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Unsupervised image classification is an important means to obtain land use/cover information 

in the field of remote sensing, since it does not require initial knowledge (training samples) 

for classification. Traditional methods such as k-means and ISODATA have limitations in 

solving this NP-hard unsupervised classification problem, mainly due to their strict 

assumptions about the data distribution. The bee colony optimization (BCO) is a new type of 

swarm intelligence, based upon which a simple and novel unsupervised bee colony 

optimization (UBCO) method is proposed for remote sensing image classification. UBCO 

possesses powerful exploitation and exploration capacities that are carried out by employed 

bees, onlookers and scouts. This enables the promising regions to be globally searched 

quickly and thoroughly, without becoming trapped on local optima. In addition, it has no 

restrictions on data distribution, and thus is especially suitable for handling complex remote 

sensing data. We tested the method on the Zhalong National Nature Reserve (ZNNR)—a 

typical inland wetland ecosystem in China, whose landscape is heterogeneous. The 

preliminary results showed that UBCO (overall accuracy = 80.81%) achieved statistically 

significant better classification result (McNemar test) in comparison with traditional k-means 

(63.11%) and other intelligent clustering methods built on genetic algorithm (UGA, 71.49%), 

differential evolution (UDE, 77.57%) and particle swarm optimization (UPSO, 69.86%). The 

robustness and superiority of UBCO were also demonstrated from the two other study sites 

next to the ZNNR with distinct landscapes (urban and natural landscapes). Enabling to 

consistently find the optimal or nearly optimal global solution in image clustering, the UBCO 

is thus suggested as a robust method for unsupervised remote sensing image classification, 

especially in the case of heterogeneous areas.   

1．．．．Introduction 

Land use/cover data is very important for diverse disciplines including ecology, geography, 

climatology, etc. (Lu and Weng 2007, Huang and Laffan 2009, Otukei and Blaschke 2010). 

For example, it is required in a lot of ecological applications such as assessing species 
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distributions modeling and carbon stocks estimation (Kerr and Ostrovsky 2003, Jain and Yang 

2005). Remote sensing has been recognised as an efficient tool to acquire land use/cover 

information because of its unique advantages including synoptic view, multi-temporal 

coverage and cost-effectiveness. Scientists and practitioners have put substantial efforts into 

the field of remote sensing image classification and a number of methods have been described 

(Melgani and Bruzzone 2004, Bagan et al. 2005, Fisher 2010). However, an accurate remote 

sensing classification is still of a great challenge due to the complexity of remote sensing data 

(Guerschman et al. 2003). 

Generally, there are two types of classification methods, supervised and unsupervised. 

Supervised methods such as maximum likelihood classifiers can generate good results in 

various kinds of applications (Melgani and Bruzzone 2004, Wright and Gallant 2007, Adam et 

al. 2014). Such methods, however, require prior knowledge (training samples) to guide the 

classification, and the classification results rely heavily on the number and quality of training 

samples (Chuvieco and Congalton 1988). The collection of training samples can be rather 

time-consuming and labour intensive (Duda and Canty 2002). Without prior definition and 

knowledge, unsupervised methods classify images utilise only the statistical information 

inherent the image (Cihlar et al. 1998). Therefore, they are superior to the supervised 

approaches for applications where the user has little prior knowledge about the available data 

(Li et al. 2016). Because of their simplicity and efficiency, unsupervised methods have been 

widely used in a variety of remote sensing applications (Xiao et al. 2002, Miller and Yool 

2002, Schmid et al. 2004, Bartholomé and Belward 2005).  

k-means, in which a fixed class number is employed, is one of the most commonly used 

methods for unsupervised image classification. The method starts with a number of arbitrary 

centres, usually chosen from the image pixels; then each pixel is assigned to the centre nearest 

to the pixel. Subsequently, each centre is recalculated as the mean of all pixels classified to it. 

The assignment and centre recalculation steps are repeated until a predefined termination 

condition is satisfied (Jain 2010). While ISODATA, a variation of k-means, is another 

frequently used method which adjusts the class number during program execution (Goncalves 

et al. 2008). In spite of its simplicity and ease of application, k-means exhibits some 

shortcomings that can seriously affect its classification result: 

(1) sensitivity to the initial conditions (Khan and Ahmad 2004),  

(2) inability to reach the global optimal solution (Jain 2010), and  

(3) requirement to the distribution of available data (Shah et al. 2004). 

The rapid development of artificial intelligence provides new opportunities in the field of 

remote sensing classification, and several ‘intelligent’ algorithms, such as genetic algorithm 

(GA) and ant colony optimization (Liu et al. 2008, Pal 2008) have been introduced. GA is a 

commonly used and typical intelligent algorithm in the field of image classification (e.g. 

Maulik and Bandyopadhyay 2000), which transforms image classification to an optimization 

problem. Initially, a population of candidate solutions is created randomly and each solution is 

viewed as a chromosome. Solutions are then chosen for reproduction by a selection operator 

according to their fitness; these selected solutions are further refined by crossover and 

mutation operators when breeding to produce the next cycle; the iteration continues until a 

predefined termination criteria is met. Two other intelligent algorithms that draw increasing 

attention among researchers of different disciplines are differential evolution (DE) (Storn and 
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Price 1995, Price et al. 2005) and particle swarm optimization (PSO) (Eberhart and Kennedy 

1995). DE employs the same three operators (crossover, mutation and selection) as GA, to 

improve the population of candidate solutions. But, different from GA, the chance being 

selected as parents is equal for all solutions in DE. Each solution produces a mutant (mutation) 

which then competes with its parent: the better one (with higher fitness) wins the competition 

(crossover). As for PSO, the optima in a solution space is found by simulating the social 

behaviour of bird flocking and fish schooling. Here, positions (possible solutions of the 

problem) of a population of particles are changed according to the current optimum particles 

in each iteration. As a result, good information spreads through the population, which leads 

the particles towards good areas, i.e. searching for the optimal solution.    

Recently, bee colony optimization (BCO), a new type of swarm intelligence, has been 

successfully applied to diverse fields such as numerical function optimization (Karaboga and 

Basturk 2007), data mining (Shukran et al. 2011) and image processing (Horng 2011). 

Previous studies have demonstrated that BCO can outperform other intelligent methods in 

searching for an optimal solution (Karaboga and Basturk 2008, Karaboga and Akay 2009) and 

can solve complex NP-hard problems (Non-deterministic Polynomial 

hard computational problems that cannot be solved in polynomial time; these problems are 

some of the most difficult problems to solve in computing, as increases in computing power 

can provide only marginal benefits) such as the travelling salesman problem (Karaboga and 

Basturk 2008, Wong et al. 2010). However, few attempts have been made to apply this 

promising method to unsupervised remote sensing classification, which belongs to the family 

of NP-hard problems (Admane et al. 2006). Banerjee et al. (2012) and Deriche and Fizazi 

(2015) respectively proposed two BCO-based unsupervised image classification methods, in 

which the image was classified pixel by pixel through judging the belonging of neighborhood 

pixels of the classified pixels. The two methods are therefore dependent on expert knowledge 

to some extent, and do not consider the general characteristics of the image.  

The objective of this paper is to propose a novel unsupervised bee colony optimization 

(UBCO) method for image classification based on BCO. UBCO was tested with three 

different landscapes located within or surrounding the Zhalong National Nature Reserve, 

China, a typical complex and heterogeneous inland wetland area. The performance of the 

proposed method was compared with traditional k-means and three intelligent classification 

methods built on the above-mentioned GA, DE and PSO. To the best of our knowledge, this is 

the first application of this method to the completely unsupervised image classification 

problem.  

2 Bee colony optimization (BCO) 

BCO simulates the behaviours of real bees in the process of seeking the best food source 

when collecting nectars. It has been discovered that bees in colonies consist of three groups: 

employed bees, onlookers and scouts, of which the latter two groups are called unemployed 

foragers. When seeking food, bees communicate with each other through a waggle dance 

performed in the dancing area of a hive (Karaboga and Basturk 2007). A bee that has found a 

food source (employed bee), will share information about the location of the food supply with 

onlookers (with a certain probability of effective communication) through the waggle dance. 
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After watching the waggle dance on the dancing floor, an onlooker will choose to follow the 

employed bee with the most profitable food source. The more profitable food sources are 

chosen with a greater probability by the onlookers because much more information about 

these sources is propagated. Recruitment is therefore proportional to the profitability of the 

food source (Karaboga et al. 2014), and a bee colony maximises its profit through this mutual 

cooperation behaviour among individuals.  

 

Figure 1 is here 

 

The process by which a bee colony seeks food is illustrated by Figure 1, in which a “Hive” 

consists of “Waggle dance area” (for employed bees sharing food source information), 

“Nectar A” (a discovered food source), and “Unknown nectar” (a possible food source). In the 

beginning, a potential forager has no knowledge about the food sources around the nest. At 

this time, she has two possible options: one is to be a ‘scout’ and start searching for a food 

source near the nest randomly (route ‘S’ in Figure 1). The other is to be recruited after 

watching the waggle dances and then begin searching for a food source (route ‘R’ in Figure 1). 

After finding a food source, the forager is employed and returns to the hive with food 

information (i.e. nectar position and amount). After unloading the food, the employed forager 

may become an uncommitted follower (route ‘UF’) by abandoning the current food source, or 

dance to recruit potential foragers (route ‘EF1’), or return to the food source directly without 

recruiting bees (route ‘EF2’).  

3 Unsupervised bee colony optimization (UBCO) method 

The UBCO method was developed from the BCO, and is proposed for unsupervised remote 

sensing image classification. Figure 2 briefly illustrates the procedure of UBCO for 

unsupervised remote sensing image classification, details of which will be provided in the 

following sections. 

 

Figure 2 is here 

 

3.1 Basic principle. Suppose an image consists of N  pixels with n  attributes and m  

classes for classification. UBCO identifies the image by determining a fixed number ( m ) of 

optimal cluster centres (C1, C2,…, Cm) to minimise the clustering metric. The clustering 

metric (M ) is the sum of the Euclidean distances from the pixels to their respective cluster 

centres, a widely used metric in unsupervised methods of commercial remote sensing 

software (e.g. ENVI), which can be calculated as follows: 

                       

∑ ∑
= ∈

−=
m

i x
ij

ij

zxM
1 C              

           (1) 

where jx  represents an arbitrary pixel of the image belonging to class i ( =i 1, 2, …, m ), 

with iz  as its cluster centre and j  is the number of pixels in class i .  
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3.2 Control parameters. Three commonly used control parameters include the number of 

released artificial bees (Num_Bee), the maximum number of iterations (Max_Iter), and the 

limit of the searching time allowed (Lim_Time) are provided for UBCO. Num_Bee controls 

the number of candidate solutions, Max_Iter provides the termination criterion for iterations, 

and Lim_Time determines the number of released scouts. The parameter Lim_Time can be 

computed with the following equation (Karaboga and Akay 2009): 

                     Lim_Time = ×D
2

1
 Num_Bee

 
                     (2) 

where D  is the dimension of the problem to be solved. 

Suppose p  bees are released, of which 2/p  bees will be used as employed bees and 

the other half as unemployed bees. If a food source cannot be improved through a predefined 

number (Lim_Time) of trials, then it will be abandoned and the corresponding bee will 

become a scout looking for food sources without any guidance.  

 

3.3 Food source representation. In this paper, the cluster centre of an arbitrary class is 

represented with a sequence of real numbers, the number of which equals the number of 

attributes (n ). A food source is formed by connecting the cluster centre of each class (see 

Figure 3), whose length is mn ×  ( m , the number of classes). Here, the first n  positions 

in the food source represent the cluster centre of class one, the second n  positions represent 

that of class two, and so on. For example, consider a classification composed of two attributes 

and two classes. A food source (15.1 20.2 24.3 25.4) denotes the cluster centres (15.1 20.2) 

for class one and (24.3 25.4) for class two.  

 

Figure 3 is here 

 

3.4 Food source initialisation. Each employed bee is initially assigned a random food source, 

whose initial position can be created as follows: 

                    ))(1,0(rand minmaxmin
jjjj

i XXXX −+=                (3) 

where 
j
iX  is the position at the j th attribute for the i th bee, 

jX min  and 
jX max is the 

minimum and maximum value of the j th attribute respectively, and )1,0(rand  is a 

random value ranging from 0 to 1.  

 

3.5 Food source evaluation. The profit of a food source is evaluated using the following 

steps: 

Step 1, each pixel ix ,i =1, 2, …, N , is assigned to one of the clusters Cj with cluster 

centre jz  satisfying the equation: 
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                       liji zxzx −<−  ,                       (4) 

where lz  is the cluster center of cluster Cl, =j 1, 2, …, m , =l 1, 2, …, m , and 

lj ≠ .  

Step 2, considering the fact that the greater the cluster metric is the poorer the food source 

will be, to ensure food sources with higher nectar (lower cluster metric) possess higher profit, 

a profit function is defined as follows:  

                          )1/(1 += Mf ,                           (5) 

where the cluster metric M  is calculated using Equation (1). 

 

3.6 Food source searching of employed bee. An employed forager, after having assessed the 

profit of the current food source, randomly searches for a new food source position nearby 

according to Equation (6), after which the profit is evaluated. If the food source has a higher 

nectar amount it will be chosen as her new food source.  

                         )( j
k

j
i

j
i

j
i

j
i XXXV −+= θ .                     (6) 

Here 
j
iV  is the new food source position of the i th bee at the j th attribute ( =j 1, 2, …, 

n ); 
j
iX  and 

j
kX  is the food source position of the i th and k th bee at the j th attribute, 

respectively, where ∈ki, {1, 2, … , 2/p } and ik ≠ ; 
j
iθ  is a random value 

ranging from -1 to 1.  

 

3.7 Searches for food sources by onlookers. After each food source search, the information 

about the locations of nectar will be shared by employed foragers through a waggle dance. 

The onlookers will then choose food sources to follow, with the probability (reflecting the 

amount of nectar) )( iXP , which is calculated as follows: 

                           

∑
=

=
e

1

N
)X(f

)X(f
)X(P

i
i

i
i ,                       (7) 

where iX  is the position of the i th bee’s food source, )( iXf  is the nectar amount of the 

food source iX , and eN  is the number of employed bees. When initiating a search, the 

onlookers become employed bees to further search for food sources (Section 3.6), and much 

more attention can be paid to the richer food sources.  

 

Page 6 of 31

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

7 

 

3.8 Local and global searching for food sources. For an employed bee, if the predefined 

searching time limitation (i.e. Lim_Time) is reached before an improved food source is found, 

the current food source will be abandoned, and a new food source position will then randomly 

be created based on Equation (3). This initiates global searching; otherwise, food source 

searching (i.e. local searching) continues according to Equation (6).  

 

3.9 Iteration termination and image classification. When a search iteration is finished by 

all the bees, the best food source is recorded and compared with that of the previous iteration; 

the better one is chosen as the current global optimal food source. The search iteration stops 

when the number of maximum iterations (Max_Iter) is reached, and the global optimal food 

source, i.e. a group of cluster centres as the solution of the unsupervised classification 

problem, is then obtained; otherwise, the iteration continues. Using the derived optimal food 

source, the image is classified and a thematic map is generated. 

4 Study area and data 

Zhalong National Nature Reserve (ZNNR), located on Songnen Plain of Northeast China, was 

built to protect existing wetland resources in 1979 and is currently of international importance 

by providing habitats for hundreds species of fauna and flora (Wang et al. 2006). The major 

wetland types of ZNNR are marsh (mainly in the low-lying land), meadow (mainly on plains 

or low-lying areas) and water. The marsh is composed of mostly Phragmites australis and 

some Care, the meadow is dominated by Tenuiflora and Pennisetum, and the water consists of 

lake and seasonal ponds formed by the accumulation of rainwater. 

 

Figure 4 is here 

 

The test area of ZNNR, a hybrid ecosystem integrated by natural wetland and anthropic 

farmland, is the focus of our test site 1 (310×310 pixels; Figure 4). To further test the 

robustness of UBCO, two other study sites next to the ZNNR (Figure 4) with distinct 

landscapes were also included in this paper: site 2 (328×330 pixels) covers the Qiqihar city – 

an urban landscape, and site 3 (214×215 pixels) includes primarily bare soil – a natural 

landscape. For image classification, five categories (marsh, meadow, farmland, saline land 

and water) were identified in site 1, while four classes (water, road, vegetation and building) 

were chosen in site 2 and four classes (water, farmland, bare soil and saline land) in site 3. 

The classification schemes were established based on two considerations: the spectral 

differences among various land cover classes in the TM imagery (moderate spatial and 

spectral resolution) employed in this study; and the separability of vegetation classes in the 

context of unsupervised classification.  

One scene of cloudless and terrain-corrected Landsat 5 TM imagery (Row/Path: 120/27), 

dated on 27 August 2007, was acquired through the USGS Earth Resource Observation 

Systems Data Centre (http://glovis.usgs.gov/). The image provides 30 m spatial resolution in 

six multi-spectral bands (bands 1-5 and band 7) with spectral wavelengths ranging from 0.45 

to 2.35µm. The thermal infrared band was removed due to its unsuitability for land cover 

classification (Na et al. 2010). For geometric correction, a topographic map at the scale of 
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1:50 000 that covered the imagery was acquired from the China Wetlands Science Database 

(http://marsh.neigae.csdb.cn/), on which the TM imagery was rectified and geo-referenced to 

the Gauss Kruger projection system using 60 ground control points evenly distributed across 

the image. A first order polynomial model was used for this rectification with a pixel size of 

30 m and root mean square (RMS) errors less than 0.5 pixels (Richards and Jia 1999). 

Ground sample plots for classification accuracy validation were identified from field 

surveys using a hand-held GPS during the late September 2006, and a scene of high spatial 

resolution SPOT-5 imagery (Row/Path: 291/255) dated on 12 September 2006. A stratified 

random sampling was adopted to obtain an adequate number of samples for rare land cover 

classes (Congalton 1991, Stehman 2009). To acquire a representative sample and reduce 

geometric errors in image rectification and GPS reading, sample plots were collected in 

homogeneous regions with an area larger than about 1000 m2. For a reasonable evaluation of 

accuracy, the number of sample plots in each category is proportional to its area (Na et al. 

2010). In addition, plots in each category were spatially dispersed with a minimum distance 

of 90 m (3 pixels) to reduce spatial autocorrelation. Finally, a total of 740, 500 and 433 

sample plots were collected in the three study sites respectively for determining classification 

accuracy.  

5 Results 

Similar to BCO searching for the optimal solution (a group of cluster centres) in UBCO, other 

three intelligent algorithms (GA, DE and PSO) of standardised versions were also employed 

for image clustering. For convenience, the later three image clustering methods were denoted 

as UGA, UDE and UPSO, respectively in the following text. To make a fair comparison, the 

common parameters of the four intelligent methods (UGA, UDE, UPSO and UBCO) were 

assigned with the same values, i.e. the maximum iteration number = 1000; population size = 

40. Other parameters in each of the four methods were respectively designated as follows: for 

UGA, crossover rate = 0.8, mutation rate = 0.01, generation gap=0.9; for UDE, crossover rate 

= 0.9, constant factor F  = 0.5; for UPSO, acceleration coefficients 21 cc =  = 1.8, inertia 

weight ω  = 0.6; for UBCO, the value of Lim_Time for study site 1 was 600, with 30 

variables (product of 6 attributes and 5 classes); and 480 respectively for sites 2 and 3, with 

24 variables (product of 6 attributes and 4 classes). As a benchmark, k-means was also 

employed with running parameters: the maximum iteration number = 1000, the pixel change 

threshold = 0%. The same reference ground data were used for classification accuracy 

evaluation of the results of five methods for the three study sites.  

Figures 5, 6 and 7 illustrate the land-cover classification results of the three study sites. 

The confusion matrices and classification accuracies (overall accuracy, the producer’s 

accuracy (PA) and the user’s accuracy (UA)) are listed in Tables 1, 2 and 3, and the 

corresponding Kappa coefficients and their variances, as well as the Kappa Z-test (Congalton 

and Green 2008) and McNemar test (Foody 2004) results for the three classifications are 

given in Table 4. In addition, two recently proposed parameters, quantity disagreement and 

allocation disagreement, which are proved to be more useful than Kappa coefficient in 

summarizing a confusion matrix of classification (Pontius and Millones 2011), were also 
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calculated and are shown in Figure 8. In general, UBCO outperformed k-means, UGA, UDE 

and UPSO methods, with an increase of overall accuracy by 17%, 9%, 3% and 11% 

respectively for site 1 (Table 1), 7%, 4%, 1% and 1% respectively for site 2 (Table 2). For site 

3, improvements were 2%, 19%, 4% and 11% respectively (Table 3). 

 

Figures 5, 6, 7 and 8 are here 

 

For site 1 the PA and UA for meadow, saline land and water classes showed consistently high 

accuracy (mostly greater than 80%) throughout the classifications of five methods, due to 

their distinct spectral characteristics of this study site. However, the differentiation between 

marsh and farmland was very poor in k-means map (Figure 5 (b) and Table 1), due to their 

similar spectral characteristics, with a large number of pixels of the two classes being 

misclassified as each other, resulting in lower PA (21 and 71%) and UA (45 and 42%) for 

marsh and farmland. This poor performance of k-means can also be inferred from the largest 

total disagreement (36.90%; quantity disagreement plus allocation disagreement) of the 

classification (Figure 8). A notable improvement in these differentiations was observed in the 

UGA and UPSO classifications, but an overestimation of the marsh area occurred (Figures 5 

(c) and (e)). In contrast, better discrimination between marsh and farmland was achieved by 

UDE and UBCO, which increased UA of marsh substantially. However, it is noted that UBCO 

achieved better results than UDE. The total disagreement of UBCO (19.19%) decreased 

further in comparison with that of UDE (22.44%). The McNemar test indicated that UBCO 

performed significantly better than k-means, UGA, UDE and UPSO (Table 4). 

 

Tables 1, 2, 3 and 4 are here 

 

For site 2 k-means (Figure 6 (b)) performed relatively poor in discriminating land cover 

classes. Large areas of building in k-means were misclassified as road, resulting in the lowest 

UA (50%) and PA (53%) for road and building (Table 2), respectively. Large quantity 

disagreements (> 16%) were also found for the classification (Figure 8). Fortunately, better 

and similar classification results were obtained by UGA (Figure 6 (c)), UDE (Figure 6 (d)), 

UPSO (Figure 6 (e)) and UBCO (Figure 6 (f)), in which road was successfully discriminated 

from building, despite of some overestimation. Among the four classifications, UBCO 

achieved the highest overall accuracy (87.80%; Table 2) and the least total disagreement 

(12.20%; Figure 8). Kappa Z-test further indicated that UBCO performed significantly better 

than k-means, but it presented no significant improvement over UGA, UDE and UPSO (Table 

4). 

   When applied to site 3, similar but poor classification results were generated by UGA 

(Figure 7(c)) and UPSO (Figure 7(e)), with large areas of bare soil being misidentified as 

saline land, especially in the right of the map (dominated by bare soil, Figure 7(a)), 

demonstrating a poor PA (< 51%) in bare soil and a lower UA (< 62%) in saline land for both 

classifications (Table 3). Large values of total disagreement (> 24%; Figure 8) were also 

observed in the two classifications (UGA and UPSO). UDE performed better than UGA and 

UPSO, but still not good enough. However, satisfactory classification results were achieved 

by the rest two methods (k-means and UBCO) (Table 3 and Figure 7), with overall accuracies 

Page 9 of 31

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 

 

larger than 85% and total disagreements lower than 15%. The McNemar test also suggested 

that k-means and UBCO produced statistically significantly better results than UGA, UDE 

and UPSO (Table 4). There was no significant difference between two best methods (k-means 

and UBCO), in spite of the slight outperformance of UBCO over k-means. 

 

Figures 9 and 10 are here 

 

To evaluate the robustness of the proposed image classification method, the five methods 

(k-means, UGA, UDE, UPSO and UBCO) were implemented 10 times for each study site. 

The corresponding clustering metric values and classification results (represented by the 

overall accuracies) are shown in Figure 9 and 10, respectively. It is clear that better and more 

stable clustering metric values and classification accuracies were achieved by UBCO over all 

the three study sites. This suggests that UBCO could consistently find the optimal or nearly 

optimal global solution in remote sensing image classification. In contrast, relatively poorer 

and less stable results were observed for k-means, UGA, UDE and UPSO (especially in site 1), 

suggesting that they were susceptible to being trapped on local optima at least in the 

experiments covered here. 

 

Table 5 is here 

 

To fairly compare the speed of the methods, the number of fitness function evaluations (FEs) 

(Das et al. 2008), instead of computing time that may be disturbed by many factors, was 

chosen as a measure of computational complexity. Note that all of the five methods were 

implemented in a MATLAB environment, and run on a personal computer with 3.20-GHz 

CPU and 8.0-GB memory. Table 5 shows the mean number of FEs required by the five 

methods for finding the optimal solution (i.e. the solution with the minimum clustering metric 

value after 1000 cycles) over the three study sites. As expected, due to the complex searching 

strategy, an obviously larger number of FEs was required by the intelligent methods in 

comparison with the simple k-means. Thereinto, UPSO had the least number of FEs, followed 

by UBCO, UDE and UGA. 

6 Discussion   

An unsupervised image classification can be regarded as essentially an optimization problem, 

which requires an optimal set of cluster centres to assign the pixels with similar features to the 

same class. Traditional methods (e.g. k-means) are constrained by the requirement that the 

data have certain distributions (Shah et al. 2004). Intelligent optimization algorithms, without 

such data assumptions but with a good searching ability, provide a new means of addressing 

image classification problems. However, common optimization methods such as genetic 

algorithms have difficulty finding global optimal solutions for remote sensing image 

classifications, due to the very large solution spaces that need to be explored and the 

complexity of the data. In this paper, an unsupervised bee colony optimization (UBCO) 

method was proposed because of its explicit and inherent global searching capacity. 

The UBCO described in this paper possesses unique search strategies consisting of 

Page 10 of 31

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

11 

 

exploitation and exploration processes carried out by employed bees, unemployed onlookers 

and scouts. In terms of exploitation (local searching), despite the increase in the proportion of 

promising solutions in a population (through a selection operator), UGA employs a random 

exploitation without special consideration of promising solutions, which can lead to slow 

convergence (Yen et al. 1998). Both UDE and UPSO adopt a greedy selection strategy 

between the candidate and parent solutions to exploit better ones, thereby allowing the better 

solutions to win the competition. But a better solution, even if the best one, can only be 

exploited one time in each iteration, without further seeking candidates nearby. In contrast, a 

hierarchical exploitation strategy is implemented by UBCO, where food sources are exploited 

by employed bees to yield preliminary judgments based on which richer food sources 

(promising solutions) are targeted and exploited by onlookers. As a result, promising regions 

can be searched faster and more thoroughly than with UGA, UDE and UPSO. Both UGA and 

UDE achieves exploration by mutating a part of a chromosome (solution) to maintain 

population diversity, however, the exploration range is too limited to discover new promising 

solution spaces (Jung 2003), which may lead to trapping on local optima. In contrast, in 

UBCO if a solution is proved worthless to the population, the whole solution, rather than parts 

of it, will be replaced by a randomly created new one by means of releasing scouts. Such a 

mechanism not only guarantees the diversity of the population, but also lets the final solution 

to be independent of the initial population, thus providing a global search capacity. Thanks to 

these powerful and balanced exploitation and exploration capabilities, UBCO outperformed 

the other four methods over all the three study sites examined here. However, we do not claim 

that UBCO may outperform other methods in all image clustering applications because of the 

complexity and diversity of remote sensing imagery.  

In comparison with the previous BCO-based unsupervised image classification methods 

that rely on some prior knowledge on the image (Banerjee et al. 2012, Deriche and Fizazi 

2015), the newly proposed UBCO approach has the following advantages: first, in no need of 

any prior knowledge, the image is classified purely based on the statistical information 

inherent the image; second, the image is treated as a whole, rather than pixel by pixel, by a 

group of cluster centres (the food source of BCO) identified by BCO itself, thus suitable to 

handle heterogeneous landscapes; third, only three running parameters are required in UBCO, 

much fewer than those of previous BCO-based methods. 

Although performed better in our experiments, UBCO is generally more computationally 

demanding than the simple k-means due to its complex and global searching strategies (Table 

5), especially in the face of large and complex data sets. Such a problem can be alleviated to 

some extent with the progress of modern computational techniques, such as cloud and high 

performance computing (Plaza and Chang 2007, Lee et al. 2011). In fact, speeding up the 

convergence of optimization algorithms by using parallel computation technology remains an 

active field of research (Chang et al. 2009, Mussi et al. 2011). We note that UBCO is 

particularly suitable for parallel computation (Narasimhan 2009), thanks to the high degree of 

independence between the individuals of a bee colony, and consequently improvements in 

convergence times might be expected. 

It is interesting to note that UBCO achieved significantly better results than the other four 

methods in site 1, where landscape is heterogeneous. The considerable spectral overlap 

among classes in the area could potentially introduce numerous sub-optimal solutions in the 
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solution spaces. k-means, UGA, UDE and UPSO, with relatively weak global searching 

capacity, are susceptible to being trapped on such sub-optimal solutions. In contrast, UBCO is 

more likely to escape sub-optimal solutions and eventually approach the global optimal 

solution. 

7 Conclusions and future work 

Unsupervised image classification is a widely used method to derive land cover/use 

information from remote sensing imagery. However, it is a complex task and belongs to the 

class of NP-hard problems due to the huge solution spaces, which poses great challenges to 

traditional methods. Algorithms with powerful searching capabilities are urgently required for 

real applications. In this paper, a novel unsupervised bee colony optimization (UBCO) 

method is presented for remote sensing image classification. With powerful exploitation 

ability, UBCO can search for promising solutions rapidly and efficiently. It is less likely to 

become trapped on local optima than other methods, thanks to its global searching capacity. 

We tested UBCO in a highly heterogeneous marsh area, and compared it with k-means, UGA, 

UDE and UPSO methods. The preliminary experimental results reported here illustrate the 

superiority of UBCO over the other methods, especially dealing with the complex landscape 

(site 1). Hence, UBCO should be a good alternative to solve the image clustering problem. 

  It is well known that the choice of clustering metric exerts a great influence on results 

achieved by unsupervised classification methods. In addition to the Euclidean distance, other 

distance measurements like the spectral angle distance (measuring the angle between two 

spectra) should be considered to provide complementary information for pixel discrimination. 

We note that imagery contains much structure information that may prove valuable for land 

cover classification, however, how this information can be incorporated into UBCO presents a 

significant challenge. A BCO-based method that can automatically evolve the optimal cluster 

centres, as well as the number of clusters, is the next challenge for this methodology, since the 

number of clusters required to classify an image is generally not known a priori by users in 

most real applications. UBCO focuses on a crisp form of classification in this work, however, 

in consideration of the large amount of imprecision and uncertainty in remote sensing data, a 

fuzzy form of UBCO might be more preferable and will be investigated in future work. These 

issues are a priority for our future research in this field.  
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Figure 1. The behaviours exhibited by bees when searching for nectar. UF indicates an 

uncommitted follower; EF1 identifies the first class of employed forager and EF2 the 

second class of employed forager. R denotes an unemployed bee recruited by an 

employed forager, and S denotes an unemployed bee randomly searching for a food 

source. 
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Figure 2. Flowchart of UBCO for remote sensing image classification. 
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Figure 3. The formation of food sources from cluster centres in UBCO, where nodes are 

arbitrary DN values of remote sensing image. 
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Figure 4. Location of the three study sites. 

Page 20 of 31

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

Figure 5. TM image and classification maps of the five methods of study site 1 (a) TM image 

(bands 5, 4, 3) (b-f) classification maps generated by k-means, UGA, UDE, UPSO and UBCO 

methods, respectively.  
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Figure 6. TM image and classification maps of the five methods of study site 2 (a) TM image 

(bands 5, 4, 3) (b-f) classification maps generated by k-means, UGA, UDE, UPSO and UBCO 

methods, respectively.  
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Figure 7. TM image and classification maps of the five methods of study site 3 (a) TM image 

(bands 5, 4, 3) (b-f) classification maps generated by k-means, UGA, UDE, UPSO and UBCO 

methods, respectively.  
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Figure 8. Quantity disagreement and allocation disagreement for confusion matrices 

of the classifications in this paper. 
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Figure 9. Box plots of the minimum clustering metric values for the five methods applied to the 

three study sites.  
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Figure 10. Box plots of overall accuracies for the five methods applied to the three study sites.  
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Table 1. Confusion matrices of classification results achieved by the five methods in study site 1.  

Method 
  Reference data  

Classified data Marsh Meadow Farmland Saline land Water Total UA (%) 

k-means Marsh 49 7 53 0 0 109 44.95 

Meadow 0 114 3 19 0 136 83.82 

Farmland 186 0 137 0 0 323 42.41 

Saline land 0 4 0 88 0 92 95.65 

Water 1 0 0 0 79 80 98.75 

Total 236 125 193 107 79 740  

PA (%) 20.76 91.20 70.98 82.24 100.00   

 Overall accuracy = 63.11%  

UGA Marsh 108 19 33 0 0 160 67.50 

Meadow 0 103 0 28 0 131 78.63 

Farmland 127 2 160 0 0 289 55.36 

Saline land 0 1 0 79 0 80 98.75   

Water 1 0 0 0 79 80 98.75   

Total 236 125 193 107 79 740  

PA (%) 45.76 82.40   82.90 73.83 100.00   

 Overall accuracy = 71.49%  

UDE Marsh 136 0 20 0 0 156 87.18 

Meadow 1 89 7 3 0 100 89.00 

Farmland 98 4 166 0 0 268 61.94 

Saline land 0 32 0 104 0 136 76.47 

Water 1 0 0 0 79 80 98.75 

Total 236 125 193 107 79 740  

PA (%) 57.63 71.20 86.01 97.20 100.00   

 Overall accuracy = 77.57% 

UPSO Marsh 173 0 122 0 0 295 58.64 

Meadow 1 103 7 9 0 120 85.83 

Farmland 61 4 64 0 0 129 49.61 

Saline land 0 18 0 98 0 116 84.48 

Water 1 0 0 0 79 80 98.75 

Total 236 125 193 107 79 740  

PA (%) 73.31 82.40 33.16 91.59 100.00   

 Overall accuracy = 69.86% 

UBCO Marsh 149 0 26 0 0 175 85.14 

Meadow 0 109 5 8 0 122 89.34 

Farmland 86 4 162 0 0 252 64.29 

Saline land 0 12 0 99 0 111 89.19 

Water 1 0 0 0 79 80 98.75 

Total 236 125 193 107 79 740  

PA (%) 63.14 87.20 83.94 92.52 100.00   

 Overall accuracy = 80.81% 

Note: PA and UA represent the producer’s accuracy and the user’s accuracy, respectively. 
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Table 2. Confusion matrices of classification results achieved by the five methods in study site 2. 

Method 
 Reference data  

Classified data Water Road Vegetation Building Total UA (%) 

k-means Water 103 4 0 1 108 95.37 

Road 0 84 4 79 167 50.30 

Vegetation 0 2 125 1 128 97.66 

Building 0 2 4 91 97 93.81 

Total 103 92 133 172 500  

PA (%) 100.00 91.30 93.98 52.91   

Overall accuracy = 80.60%  

 

UGA 

Water 103 0 0 0 103 100.00 

Road 0 83 19 48 150 55.33 

Vegetation 0 2 109 0 111 98.20 

Building 0 7 5 124 136 91.18 

Total 103 92 133 172 500  

PA (%) 100.00 90.22 81.95 72.09   

Overall accuracy = 83.80% 

 

UDE 

Water 103 0 0 0 103 100.00 

Road 0 84 3 49 136 61.76 

Vegetation 0 2 125 1 128 97.66 

Building 0 6 5 122 133 91.73 

Total 103 92 133 172 500  

PA (%) 100.00 91.30 93.98 70.93   

Overall accuracy = 86.80% 

 

UPSO 

Water 103 0 0 0 103 100.00 

Road 0 84 3 50 137 61.31 

Vegetation 0 2 125 0 127 98.43 

Building 0 6 5 122 133 91.73 

Total 103 92 133 172 500  

PA (%) 100.00 91.30 93.98 70.93   

Overall accuracy = 86.80% 

UBCO Water 103 0 0 0 103 100.00 

Road 0 83 3 44 130 63.85 

Vegetation 0 1 125 0 126 99.21 

Building 0 8 5 128 141 90.78 

Total 103 92 133 172 500  

PA (%) 100.00 90.22 93.98 74.42   

Overall accuracy = 87.80% 

Note: PA and UA represent the producer’s accuracy and the user’s accuracy, respectively. 
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Table 3. Confusion matrices of classification results achieved by the five methods in study site 3. 

Method 
 Reference data  

Classified data Water Farmland Bare soil Saline land Total UA (%) 

k-means Water  70 8 0 0 78 89.74 

Farmland 5 108 11 3 127 85.04 

Bare soil 1 7 114 25 147 77.55 

Saline land 0 0 3 78 81 96.30 

Total 76 123 128 106 433  

PA (%) 92.11 87.80 89.06 73.58   

Overall accuracy = 85.45%  

 

UGA 

Water  71 13 0 0 84 84.52 

Farmland 3 95 2 1 101 94.06 

Bare soil 2 14 39 13 68 57.35 

Saline land 0 1 87 92 180 51.11 

Total 76 123 128 106 433  

PA (%) 93.42 77.24 30.47 86.79   

Overall accuracy = 68.59% 

 

UDE 

Water  69 6 0 0 75 92.00 

Farmland 6 111 12 3 132 84.09 

Bare soil 0 5 96 18 119 80.67 

Saline land 1 1 20 85 107 79.44 

Total 76 123 128 106 433  

PA (%) 90.79 90.24 75.00 80.19   

Overall accuracy = 83.37%  

 

UPSO 

Water  69 6 0 0 75 92.00 

Farmland 5 107 9 3 124 86.29 

Bare soil 1 9 65 15 90 72.22 

Saline land 1 1 54 88 144 61.11 

Total 76 123 128 106 433  

PA (%) 90.79 86.99 50.78 83.02   

Overall accuracy = 75.98%  

UBCO Water  69 2 0 0 71 97.18 

Farmland 6 114 11 3 134 85.07 

Bare soil 1 7 114 22 144 79.17 

Saline land 0 0 3 81 84 96.43 

Total 76 123 128 106 433  

PA (%) 90.79 92.68 89.06 76.42   

Overall accuracy = 87.30%  

Note: PA and UA represent the producer’s accuracy and the user’s accuracy, respectively. 
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Table 4. The Kappa coefficients and their variances, as well as the Kappa Z-test and McNemar test 

results (bold numbers: significant difference at 95% confidence level). 

Study 

site 

Method Kappa coefficient Z-value 

Value Variance 

(10
4

) 

UGA UDE UPSO UBCO 

Site 1 k-means 0.5262 5.4592 3.1377/3.9584 5.6953/6.7917 2.3959/3.3314 7.0704/8.2863 

 UGA 0.6307 5.6331 - 2.4615/4.6664 0.7165/0.2046 3.7707/7.0618 

 UDE 0.7114 5.1152 - - 3.1790/4.0291 1.3011/4.3519 

 UPSO 0.6065 5.7736 - - - 4.4908/6.6034 

 UBCO 0.7523 4.7669 - - - - 

Site 2 k-means 0.7445 7.6324 1.0240/4.1461 2.1198/5.4272 2.1202/5.1257 2.4924 /5.1962 

 UGA 0.7839 7.1715  - 1.0807/3.4000 1.0809/3.0000 1.4486/3.1568 

 UDE 0.8235 6.2561 - - 0.0000/1.4142 0.3690/0.0000 

 UPSO 0.8235 6.2518 - - - 0.3691/1.0000 

 UBCO 0.8364 5.9631 - - - - 

Site 3 k-means 0.8031 7.9504 5.0947/6.3791 0.6732/2.0426 2.9328/3.8730 0.6331/1.8974 

 UGA 0.5821 10.8661 - 4.3860/5.6335 2.0800/4.7646 5.7694/6.7625 

 UDE 0.7757 8.6173 - - 2.2507/3.0424 1.3071/3.5447 

 UPSO 0.6778 10.3030 - - - 3.5782/4.8107 

 UBCO 0.8278 7.2702 - - - - 

Note: ‘Z-value’ denotes either the kappa Z-test value or the McNemar test result. 
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Table 5. The mean number of fitness function evaluations required by the five methods over the three 

study sites. 

Study site 

Mean number of fitness function evaluations 

k-means UGA UDE UPSO UBCO 

Site 1 348 198480 176904 50640 167800 

Site 2 291 158672 141091 50128 99808 

Site 3 111 158208 136210 33664 144064 
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