e−

χ+θ
2 ⋅ I0 (χ ⋅ θ)],

(26)

where I0 and I1 are the modified Bessel functions of the first
kind. From (25) and (26), it can be straightforward verified
that if θ → 0 then ∂

∂θ
[
F−1(ψ,θ)

θ
] → −∞. Therefore, at a

space in the form of (0, ω), with ω dependent on ψ, the
function F−1(ψ,θ)

θ
is non-increasing for small θ = ∣ĥij ∣

2
/σ2

∆h.

So, F−1(ψ,θ)
θ

→ 0 and thus, the term ϕij are non-decreasing
with respect to large values of σ2

∆h. We also verify that under
certain conditions of Pout,ij and ∣ĥij ∣

2
, term ϕij has a very

slow increase pace, which means that for small to intermediate
σ2

∆h the monotonicity of EE objective (6) is not affected. This
completes the proof of Property 2. ◻

APPENDIX B
PROOF OF PROPOSITION 1

The function6 EE (S̃, P̃) in (14) is a sum of functions in the

form of T (S̃, P̃) =
(1−Pout,ij)⋅S̃⋅R̃(S̃,P̃)

ζ⋅P̃+PC . To prove the quasi-

concavity of EE (S̃, P̃) it is sufficient to show that T (S̃, P̃)

is quasiconcave. Let R̃∗
1, R̃∗

2, R̃∗
3 to denote the optimal rate

vectors corresponding to the overall throughput R̃1, R̃2, R̃3,
respectively, with R̃1 < R̃2 < R̃3. Let us express the rate
vector R̃∗

2 as R̃∗
2 = λ ⋅R̃

∗
1+(1 − λ) ⋅R̃

∗
3, where λ = R̃3−R̃2

R̃3−R̃1
, 0 <

λ < 1. From [48], [29] is known that P∗ (R) is strictly convex

6To avoid confusion we drop the index [ĤNF ×K] in the Appendices.

in R, which means P̃∗ (R̃2) < λ⋅P̃∗ (R̃∗
1)+(1 − λ)⋅P̃

∗ (R̃∗
3).

Then P̃∗ (R̃∗
2) < P̃∗ (R̃2) because R̃∗

2 is the optimal rate
vector among all the rate vectors with a summation of R̃2.
Hence, P̃∗ (R̃∗

2) < λ ⋅ P̃
∗ (R̃∗

1) + (1 − λ) ⋅ P̃∗ (R̃∗
3) meaning

that for any given throughput R̃ the minimum transmitting
power P̃∗ (R̃) = P̃∗ (R̃∗) is strictly convex in R̃. If the
superlevel set of T (R̃) is Sα = (R̃ ≥ Q ∣ T (R̃) ≥ α,α ∈},
with α any real number and Q the minimum QoS requirement,
then when α ≥ 0, Sα = (R̃ ≥ Q ∣ α ⋅ ζ ⋅ ˜P∗min (R̃) + PC ≤ 0},
with ˜P∗min (R̃) the minimum total transmitting power required
for any R̃ ≥ Q

BW
. Otherwise when α < 0 no points exist on

the superlevel set. Therefore, from the convexity of P̃∗ (R̃),
Sα is strictly convex in R̃. This means the numerator item in
T (S̃, P̃) is strictly convex in P and hence, T (P̃) is strictly
quasiconcave. Moreover, we can easy verify that ∂2T

∂S̃2
< 0,

thus T (S̃) is strictly concave in S̃ as any positive linear
combination of concave functions is concave. Consequently,
T (S̃, P̃) is quasiconcave meaning that EE (S̃, P̃) in (14) is
also quasiconcave.

Let us now focus on the convexity of system constraints.
Constraint (15) is straightforward affine, while the QoS con-
straint (16) is a sum of functions in the form of G =

(1 − Pout,ij) ⋅ S̃ ⋅ BW ⋅ log2 (1 + P̃S̃ ). Evaluating the second
partial derivatives of G with sij and p̃ij we find that they
are negative, i.e., ∂2G

∂S̃2
< 0, ∂2G

∂P̃2
< 0, thus the QoS constraint

(16) is concave as any positive linear combination of strictly
concave functions is strictly concave.

Let us now examine the set (space) where problem (14)–
(16) is determined. Each of the constraints determines a convex
set. Hence, the set defined by all constraints is the intersection
of convex sets, which is also convex [28], [47]. However, the
convex set may not exist or it can be an empty set. To prove
the existence of (s̃ij , p̃ij) we denote with S1 the feasible set
over S̃ that satisfies the subcarrier constraints s̃ij ∈ [0,1] and
∑
K
j=1 s̃ij = 1. Also, S2 is the feasible set over P̃ that satisfies

the constraints (15) and (16). Then in the (NF ×K +NF ×

K) space (s̃ij , p̃ij) the subcarrier constraints verify a cylinder
with base Σ1. Similarly the power constraints verify another
cylinder with base Σ2. The constraints in the space (s̃ij , p̃ij)
determine the intersection of the two cylinders Σ1∩Σ2, which
is a non–empty convex set. Hence, the strictly quasiconcave
EE (P) and the strictly concave EE (S) are determined in
the convex set (sij , p̃ij). Consequently, (s̃ij , p̃ij) is convex
and always exists, while given the strict quasiconcavity and
the strict concavity of EE (P) and EE (S), respectively, the
local maxima EE (P∗) and EE (S∗) are also global maxima.
This completes the proof of Proposition 1. ◻

APPENDIX C
PROOF OF THEOREM 3

Let us introduce the variable χ∗ij =
ϕij ⋅p̃∗ij
s̃∗ij

, χ∗ij > 0, to represent

transcendental function Ξ (p̃∗ij) as

Ξ (p̃∗ij) = T (χ∗ij) + E (χ
∗
ij) = 0, (27)

with
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T (χ∗ij) = − ln 2 ⋅BW ⋅ (1 − Pout,ij) ⋅ ζ ⋅wij
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ

×

(1 + χ∗ij) ⋅ log2 (1 + χ∗ij) ,

E (χ∗ij) = ε1 ⋅ (χ
∗
ij)

3 + ε2 ⋅ (χ
∗
ij)

2 + ε3 ⋅ χ
∗
ij + ε4,

ε1 = −
ln 2⋅ζ2⋅µ∗⋅s̃∗ij

ϕ2
ij

,

ε2 =
ln 2⋅ζ⋅s̃∗ij
ϕ2
ij

⋅ (
BW ⋅(1−Pout,ij)⋅ξ∗j ⋅ζ⋅ϕij

ln 2
−

2⋅PCij ⋅µ
∗⋅ϕij

s̃∗ij
− ζ ⋅ µ∗),

ε3 = ((1 − Pout,ij) ⋅ ζ ⋅ P
C
ij ) ⋅ (2 ⋅BW ⋅ ξ∗j +

BW ⋅wij
PCij

−

ln 2⋅µ∗⋅PCij
(1−Pout,ij)⋅ζ⋅s̃∗ij

−
2⋅ln 2⋅µ∗

(1−Pout,ij)⋅ϕij ),

ε4 =
BW ⋅(1−Pout,ij)⋅(PCij )

2

s̃∗ij
×

(ξ∗j ⋅ ϕij +
wij ⋅ϕij
PCij

−
ln 2⋅µ∗

BW ⋅(1−Pout,ij)).

The complex function in (27) is the function T (χ∗ij), while
E (χ∗ij) consists a cubic polynomial. Equations in the
form of (27) can be effectively solved by determining
the polynomial expression of T (χ∗ij) using its Maclaurin
series expansion at point χ∗ij = 0 [47]. Point χ∗ij = 0 is the
lowest possible point within the region [0,+∞), which is
the interception of the feasible regions where χ∗ij and p̃∗ij
are determined, i.e., χ∗ij ∈ (−1,+∞) and p̃∗ij ∈ [0,+∞).
Consequently, the Maclaurin expansion will converge to the
lowest possible power p̃∗ij , which can asymptotically increase
energy efficiency. The infinite Maclaurin series of polynomials
of T (χ∗ij) is T (χ∗ij) = ∑

∞
n=0 (T (n) (0) ⋅ (χ∗ij)

(n)), with
T (n) (0) to denote the n-th order Maclaurin polynomial. To
track the solutions of the infinite series we express T (χ∗ij)
in terms of finite series, i.e., given that the highest order of
the polynomial part in (27) is third order, T (χ∗ij) can be
denoted as T (χ∗ij) = ∑

3
n=0 (T (n)(0) ⋅ (χ∗ij)

(n)) + T3, with
T3 the truncation error. According to [33], [47] the truncation
error is particularly small and the transcendental equation
(27) can be well approximated as:

Ξ (p̃∗ij) ≈ ∑
3
n=0 (T (n)(0) ⋅ (χ∗ij)

(n)) + E (χ∗ij)

= (ε1 +
Φ

6⋅ln 2
) ⋅ (χ∗ij)

3 + (ε2 −
Φ

2⋅ln 2
) ⋅ (χ∗ij)

2+

(ε3 −
Φ

ln 2
) ⋅ χ∗ij + ε4 = 0.

(28)
The algebraic representation of the transcendental equation
Ξ (p̃∗ij) = 0 in (28) satisfies a cubic equation with respect
to χ∗ij . Using Cardano’s theorem [47] we obtain the radical
solutions of (28) with respect to χ∗ij , i.e.,

χ∗ij =
3

√

τ1 +
√
τ2
2 + τ

3
3 +

3

√

τ1 −
√
τ2
2 + τ

3
3 − τ4, (29)

with τ1 = α2⋅α3

6⋅α2
1
− α4

2⋅α1
−

α3
2

27⋅α3
1

, τ2 = α2⋅α3

6⋅α2
1
− α4

2⋅α1
−

α3
2

27⋅α3
1

,

τ3 = α3

3⋅α1
−

α2
2

9⋅α2
1

, τ4 = α2

2⋅α1
, α1 = −

(ε2− 1
2⋅ln2

)
3⋅(ε1+ 1

6⋅ln2
) , α2 = α3

1 +

(ε2− 1
2⋅ln2 )⋅(ε3−

1
ln2

)−3⋅(ε1+ 1
6⋅ln2

)⋅ε4
(6⋅(ε1+ 1

6⋅ln2
)2)

and α3 =
ε3− 1

ln2

3⋅(ε1+ 1
6⋅ln2

) . Finally,

recalling χ∗ij =
ϕij ⋅p̃∗ij
s̃∗ij

and ϕij = η ⋅σ2
∆h ⋅F

−1

(
∣ĥij ∣

2

σ2
∆h

)
(Pout,ij) in

(6), we obtain the optimal instantaneous transmitting power
p̃∗ij . This completes the proof of Theorem 3. ◻
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ĥmin
ij

∣

∣

∣

2

)

Feasible region: for average→high channel gains the scheme

provides QoS support (R(
∣

∣

∣
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Fig. 8: Specification on Property 4:
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–versus–∣ĥij ∣2 curve

for different levels of CNR.

APPENDIX D
PROOFS OF PROPERTY 4, PROPERTY 5 AND PROPERTY 6

Proof of Property 4: For brevity, let S, R, P and PC
to represent the subcarrier index, instantaneous data rate,
radiated power and circuit power, respectively. The optimal
energy efficiency is then defined in the fashion EE∗ (R) =

max
S

(max
P≥0

EE (R,S)) = max
S

(∑∑
R

min
P≥0

(ζ⋅P (R,S))+PC ). For

any given S, term P (R,S) is minimised when power is
distributed according to (18). Therefore, to examine the be-
haviour of EE in relationship with ∣ĥij ∣

2
we should focus

on term
χ∗ij
ϕij

of (18). The examination of χ∗ij is performed
through numerical representation in Fig. 8. In particular, term
χ∗ij
ϕij

increases as ∣ĥij ∣
2

increases over certain CNR levels.

Consequently if any ∣ĥij ∣
2
, min
P≥0

P (R,S) strictly decreases or

remains the same. Then max
P≥0

EE (R,S) increases (but not

necessarily strictly) with ∣ĥij ∣
2
. Thus, EE (R,S) increases

with ∣hij ∣
2, which means that the EE∗ (R)–versus–R curve

tends to be strictly higher or remains the same with the
increase of ∣ĥij ∣

2
. Let us denote the new EE∗ (R) and R

(with higher ∣ĥij ∣
2
) as EE

∗
(R) and R, respectively. Then

EE∗ ≤ EE
∗
(R) ≤ EE

∗
meaning that the optimal EE∗

increases with channel coefficient ∣ĥij ∣
2
. This completes the

proof of Property 4. ◻

Proof of Property 5: Furthermore, for any P , S , the optimal
energy efficiency is a function in the form of EE∗ (R) =

R(P,S)
ξ⋅P∗(R(P,S))+PC . Therefore, EE∗ (R) strictly decreases with
PC , which means the EE∗ (R)–versus–R curve tends to be
strictly lower with the increases of PC . Let EE∗ (R), R∗ and
PC to denote the EE∗ (R), R∗ and PCij with larger circuit

power. Then EE∗ ≤ EE∗ (R∗) ≤ EE∗ and thus, the optimal
EE∗ strictly decreases with PCij . This completes the proof of
Property 5. ◻

Proof of Property 6: Define P̃ ∗ to be the optimal power
allocation given a set of circuit power conditions {PCj}, with
PCj the circuit power of user j. Also, let EE∗ to represent
the achieved energy efficiency. Suppose any {PCj} decreases a
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certain amount to {PCj}−∆PC . Then from Property 5, EE∗

will increase and (according to (18) in Theorem 3) P̃ ∗ will
decrease strictly with energy efficiency EE∗ meaning that P̃ ∗

increases strictly with the circuit power PC . This completes
the proof of Property 6. ◻
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