
TSCSI-2015-02-0101.R2 1

1 INTRODUCTION
IMULATION of Cyber-Physical Systems (CPSs) is
becoming increasingly important in modern day systems

for engineering, research, and commercial pursuits. Given
the scale and complexity of modern CPSs such as Cloud
datacenters, Smart Cities, and Internet of Things, it has
become more feasible from an economical and scientific
perspective to build and study simulation models that
represent accurate system operation prior to constructing
physical prototypes of the production system. Simulation
based prototyping has seen recent adoption in
manufacturing to speed up the product development
process and support early evaluation, and are increasingly
used within CPSs to evaluate early mock-ups which are
modelled in sufficient detail [1]. Furthermore, manual
testing of complex systems is subject to limitations in its
coverage and effectiveness in comparison to performing
simulation [3]. Compared to physical prototyping, the
quality of simulation based prototyping is less sensitive to
parameterization choices due to the ability to detect
problems early and correct accordingly [4]. Such models
allow users to experiment with a wide range of operational
scenarios, alternative technologies and reengineering
business processes without the requirement for high
expenditure costs needed for implementation [1][2].
Specifically, it enables the ability for users to verify and
validate the capabilities of a modeled system supported
through context specific use cases of interest including
operational efficiency, current design optimization, provide
means to understand and reduce risks associated with
system expansion and alteration, and tolerate different
failure scenarios [17].
Performance becomes a key consideration when simulating
large quantities of system components with complex

interactions due to performance degradation [18]. This is
primarily due to limitations in resource availability [7] as
well as centralized approaches when managing event
synchronization [11]. Given that CPS can be composed of
potentially millions of component interactions, centralized
approaches for simulation face significant challenges in
providing results in a timely manner.
Simulating large-scale complex systems through parallel
and distributed simulation has gained traction in recent
years. This enables model distribution across a number of
parallel and distributed compute nodes to take advantage of
additional memory and CPU capacity, increasing
simulation scale and reducing simulation execution time
[37]. A common approach to managing these simulations is
through the use of Parallel Discrete Event Simulation
whereby a simulation is partitioned across a set of compute
nodes and is managed through discrete timesteps and
message passing through events generated from each
partition [37]. An effective means to mitigate scalability
issues in simulating CPSs is to decompose the simulation
into smaller physically distributed logical units, and can be
achieved through the use of high power tightly-coupled
systems [14][15] or large-scale distributed infrastructure
configured to facilitate specific simulation [5][19].
However, there are a number of challenges which reduce
the effectiveness of such approaches. In the context of HPC,
simulations are imposed with system timing and resource
constraints, dictated by scheduling practices [6], with such
systems requiring expensive infrastructure acquisition and
maintenance. On the other hand, distributed systems
require bespoke configuration for a specific type of
simulation to run effectively, and are predominately
deployed across multiple server racks. Both of these
approaches rely on advanced domain user expertise to
configure their simulation to specific hardware within an
infrastructure and development environment which can be
time consuming and expensive [10]. Furthermore, a key

SEED: A Scalable Approach for
Cyber-Physical System Simulation

Abstract— Simulation is critical when studying real operational behavior of increasingly complex Cyber-Physical Systems, forecasting
future behavior, and experimenting with hypothetical scenarios. A critical aspect of simulation is the ability to evaluate large-scale systems
within a reasonable time frame while modeling complex interactions between millions of components. However, modern simulations face
limitations in provisioning this functionality for CPSs in terms of balancing simulation complexity with performance, resulting in substantial
operational costs required for completing simulation execution. Moreover, users are required to have expertise in modeling and
configuring simulations to infrastructure which is time consuming. In this paper we present SEED (Simulation EnvironmEnt Distributor), a
novel approach for simulating large-scale CPSs across a loosely-coupled distributed system requiring minimal user configuration. This is
achieved through automated simulation partitioning and instantiation while enforcing tight event messaging across the system. SEED
operates efficiently within both small and large-scale OTS hardware, agnostic of cluster heterogeneity and OS running, and is capable of
simulating the full system and network stack of a CPS. Our approach is validated through experiments conducted in a cluster to simulate
CPS operation. Results demonstrate that SEED is capable of simulating CPSs containing 2,000,000 tasks across 2000 nodes with only
6.89x slow down relative to real time, and executes effectively across distributed infrastructure.

Index Terms— Distributed Systems, Distributed Simulation, Cyber-Physical Systems, Service-oriented Simulation.

——————————  ——————————

S

Peter Garraghan, David McKee, Xue Ouyang, David Webster, Jie Xu. Member, IEEE

The authors are with the School of Computing, University of

Leeds, Leeds, LS2 9JT, United Kingdom.

E-mail:{p.m.garraghan,scdwm,scxo,d.e.webster,j.xu}@leeds.ac.uk

TSCSI-2015-02-0101.R2 2

component in distributed simulation is effective event
synchronization across all components and simulation
partitions. While a number of existing distributed
simulators provide different levels of synchronization
[16][37], they do so at the cost of significant slowdown
relative to real world time performance; a substantial issue
when simulating lengthy time periods. Such behavior
results in degraded simulation performance leading to
increased operational costs in terms of resource usage and
energy consumption to complete simulation execution.
Finally, both approaches may not be readily available to a
large body of researchers and developers due to prohibitive
infrastructure requirements and expertise to operate.
As a result, in order to overcome these challenges, there is a
substantial need to develop approaches that can effectively
simulate large-scale CPSs fulfilling the following criteria:

– Minimal domain user configuration and programming
between their native modeling environment and running
within a distributed simulator. This not only allows for
rapid deployment and execution of simulation, but also
allows the simulator to be provided as a SaaS model
due to clear possession and ownership between
software and its use [12].

– Distributed simulations that can execute with little to no
assumptions about the underlying simulator hardware.
Specifically, there are significant advantages to using
simulator infrastructure composed of heterogeneous
readily available Off the Shelf (OTS) components that
can run simulation agnostically across different
machine architectures and Operating Systems (OS).

– Supports event synchronization while maintaining acceptable
levels of performance relative to real world time. As
simulation scale increases in terms of required
infrastructure scale and simulation complexity,
performance becomes an increasing concern for both
users and system administrators in terms of business
requirements and operational costs, respectively.

To facilitate this, Service-oriented Architecture (SOA) -
which supports open standards, loose coupling,
discoverability and reusability for the integration of
distributed systems [13] - appears to be a promising
approach in providing an effective means to address the
above criteria. This is particularly true for reducing the
coupling between simulation and the underlying hardware, as
well as transforming distributed simulators into SaaS offerings
which can be accessed through generic protocols globally.
This paper presents SEED (Simulation EnvironmEnt
Distributor), a novel service-oriented approach for
simulating CPSs across a distributed system. This is
achieved through automated simulation partitioning,
instantiation and execution across a loosely-coupled
infrastructure while enforcing tight event messaging across
the system. Users are capable of interacting with SEED as a
Windows Communication Foundation (WCF) Web Service
using XML-based protocols, and are not required to
configure underlying hardware for execution. As a result,
SEED operates efficiently within both small and large-scale
OTS hardware, agnostic of cluster heterogeneity and OS

running on nodes. Furthermore, it is capable of simulating
the full system and network stack of a CPS, and captures
key characteristics of task execution. Our approach is
implemented and validated in a real physical cluster to
simulate large-scale CPS operation composed of up to 2,000
simulated nodes and 2,000,000 executing tasks, as well as
task and user characteristics from a production CPS.
This paper is structured as follows: Section 2 presents the
background; Section 3 discusses the related work; Section 4
presents the SEED system architecture and functionality;
Section 5 presents the implementation, clock manager and
clock management; Section 6 presents the evaluation of
SEED; Section 7 examines the practicality of the approach
using a real-world use case; Finally, Section 8 presents the
conclusions and future work.

2 BACKGROUND

2.1 Simulation
Simulation forms a key mechanism for verifying and
validating existing and new approaches within many
computer science domains. In this context, simulation is
defined as the time dependent imitation or emulation of a
real world system for the purposes of analyzing and
evaluating its design or process [21]. A simulation model of
a CPS is composed of numerous components, including
server Nodes, Network Links, and Tasks to be executed.
Simulations that imitate the behavior of physical systems
larger than what is available to hand are particularly
effective, however they incur a slowdown with respect to
time. Current state-of-the-art approaches claim that
slowdown of 100x relative to real system operation is
acceptable for reasonable interactivity [5]. Utilizing lower
fidelity models to achieve improved scalability and
performance results in a degradation of overall simulation
accuracy with respect to the real system. Simulation
accuracy is also significantly affected by how rigorous
timing models are enforced when transitioning between
simulation states, represented as either static or dynamic
timesteps [5]. It is also essential to understand whether a
given simulation simulates deterministic or probabilistic
behavior and whether there are mechanisms for emulating
components interactions with external physical components
or systems [23]. An incorrect specification of the interactions
with real external components may result in incorrect
operation causing the simulation to produce incorrect
results.

2.2 Simulation of Cyber-Physical Systems
It is worth emphasizing that simulation is not solely a
replacement for physical prototyping when validating CPS
design and operation, and should instead be perceived as a
means to enhance prototyping rapidity. This is made
possible by the ability to simulate CPS operation under
numerous operational conditions to evaluate early
mock-ups at a reduced development time and cost
compared to physical system implementation [39].
The simulation of CPSs requires modeling the system in
terms of software execution and the full network topology
of the infrastructure with respect to computation nodes,

TSCSI-2015-02-0101.R2 3

routers, switches, network links, and network data packets
[8][9]. Furthermore, to enable accurate simulation the entire
stack should also be captured, including the system stack
replicating essential elements of the hardware and firmware
behavior. Characteristics of the OSs and applications that
they execute also need to be captured in some form in terms
of resource utilization or processing times. Finally the
network stack must also capture system operation such as
session and transport protocols.
Due to the complexity of capturing the entire system model
while maintaining reasonable performance, most
approaches for simulating distributed systems focus on a
single layer of the system stack [7]. Systems such as ns-3
focus on network simulation capturing detailed analytics
for data packets, latencies, and throughput, however omit
the application layers that utilize that network
infrastructure [25]. Alternatively, existing tools that do not
emphasize physical infrastructure instead focus on the
software layers [26], leaving the responsibility of
developing models that accurately reflect real world system
operational characteristics and behavior to users.

2.3 Challenges
There is an increasing requirement for simulating complex
large-scale CPSs that produce high levels of accuracy and
performance while minimizing infrastructure requirements.
While there are a number of state-of-the-art tools which can
simulate generic [20][27][28] and domain specific CPSs
environments [29] through HPC and multi-core
environments, there are still limitations when simulating
CPSs composed of thousands of nodes and millions of tasks
executing for extended periods of operation time. While
such simulations will eventually complete using current
tools, they do so at significant execution time and
infrastructure requirements. This becomes a significant
problem for simulations that require several days or even
weeks to complete execution for users who desire to acquire
accurate results rapidly and system providers who wish to
significantly reduce operational costs and infrastructure
requirements.

It is also worth noting that with few exceptions, simulation
configuration requires significant manual intervention and
expertise with respect to both the simulated environment as
well as the execution infrastructure used. As a result,
simulating complex CPSs is not feasible for many users who
lack the domain expertise to configure the underlying
infrastructure for their simulation to run effectively.

3 RELATED WORK
Lacage et al. [30] present YANS: a highly detailed tool for
simulating networks. This tool captures the full network
stack including TCP and UDP protocols and supports
standards such as the IEEE 802.11a/e Network Interface
model. The approach allows asynchronous parallel
execution of simulated components. However, YANS does
not support integration with real network components or
applications. It is also limited to simulating only the
network stack and network topology and does not support
distribution of the simulation itself.
Nunez et al. [31] provides a unique approach to managing
the scalability of simulating distributed systems by
automatically parallelizing the simulation for execution.
This is achieved by partitioning the network topology
according to the number of communications between
components. This approach is however targeted specifically
at the simulation of HPC systems and assumes that the
inter-component communication is known prior to
execution which may not be the case for specific simulation
configurations.
Garg et al. [24] propose NetworkCloudSim which extends
the commonly used CloudSim [32] toolkit with detailed
models of network components including links and
switches. Although the generic approach allows for
modeling of the entire distributed system it does not
support the distribution of the actual simulation.
Furthermore, it uses a serial simulation execution model
leaving it highly susceptible to scalability issues.
Miller et al. [29] propose an advanced simulation tool for
modeling distributed multicore systems: Graphite. Their

TABLE 1. COMPARISON OF SIMULATION APPROACHES

Feature Environment Target domain
Configuration &

Deployment
Distributed Slowdown Synchronization Task Types

SST+

gem5
HPC HPC

Manually configured via

API
Yes N/A Not managed Real

Emulab HPC Generic Configured using Tcl Yes
Dependent on config &

user time slice

Configuration

dependent

Configuration

dependent

PlanetLab HPC Generic
Manually configured via

API
Yes

Dependent on config &

user time slice

Configuration

dependent

Configuration

dependent

SIMCAN Cluster HPC & File I/O Configured using scripts Yes N/A N/K
Configuration

dependent

Graphite Cluster
Multi-core

systems

Manual; specification of

memory allocation &

thread models

Yes 41x Lax Real

YANS Desktop Network only

Some default models;

needs user knowledge of

models & threading

No
Dependent on user thread

model config
Event-based Models

Network

CloudSim
Desktop Generic

Requires user knowledge

of simulation system
No

Dependent on user config;

scalability issues serial

execution

Configuration

dependent
Models

SEED
Desktop or

Cluster
Generic Guided setup Yes

Between 6x and 15x

depending on simulation

configuration

Event-based Models or Real

TSCSI-2015-02-0101.R2 4

approach focuses on emulating the full distributed system,
including applications and OSs. They find that they are able
to simulate a system nearly 13x the size of their execution
environment (1024 cores on 80 machines) with a slowdown
of approximately 41x. However, the lack of enforcement for
event ordering within the system results in a reduced level
of accuracy and confidence in the simulation results.
Additionally, the user is required to manually configure the
memory distribution and thread allocation.
There are also alternative approaches for distributed system
simulation that require the use of HPC environments for
execution [20][27][28]. Such approaches all support
simulation distribution and are capable of modeling
different aspects of the full system and network stack.
However, such approaches typically require tight coupling
between the simulation and the underlying hardware, as
well as manual configuration by both the system provider
and the user domain expert. Furthermore, users are
restricted by imposed scheduling restrictions of other
system users, and face high expenditure if they desire to
control their own infrastructure.
Our approach addresses many of the issues previously
discussed when compared to related work as shown in
Table 1. By providing an automated service-oriented
process for configuration and deployment of a simulation,
our system supports simulation deployment and execution
across a heterogeneous distributed environment with no
assumptions concerning underlying hardware
specifications, as well as minimal user configuration.
Importantly, our approach is also capable of managing
event synchronization. The presented approach achieves

this primarily through an automated partitioning
mechanism that optimizes the simulation for distributed
parallel execution. Finally our event based approach to
manage clock jitter within the simulation allows us to
support tasks which are either modeling realistic behavior
or are actually executing tasks themselves.

4 SEED: SCALABLE DISTRIBUTED SIMULATION
In this section we describe in detail core components and
functionality of SEED; a service-oriented approach to
facilitate large-scale CPS simulation.
For the purposes of this work we define a simulation of a
distributed CPS as a Topology consisting of Nodes and Links.
Simulated components are distinguished from physical
components that form the execution infrastructure. The
simulated components form the Virtual Network consisting
of Virtual Links, Virtual Nodes, and Virtual Network
Switches (Switch Nodes). The physical components are the
machines on which simulation executes, known as Physical
Machines.
The high level architecture of SEED is composed of several
services that form components which ensemble together to
perform CPS simulation as depicted in Figure 1. The
advantage of such an approach is that the architecture is
designed to be loosely-coupled, allowing (i) less
dependency between components when altering specific
component functionality, (ii) simulation components to
reside across different machines within a network, reducing
performance bottlenecks and increased fault-tolerance, and
(iii) integration of additional components into the system.

Figure 1. High level architecture of SEED.

 c

TSCSI-2015-02-0101.R2 5

These components are characterized as follows:

– Simulation Instantiation: automates the generation
and characterization of the simulated network topology
as well as the configuration and partitioning of a
simulation across a loosely-coupled distributed
physical infrastructure.

– Clock Manager: provides a scalable approach to
maintain a highly synchronized simulation which is
deployed across the distributed infrastructure. It
provides an open framework for synchronization
between local clocks for Instances to manage message
ordering between Virtual Nodes that exist within
different Partitions.

– Instances: logical unit of simulation computation
comprised of various interacting components: Nodes,
Links, and Tasks. An individual Instance is formed by a
subset of the total Virtual Network topology and a
specified set of tasks which executes on a partition
created automatically by SEED, hosted on a specific
physical machine. Each Instance has its own local clock
which is managed externally by the Clock Manager.

SEED adheres to the following operational workflow
performed by an ensemble of components, which consists of
four key phases of performing distributed simulation:
characterization, partitioning, deployment, and
synchronization:

1. Characterization – Requirements for defining the
operational characteristics of the CPS simulation is
submitted by a user, consisting of configuration files,
specifying the Virtual Network Topology and size, as
well as the Tasks to be executed on it. Using the Virtual
Network configuration file a Virtual Network model is
generated.

2. Partitioning – The optimum number and size of
partitions is computed using both the virtual and
physical network topology and configuration files
generated. The Virtual Network is then partitioned
accordingly and configuration files are generated for
each partition. A configuration file is then generated to
inform the network communication between each
simulation Instance.

3. Deployment – The generated partition configuration
files are deployed to simulation instances across the
distributed infrastructure according to the partitioning
specification. Each instance begins execution using the
locally available partition configuration, which includes
Virtual Network specification and Task specifications.

4. Synchronization – All instances are centrally controlled
and synchronized using the Clock Manager to maintain
simulation accuracy.

The remainder of this section focuses on four core
components within SEED as shown in Figure 1; Simulation
Characterizer, Instance Partitioner, Instance Integrator,
and Clock Manager.

4.1 Simulation Characterizer
The Simulation Characterizer is responsible for configuring
and defining the Virtual Network topology of the simulation.
This is achieved by user specific configuration files into a set
of weighted subnets [35][36] which are used for partitioning
within the Instance Partitioner.
The characterizer initially provides the user with the facility
to auto-generate a network topology with a specified
number of nodes which are computing servers or network
switches as shown in Figure 2. The characterizer can
optionally consume a model specifying the characteristics of
nodes and network links such as CPU capacity, and
latencies within the system serialized as an XML description
file.

Requires:

Nodes: {Compute_Nodes, Switches}

Links: {Link(EndPoint_1, EndPoint_2)}

Parts: {Part(Nodes, Links, Physical_IP,

Physical_Port)}

Partition(Nodes, Links, Parts)

1. AssignSubnetWeightings(Nodes);

2. Nodes.SortByIPAndWeight();

3. partSize = Nodes.Count / Parts.Count;

4. start = 0, length;

//Partition Nodes

5. For(׊k | k < Parts.Count)

6.

7.

8.

length = start + partSize;

Parts[k] = Nodes[start  length];

start = start + length;

9. End For

//Partition links generating proxies to
traverse between partitions

10. Foreach(link א Links)

11.

12.

part1 = Parts[j] | link.EndPoint_1 א
Parts[j].Nodes;

If(link.EndPoint_2 ב part1.Nodes)

13.

14.

15.

16.

17.

part2 = Parts[m] | link.EndPoint_2 א
Parts[m].Nodes;

mlink1 = new Mediator
Link(EndPoint_1, EndPoint_2,
 part2.Physical_IP,
part2.Physical_Port);

part1.AddLink(mlink1);

mlink2 = new Mediator
Link(EndPoint_1, EndPoint_2,
 part1.Physical_IP,
part1.Physical_Port);

part2.AddLink(mlink2);

18. Else

19. part1.AddLink(link);

20. End if

21. End Foreach

//Write XML

22. Foreach(part א Parts)

23. WriteXML(part)

24. End Foreach

 Algorithm 1 - Partitioning of Virtual Network for Simulation.

Example Partition Specification
#Partition Specification#
$ Physical_IP_Address, Physical_Port, Clock_Port
192.168.1.17, 8888, 10001
192.168.1.23, 8888, 10002
192.168.1.32, 9999, 10001

Figure 2. Example of partitioning specification file generated.

TSCSI-2015-02-0101.R2 6

Given the generated topology, the characterizer traverses
the network tree using a depth-first approach assigning a
weighting to each node corresponding to the cumulative of
its child nodes and its own weight. A node‘s weight is
computed from its normalized CPU speed. Subsequently,
the nodes within the network are sorted by their IP address
and then by the subnet weightings such that subnets of
components are grouped within a vector. This is in order to
allow the partitioner to locate subnets within the same
partition. Upon completion, the Instance Partitioner
automatically executes on the sorted and characterized
Virtual Network.

4.2 Instance Partitioner
The instance partitioner is responsible for dividing a
simulation's Virtual Network generated by the Simulation
Characterizer into instances that contain a subset of the total
simulation, comprised of unique simulation components
such as compute nodes, switches and network links. This is
achieved through the use of a partitioning specification and
algorithm to generate the optimal number of instances
depending on the simulation infrastructure.
It is assumed that interacting tasks are more likely to be
deployed on compute nodes within the same subnet; as a
number of tasks have architecture constraints [39] and
Quality of Service (QoS) deadlines [40], such that interacting
tasks are more likely to be deployed in computer nodes
within closer proximity to one another. Therefore, in order
to minimize the level of communication between partitions,
larger subnets are prioritized to be placed within the same
partition if possible. Therefore, the set of Virtual Nodes is

firstly ordered by IP address, starting with the most
significant (leftmost) byte, and then each switch is allocated
a weighting for its subnet. Nodes are then reordered such
that subnets with a weight closest to the partition size occur
first. Then iterating over the parts using a sliding window
(defined by start, and length variables), Nodes are allocated
to a partition.
Given that Virtual Nodes may now exist in different
partitions, it is necessary to adjust the specification of the
Virtual Network Links to accommodate this feature. For this
process the endpoints for each link are checked to determine
whether they exist within the same partition. If they exist in
different partitions, two Mediator Links are created with the
physical IP addresses and ports of their opposite partitions.
Once Mediator Links have been created they are added to the
appropriate partition. The above process can be expressed
as an algorithm as shown in Algorithm 1.
To give a practical example, Figure 3 depicts the
partitioning of a simulated network consisting of 13 Virtual
Nodes and 7 Switch Nodes with the corresponding 19 Network
Links. With 4 physical machines available to host Instances,
the algorithm to generate four partitions is as follows:
1. The Virtual Network is characterized using weights as

shown in the top-left of each network Node as shown in
Figure 3. Note that all Nodes have been assigned
normalized weightings of ‗1‘ for example simplicity.

2. With an ideal partition size S (in this example, S = 5) the
first ‗X‘ components whose weights sum to S are
allocated to subnet 1 whose Nodes are removed from the
overall vector. This process repeats until all Nodes have
been allocated to a subnet.

Example Partition Specification
#Partition Specification#
$ Physical_IP_Address, Physical_Port, Clock_Port
192.168.1.17, 8888, 10001
192.168.1.23, 8888, 10002
192.168.1.32, 9999, 10001

Figure 3. Example of partitioning specification file generated.

Figure 3. Sample partitioning of a Virtual Network into 4 partitions according to weightings applied to each subnet.

TSCSI-2015-02-0101.R2 7

3. Any Network Links that connect Nodes which exist in
different partitions are adapted to form Mediator Links.
For the depicted configuration, four Mediator Links are
required to facilitate inter-node communication across
partitions.

4.3 Instance Integrator
Once the partition specifications have been generated, the
Instance Integrator automates the process of deploying and
instantiating the simulation partition into instances. Each
generated network partition topology model is deployed to
the respective physical machine, specified by the partition
specification document, along with a task configuration file.
The specification files define the architecture of the CPS to
be simulated while the configuration files dictate the
behavior and characteristics of Tasks with regards to their
resource consumption (including CPU and memory
utilization), as well as execution duration and number of
occurrences within the simulation. Within each physical
machine, a simulation Instance is started with the specified
configuration files as well as a reference to the target output
log file. The log of each Instance is generated in each
physical machine and then automatically collated by the
Instance Integrator after the simulations have completed
allowing for analysis of simulation time against real world
time, as well as detailed component analysis regarding
aspects such as CPU and memory utilization or task status.

4.4 Clock Manager
Once instances have been instantiated it is necessary to
maintain the accuracy of the simulation. This is achieved by
proposing an approach that manages the Instance
simulation local clocks with respect to the entire
simulation‘s global clock. This aspect of the system is
important when considering interactions between
components existing in differing partitions, and their
respective component local clocks times being as close as
possible in order to guarantee simulation accuracy.
Additionally, due to users‘ different business requirements

for simulation there is a need to support configuration of the
simulation fidelity level. A major component of this fidelity
is the clock frequency and synchronization approach. By
increasing the frequency to 1000Hz, the event log of the
simulation will remain accurate to 1ms. Alternatively,
decreasing the frequency to 1Hz would significantly reduce
the accuracy of the simulation with respect to
communication between partitions, however, would
produce an improvement in simulation performance. It is
also worth noting that performance degradation can be
reduced when only simulating the state change of Nodes and
Links through task completion and interactions with other
components within the system. As a result, the user is able
to specify - depending on the analysis they wish to perform
- the number of milliseconds within which the simulation
Instances are synchronized. For this paper we used a
frequency of 10Hz, and future work will discuss the
performance tradeoff against the step size. An example of
such behavior is depicted in Figure 4 which demonstrates
jitter between various instances across the distributed
simulation. Furthermore, in order to facilitate the simulation
of simulated, emulated, or real tasks, the clock model must
accommodate for varying degrees of control over the task
execution. As a result, the clock manager allows additional
jitter within any given instance (as also seen in Figure 4).
The jitter is caused by tasks executing uncontrolled until

Figure 4. Depiction of simulation Instance jitter.

Global Clock: ׊ Instance א Simulation.Parts |
 Instance.Step ֞ Instance.Time ≤ Simulation.GlobalTime
Instance.Step: ׊ node א Instance.Nodes |
 node.Execute ֞ node.stateChanged.time ≤ Instance.Time, ׊ task א node.ExecutingTasks |
 task.Continue ֞ task.Status ≠ FINISHED ר
 task.time ≤ Instance.Time ׊ link א Instance.Links |
 link.Execute ֞ link.stateChanged.time ≤ Instance.Time

 Figure 5. Clock algorithm synchronizing Instances.

TSCSI-2015-02-0101.R2 8

they either complete or interact with their host Node to
request additional computational resources or else to
communicate with other tasks within the simulation. This
approach is summarized in the formalism presented in
Figure 5 which summarizes the constraints used for state
based optimization of the execution process.

5 IMPLEMENTATION
Due to the variation in infrastructure that is available to
simulation users, it is essential to support heterogeneous
systems ranging from individual desktop machines running
Windows, MacOS or Linux based OSs to dedicated clusters
running various Linux variants. The simulator was
implemented using the C#.Net 4.0 language (and compiled
using the Mono Framework for platform portability) which
is deployed along with the simulator and all necessary
dependencies. Our approach has been found to perform and
operate on Windows 7, Debian, CentOS, and Mac OSX. This
section describes the various components of the system
along with their interactions.

5.1 Instance
Following from the topology defined in Section 4, the
simulation is composed of several SEED instances each
providing the facility to simulate a CPS partition consisting
of a Virtual Network com prised of: Nodes, Links, and Tasks
(simulated, emulated, or real) as shown in Figure 7.
Any interaction between nodes and links is managed
entirely through an API hiding the detail of the
implementation of any given component from the network
topology. The most basic instance can be compiled from two
XML and text-based configuration files, shown in Figure 6.
This function is implemented using the WCF Web Service, a
popular approach for deploying Web Services. For the
purposes of strict synchronization, each component is
allocated a local clock manager which all execute in parallel

with reference to an Instance clock manager.
Specifically, a Network Node can take the form of either a
Switch or a Compute Node such as a server. The default
implementations of the components can be used and
configured using XML scripts specifying characteristics
such as CPU and memory capacity. Alternative
implementations can be introduced and integrated
seamlessly as long as they adhere to the generic API which
is used by all interacting components. A Compute Node is
itself responsible for managing the execution of all Tasks
deployed to it as well as managing the communication
between Tasks existing either locally or across the simulated
network. All nodes are synchronized using time stamped
event logs. Their clock manager only requests execution in
the event that their state has been changed and otherwise
advances the clock appropriately.

Figure 7. High level architecture of a simulator Instance.

Example Network Specification

<?xml version="1.0" encoding="utf-16"?>
<Network Clock_Port="0">
 <Nodes>
 <Node ID="VN0_0.0.0.1" IP_Address="0.0.0.1" />
 <Node ID="VN1_0.0.0.2" IP_Address="0.0.0.2" />
 <SwitchNode ID="SW0_0.0.0.0" IP_Address="0.0.0.0" />
 </Nodes>
 <Links>
 <Link ID="LINK 1" NodeA="SW0.0.0.0" NodeB="VN0_0.0.0.1" />
 <Link ID="LINK 2" NodeA="SW0.0.0.0" NodeB="VN1_0.0.0.2" />
 </Links>
</Network>

Example Task Specification

#Task Specification#
$ Task duration (ms), Number of Tasks
500, 10000
2000, 200000

Figure 6. Example of Network and Task specification file.

TSCSI-2015-02-0101.R2 9

Network Links operate using the same model as nodes but
additionally provide models for latencies and throughput.
Of particular interest is the composition of links whose
endpoints may exist in different simulation instances. In this
case a client-server approach is used which is described
below. As with the Network Nodes, alternative
implementations for Network Links can be used to model
different types of connections such as IR or Bluetooth
connections.
A Task itself can be configured to simulate the interaction
behavior of a real task including the execution time,
resource utilization, and interactions with other simulated
components. Alternatively a Task may be a real process
performing real computation in which case it is treated as a
black box component which can only be controlled at the
points of interaction with the simulator. Specifically, when a
Task interacts with the host Compute Node its allocated
clock manager will suspend the task‘s execution until the
Compute Node‘s clock has been synchronized.

5.2 Distributed Clock Manager
In order to maintain synchronization between clocks in
physically distributed simulator network instances, a
networked clock is used, from experience and experiments
we have found it to be sufficient in maintaining
synchronization across a loosely-coupled infrastructure.
Once a simulator instance is initialized, it registers itself
with the networked Master clock. Following successful
registration of all simulator instances, the Master clock
increments its time T by ∆t. A thread is initialized for each
registered simulator instance and the current value of T is
communicated to the simulator. Once all the simulator
instances have received the current time, the current time
becomes T = T + ∆t. The management of ∆t is handled
entirely by the Master clock and not bound to real world
time; therefore, if there is a delay in communicating to a
simulator instance then the simulated passage of time can
be temporarily slowed down if necessary.

5.3 Network Message Mediator
In order to permit physically distributed simulated network

partitions to inter-communicate, a network message
mediator as shown in Figure 8 has been developed to
support and manage this task. A challenge to overcome was
in the case of a distributed virtual simulator network, a Link
object needs to contain references to two INode objects, both
in different physical simulators. To support this capability,
the Link class is extended to become a Mediator Link. This
new type's constructor method accepts not just the source
INode, however also the ID of the paired Mediator Link in the
corresponding simulator network partition along with the
physical IP address of the compute node hosting that
simulated partition.
Once a data packet is sent to a Mediator Link this is passed on
to a Mediator Server component, one of which is assigned to
each simulator network partition. The Mediator Server
receives a data packet and then marshals it for transport
over the physical network to the Mediator Server associated
with the target simulated partition. The target Mediator
Server locates the paired Mediator Link in the target simulator
Instance, unmarshals the data packets, and then places it in
its send queue. It is important to note that the simulated link
delay only occurs in one of the paired Mediator Links so that
the delay is not artificially doubled.

6 EVALUATION

6.1 Experiment Setup
By using the implementation detailed in Section 5,
experiments were conducted on a University cluster
frequently used by students and researchers consisting of
40 x quad-core Intel machines @ 3.40GHz CPU running
CentOS. Experiments were automated through the use of
bash scripting for simulation partitioning, scheduling and
instantiation.
The effectiveness of the approach is validated through
varying a number of key parameters which are known to
substantially affect simulation performance. This consists of
(i) the size of the physical infrastructure the simulation is
deployed on, and (ii) the amount of Tasks submitted and
executing with the simulation. The simulation used in these
experiments was a script which created a generic CPS

Figure 8. Architecture of Network Mediator operating between two simulation Instances.

TSCSI-2015-02-0101.R2 10

whose topology was shaped given by the number of nodes
and links specified as script inputs. The simulation was
executed on SEED using four different infrastructure sizes
(1, 15, 27 and 40 physical machines), as well as varying
amount of simulated Tasks (200,000, 1,000,000 and 2,000,000)
forming a total of twelve experiment cases, with each
respective case being executed 20 times. The size of the
simulated CPS was configured to 2000 Virtual Nodes within

each simulation in order to compare and contrast simulation
performance for each experiment case. The Simulation
Instantiation component and Master Clock were instantiated
on separate nodes within the infrastructure.

6.2 Evaluation
Table 2 summarizes the performance evaluation of SEED for
different experiment cases with varying simulation and
infrastructure scale. It is observable that SEED allows for

Figure 9. SEED performance evaluation (a) steps per second, (b) simulation execution time,
(c) mean instance instantiation, (d) maximum instance instantiation

(a) (b)

(c) (d)

TABLE 2. STATISTICAL PROPERTIES OF SEED PERFORMANCE EVALUATION.

SEED

nodes

Simulated

Tasks

Mean 100ms

simulation

execution (s)

Med. 100ms

simulation

execution (s)

St. dev. 100ms

simulation

execution (s)

Mean instance

instantiation

(s)

Max. instance

instantiation

(s)

Timesteps/s Slowdown

40 200,000 0.686 0.442 0.603 2.330 5.458 145.810 6.89 x

40 1,000,000 0.733 0.670 0.277 4.170 16.930 136.335 7.36 x

40 2,000,000 0.852 0.825 1.735 20.033 48.815 117.368 8.52 x

27 200,000 0.941 0.647 0.701 2.962 7.680 106.226 9.41 x

27 1,000,000 1.008 0.881 0.916 8.446 24.203 99.229 10.08 x

27 2,000,000 1.214 1.046 1.006 37.380 74.889 82.369 12.14 x

15 200,000 1.135 1.012 0.352 2.160 10.604 88.141 11.35 x

15 1,000,000 1.260 1.146 0.294 22.407 88.052 79.343 12.60 x

15 2,000,000 1.520 1.320 1.941 73.456 141.512 65.780 15.20 x

1 200,000 9.072 8.605 2.259 13.475 13.475 11.023 90.720 x

1 1,000,000 16.470 16.220 2.064 38.079 38.079 6.072 164.70 x

1 2,000,000 30.918 23.400 0.109 123.044 123.044 3.234 309.18 x

TSCSI-2015-02-0101.R2 11

CPS simulation comprised of 2000 Virtual Nodes and
between 200,000 and 2,000,000 Tasks to be conducted 6.89x
to 8.52x relative to real world time when deployed on 40
physical machines, respectively. This result is possible due
to SEED enabling a simulation access to additional
computing power across multiple nodes. Such an approach
intuitively provides advantages over running simulations
on a centralized OTS component, exemplified by the same
simulation configuration executed on a single machine
experiencing significant simulation slowdown at 309.18x
relative to real world time.
It is observable that simulation performance increases when
SEED has access to larger infrastructure, indicated by an
average 45% simulation speed up between 15 and 40

physical machines for all conducted experiments. In
relation, results indicate that performance decreases when
simulations contain more components as shown in Figure
9(a), with similar levels of slowdown occurring across all
infrastructure scale. Such behavior is exemplified within a
single node, where increased number of components in a
single instance results in significant slowdown between
90.720x – 309.18x, and follows similar time step degradation
to larger infrastructure when increasing simulation
complexity as shown in Figure 9(b).
The reason for the behavior described above is due to the
composition of partitioned Instances. Specifically, Instances
containing a large number of components experience
slowdown caused by more frequent and larger volume of

Figure 10. Simulation performance of 2,000,000 tasks on 40 nodes

 (a) all instances, (b) mean and maximum.

Figure 11. Simulation performance of 2,000,000 tasks on 27 nodes

 (a) all instances, (b) mean and maximum.

Figure 12. Simulation performance of 2,000,000 tasks on 15 nodes

 (a) all instances, (b) mean and maximum.

(a) (b)

(a) (b)

 (a) (b)

TSCSI-2015-02-0101.R2 12

state change for executing Tasks (task progress time), Links
(bandwidth) and Virtual Nodes (node capacity). As a result,
increasing the number of partitioned Instances in the
simulation results in reduced components per Instance, thus
reducing simulation slowdown. This behavior is
demonstrated in Figure 9(b), which shows overall
performance degradation in simulation steps/s in the
presence of increased components within the simulation.
Furthermore, we observe that simulation instantiation time
is affected by the size of the physical infrastructure and
simulation scale. As shown in Figure 9(c-d), while
instantiation times of smaller simulations across all
infrastructure configurations is very similar at 2.9 seconds
for 200,000 Tasks, Instance instantiation time becomes more
significant in larger scale simulation reflected by
instantiation time of 37.3 and 73.4 seconds for 2,000,000
simulated Tasks across 1 and 40 physical machines,
respectively. The exception to this however is the single
node, which requires a substantial amount of time to
instantiate a single Instance, ranging between 13.4 – 94.04
seconds for different infrastructure size. Such a result is
worth noting, as the feasibility of developing practical
distributed simulation as a SaaS model must consider this
effect in respect to desired QoS specified by users.
Ideal scalability of SEED would result in a 7.73x slowdown
on 40 physical nodes when simulating 2 million tasks by
extrapolating recorded slowdown on a single node. In
reality an actual slowdown of 8.52x occurs due to additional
network traffic between Instances and the Clock Manager.
This result indicates that increasing system scale even
further will result in network synchronization eventually
becoming a debilitation to simulation execution.
Due to the tight synchronization of instance execution in
accordance to the Master Clock, the simulation must wait for

the slowest instance to reach the global clock simulation
time before advancing. We observe that increasing
infrastructure size reduces the mean and standard deviation
of simulation progression time as shown in Figure 10-12(b),
which shows the mean and maximum Instance execution
time per time step. It is observable that at smaller
infrastructure size, deviation of simulation execution time
increases dramatically in comparison to larger
infrastructure size, reflected by a decreasing standard
deviation in larger infrastructure as shown in Table 2 and
depicted in Figure 10-12(a). While it is observable that this
deviation results in a portion of instances to execute faster
per time step, it also results in slower instance execution as
shown in Figure 9(b). Such behavior results in slower
simulation execution holistically due to the simulator being
unable to progress until all Instances synchronize with the
global Master Clock time step value. Such behavior does not
appear to occur within a single server, as there is no
network jitter within the simulation, expressed as a reduced
deviation for completing 100ms simulation execution as
demonstrated in Table 2.
From the experiments conducted, the actual partitioning of
the simulation into Instances takes less than 0.5 seconds,
while the scheduling of these Instances into the simulator
infrastructure is dependent on the size of partitioned
simulation and file transfer speed between physical nodes.

7 PRACTICALITY OF SEED
In order to demonstrate SEED's effectiveness, we have
implemented a simulation of a production CPS. To achieve
this, we simulated operational characteristics from a real
world production Cloud computing datacenter [34] from
using prior statistically validated models developed within
[33] and [38] for task cluster resource usage and length as
well as server hardware characteristics, respectively. Using
SEED, 100 Virtual Nodes and 1000 Tasks were executed 100
times on a single quad-core Intel machines @ 3.40GHz CPU
running Windows 7 in order to validate accuracy of
generated outputs in comparison to the empirical data.
Figure 13 and 14 demonstrate the accuracy of simulation
outputs in terms of both simulation tasks components
generated and their operational characteristics in terms of
execution length, respectively. It can be observed in Figure
13(a-b) that the Cumulative Distribution Function (CDF) for
execution length for Task type 1 and 3 is statistically similar,
represented by a Lognormal distribution with a location

Figure 13. CDF of Cloud datacenter execution length for
(a) Task type 1, (b) Task type 3.

(a)

(b)
Figure 14. Comparison of task proportions in a Cloud datacenter.

TSCSI-2015-02-0101.R2 13

and scale value difference less than 0.01. Furthermore,
Figure 14 demonstrates that simulated outputs from SEED
are statistically similar to the empirical data, indicated by
0.1% difference between empirical and simulated data.
In terms of performance, it was possible to complete
simulation execution within 24 seconds. This is primarily
due to the small component size and low fidelity level
within an Instance (as discussed in Section 2.1), however for
the purposes of studying scheduling practices and their
effect on server capacity and utilization, SEED provides a
means to effectively run substantial amounts of simulated
CPS operation in a short time frame. While additional
complexity, components and their respective interactions
introduced into the simulator will result in slow down, this
effect can be mitigated due to SEEDs ability to scale to
multiple physical nodes as demonstrated in Section 6.2.

8 CONCLUSION
In this paper we have presented SEED: a novel
service-oriented approach for effective large-scale
Cyber-Physical System simulation. The process and
architecture used for automated partitioning, instantiation
and execution of CPS simulation over a distributed
computing infrastructure is described in detail. Unlike other
approaches, SEED is capable of enforcing event-based
synchronous simulation across loosely-coupled OTS
distributed environments with no assumptions concerning
underlying hardware, as well as minimal user interaction
through the use of XML-based protocols. The approach has
been empirically demonstrated to effectively simulate CPS
operational behavior through experiments conducted at
different simulation sizes and infrastructure scale, as well as
capable of simulating operational behavior of a real
production CPS. A number of conclusions can be made:
SEED provides an effective means to achieve distributed
simulation. Experiments demonstrate that SEED is capable of
simulating 2,000 nodes executing 2,000,000 tasks, slowdown
between 6.4x and 15x relative to real world time, and best
case jitter of 0.277s per simulation time step. Such a result
represents substantial simulation speed-up and interactivity
in comparison to current approaches, and allows the ability
to simulate large-scale CPS operation in order to study
workload characteristics, resource management and
scheduling of large-scale CPSs, exemplified from the
simulation of a production Cloud datacenter.
Important trade-offs must be considered when designing and
deploying distributed simulators As demonstrated from
experiments conducted, simulation performance is directly
correlated to simulation size and computing infrastructure
scale. While larger infrastructure scale results in increased
simulation speed, it also results in higher expenditure and
operational costs. On the other hand, while using smaller
infrastructure results in reduced expenditure, it causes
simulations to require longer periods of time to complete
execution resulting in increased energy costs, as well as
detrimental performance due to increased computation
complexity per instance and jitter in simulation
synchronization. This suggests that it should be possible to
derive an optimal balance between these two options, with

respect to a fulfilling user QoS demands if the simulator is
provided as SaaS (or another type of system design and
functional goal).
The proposed approach is a valuable step in providing
distributed simulation of large-scale CPS environments as a
service, and abstracting the user away from the underlying
hardware to run their simulation. Future work will include
studying and implementing simulation heuristics prior to
execution to optimize simulation performance, running
different types of simulations using emulated and real
system components, as well as deploying SEED in even
larger infrastructure. Furthermore, as the approach has been
demonstrated to accurately simulate a real production CPS
environment, we are currently extending SEED in order to
evaluate a number of proposed resource management
policies under different operational scenarios driven by
dynamic user and application behavior.

References
[1] W. Mueller, M. Becker, A. Elfeky, A. DiPasquale, "Virtual

prototyping of Cyber-Physical Systems," Design Automation
Conference (ASP-DAC), pp.219-226, 2012.

[2] A. M. Law, W.D.Kelton, "Simulation, Modelling and Analysis:
Third Edition", McGraw-Hill Series in Industrial Engineering and
Management Science, 2000.

[3] Huang et al., ―Development of an Automated Testing System for
Vehicle Infotainment System.‖, Intl. Journal of Advanced
Manufacturing Technology, pp. 233-246, 2010.

[4] S.H. Choi, A.M.M. Chan, ―A Virtual Prototyping System for Rapid
Product Development‖, Computer-Aided Design, Vol. 36, Issue 5,
pp. 401-412, 2004.

[5] A. Sulistio, C. S. Yeo, and R. Buyya, ―A taxonomy of
computer-based simulations and its mapping to parallel and
distributed systems simulation tools,‖ Softw. Pract. Exp., vol. 34,
no. 7, pp. 653–673, 2004.

[6] E. Weingartner, H. vom Lehn, and K. Wehrle, ―A Performance
Comparison of Recent Network Simulators,‖ IEEE International
Conference on Communications, pp. 1–5, 2009.

[7] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and
G. F. Riley, ―Large-scale network simulation: how big? how fast?,‖
in 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer Telecommunications
Systems (MASCOTS), pp. 116–123, 2003.

[8] M. Rosenblum, S. A. Herrod, E. Witchel, A. Gupta, ―Complete
computer system simulation: the SimOS approach,‖ IEEE Parallel
Distrib. Technol. Syst. Appl., vol. 3, no. 4, pp. 34–43, 1995.

[9] R. Malhotra, ―Study and Comparison of Various Cloud Simulators
Available in the Cloud Computing,‖ SIJ Trans. Comput. Sci. Eng.
its Applications (CESA), vol. 1, no. 3, 2013.

[10] S. Mohapatra, P. Kanungo, ―Performance analysis of AODV, DSR,
OLSR and DSDV Routing Protocols using NS2 Simulator,‖
Procedia Eng., vol. 30, pp. 69–76, 2012.

[11] Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, ―A toolkit
for modelling and simulating data Grids: an extension to
GridSim,‖ Concurr. Comput. Pract. Exp., vol. 20, no. 13, pp. 1591–
1609, 2008.

[12] M. Turner, D. Budgen, P. Brereton, "Turning Software into a
Service," in IEEE Computer journal, vol. 36, pp.38-44, 2003.

[13] M. P. Papazoglou, W.-J. van den Heuvel, ―Service-Oriented
Computing: State of the Art and Open Research Challenges,‖
Computer (Long. Beach. Calif)., vol. 40, no. 11, pp. 38–45, 2007.

[14] G. Christine and G. Emilie, ―Modelling of distributed system in
one single simulation model: a way to study communications
within distributed systems,‖ IEEE Conference on Emerging
Technologies and Factory Automation, 2, vol. 1, pp. 697–703, 2005.

[15] J. Memon and W. U. Rehman, ―Simulation on Single Server &
Distributed Environment (It‘s Comparison & Issues),‖ World J.
Eng. Technol., vol. 1, no. 2, pp. 23–25, 2013.

[16] W. T. Tsai and R. Paul, ―Modeling and Simulation in
Service-Oriented Software Development,‖ Simulation, vol. 83, no.
1, pp. 7–32, 2007.

TSCSI-2015-02-0101.R2 14

[17] R. Jain, "The art of computer systems performance analysis" John
Wiley and Sons Inc., pp. 391–504, 2008.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, ―Job Scheduling for Multi-User MapReduce
Clusters,‖ Technical Report No. UCB/EEC2S-2009-55, 2009.

[19] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, ―PlanetLab,‖ ACM SIGCOMM
Comput. Commun. Rev., vol. 33, no. 3, pp. 3-12, 2003.

[20] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar, ―An integrated
experimental environment for distributed systems and networks,‖
ACM SIGOPS Oper. Syst. Rev., vol. 36, pp. 255-270, 2002.

[21] P.S. Magnusson, "Simics: A full system simulation platform.
Computer", IEEE Computer Journal, pp. 50–58, 2002.

[22] S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and
B. Falsafi, ―ProtoFlex,‖ ACM Trans. Reconfigurable Technol. Syst.,
vol. 2, no. 2, pp. 1–32, 2009.

[23] H. Kurahata, T. Fuji, T. Miyamoto, and S. Kumagai, ―A UML
Simulator for Behavioral Validation of Systems Based on SOA,‖
Int. Conf. Next Gener. Web Serv. Pract., pp. 3–10, 2006.

[24] S. K. Garg, R. Buyya, ―NetworkCloudSim: Modelling Parallel
Applications in Cloud Simulations,‖ 2011 Fourth IEEE Int. Conf.
Util. Cloud Comput., pp. 105–113, Dec. 2011.

[25] E. Weingaetner, H. Lehn, and K. Wehrle, ―A performance
comparison of recent network simulators,‖ IEEE Intl. Conf. on
Communications, pp. 1-5, 2009.

[26] A. Bashar, ―Modeling and Simulation Frameworks for Cloud
Computing Environment: A Critical Evaluation,‖ in International
Conference on Cloud Computing and Services Science, pp. 1–6,
2014.

[27] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, ―Experiences
Building PlanetLab,‖ in Proc. On USENIX Symp. On Operating
Systems Design and Implementation, pp. 351–366, 2006.

[28] M. Hsieh, J. Meng, M. Levenhagen, K. Pedretti, A. Coskun, and A.
Rodrigues, ―SST + gem5 = A Scalable Simulation Infrastructure for
High Performance Computing,‖ Proc. Fifth Int. Conf. Simul. Tools
Tech., pp. 196-201, 2012.

[29] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C.
Celio, J. Eastep, and A. Agarwal, ―Graphite: A distributed parallel
simulator for multicores,‖ in HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer
Architecture, pp. 1–12, 2010.

[30] M. Lacage and T. R. Henderson, ―Yet another network simulator,‖
Proceeding from 2006 Work. ns-2 IP Netw. simulator - WNS2 ‘06,
Article. 12, 2006.

[31] A. Nunez, J. Ferna, and J. Carretero, ―New Contributions for
Simulating Large Distributed Systems,‖ 2010 IEEE/ACM 14th Int.
Symp. Distrib. Simul. Real world time Appl., pp. 227–230, 2010.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, A. F. De Rose,
―CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,‖ Software Practice & Experience, vol. 41, pp. 23–50,
2011.

[33] I.S. Moreno, P. Garraghan, P. Townend, J. Xu, "Analysis, Modeling
and Simulation of Workload Patterns in a Large-Scale Utility
Cloud," IEEE Transactions on Cloud Computing, vol. 2, no. 2,
pp.208-221, 2014.

[34] C. Reiss, J. Wilkes, J. Hellerstein, ―Google Cluster-Usage Traces:
Format Schema,‖ Google Inc., Mountain View, CA, USA, White
Paper, 2011.

[35] J. C. Mogul, ―Internet subnets.‖, in Internet Engineering Task Force
RFC 917, 1984, http://tools.ietf.org/html/rfc917.

[36] A. Barrat, et al. "The architecture of complex weighted networks."
Proceedings of the National Academy of Sciences of the United
States of America pp. 3747-3752, 2004.

[37] R.M Fujimoto, "Distributed simulation systems," Simulation
Conference, 2003. Proceedings of the 2003 Winter , vol.1, no.,
pp.124-134, 2003.

[38] P. Garraghan, I.S. Moreno, P. Townend, J. Xu, "An Analysis of
Failure-Related Energy Waste in a Large-Scale Cloud
Environment," IEEE Transactions on Emerging Topics in
Computing, vol.2, no.2, pp.166-180, 2014.

[39] C. Reiss , A. Tumanov , G. R. Ganger , R. H. Katz , M. A. Kozuch,
"Heterogeneity and dynamicity of Clouds at scale: Google trace
analysis", Proceedings of the Third ACM Symposium on Cloud
Computing, pp.1-13, 2012.

[40] I.S. Moreno, J Xu, "Neural Network-Based Overallocation for
Improved Energy-Efficiency in Real world time Cloud
Environments," IEEE 15th Intl. Symposium on
Object/Component/Service-Oriented Real-time Distributed
Computing (ISORC), pp.119-126, 2012.

Peter Garraghan is a Research Fellow in
the School of Computing, University of
Leeds and a visiting researcher at
Beihang University, China. He has
industrial experience building large-scale
systems and his research interests include
distributed systems, Cloud computing,
large-scale simulation, data analytics and
energy-efficient computing.
David McKee is a PhD student in the
School of Computing, University of
Leeds, UK. He received the M.Eng.
degree in Computer Systems and
Software Engineering from the
University of York, UK. His research
interests include real world time
service-orientation as well as large-scale
distributed system simulation.
Xue Ouyang is a PhD student in the
School of Computing, University of
Leeds. She received her B.Eng. degree in
Network Engineering and M.Eng. degree
in Software Engineering from National
University of Defense Technology, China.
Her primary research interest lies in
improving service performance within
distributed systems.
David Webster is a Research Fellow
working in the School of Computing at
the University of Leeds. He has published
over 20 peer-reviewed papers in the fields
of distributed systems since 2004. David's
primary research focus is in the area of
service-orientation in distributed systems
and mechanisms to handle their
evolvable nature.
Jie Xu is Chair of Computing at the
University of Leeds and Director of the
UK EPSRC WRG e-Science Centre. He
has industrial experience in building
large-scale networked systems and has
worked in the field of dependable
distributed computing for over 30 years.
He is a Steering/Executive Committee
member of IEEE SRDS, ISORC, HASE,

SOSE, etc. and a co-founder of the IEEE Conference on
Cloud Engineering (IC2E). He has led or co-led many
research projects to the value of over $30M, and published
over 300 research papers.

http://tools.ietf.org/html/rfc917

