Mapping the risk of snakebite in Sri Lanka:a national survey with geospatial analysis

Ediriweera, Dileepa and Kasturiratne, Anuradhani and Pathmeswaran, Arunasalam and Gunawardena, Nipul Kithsiri and Wijayawickrama, Buddhika Asiri and Jayamanne, Shaluka Francis and Isbister, Geoffrey Kennedy and Dawson, Andrew and Giorgi, Emanuele and Diggle, Peter John and Lalloo, David G. and de Silva, Hithanadura Janaka (2016) Mapping the risk of snakebite in Sri Lanka:a national survey with geospatial analysis. PLoS Neglected Tropical Diseases, 10 (7). ISSN 1935-2727

Full text not available from this repository.


Background There is a paucity of robust epidemiological data on snakebite, and data available from hospitals and localized or time-limited surveys have major limitations. No study has investigated the incidence of snakebite across a whole country. We undertook a community-based national survey and model based geostatistics to determine incidence, envenoming, mortality and geographical pattern of snakebite in Sri Lanka. Methodology/Principal Findings The survey was designed to sample a population distributed equally among the nine provinces of the country. The number of data collection clusters was divided among districts in proportion to their population. Within districts clusters were randomly selected. Population based incidence of snakebite and significant envenoming were estimated. Model-based geostatistics was used to develop snakebite risk maps for Sri Lanka. 1118 of the total of 14022 GN divisions with a population of 165665 (0.8%of the country’s population) were surveyed. The crude overall community incidence of snakebite, envenoming and mortality were 398 (95% CI: 356–441), 151 (130–173) and 2.3 (0.2–4.4) per 100000 population, respectively. Risk maps showed wide variation in incidence within the country, and snakebite hotspots and cold spots were determined by considering the probability of exceeding the national incidence. Conclusions/Significance This study provides community based incidence rates of snakebite and envenoming for Sri Lanka. The within-country spatial variation of bites can inform healthcare decision making and highlights the limitations associated with estimates of incidence from hospital data or localized surveys. Our methods are replicable, and these models can be adapted to other geographic regions after re-estimating spatial covariance parameters for the particular region. Author Summary Snakebite is a neglected tropical disease which mainly affects the rural poor in tropical countries. There is little reliable data on snakebite, which makes it difficult to estimate the true disease burden. Hospital statistics underestimate numbers of snakebites because a significant proportion of victims in tropical countries seek traditional treatments. On the other hand, time limited or localized surveys may be inaccurate as they may underestimate or overestimate numbers depending on when and where they are performed. To get a truer picture of the situation in Sri Lanka, where snakebites are an important cause of hospital admission, we undertook an island-wide community survey to determine the number of bites, envenomings and deaths due to snakebite in the previous 12 months. We found that there were more than 80,000 bites, 30,000 envenomings and 400 deaths due to snakebite, much more than claimed by official statistics. There was variation in numbers of bites and envenomings in different parts of the country and, using the data from our survey, we were able develop snakebite risk maps to identify snakebite hotspots and cold spots in the country. These maps would be useful for healthcare decision makers to allocate resources to manage snakebite in the country. We used free and open source software and replicable methods, which we believe can be adopted to other regions where snakebite is a public health problem.

Item Type:
Journal Article
Journal or Publication Title:
PLoS Neglected Tropical Diseases
Additional Information:
Copyright: © 2016 Ediriweera et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
19 Oct 2016 13:24
Last Modified:
21 Sep 2023 02:08