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Abstract

The aim of this thesis is to propose suitable mathematical models for the analysis

of sexually transmitted disease epidemics. We are interested in a closed popula-

tion, where infections are only transmitted through heterosexual contacts. The

population is hence divided into two groups: male and female. Individuals are

classified according to gender, relationship and disease status. Both stochastic

and deterministic SIS models are employed. The stochastic models are formulated

in terms of a Markov process with a finite state space. Two main models are

constructed and quantities of interest such as the basic reproduction number and

endemic level of the sexually transmitted disease (STD) are obtained.

The first model is formulated to describe dynamics of STDs, where the sexual

behaviour is considered “faithful”. By being faithful, we mean individuals are

monogamous, and there are no casual sexual contacts (one-night stands). The early

stages of the epidemic are approximated by a 2-type branching process. This allows

us to compute the following quantities of interest, the threshold parameter (R0)

and the probability of extinction. In order to study the endemic level, it is helpful

to use the deterministic (ODE) approximation of the stochastic SIS epidemic. The

behaviour about the endemic equilibrium is studied using an Ornstein-Uhlenbeck

process. Stochastic simulations are utilised to obtain the mean time to extinction.

The second model is an extension of the first model, where casual sexual con-

tacts (one - night stands) are included in the model. The model is again a Markov

process but its analysis is more involved. A key difference is now a 5 type branch-
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ing process is used to approximate the initial stages of the epidemic, to determine

the threshold parameter (R0) and the probability of extinction. Other quantities

of interest are studied through similar approaches.

Medication use is studied as a control measure in this thesis. We introduce a

new parameter (v) governing the medication use into both models. Throughout we

study the effect of the control strategies on the key quantities of interest highlighted

above.
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Chapter 1

Introduction

1.1 Motivation and objective

Sexually transmitted diseases (STDs) are infectious diseases that can be acquired

and passed on from one person to another through sexual contact. STDs have

gained considerable attention from researchers in various fields, including mathe-

maticians and statisticians with the aim of identifying effective intervention and

control strategies to reduce the impact of the diseases. Mathematical modelling

has proved to be a very useful tool in providing insights into understanding and

for analysing the spread and control of infectious diseases (Hethcote (2000)). The

transmission dynamics and epidemiology of STDs rely mainly on sexual contacts

based on human behaviours, in which each contact generates a route of infection.

Various mathematical models in the area of sexually transmitted diseases have

been extensively studied in the past three decades. In Hethcote & Yorke (1984),

pioneering work was done into the study of gonorrhoea. Summaries of various

mathematical models in STD research can be found in Anderson et al. (1986),

Anderson & May (1991), Dietz & Hadeler (1988), Kretzschmar et al. (1996) and

Ferguson & Garnett (2000).

The objective of this thesis is to propose suitable mathematical models describ-
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ing dynamics of sexually transmitted diseases with an ability to answer ‘what if’

questions regarding epidemic behaviour: is a major epidemic outbreak possible?

If so, what is the probability of a major epidemic outbreak? If the epidemic takes

off, what is the endemic level? What is the probability of the disease going extinct,

and what is the time to extinction? Mathematical and computational tools will be

key to answering these questions. In addition, the models should be able to assist

the identification of successful interventions or control strategies to deliver public

health benefits. To provide some background understanding, we start by giving a

brief overview of classical epidemic models.

1.2 Homogeneous - mixing models in a closed

population

In general, infectious disease models implicitly assume that contact patterns are

highly homogeneous, i.e. interaction between individuals is assumed to be uni-

formly at random (Anderson & May (1991)). The first epidemic model was the

SIR epidemic model (Kermack & McKendrick (1927)) where individuals are in

one of three states: susceptible (S), infectious (I) or removed (R). A susceptible

individual may become infected at some point in time when the contact is made

with an infected individual. At the end of the infectious period, the individual

recovers and becomes completely immune. As a consequence, there are only two

transitions occurring between states: from S to I and from I to R, see figure 1.1.

S I R
infect recover

Figure 1.1: State diagram for the SIR model

Other types of models such as SI, SIS and SIRS models are modifications of the
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basic SIR model. If individuals become susceptible immediately after recovering,

we can say that the model has no immune state, and such a model is called an

SIS epidemic model. Since very few sexually transmitted diseases confer immunity

after infection, the SIS model is relevant to many STDs. Therefore, throughout

this thesis, we focus our attention on SIS models, see Figure 1.2.

S I

β

γ

Figure 1.2: State diagram for the SIS model

The dynamics of the model are described as follows. Infectious individuals

make infectious contacts with other individuals at the points of a homogeneous

Poisson point process with rate β. Each infectious contact is with a randomly

selected individual, and all contacts made by infectives are mutually independent.

If the selected individual is susceptible then that individual is infected, otherwise

the infectious contact has no effect. Individuals have independent and identically

distributed infectious period, at the end of the period, individuals are recovered and

immediately become susceptible to reinfection. If the infectious period is chosen

to be exponentially distributed, then the model is Markovian (Bailey (1975), Ch.

6.3).

We now define the standard stochastic SIS epidemic model. The population

is assume to be closed of size n. For t ≥ 0, let S(t) and I(t) denote the total

number of susceptible and infectives at time t. Hence, S(t) + I(t) = n, for all

t ≥ 0. We can see that in SIS model, there is only one independent variable, I(t),

as S(t) = n − I(t). The stochastic process {I(t) : t ≥ 0} is described by the
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following transition probabilities:

Pr(I(t+ ∆t) = i+ 1|I(t) = i) = βi
(n− i)
n

∆t+ o(∆t), (1.1)

Pr(I(t+ ∆t) = i− 1|I(t) = i) = γi∆t+ o(∆t). (1.2)

β is the rate at which an individual make an “infectious” contact. At time t,

each infectious contact has probability n−I(t)
n

of being with a susceptible, and γ

is the recovery rate for infected individuals. Note that, the constant γ yields

an exponential distribution for the infectious periods (Giesecke (1994)). In other

words, D ∼ Exp(γ) with E[D] = 1
γ
.

The stochastic model described above also has a deterministic counterpart. For

n → ∞, suppose that lim
n→∞

I(0)

n
= x(0). Then, the process density of infective,

{ I(t)
n

; t ≥ 0}, converges to a deterministic limit described by a differential equation

(Kurtz (1970)). For convenience, let ẋ(t) = dx(t)
dt

, then we have

ẋ(t) = βx(t)(1− x(t))− γx(t).

A key quantity of interest in epidemiology is the basic reproduction number (R0).

In a homogeneously mixing population R0 is simply the mean number of suscepti-

bles infected by an infective in a totally susceptible population (Anderson & May

(1991)). The basic reproduction number is defined as follows:

R0 =
β

γ
(1.3)

From (1.3), ẋ(t) can be rewritten as ẋ(t) = γ(R0(1 − x(t)) − 1)x(t). We can

immediately see that R0 = 1 is a critical point. If R0 ≤ 1, we can see that

ẋ(t) < 0, for all x(t) > 0. Therefore, x(t) decreases monotonically as t → ∞ to

the disease-free equilibrium x∗ = 0. If the epidemic starts with one initial infective,

x(0) ≈ 0, then during the early stages, 1 − x(t) ≈ 1, giving R0(1 − x(t)) > 1, if
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R0 > 1.

Then if R0 > 1, ẋ(t) > 0 with x(t) increasing. The endemic equilibrium

occurs when ẋ(t) = 0, this gives the equation R0(1 − x(t)) − 1 = 0. Hence, the

endemic level is at x(t) = 1 − 1/R0. As a result, 1/R0 is the fraction of the

population susceptible at equilibrium. In conclusion, if R0 ≤ 1, x(t) decreases

and converges to 0, in other words, the disease dies out. If R0 > 1, x(t) increases

and converges to 1− 1/R0, which is the fraction of the population infected at the

endemic equilibrium, in other words, the disease takes off.

We now return to the stochastic SIS model. R0 = β
γ

is the mean number of

contacts by an individual in the epidemic. Therefore if R0 < 1 each individual

is making on average less than one contact and the size of the epidemic will be

decreasing.

One property of the stochastic SIS model is that it has an absorbing state at

the origin (the number of infectives is 0). When the epidemic reaches the absorbing

state, we can say that the epidemic has gone extinct. Starting the epidemic with

one infected individual, during the early stages, all infectious contacts are likely to

be with susceptibles. Equations (1.1) and (1.2) define a finite state space Markov

process, where each state refers to number of infectives. When we start the process

with a positive number of infectives, from any state i we can reach any state j

with positive probability. All states other than 0 infectives are transient, that is,

for fixed n we only return to each state finitely often. Therefore, the process will

eventually reach the absorbing state. As a consequence, there are two possibilities

either the absorbing state is visited quickly or not, but the probability of the

epidemic going extinct eventually (enter the absorbing state of 0 infectives) is

one. As such, the probability of early extinction is another quantity of interest in

epidemiology. We are interested in whether or not the epidemic takes off. When

R0 ≤ 1, the probability of early extinction is 1. When R0 > 1, there is possibility

that the disease will either go extinct early or take off in the population, therefore,
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the probability of early extinction is positive but less than one.

To make the above statement more concrete, “early stages” and “early extinc-

tion” are described as the following. Let bn = log(n). We define early stages up

until the total number of the population infectious first reaches bn. Then early

extinction is defined as extinction during the early stages. That is the total num-

ber infected never reaches bn, where bn →∞ as n→∞. The probability of early

extinction converges to the extinction probability of the approximating branching

process, which is studied in Section 1.3.

1.3 Branching process approximation

Many studies have been devoted to prediction of the incidence of epidemics. In

general, epidemics have non-linear dynamics which makes them potentially difficult

to work with. However, in the initial stages, a linear approximation can be made

if all infectious contacts are assumed to be with susceptibles (Whittle (1955)).

The basic framework of the branching process is that the process starts with a

single individual. The initial individual produces a random number of offspring.

These offspring reproduce independently of each other. In the context of epi-

demics, infections correspond to births of offspring in the branching process ter-

minology. Ball (1983) and Ball & Donnelly (1995) use a coupling argument to

link the epidemic process with an approximate branching process, saying that the

two processes agree until an infectious contact in the epidemic is with a previously

infected individual.

Branching processes can be categorised into two types: discrete time branch-

ing processes and continuous time branching processes. Discrete time branching

processes are easier to work with in order to answer our key questions of interest.

Even though, the time scale in the epidemic process is continuous, it is possible to

embed the process in a discrete time branching process based on successive gen-
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erations of the epidemic process. The initial individuals in the branching process

form generation 0. Then for k ≥ 0, the offspring of the individuals in generation k

form generation k+1 of the branching process. Individuals in different generations

are alive at the same time. We focus on the successive generations rather than the

time at which infected individuals are produced. Therefore, discrete time branch-

ing processes, known as Galton-Watson (GW) branching processes, are employed

in this thesis, and are the focus on a discrete time branching process in this section.

Useful branching process references are Harris (1963), Jagers (1975) and Haccou

et al. (2005).

1.3.1 A Galton-Watson (GW) process

In the context of epidemiology, a key question is whether or not an infected individ-

ual introduced into a large population can cause a major outbreak. In answering

this question the offspring distributions are important. The mean number of off-

spring of the approximating GW process corresponds to the basic reproduction

number (R0) in the epidemiology context.

The basic branching processes are based on the following concepts. The pro-

cess starts with a single individual. Consider a sequence of random variables

{Zn, n ∈ N0}, where Zn denotes the number of individuals in the nth generation.

Let ξn,i, n, i ∈ N0 be independent and identically distributed random variables

according to ξ with distribution {pk, k ∈ N0}, where ξn,i denotes the number of

offspring of the ith individual in generation n. In other words, P (ξ = k) = pk.

The process starts at time zero (generation 0) with 1 initial individual, Z0 = 1,

in which the individual produces a random number of offspring, Z1 = ξ0,1. These

individuals will reproduce independently of each other according to the same dis-

tribution. Therefore, the number of individuals in the nth generation satisfies

Zn =

Zn−1∑
i=1

ξn−1,i, n ≥ 1.
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One of the most interesting results of branching processes is the probability of

extinction. Its applications give answers to the question of what is the probability

that the disease dies out before a major outbreak occurs. If Zn = 0, for any n,

the branching process is said to have gone extinct. Since Zn = 0 implies Zn+k = 0

for all k > 0, the extinction time denoted by τ satisfies τ = min{n : Zn = 0}.

If there is no n such that Zn = 0, then τ = ∞. Therefore, the probability of

extinction can be represented as Pr(τ <∞). An important tool in determining the

extinction probability is the probability generating function (p.g.f.) of the offspring

distribution. Recall that ξn is a discrete random variable denoting the number

of individual in the nthgeneration, taking values in {0, 1, 2, ...} with associated

probabilities,

P (ξ = k) = pk, k = 0, 1, 2, ...,

where
∞∑
k=0

pk = 1.

Then E[ξn] is the expectation of ξn,

E[ξn] = p1 + 2p2 + 3p3 + ... =
∞∑
k

kpk = m.

The random variable ξn has the p.g.f given by

g(s) = E[sξn ] = p0 + p1s+ p2s
2 + ... =

∞∑
k=0

pks
k, 0 ≤ s ≤ 1. (1.4)

As mentioned earlier, the mean offspring number m =
∞∑
k

kpk is the quantity of

interest, R0 = m. The process is said to be supercritical if R0 > 1, critical if

R0 = 1, subcritical if R0 < 1. Note that
∞∑
k=0

pk = 1. Assume that there is no k

such that pk = 1, and that p0 + p1 < 1, then we have that g(s) is strictly convex

with strictly increasing first derivative for 0 ≤ s ≤ 1. Hence, g(s) = s has either
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one or two roots, one of which must be 1 (g(1) = 1). Also, g(0) is the probability

of having no offspring. Therefore, g
′
(1) = m > 1, g(1) = 1 and g(0) > 0. This

implies a second solution of g(s) = s on [0, 1), see Figure 1.3 for more graphical

explanation.

Figure 1.3: Graphs showing extinction probabilities for supercritical, subcritical
and critical cases.

As shown Figure 1.3, we can see from the graph that when m > 1, except at

t = 1, the curve g(s) also crosses the line t = s at t < 1. Thus there exist a

solution to the equation g(s) = s between 0 and 1. Then, this solution will be the

extinction probability since the quantity is the smallest non- negative root. In the

subcritical case (m < 1) and the critical case (m = 1), there is no possibility for

the curve g(s) to cross the line apart from at t = 1. Therefore, there is no other

solution to the equation g(s) = s except t = 1. The following theorem is hence

established (see Haccou et al. (2005) for more details).

Theorem 1.3.1 The probability of extinction of a branching process with one ini-

tial infective is the smallest non-negative root of the equation g(s) = s. The solu-

tion is less then 1 if and only if m > 1, and equals to 1 if m ≤ 1.
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1.3.2 The large population limit

The stochastic model is a suitable starting point for a model of STDs dynamics

and will be applied in this thesis. For large populations, the dynamics once the

epidemic has taken off are well approximated by a deterministic approximation and

studying this is informative, especially in identifying the endemic equilibrium. The

deterministic model is often a system of ordinary differential equations (ODE). For

large populations, Kurtz (1970) and Kurtz (1971) tie together the deterministic

and stochastic models. Kurtz’s theorem states that the deterministic dynamic is

a good approximation of the stochastic process as n becomes large (Kurtz (1970),

Theorem 3.1 ). More specifically, for large n, the stochastic process scaled by the

population size n,
{
Xn(t)
n
, t ≥ 0

}
, converges to a deterministic process x(t) that

is the solution of a system of ordinary differential equations, with initial value

x(0) = x0, i.e. lim
n→∞

sup
s≤t

∣∣∣∣Xn(s)

n
− x(s)

∣∣∣∣ = 0. The results are stated in Theorem

1.3.2. Another useful result is stated in Theorem 1.3.3.

Theorem 1.3.2 (Kurtz (1970), Theorem 3.1)

Let Xn(t) be a one parameter family of time-homogeneous Markov processes with

state space En ⊂ ZK, where ZK denotes the set of K-vectors with integer com-

ponents. Define qnk,k+l = lim∆t−→0 Pr{Xn(∆t) = k + l|Xn(0) = k}/∆t. Suppose

there exists a function f(x, l), x ∈ RK , l ∈ ZK that satisfies

qnk,k+l = nf

(
1

n
k, l

)
, l 6= 0

Define F : RK → RK by

F (x) =
∑
l

lf(x, l)



CHAPTER 1. INTRODUCTION 12

Suppose there exists an open set E in RK and a constant M such that

1.|F (x)− F (y)| ≤M |x− y|, x, y ∈ E,

2. sup
x∈E
|l|f(x, l) <∞,

3. lim
d→∞

sup
x∈E

∑
|l|>d

|l|f(x, l) = 0.

Let X(s;x0) satisfy ∂
∂s
X(s;x0) = F (X(s;x0)) with initial value X(0, x0) = x0,

where X(s;x0) ∈ E, 0 ≤ s ≤ t. Let lim
n→∞

Xn(0)

n
= x0 for the original Markov

processes. For every ε > 0, we have

lim
n→∞

Pr

(
sup
t≤T

∣∣∣∣ 1nXn(t)−X(t;x0)

∣∣∣∣ > ε

)
= 0.

In an SIS epidemic, let Xn(t) be the number of infectives at time t, β be the

infection rate, and γ be the recovery rate. Following the notation in Theorem

1.3.2, let

qni,j = lim
∆t−→0

Pr{Xn(∆t) = j|Xn(0) = i}/∆t.

It is then straightforward to show that

qni,i−1 = n

(
γ
i

n

)
= nf

(
i

n
,−1

)
qni,i+1 = n

(
β
i

n

(n− i)
n

)
= nf

(
i

n
,+1

)
qni,k = 0, k 6= i+ 1, i− 1.
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where the corresponding density family functions are

f(x, 1) = βx(1− x) (1.5)

f(x,−1) = γx (1.6)

f(x, k) = 0, k 6= 1,−1. (1.7)

Therefore, F (x) = βx(1− x)− γx. For x ∈ (0, 1], we have

F (x)− F (y) = βx(1− x)− γx− βy(1− y) + γy

= βx(1− x)− βy(1− x) + βy(1− x)− βy(1− y) + γ(y − x)

= β(x− y)(1− x) + βy ((1− x)− (1− y)) + γ(y − x)

= β(x− y)(1− x)− βy(x− y) + γ(y − x)

Since 0 < x, y ≤ 1, then 0 < (1−x) ≤ 1. Therefore, β|(x−y)(1−x)| < β|(x−y)|

and β|y(x− y)| < β|(x− y)|. That is,

|F (x)− F (y)| = |β(x− y)(1− x)− βy(x− y) + γ(y − x)|

< |β(x− y)|+ |β(x− y)|+ |γ(y − x)|

Hence, |F (x)− F (y)| < (2β + γ)|(x− y)|. We also have that

sup
x∈E
|l|f(x, l) = sup

x∈(0,1]

{βx(1− x) + γx} ≤ β + γ <∞.

According to (1.7), it immediately follows that

lim
d→∞

sup
x∈(0,1]

∑
|k|>d

|k|f(x, k) = 0.
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If lim
n→∞

X(0)

n
= x(0), then it follows that for every ε > 0,

lim
n→∞

Pr

(
sup
s≤t

∣∣∣∣Xn(s)

n
− x(s)

∣∣∣∣ > ε

)
= 0,

where x(s) solves ẋ(t) = F (x), where F (x) = βx(1−x)−γx with initial condition

x(0).

Now, consider the differences between Xn(s)
n

and x(s), for s ≤ t. Theorem

1.3.3 states that
√
n
∣∣∣Xn(s)

n
− x(s)

∣∣∣ converges to a diffusion process. The diffusion

process describes the fluctuations of the stochastic process about its deterministic

approximation and is particularly useful for studying the behaviour about the

endemic equilibrium.

Theorem 1.3.3 Suppose that F and G are uniformly continuous on E, where

F is defined as in Theorem 1.3.2. Suppose also that G(x) =
∑

l l
2f(x, l) where

supxG(x) <∞. We have that

lim
n→∞

√
n(Xn(0)− x) = v

implies that Vn(t) =
√
n(Xn(t) − X(t, x)) converges weakly to the diffusion V (t)

with V(0) = v and V (t) = V (0) + 1√
n

∫ t
0

√
G(X(s))dBs +

∫ t
0
F (X(s))ds.
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Note that Theorem 1.3.3 is simplified from Theorem 2.2 in Pollett (2001), and

that dBs denotes integration with respect to K-dimensional Brownian motion. For

studies of the behaviour at equilibrium, the appropriate diffusion process approxi-

mation is Ornstein - Uhlenbeck (OU) process (Barbour (1976)). If the initial value

of the process is chosen close to the equilibrium point then the limiting process is

an OU process (Pollett (2001)).

1.4 Multi-type branching processes

An important extension of the Galton-Watson process which will be used exten-

sively in this thesis is the multi-type branching process. For multi-type branching

processes, we allow for different types of individuals. It is worthwhile to give an

example of the concept of types. For sexually transmitted diseases, suppose that

infections are transmitted only through heterosexual contacts. Then, individuals

can be distinguished into two types: male and female. If an infected male makes

an infectious contact with a susceptible female, then an infection is said to be of

type 1, or of type 2 if an infected female makes an infectious contact with a sus-

ceptible male. Therefore an infectious male produces a random number of female

offspring (type 2 offspring), an infectious female produces a random number of

male offspring (type 1 offspring). Then the number of offspring of each type is

the key quantity for determining the basic reproduction number. This formulates

the framework of a 2-type branching process. More generally, let us define a set

of type K = {1, 2, ...k}, for integer k, such that, 2 ≤ k <∞. Let Z0,Z1,Z2, ... be

|k|-dimensional vectors, where Zn is a random vector representing the number of

individuals in nth generation, Zn = (Z
(1)
n , Z

(2)
n , ..., Z

(k)
n ). Let Z

(r)
n be the number of

individuals of type r in generation n, where Z
(r)
n is the rth component in vector Zn.

Let ξr = (ξ1
r , ξ

2
r , ..., ξ

k
r ) be an associated offspring random vector of type r ∈ K,

where ξkr is a random variable representing the number of offspring of type k born
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from a parent of type r individual. For i, j = 1, 2, ..., k, we are interested in the

number of type j offspring that a type i individual has. The mean number of

offspring of k different types can be presented in a k × k matrix. This matrix is

called the mean offspring matrix or the next-generation matrix, denoted by M .

Each element mij denotes the mean number of type j offspring born from a type

i parent, mij = E[ξji ]. The next-generation matrix can be constructed as follows:

M =



m11 m12 m13 · · · m1k

m21 m22 m23 · · · m2k

m31 m32 m33 · · · m3k

...
...

...
...

...

mk1 mk2 mk3 · · · mkk


(1.8)

The next-generation matrix is the basis for the calculation of the important

threshold parameter, R0. The basic reproduction number, R0, is the spectral radius

or dominant eigenvalue of the next-generation matrix (Diekmann, Heesterbeek &

Metz (1990)).

The probability generating function (p.g.f) is also the key to determining the

probability of extinction for multi-type branching processes. Assuming that ini-

tially we have Z
(r)
0 = 1, Z

(j)
0 = 0, j 6= r ∈ K, then the p.g.f of Z1 is denoted by

g(r)(s1, s2, ..., sk).

gr(s1, s2, ..., sk) =
∞∑

ξ
(1)
r ,...,ξ

(k)
r

pr(ξ(1)
r , ..., ξ(k)

r )sξ
(1)
r

1 ...sξ
(k)
r

k , |s1|, ..., |sk| ≤ 1, (1.9)

where pr(ξ
(1)
r , ..., ξ

(k)
r ) is the probability that an individual of type r has ξ offspring
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of type 1, 2, ..., k. Let

s = (s1, s2, ...sk), s1, s2, ...sk ∈ [0, 1],

g(s) = (g1(s), ..., gk(s)).

Then the probability of extinction is the smallest non-negative root of equation

g(s) = s. Note that si is the probability of extinction starting from a type i

individual.

1.5 The standard model for sexually transmitted

diseases

We can see that homogeneously mixing SIS epidemic models have been intensively

studied and many results are obtained. However, for sexually transmitted diseases,

random interaction between individuals is not appropriate for describing contacts

within sexual relationships, as sexual activity is simply not random (Laumann

et al. (1994)). One can include heterogeneity into the models by stratifying the

population into subpopulations defined by their dynamic nature or the hetero-

geneity in sexual activity. Anderson et al. (1986) and Knox (1986) have developed

this idea by dividing the total population into subpopulations according to their

sexual preferences and their rate of partner change whilst ignoring the aspect of

pair formation. Dietz & Hadeler (1988) then developed the basic model for STDs

by generalising the classical SIS model with the pair formation taken into account.

Despite the disease status, an individual is also described as being single or in a

relationship with another individual (see Figure 1.4).
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Susceptible
singles

Infected
singles

Couples
with two

susceptibles

Couples with
1 susceptible
& 1 infected

Couples with
2 infectives

Figure 1.4: A pair formation and separation model

Disease transmission can only take place within a relationship. Therefore, the

relationship consisting of two susceptibles can be considered temporarily immune

as there is no transmission occurring within the relationship. This aspect can af-

fect the spread of an infection especially in the initial stage of an epidemic as the

majority of existing couples consist of susceptibles. Dietz (1988) made a compar-

ison between two models for HIV; one model with pair formation and one model

without pair formation. He observed that with pair formation, the rise of incidence

of HIV towards the endemic equilibrium is much slower and the endemic level is

smaller than estimated by the model without pair formation.

In addition to being single and in a relationship, Anderson et al. (1986) also

included gender classification in the model. By incorporating these fundamental

factors into a deterministic model and considering the transition between states in

terms of pair formation, separation rate, recovery and infection rates, the model

can be represented by a system of differential equations. In particular, if we divide

the population into two groups: male and female. For heterogeneous populations,

especially for sexually transmitted disease models, individuals are assumed to mix

between groups, allowing the distinct subgroups to have different contact rates, αi,

where i represents group index, in this case i = 1, 2. Other rate parameters, such

as recovery and infectious rates are also set accordingly to the distinct subgroups.

Moreover, we can further subdivide each group by disease status: susceptible,
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infective and by relationship status: single and non-single. Then, the overall

framework is essentially that of the SIS model but with a larger state space. In

this case, the state space will be 8 dimensional:

{MI , FI ,MS, FS, CMIFS
, CMSFI

, CMSFS
, CMIFI

}

Where M and F represent state of single male and single female, respectively.

Index I and S denote disease status: infectious and susceptible. C represents a

couple state, and its index indicates the disease status of male and female within

the relationship. For instance, CMIFS
denotes a couple state within which the male

is infected and the female is susceptible.

However, as the dimension of the differential equations as well as the stochastic

process increases, it becomes in general more difficult to solve. Therefore, it is

important that whilst we look to make the model realistic we ensure that it remains

amenable to mathematical analysis.

1.6 The threshold parameter for sexually trans-

mitted diseases

The basic reproduction number, R0, has an intuitive definition for the homoge-

neously mixing model as the mean number of infectious contacts made by an

infective in an otherwise susceptible population (Anderson & May (1991)). This

threshold behaviour has received special attention by practitioners. In practice, it

provides a quantitative guide to both invasion and control of an infectious disease

(Heesterbeek (2002)). In an endemic infection, ultimately, we are looking for con-

trol measures which bring R0 below 1. An important interest is how to generalise

the concept of R0 for general heterogeneous and structured populations.

In a homogeneous population, R0 is the product of the contact rate per unit of
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time (λ) and the mean infectious period (E[D]), R0 = λE[D]. In a heterogeneous

population, R0 is less straightforward. It is no longer equal to the average number

of infectious contacts produced by an infected person (Liljeros et al. (2003)). How-

ever, we can still define a quantity R0 as an informative threshold condition for

whether or not the epidemic will take off. Diekmann, Dietz & Heesterbeek (1990)

showed that, for sexually transmitted diseases where the heterogeneity is taken

into account, we can make use of the ideas of the underlying R0 for homogeneous

populations. For example, if the host population is partitioned into 2 subgroups.

R0 for an infected individual in group 1 or 2 (R1
0 and R2

0) can be derived using a

similar idea, but now the infection rate depends upon who acquires infection from

whom. Let N1 and N2 be the population size of group 1 and 2, where everyone in

the population is susceptible. λi,j denotes the infectious rate at which a susceptible

individual in group j acquires the disease from an infected individual in group i,

where i, j ∈ {1, 2}. According to Rock et al. (2014), R1
0 and R2

0 can be expressed

as the following.

R1
0 = E[D1](λ1,1N1 + λ2,1N2) (1.10)

R2
0 = E[D2](λ1,2N1 + λ2,2N2), (1.11)

where E[D1] and E[D2] are the mean of infectious period of infected individuals in

group 1 and 2 respectively. R0 for the population level is calculated by averaging

these two values :

R0 = w1R
1
0 + w2R

2
0 (1.12)

where w1 and w2 are weighting average corresponding to the ratio of early infection

of group 1 and group 2. One way of determining values of w1 and w2 is to calculate
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the eigenvector associated with the dominant eigenvalue of the Jacobian at the

disease - free equilibrium.

In summary, the basic reproduction number, R0, can be derived either from

stochastic model or from its deterministic counterpart. For deterministic models,

R0 can be derived by directly solving the system of differential equations in order

to find a critical point (see Section 1.2). Stochastically, for higher dimensional

problems, R0 can be determined using multi-type branching processes to find the

dominant eigenvalues of the next generation matrix as described earlier in Section

1.4. A key motivation for using the stochastic model is that only the stochastic

model can be used to answer questions regarding the diseases extinction (Harris

(1963), Ch. 1). Examples of derivation of R0 for sexually transmitted diseases

using stochastic models can be found in (Mode (1997) and Diekmann, Dietz &

Heesterbeek (1990)).

1.7 Outline of the thesis

In Chapter 2, the sexual network modelling describing dynamics of STDs is intro-

duced. We first focus on a simple case where there are no concurrent partnerships

and the disease can only be spread between partners. We employ a stochastic

SIS model along with a deterministic approximation. A 2-type branching process

approximation for the early stages of the epidemic is obtained. This is used to

derive the threshold parameter R0 and the probability that the disease goes ex-

tinct in Sections 2.3 and 2.4, respectively. In Section 2.5, we move away from the

early stages of the epidemic, and we study the behaviour at equilibrium assuming

that there is a major outbreak (R0 > 1). In this case, we employ a deterministic

approximation of the Markov model to determine the endemic level, according to

Theorem 1.3.2. In terms of the dynamic behaviour about the equilibrium, the

limiting diffusion (Ornstein-Uhlenbeck) process approximation is exploited. In a
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finite population, the epidemic will eventually go extinct with probability 1. In

Section 2.6, we use stochastic simulations to explore the mean time to extinction,

started at the endemic equilibrium. Finally, we present numerical results in Sec-

tion 2.7. Throughout this thesis, we refer to the model constructed in this chapter

as Model 1.

In Chapter 3, we extend the model presented in Chapter 2 by allowing individ-

uals to have “one-night stands”. In other words, there are sexual contacts outside

partnerships, leading to the disease transmission occurring outside relationship

stages. Similar studies to the model in Chapter 2, but now using a 5-type branch-

ing process, the derivation of R0 and the probability of extinction are obtained in

Sections 3.3 and 3.4, respectively. In order to obtain the endemic level, the de-

terministic counterpart of the stochastic SIS model is then derived in Section 3.5.

The mean time to extinction is studied using stochastic simulations formulating

the Markov process, discussed in Section 3.6. The numerical results are presented

in Section 3.7. Throughout this thesis, we refer to the model constructed in this

chapter as Model 2.

Chapter 4 discusses control strategies focussing on incorporating medication

use, in which medications can be given to both single and non-single individuals.

If the medications are given to individuals in a relationship, they can also pass

on the medications to their partners. By having this control measure, individuals

within relationships are now able to recover simultaneously with their partners.

This is applied to both the models of Chapters 2 and 3. A new parameter, v,

describing the probability of an infected individual taking drugs and recovering

is introduced. The models are adjusted accordingly and the threshold parameter

is recomputed. The construction of Model 1 accommodating a control measure

is discussed in Section 4.2. The endemic level of the underlying model is also

studied in this section. Similar studies for model 2 with a control measure are

presented in Section 4.3. Section 4.4 illustrates their numerical results. In addition
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to the control strategies being addressed in this chapter, we also give some case

studies that illustrate the applications of our models to a particular disease which

is gonorrhoea in section 4.5.

Finally in Chapter 5, we make some conclusions and suggest some directions

for future work to extend the findings of this thesis.



Chapter 2

Sexual network modelling

2.1 Introduction

The structure of sexual networks varies, as each society has its own social inter-

actions depending upon their culture and other social factors. It is not possible

to construct a network by taking into account all possible details due to the com-

plexity of the network and the many unmeasurable components. However, we can

gain an insight into the spread of the disease over the network by simplifying the

sexual contact network. Therefore, we develop an SIS model with the assumption

that men and women are faithful. Namely, each man and woman has either one

or no partner (single) at any point in time. We establish a branching process

approximation for the early stages of the epidemic whilst a deterministic model is

employed to study the endemic equilibrium.

In Section 2.2 we give a description of the model formulation and assump-

tions. Section 2.3 discusses a two-type branching process approximation and the

derivation of an expression of the threshold parameter including some interesting

mathematical findings. The question of extinction is addressed in Section 2.4.

Then we discuss the behaviour of the epidemic at the endemic equilibrium, in

particular, the endemic level and fluctuations about the endemic level in Section

24
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2.5. The time to extinction is studied in Section 2.6, and the numerical results are

presented in Section 2.7.

2.2 Model formulation

In our model we focus on a heterosexual population in which individuals are char-

acterized by gender and disease status. We use a Markov model to describe the

disease and relationship dynamics. Therefore, the future evolution of the disease

and population depends only upon the current disease status of the population.

Our model assumptions are as follows.

Assumption 1. The population is large and finite, consisting of two types of indi-

viduals: males (type 1 individuals) and females (type 2 individuals). We assume

that the population has n individuals of each type, i.e. the numbers of males and

females are equal.

Assumption 2. The epidemic starts with one infected individual in an otherwise

susceptible population. Throughout this research, we assume that the initial in-

fective is of type 1 (male), with identical arguments holding for a female initial

infective.

Assumption 3. An individual can only have one partner at a time. Therefore there

are no concurrent relationships involving the same individual.

Assumption 4. A single male attempts to form a relationship with a female at

the points of a homogeneous Poisson point process with rate α. The female is

chosen uniformly at random from the entire population. If the female is single, a

relationship is formed, otherwise nothing happens.

Assumption 5. The relationship length follows an exponential distribution with

mean 1
δ
. At the end of the relationship, the relationship breaks up and both

individuals will return to the single state and will be able to form a relationship



CHAPTER 2. SEXUAL NETWORK MODELLING 26

with another single individual of the opposite sex.

Assumption 6. Whilst infectious, an individual of type i makes infectious contact

with their partner at the points of a homogeneous Poisson point process with rate

βi. If the partner is susceptible, they become infected when contacted. Otherwise

the contact has no effect. Note that single infectious individuals can not make

infections.

Assumption 7. Type i individuals have infectious periods that are independently

exponentially distributed with rate γi.

Assumption 8. The model is a stochastic SIS epidemic model. Namely, an in-

dividual can be infected and after recovery the individual immediately becomes

susceptible to reinfection.

Assumption 9. We assume that at the start of the epidemic, the population re-

lationship structure is in equilibrium. Thus the proportion of the population in

relationships (and single) remains fairly constant throughout the course of the

epidemic. Let σ denote the proportion of the population single in equilibrium.

Our main focus here is the incidence of infection in the defined population.

The question arises whether we can determine the disease behaviour in the pop-

ulation, such as, what is the probability that the disease becomes endemic in the

population? Given that the disease becomes endemic, what is the endemic level

and how long does the disease persist in the population? However, these popula-

tion level questions are determined by individual behaviour. Important insights

into the disease propagation on the network can be gained by studying the early

stages of the epidemic. The ability of an infectious disease, starting with a single

infected individual, to invade a susceptible population is the initial key question.

As discussed in Section 1.2, the basic reproduction number (R0) plays a key role

as the threshold parameter in understanding an emerging infectious disease. R0

is defined as the expected number of secondary infections caused by a typical in-
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fected individual in an otherwise entirely susceptible population during its entire

period of infectiousness. In the literature, R0 is often derived under the assumption

that individuals make no repeated infectious contacts with the same individuals.

However, for sexually transmitted diseases, by definition the disease is being trans-

mitted through sexual contacts in which the sexual contacts are usually repeated

within relationships. Therefore, the same individual can potentially be re-infected

by an infective partner multiple times. In the literature, the basic reproduction

number R0 based upon the models that take into account relationship formation

and breakup have been studied which shows that the term basic reproduction num-

ber is still applicable here (Britton et al. (2007); Diekmann, Dietz & Heesterbeek

(1990); Kretzschmar et al. (1996)). Throughout the thesis, in order to account for

an infection in which an infective can infect a partner more than once and distin-

guish the difference between the number of infections made by an infective and

the number of secondary cases arising from an infective, we simply term R0, the

reproduction number with the definition being model specific. First, we construct

a sexual network model describing the transmission dynamics based on individual

behaviour.

Figure 2.1 displays the relationship network between individuals. Each node

represents a relationship stage and is labelled with disease status, namely 1 repre-

sents an infected single individual and 0 represents a susceptible single individual.

In a relationship, note that the first digit represents the individual of type 1 (male)

whilst the second digit represents the individual of type 2 (female). For example,

node (10) represents a partnership formation state with an infected male and a

susceptible female. Moreover, a comma between 2 digits illustrates the break up

of a relationship. For example (1,0) represents a relationship dissolution resulting

in a single infected male and a single susceptible female. The transition rates are

represented by parameters on arrows between states. We start the process with

one infected individual, say type 1(male).
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Figure 2.1: Sexual network diagram

As the figure 2.1 shows, an infected individual will either form a relationship

or recover from the disease. During the initial stages of the epidemic, an infective

forms a relationship with high probability with a susceptible individual as almost

the entire population is susceptible. Moreover, the single male can only choose

to form a relationship with a single female in the population. Therefore, the

proportion of the population who are single females at equilibrium is taken into

account, namely, ᾱ = α(σ/2). Hence, the proportion of the population single in

equilibrium as defined in Assumption 9 is σ = δ
ᾱ+δ

, which can be expressed in

terms of α and δ as σ = −2δ+
√

4δ2+8αδ
2α

.

If the initial individual recovers before he forms a relationship, he becomes

susceptible and the process is terminated, we obtain one susceptible male as a

result (state (0)). If he enters the relationship state (10), he can either transmit

the disease to his partner with rate β1 (move to state (11)), recover before any

transmission occurs with rate γ1 (move to state (00)), or break up with his partner

with rate δ (move to state (1,0)). The relationship breakups can occur from any
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disease state of the relationship, and when a breakup occurs we obtain single

individuals with disease status corresponding to the state prior to break up.

Figure 2.1 forms the basis for the branching process approximation introduced

in Section 2.3. Our key unit is single infected individuals. In particular, for a

single infected individual we consider how many infected individuals of each type

will result from the formation and breakup of their next relationship. The process

can be constructed on a generation basis by considering successive relationships.

At the end of each relationship, as a result, this process leads us to the following

4 possible outcomes:

• (1,1) - infected male and female,

• (1,0) - infected male and susceptible female,

• (0,1) - susceptible male and infected female,

• (0,0) - susceptible male and female.

These 4 outcomes are the secondary cases produced from an infected male (or

infected female). Throughout, we call infectious individuals resulting from the

formation and breakup of the relationship as “offspring” of the infected individual

at the start of the relationship. This forms the basis for the branching process

approximation and the derivation of the threshold parameter, R0. We can see

that the offspring are produced once the relationship has finished, and we refer to

this as a relationship reproduction number. The branching process approximation

will be discussed in Section 2.3.

2.3 Branching process approximation

In this section, we will describe the basic concept of the branching process, the

derivation of the reproduction number as well as the probability of extinction.
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As we categorised our population into two types of individuals, we will employ a

2-type branching process in order to determine the threshold parameter as well

as the probability of extinction. The basic concepts of the process are as follows.

The process starts with one infected individual of either type 1 or type 2. The

initial infective will produce a random number of offspring. Moreover, in each

generation, the offspring of different individuals are independent. The expected

number of offspring of each individual of each type is the key to identifying whether

or not it is possible for the disease to invade the population.

As described in the previous section, starting with one infected individual, at

the end of generation 1, we obtain 4 possible cases in which either 0 or 1 offspring

of each type are produced. To determine the expected number of offspring of

each type generated by a single infected individual of a given type, it is necessary

to calculate the probability of obtaining each of the 4 outcomes. To begin with,

in order to make the calculations easier, we consider the process starting from a

relationship state.

Let Qi,j denote the probability of having i male and j female offspring from a

relationship starting with an infected male and infected female. Let Pi,j denote the

probability of having i male and j female offspring from a relationship starting with

an infected male and a susceptible female. Let Fi,j denote the probability of having

i male and j female offspring from a relationship starting with an infected female

and a susceptible male, where i, j ∈ {0, 1}. Then, let Q = (Q0,0, Q1,0, Q0,1, Q1,1),

P = (P0,0, P1,0, P0,1, P1,1), and F = (F0,0, F1,0, F0,1, F1,1).

According to the network diagram displayed in Figure 2.1, state (10) can either

jump to state (00), (11) or (1,0) with rates γ1, β1 and δ, respectively. Hence, the

transition probability from state (10) to state (00) is γ1
δ+γ1+β1

, from state (10) to

state (11) is β1
δ+γ1+β1

and from state (10) to (1,0) is δ
δ+γ1+β1

.

The following formulae gives P in terms of Q.
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P1,0 =
δ

δ + β1 + γ1

· 1 +
β1

δ + β1 + γ1

·Q1,0 +
γ1

δ + β1 + γ1

· 0

P1,1 =
δ

δ + β1 + γ1

· 0 +
β1

δ + β1 + γ1

·Q1,1 +
γ1

δ + β1 + γ1

· 0 (2.1)

P0,1 =
δ

δ + β1 + γ1

· 0 +
β1

δ + β1 + γ1

·Q0,1 +
γ1

δ + β1 + γ1

· 0

P0,0 =
δ

δ + β1 + γ1

· 0 +
β1

δ + β1 + γ1

·Q0,0 +
γ1

δ + β1 + γ1

· 1.

Similarly, we can express Q in terms of P and F, and F in terms of Q as

follows.

Q1,0 =
δ

δ + γ1 + γ2

· 0 +
γ2

δ + γ1 + γ2

· P1,0 +
γ1

δ + γ1 + γ2

· F1,0

Q1,1 =
δ

δ + γ1 + γ2

· 1 +
γ2

δ + γ1 + γ2

· P1,1 +
γ1

δ + γ1 + γ2

· F1,1 (2.2)

Q0,1 =
δ

δ + γ1 + γ2

· 0 +
γ2

δ + γ1 + γ2

· P0,1 +
γ1

δ + γ1 + γ2

· F0,1

Q0,0 =
δ

δ + γ1 + γ2

· 0 +
γ2

δ + γ1 + γ2

· P0,0 +
γ1

δ + γ1 + γ2

· F0,0

and

F1,0 =
δ

δ + β2 + γ2

· 0 +
β2

δ + β2 + γ2

·Q1,0 +
γ2

δ + β2 + γ2

· 0

F1,1 =
δ

δ + β2 + γ2

· 0 +
β2

δ + β2 + γ2

·Q1,1 +
γ2

δ + β2 + γ2

· 0 (2.3)

F0,1 =
δ

δ + β2 + γ2

· 1 +
β2

δ + β2 + γ2

·Q0,1 +
γ2

δ + β2 + γ2

· 0

F0,0 =
δ

δ + β2 + γ2

· 0 +
β2

δ + β2 + γ2

·Q0,0 +
γ2

δ + β2 + γ2

· 1.

We can then substitute (2.1) and (2.3) into (2.2) to solve for Q. It is then
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trivial to obtain P and F. The solution for P is

P1,0 =
(δ(δ + γ1 + γ2)(β2 + δ + γ2)− δγ1β2)

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))

P1,1 =
β1δ(δ + β2 + γ2)

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))

P0,1 =
γ1δβ1

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))

P0,0 =
γ1γ2β1ᾱ + γ1((δ + γ1 + γ2)(δ + β2 + γ2)− γ1β2)

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))
.

We now obtain the probabilities of having the 4 resulting outcomes starting from

a single infected male. Therefore, the probabilities of the events occurring before

going to the relationship stage need to be considered. Let p
(k)
i,j define the probability

of having i infected male individuals and j infected female individuals end of

relationships, starting from 1 infected individual of type k, where i, j ∈ {0, 1} and

k ∈ {1, 2}. Thus, p
(1)
0,0 = γ1

γ1+ᾱ
+ ᾱ

ᾱ+γ1
P0,0, p

(1)
1,0 = ᾱ

ᾱ+γ1
P1,0, p

(1)
0,1 = ᾱ

ᾱ+γ1
P0,1, and

p
(1)
1,1 = ᾱ

ᾱ+γ1
P1,1. As a result, we derive the probabilities for each of the 4 outcomes

starting with an infected male as follows.

p
(1)
0,0 =

γ1

γ1 + ᾱ
+

γ1γ2β1ᾱ + γ1{(δ + γ1 + γ2)(δ + β2 + γ2)− γ1β2}ᾱ
(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))(γ1 + ᾱ)

p
(1)
1,0 =

(δ(δ + γ1 + γ2)(β2 + δ + γ2)− δγ1β2)ᾱ

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))(γ1 + ᾱ)

p
(1)
0,1 =

γ1δβ1ᾱ

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))(γ1 + ᾱ)
(2.4)

p
(1)
1,1 =

β1δ(δ + β2 + γ2)ᾱ

(δ + β1 + γ1)((δ + γ1 + γ2)(β2 + δ + γ2)− γ1β2)− γ2β1(β2 + δ + γ2))(γ1 + ᾱ)
.

Similarly, the probabilities for each of the 4 outcomes starting with an infected
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female are

p
(2)
0,0 =

γ2

γ2 + ᾱ
+

γ1γ2β2ᾱ + γ2{(δ + γ1 + γ2)(δ + β1 + γ1)− γ2β1}ᾱ
(δ + β2 + γ2)((δ + γ1 + γ2)(β1 + δ + γ1)− γ2β1)− γ1β2(β1 + δ + γ1))(γ2 + ᾱ)

p
(2)
1,0 =

γ2δβ2ᾱ

(δ + β2 + γ2)((δ + γ1 + γ2)(β1 + δ + γ1)− γ2β1)− γ1β2(β1 + δ + γ1))(γ2 + ᾱ)

p
(2)
0,1 =

(δ(δ + γ1 + γ2)(β1 + δ + γ1)− δγ2β1)ᾱ

(δ + β2 + γ2)((δ + γ1 + γ2)(β1 + δ + γ1)− γ2β1)− γ1β2(β1 + δ + γ1))(γ2 + ᾱ)
(2.5)

p
(2)
1,1 =

β2δ(δ + β1 + γ1)ᾱ

(δ + β2 + γ2)((δ + γ1 + γ2)(β1 + δ + γ1)− γ2β1)− γ1β2(β1 + δ + γ1))(γ2 + ᾱ)
.

We now have explicit formulae for the necessary ingredients for determining

an expression for R0. It was shown in Diekmann, Heesterbeek & Metz (1990)

the threshold parameter is equivalent to the dominant eigenvalue of the “next-

generation matrix”. Now, let us denote the next-generation matrix (NGM) by

K = (kij), where kij represents expected number of infected individuals of type j

caused by a single infected individual of type i, where i, j ∈ {1, 2}.

K =

 k11 k12

k21 k22

 =

 p
(1)
1,0 + p

(1)
1,1 p

(1)
0,1 + p

(1)
1,1

p
(2)
1,0 + p

(2)
1,1 p

(2)
0,1 + p

(2)
1,1

 . (2.6)

Since R0 is the dominant eigenvalue of the next generation matrix, we obtain

that

R0 =
T +
√
T 2 − 4D

2
, (2.7)

where

T = p
(1)
1,0 + p

(1)
1,1 + p

(2)
0,1 + p

(2)
1,1 and

D = (p
(1)
1,0 + p

(1)
1,1)(p

(2)
0,1 + p

(2)
1,1)− (p

(1)
0,1 + p

(1)
1,1)(p

(2)
1,0 + p

(2)
1,1).

We analyse the expression of R0 and obtain some interesting results. In the sim-

plest case where there is no difference in infection and recovery rates between the
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sexes, i.e. β1 = β2 and γ1 = γ2, a simple expression for R0 is given in Lemma

2.3.1.

Lemma 2.3.1 For β1 = β2 and γ1 = γ2, the reproduction number is

R0 = p
(1)
1,0 + p

(1)
0,1 + 2p

(1)
1,1 (2.8)

Proof Since β1 = β2 and γ1 = γ2, we have that

p
(1)
1,0 = p

(2)
0,1, p

(2)
1,0 = p

(1)
0,1, p

(1)
1,1 = p

(2)
1,1.

From (2.7),

T 2 − 4D = (p
(1)
1,0 + p

(1)
1,1)2 + 2(p

(1)
1,0 + p

(1)
1,1)(p

(2)
0,1 + p

(2)
1,1) + (p

(2)
0,1 + p

(2)
1,1)2

− 4{(p(1)
1,0 + p

(1)
1,1)(p

(2)
0,1 + p

(2)
1,1)− (p

(1)
0,1 + p

(1)
1,1)(p

(2)
1,0 + p

(2)
1,1)}

= (p
(1)
1,0 + p

(1)
1,1 − p

(2)
0,1 − p

(2)
1,1)2 + 4(p

(1)
0,1 + p

(1)
1,1)(p

(2)
1,0 + p

(2)
1,1)

T 2 − 4D = 4(p
(1)
0,1 + p

(1)
1,1)2 (∵ p

(1)
1,0 = p

(2)
0,1, p

(2)
1,0 = p

(1)
0,1, p

(1)
1,1 = p

(2)
1,1).

From equation (2.7), we have

R0 =
(p

(1)
1,0 + p

(1)
1,1 + p

(1)
1,0 + p

(1)
1,1) + 2(p

(1)
0,1 + p

(1)
1,1)

2

=
2(p

(1)
1,0 + p

(1)
1,1) + 2(p

(1)
0,1 + p

(1)
1,1)

2

= p
(1)
1,0 + p

(1)
1,1 + p

(1)
0,1 + p

(1)
1,1

= p
(1)
1,0 + p

(1)
0,1 + 2p

(1)
1,1.

Thus, Lemma 2.3.1 has been proved.

Lemma 2.3.2 1. If p
(1)
1,1 < p

(1)
0,0 and p

(2)
1,1 < p

(2)
0,0, then R0 < 1.

2. If p
(1)
1,1 > p

(1)
0,0 and p

(2)
1,1 > p

(2)
0,0, then R0 > 1.
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Proof Consider the case R0 < 1, i.e. R0 = T+
√
T 2−4D
2

< 1. We have that

T 2 − 4D < (2 − T )2, following by T 2 − 4D < 4 − 4T + T 2. As a result, we have

that R0 < 1 if and only if T −D < 1.

Substitute T and D and after simplification we thus obtain the following condi-

tions,

R0 < 1 if p
(1)
1,1p

(2)
1,1 − p

(1)
0,0p

(2)
0,0 + p

(2)
1,0(p

(1)
1,1 − p

(1)
0,0) + p

(1)
0,1(p

(2)
1,1 − p

(2)
0,0) < 0 (2.9)

R0 > 1 if p
(1)
1,1p

(2)
1,1 − p

(1)
0,0p

(2)
0,0 + p

(2)
1,0(p

(1)
1,1 − p

(1)
0,0) + p

(1)
0,1(p

(2)
1,1 − p

(2)
0,0) > 0. (2.10)

It is obvious that condition (2.9) is satisfied if p
(1)
1,1 < p

(1)
0,0 and p

(2)
1,1 < p

(2)
0,0, whilst

p
(1)
1,1 > p

(1)
0,0 and p

(2)
1,1 > p

(2)
0,0 will ensure that (2.10) is satisfied. The lemma is thus

proved.

Lemma 2.3.2 has an intuitive interpretation that if for both males and females the

probability of having no offspring is greater than the probability of having two

offspring, the disease will die out. In contrast, we have the following surprising

result.

Theorem 2.3.3 The reproduction number remains unchanged when swapping the

values of β1 and β2, whilst keeping the other parameters fixed.

Proof Let a, b ∈ R+. Consider two epidemic processes. Fix α, δ, γ1 and γ2 to be

the same in both epidemic processes.

For epidemic model 1, set parameters β1 = a, β2 = b.

For epidemic model 2, set parameters β1 = b, β2 = a.

Let M be the next generation matrix for epidemic model 1 and let M∗ be the

next generation matrix for epidemic model 2. Then
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M =

 p
(1)
1,0 + p

(1)
1,1 p

(1)
0,1 + p

(1)
1,1

p
(2)
1,0 + p

(2)
1,1 p

(2)
0,1 + p

(2)
1,1

 , M∗ =

 q
(1)
1,0 + q

(1)
1,1 q

(1)
0,1 + q

(1)
1,1

q
(2)
1,0 + q

(2)
1,1 q

(2)
0,1 + q

(2)
1,1

 ,

Note that q
(k)
i,j is the probability of having i male offspring and j female offspring

using the parameter set from epidemic model 2.

Recall that if we have two matrices A2 = (aij) and B2 = (bij) such that

a11 = b11, a22 = b22 and a12a21 = b12b21, then

det(A− λI) = (a11 − λ)(a22 − λ)− a12a21

= (b11 − λ)(b22 − λ)− b12b21

= det(B − λI). (2.11)

That is, A and B have the same eigenvalues and hence, the same maximal eigen-

value.

Let R and R∗ denote the maximal eigenvalues of matrices M and M∗, respec-

tively. To show that R = R∗, we show that

p
(1)
1,0 + p

(1)
1,1 = q

(1)
1,0 + q

(1)
1,1 (2.12)

p
(2)
1,0 + p

(2)
1,1 = q

(2)
1,0 + q

(2)
1,1 (2.13)

(p
(1)
0,1 + p

(1)
1,1)(p

(2)
1,0 + p

(2)
1,1) = (q

(1)
1,0 + q

(1)
1,1)(q

(2)
1,0 + q

(2)
1,1). (2.14)

The denominator of p
(1)
i,j for i, j ∈ {0, 1} is

((δ+γ1 +γ2)(b+ δ+γ2)(δ+a+γ1)−γ1b(δ+a+γ1)−γ2a(b+ δ+γ2))(γ1 + ᾱ).

The denominator of q
(1)
i,j for i, j ∈ {0, 1} is

((δ+γ1 +γ2)(a+ δ+γ2)(δ+ b+γ1)−γ1a(δ+ b+γ1)−γ2b(a+ δ+γ2))(γ1 + ᾱ).
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It is straightforward to show that these two denominators are the same. Let us

denote the denominator of p
(1)
i,j and q

(1)
i,j by L1. Then

(
L1

ᾱ

)
(p

(1)
1,0 + p

(1)
1,1) = δ(δ + γ1 + γ2)(b+ δ + γ2)− δγ1b+ aδ(δ + b+ γ2)(

L1

ᾱ

)
(q

(1)
1,0 + q

(1)
1,1) = δ(δ + γ1 + γ2)(a+ δ + γ2)− δγ1a+ bδ(δ + a+ γ2)(

L1

ᾱ

)
(p

(1)
1,0 + p

(1)
1,1 − (q

(1)
1,0 + q

(1)
1,1)) = δ(δ + γ1 + γ2)(b− a)− δγ1(b− a) + aδ(δ + b+ γ2)

− bδ(δ + a+ γ2)

= (δ2b− δ2b) + (δ2a− δ2a) + (δγ1b− δγ1b)

+ (δγ2b− δγ2b) + (δγ2a− δγ2a) + (δγ1a− δγ1a)

+ (abδ − abδ) = 0.

Hence, p
(1)
1,0 + p

(1)
1,1 = q

(1)
1,0 + q

(1)
1,1. Similarly, we have

p
(2)
1,0 + p

(2)
1,1 = q

(2)
1,0 + q

(2)
1,1.

Let L2 denote the denominator of p
(2)
i,j and q

(2)
i,j , thus

L1L2

ᾱ2
(p

(1)
0,1 + p

(1)
1,1)(p

(2)
1,0 + p

(2)
1,1) = (δγ1a+ aδ(δ + b+ γ2))(δγ2b+ bδ(δ + a+ γ1))

= δ2a(γ1 + δ + b+ γ2)b(γ2 + a+ δ + γ1)

L1L2

ᾱ2
(q

(1)
10 + q

(1)
1,1)(q

(2)
1,0 + q

(2)
1,1) = (δγ1b+ bδ(δ + a+ γ2))(δγ2a+ aδ(δ + b+ γ1))

= δ2a(γ1 + δ + b+ γ2)b(γ2 + a+ δ + γ1).

Hence (p
(1)
0,1 + p

(1)
1,1)(p

(2)
1,0 + p

(2)
1,1) = (q

(1)
10 + q

(1)
1,1)(q

(2)
1,0 + q

(2)
1,1), as required.

The theorem then follows by (2.11).

We also obtain the same result from swapping the values of γ1 and γ2, keeping

the other parameters fixed, which can be proved in a similar manner to Theorem
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2.3.3.

We have studied the threshold parameter, R0, which indicates whether or not

the disease can persist in the population. If R0 ≤ 1, then the disease will go extinct

with probability 1. If R0 > 1, the probability that the disease will go extinct is

positive but less than one. We are interested in determining this probability of

extinction in Section 2.4.

2.4 The probability of extinction

The behaviour of the disease in terms of extinction follows branching processes

characteristic, in which it will either grow large or quickly become extinct. In a

finite population, the epidemic will always go extinct, but here, we are interested

in determining the probability of the disease taking off first before going extinct.

Therefore, in this section, we are interested in studying the probability of extinc-

tion, since then, the probability of a major epidemic outbreak occurring is given

by 1 - the probability of extinction. Then, we have that the probability of a major

outbreak is 0 if R0 ≤ 1, and if R0 > 1, it is greater than 0 and is equal to 1 - the

probability of extinction.

In order to determine the probability of extinction, we employ 2-type branch-

ing processes. The expected numbers of offspring produced in each generation

calculated in the previous section, are parameters used in forming the probability

generating functions. According to Theorem 7.1, page 41 in Harris (1963), the

probability of extinction is the unique non-negative solution less than 1 of equa-

tions of the probability generating functions. In particular, recall that p
(k)
i,j is the

probability of having i infected male individuals and j infected female individuals,

starting from 1 infected individual of type k. We define the probability generating
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functions for the number of offspring of a type k individual as

gk(s1, s2) =
∑
j,i

p
(k)
i,j s

i
1s
j
2, k = 1, 2, (2.15)

where

g1(s1, s2) = p
(1)
0,0 + p

(1)
1,0s1 + p

(1)
0,1s2 + p

(1)
1,1s1s2

g2(s1, s2) = p
(2)
0,0 + p

(2)
1,0s1 + p

(2)
0,1s2 + p

(2)
1,1s1s2.

Let πi denote the probability of extinction given that a single infected individual

of type i is introduced into the population. The probabilities of extinction, π1 and

π2, are the smallest non-negative root of the equation

(g1(π1, π2), g2(π1, π2)) = (π1, π2). (2.16)

Due to the complex formulae for p
(k)
ij , it is not possible to obtain explicit ex-

pressions for π1 and π2. Therefore, we focus on a numerical analysis. However,

analytical progress can be made in the case, β1 = β2 and γ1 = γ2. We obtain the

following lemma.

Lemma 2.4.1 If β1 = β2 and γ1 = γ2, then π1 = π2 and π1 = min

{
1,
p

(1)
0,0

p
(1)
1,1

}

Proof From equation (2.16), we have

π1 = p
(1)
0,0 + p

(1)
1,0π1 + p

(1)
0,1π2 + p

(1)
1,1π1π2, (2.17)

π2 = p
(2)
0,0 + p

(2)
1,0π1 + p

(2)
0,1π2 + p

(2)
1,1π1π2. (2.18)

Since p
(1)
0,0 = p

(2)
0,0, p

(1)
1,0 = p

(2)
0,1, p

(2)
1,0 = p

(1)
0,1, p

(1)
1,1 = p

(2)
1,1 (because β1 = β2 , γ1 = γ2 )



CHAPTER 2. SEXUAL NETWORK MODELLING 40

and by subtracting equation (2.17) and (2.18), we obtain

π1 − π2 = p
(1)
1,0π1 − p(1)

1,0π2 + p
(1)
0,1π2 − p(1)

0,1π1 (2.19)

(1− p(1)
1,0 + p

(1)
0,1)π1 = (p

(1)
0,1 − p

(1)
1,0 + 1)π2. (2.20)

Hence, π1 = π2. (2.21)

Now, we want to show that π1 = min

{
1,
p

(1)
0,0

p
(1)
1,1

}
. Let π = π1 = π2. From (2.17),

we have that

p
(1)
0,0 + (p

(1)
1,0 + p

(1)
0,1 − 1)π + p

(1)
1,1π

2 = 0. (2.22)

Recall that p
(1)
0,0 + p

(1)
1,0 + p

(1)
0,1 + p

(1)
1,1 = 1, then p

(1)
1,0 + p

(1)
0,1 − 1 = −(p

(1)
0,0 + p

(1)
1,1).

Hence, equation (2.22) becomes

p
(1)
0,0 − (p

(1)
0,0 + p

(1)
1,1)π + p

(1)
1,1π

2 = 0

(π − 1)(p
(1)
1,1π − p

(1)
0,0) = 0.

As a result, π = 1 or π =
p

(1)
0,0

p
(1)
1,1

. Since π is the smallest non-negative root, then

π = min

{
1,
p

(1)
0,0

p
(1)
1,1

}
= π1. Thus, the Lemma is proved.

What if there is a difference in either infection or recovery rate between males and

females? As we observed, a higher infection rate will increase the expected number

of offspring, giving a smaller probability of extinction. Whilst, a higher recovery

rate will reduce the expected number of offspring, giving a higher probability

of extinction. As such, we have the following lemma which supports the above

intuition.

Lemma 2.4.2 (i) If β1 = β2 and γ1 < γ2, then π1 < π2.

(ii) If β1 > β2 and γ1 = γ2, then π1 < π2.
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Proof (i) Let φ denote the probability of extinction starting with a relation-

ship containing both an infected male and an infected female. Let qi denote the

probability of extinction starting with an individual of type i before infecting an

individual of the opposite sex. Let MI(FI) , MS(FS) represent an infected and a

susceptible male(female), respectively.

Then Figure 2.2 shows the initial stages of a sexual network starting from a single

infected male.

MI

MIFS

MIFI

MI

MS

MS

a1 = γ1
γ1+ᾱ

(1− a1) = ᾱ
γ1+ᾱ

b1 = β1
δ+β1+γ1

c1 = γ1
δ+β1+γ1d1 = δ

δ+β1+γ1

Figure 2.2: Sexual network diagram

From the diagram, we have

q1 = a1 + (1− a1)(c1 + d1q1) =
γ1δ + β1γ1 + ᾱγ1 + γ2

1

ᾱβ1 + δγ1 + β1γ1 + ᾱγ1 + γ2
1

(2.23)

1− q1 = (1− a1)(b1 + d1(1− q1)) =
ᾱβ1

ᾱβ1 + δγ1 + β1γ1 + ᾱγ1 + γ2
1

. (2.24)

Similarly, we have

q2 =
γ2δ + β2γ2 + ᾱγ2 + γ2

2

ᾱβ2 + δγ2 + β2γ2 + ᾱγ2 + γ2
2

(2.25)

1− q2 =
ᾱβ2

ᾱβ2 + δγ2 + β2γ2 + ᾱγ2 + γ2
2

(2.26)
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We can therefore write the probability of extinction as

π1 = q1 + (1− q1)φ (2.27)

π2 = q2 + (1− q2)φ. (2.28)

Let

f(β, γ) =
γδ + βγ + ᾱγ + γ2

ᾱβ + δγ + βγ + ᾱγ + γ2
, (2.29)

where β > 0, γ > 0, and π(β, γ) = f(β, γ) + (1 − f(β, γ))φ. Then q1 = f(β1, γ1)

and q2 = f(β2, γ2). We can write the probabilities of extinction as

π1 = π(β1, γ1) and π2 = π(β2, γ2).

By (2.29), we have

∂f(β, γ)

∂γ
=

ᾱβ(ᾱ + δ + β + 2γ)

(ᾱβ + δγ + βγ + ᾱγ + γ2)2
> 0,

for every β > 0. Therefore, f(β, γ) is an increasing function in γ. If γ1 < γ2, and

β1 = β2 = β then f(β, γ1) < f(β, γ2). Thus,

π(β, γ1) = f(β, γ1) + (1− f(β, γ1))φ < f(β, γ2) + (1− f(β, γ2))φ = π(β, γ2).

(2.30)

That is, π1 = π(β1, γ1) < π(β2, γ2) = π2 as required. Note that 0 < φ < 1.

(ii) Similarly,

∂f(β, γ)

∂β
= − γᾱ(γ + δ + ᾱ)

(ᾱβ + γδ + βγ + ᾱγ + γ2)2
< 0.

Hence, f(β1, γ) < f(β2, γ) for every β1 > β2 and γ > 0. Thus,
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π(β1, γ) = f(β1, γ) + (1− f(β1, γ))φ > f(β2, γ) + (1− f(β2, γ))φ = π(β2, γ),

(2.31)

for every β1 > β2 and γ > 0. Therefore, if β1 > β2 and γ1 = γ2, then π1 =

π(β1, γ1) < π(β2, γ2) = π2 as required. Following Lemma 2.4.2, we have Corollary

2.4.3.

Corollary 2.4.3 If β1 ≥ β2 and γ1 ≤ γ2, then π1 ≤ π2.

Proof From Lemma 2.4.1, we have that π1 = π2 if β1 = β2 and γ1 = γ2. Now,

assume that β1 > β2 and γ1 < γ2. Then,

π2 = π(β2, γ2) > π(β2, γ1) (From (2.30) and γ1 < γ2)

> π(β1, γ1) = π1 (From (2.31) and β1 > β2)

Therefore, if β1 ≥ β2 and γ1 ≤ γ2, then π1 ≤ π2. The corollary is then proved.

We have explored the relationship between infection and recovery rates and the

probability of extinction. However, infection is also controlled by the relationship

formation rate, ᾱ. If the rate at which relationships are formed is low, it will lower

the chance that the disease is transmitted even if the infection rate is high. This

is because the infection occurs only within a relationship. At the same time, if

the relationship formation rate is high, but the breakup rate is very small, the

chance that an infected individual will infect new partners is small. With high

breakup rate and low relationship formation rate, individuals tend to stay single

rather than forming relationships, leading to less chance of individuals infecting

each other. For this reason, to observe the effect of relationship dynamics on

the probability of extinction, we consider reparameterising the model in terms

of δ and F = ᾱ
δ
, the relative rate of formation to breakup. Lemma 2.4.4 states
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the relationship between the relationship breakup rate (δ) and the probability of

extinction.

Lemma 2.4.4 If β1 = β2 = β and γ1 = γ2 = γ, for fixed F = ᾱ
δ
, the probability

of extinction is decreasing as δ increases.

Proof Since β1 = β2 = β and γ1 = γ2 = γ, it suffices to look at the final

outcomes without considering the type of individuals. In other words, we consider

the number of offspring produced from 1 infected individual.

Let Hi be the probability of having i offspring starting at the relationship stage

with 1 infected individual. Let Pi be the probability of having i offspring starting

with 1 single infected individual.

The probabilities of having 0, 1 and 2 offspring can be expressed as

P0 =
γ

ᾱ + γ
+

ᾱ

ᾱ + γ
H0, P1 =

ᾱ

ᾱ + γ
H1, P2 =

ᾱ

ᾱ + γ
H2 (2.32)

Consider the following diagram, Figure 2.3

0

1

2

1

2

0
1

γ
δ+β+γ

β
δ+β+γ

δ
δ+β+γ

2γ
δ+2γ

δ
δ+2γ

Figure 2.3: Network diagram with nodes representing the number of infected off-
spring in a relationship, and arrows representing the transition probabilities.



CHAPTER 2. SEXUAL NETWORK MODELLING 45

From Figure 2.3, we have an expression of Hi as follows

H0 =
γ

δ + β + γ
+ (

β

δ + β + γ
)(

2γ

2γ + δ
)H0

H1 =
δ

δ + β + γ
+ (

β

δ + β + γ
)(

2γ

2γ + δ
)H1 (2.33)

H2 =
β

δ + β + γ

δ

2γ + δ
+ (

β

δ + β + γ
)(

2γ

2γ + δ
)H2.

Hence,

H0 =
γ(δ + 2γ)

δ2 + δβ + 3δγ + 2γ2

H1 =
δ(δ + 2γ)

δ2 + δβ + 3δγ + 2γ2
(2.34)

H2 =
βδ

δ2 + δβ + 3δγ + 2γ2
.

The probability of extinction π satisfies

π = P0 + P1π + P2π
2, (2.35)

π = min

{
1,
P0

P2

}
. (2.36)

From (2.32), (2.34) and substituting in Fδ for ᾱ, we have

P0 =
γ

δF + γ
+

(δF )γ(δ + 2γ)

(δF + γ)(δ2 + δβ + 3δγ + 2γ2)
(2.37)

P2 =

(
δF

δF + γ

)(
βδ

δ2 + δβ + 3δγ + 2γ2

)
. (2.38)

Hence, if π = P0

P2
, we have

π =
P0

P2

=
γ((1 + F )δ2 + (β + 3γ + 2γF )δ + 2γ2)

δ2Fβ
=
Aδ2 +Bδ + C

δ2Fβ
, (2.39)

where A,B and C are constants in β, γ and F . Thus the gradient of π with respect
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to δ is

∂π

∂δ
= −Bδ + 2C

δ3Fβ
< 0. (2.40)

Therefore π is a decreasing function in δ. In other words, the probability of

extinction is decreasing in δ, for fixed F = ᾱ
δ
.

We have now studied the behaviour of the epidemic in its early stages. Now, we

are interested in the case moving away from the early stages to the case where the

disease persists. The key quantity of interest here is the endemic level.

2.5 Endemic Level

The behaviour of the epidemic in its initial stages has been described using the

branching process approximation, in which it indicates the ability of the epidemic

taking off in the population; whether or not a major outbreak of the disease can

occur and the probability such an outbreak occurs. When an outbreak of the

disease occurs, there are two possible scenarios. The first scenario being that a

few susceptible individuals become infected and the disease dies out quickly (time

to extinction is short), which is covered by branching process approximation. The

second scenario is that there is a large outbreak, namely, many individuals become

infected, and the epidemic persists in the population for some period of time before

dying out (time to extinction is long). When the second scenario occurs, the disease

has become endemic in the population. The outbreak of the disease when it is

endemic is defined by the proportion of infected individuals at equilibrium, the so-

called endemic level. Here, we are interested in studying and answering questions

arising in the second scenario. What is the proportion of infected individuals at

the endemic, in other words, what is the endemic level? What is the expected time

to extinction of the epidemic given that the epidemic starts at the endemic level?
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Since we are interested in the case where there is an epidemic outbreak, through-

out this section, we assume that the epidemic is supercritical (R0 > 1). When the

population size is sufficiently large, especially for multi-dimensional Markov pro-

cesses, the stochastic model becomes difficult to work with, from both an analytical

and a computational point of view. However, according to Theorem 1.3.2 in Chap-

ter 1, for large N , sequences of Markov processes converge to solutions of ordinary

differential equations. Therefore, it is useful to approximate the stochastic model

by a deterministic approximation, and to study the behaviour of the deterministic

approximation. This will be described in detail in Section 2.5.1.

Another question arising here is what are the fluctuations about the endemic

level? An Ornstein-Uhlenbeck (OU) approximation is constructed to describe fluc-

tuations about a mean. The Ornstein-Uhlenbeck process is stationary, Gaussian

and Markovian. As Theorem 1.3.3 stated, using the central limit theorem, for

large N , the fluctuations of the stochastic process about the deterministic limit

converges weakly to a diffusion process. If an equilibrium point is chosen as the

initial value of the deterministic approximation, the fluctuations of the stochastic

process can be approximated by an Ornstein-Uhlenbeck process (Pollett (2001)).

The construction of the Ornstein-Uhlenbeck process will be described in detail in

Section 2.5.2.

For epidemic models in general, typical behaviour is that the model will con-

verge towards a disease free equilibrium at 0 in the case that R0 ≤ 1, or some

non-zero fixed point steady state when R0 > 1. This is according to the existence

and uniqueness properties of the ordinary differential equations (Atkinson et al.

(2009), Chapter 1). Whereas, in terms of stochastic behaviour, even if R0 > 1 but

the process starts with only one (or a few) initial infectives in a large population,

it is possible that the epidemic never takes off. The deterministic models can not

capture this behaviour. Therefore, the deterministic model is not informative for

determining the mean time to extinction. In Section 2.6, we estimate the mean
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time to extinction using simulations of the stochastic process.

2.5.1 Deterministic Model

The population is classified into 8 disjoint classes according to sex, disease sta-

tus and relationship status. The parameters of the model are as above. Let

X(t),Y (t) and Z(t) represent the number of males, females and couples at time

t, respectively, namely,

X(t) = (X0(t), X1(t)), Y (t) = (Y0(t), Y1(t)), Z(t) = (Z00(t), Z10(t), Z01(t), Z11(t)),

where

X0(t) is the number of susceptible males at time t

X1(t) is the number of infected males at time t,

Y0(t) is the number of susceptible females at time t,

Y1(t) is the number of infected females at time t,

Z00(t) is the number of uninfected couples at time t,

Z10(t) is the number of couples with an infected male only at time t,

Z01(t) is the number of couples with an infected female only at time t,

Z11(t) is the number of infected couples at time t.

Also, X0(t) +X1(t) +Y0(t) +Y1(t) + 2Z00(t) + 2Z10(t) + 2Z01(t) + 2Z11(t) = N ,

where N is the total population. Let I(t) denote the number of infected individuals

at time t, i.e. I(t) = X1(t) + Y1(t) + Z10(t) + Z01(t) + 2Z11(t).

Now we have a jump Markov process with state space (X(t),Y (t), Z(t)). To

apply the functional law of large number, we define for t ≥ 0

(XN(t),YN(t),ZN(t)) =

(
X(t)

N
,
Y(t)

N
,
Z(t)

N

)
,

IN(t) =
I(t)

N
.
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According to Kurtz (1970), the stochastic model converges to the deterministic

model, for N →∞, namely,

lim
N−→∞

(XN(t),YN(t),ZN(t)) = (x(t),y(t), z(t)),

where (x(t),y(t), z(t)) = (x0(t), x1(t), y0(t), y1(t), z00(t), z01(t), z10(t), z11(t)) is a

deterministic counterpart to (XN(t),Y N(t),ZN(t)). The deterministic model sat-

isfies the following ordinary differential equations (ODEs),

dx0(t)

dt
= γ1x1(t) + δ(z01(t) + z00(t))− αx0(t)(y1(t) + y0(t)),

dx1(t)

dt
= −γ1x1(t) + δ(z11(t) + z10(t))− αx1(t)(y1(t) + y0(t)),

dy0(t)

dt
= γ2y1(t) + δ(z10(t) + z00(t))− αy0(t)(x1(t) + x0(t)),

dy1(t)

dt
= −γ2y1(t) + δ(z11(t) + z01(t))− αy1(t)(x1(t) + x0(t)),

dz00(t)

dt
= γ1z10(t) + γ2z01(t) + αy0(t)x0(t)− δz00(t), (2.41)

dz10(t)

dt
= γ2z11(t)− β1z10(t)− γ1z10(t) + αx1(t)y0(t)− δz10(t),

dz01(t)

dt
= γ1z11(t)− γ2z01(t)− β2z01(t) + αx0(t)y1(t)− δz01(t),

dz11(t)

dt
= β1z10(t) + β2z01(t)− γ1z11(t)− γ2z11(t) + αy1(t)x1(t)− δz11(t),

and,

n(t) = x0(t) + x1(t) + y0(t) + y1(t) + 2z00(t) + 2z01(t) + 2z10(t) + 2z11(t) = 1.

(2.42)

Note that, the numbers of males and females are assumed to be equal. Therefore,
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we have the following condition

x0(t) + x1(t) = y0(t) + y1(t). (2.43)

The endemic level is a solution of the simultaneous non-linear equations ob-

tained by finding the stationary points to the system of differential equations de-

fined above, with initial values x(0),y(0), z(0) where 0 ≤ xi(0), yi(0), zij(0) ≤ 1

and i, j ∈ {0, 1}. We can reduce the system (2.41) to 6 equations. From (2.42)

and (2.43), we have that

x0(t) = 0.5− (z00(t) + z10(t) + z01(t) + z11(t) + x1(t)), (2.44)

y0(t) = 0.5− (z00(t) + z10(t) + z01(t) + z11(t) + y1(t)). (2.45)

Substituting (2.44) and (2.45) in (2.41), we have the following system of equations

dx1(t)

dt
= −γ1x1(t) + δ(z11(t) + z10(t))− αx1(t)G3(t),

dy1(t)

dt
= −γ2y1(t) + δ(z11(t) + z01(t))− αy1(t)G3(t),

dz00(t)

dt
= γ1z10(t) + γ2z01(t) + αG1(t)G2(t)− δz00(t), (2.46)

dz10(t)

dt
= γ2z11(t)− β1z10(t)− γ1z10(t) + αx1(t)G2(t)− δz10(t),

dz01(t)

dt
= γ1z11(t)− γ2z01(t)− β2z01(t) + αG1(t)y1(t)− δz01(t),

dz11(t)

dt
= β1z10(t) + β2z01(t)− γ1z11(t)− γ2z11(t) + αy1(t)x1(t)− δz11(t)

where

G1(t) = 0.5− (z00(t) + z10(t) + z01(t) + z11(t) + x1(t)), (2.47)

G2(t) = 0.5− (z00(t) + z10(t) + z01(t) + z11(t) + y1(t)), (2.48)

G3(t) = 0.5− (z00(t) + z10(t) + z01(t) + z11(t)). (2.49)
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Equation (2.46) will be studied in detail to explore the endemic equilibrium and

fluctuations about the endemic equilibrium.

2.5.1.1 Existence of disease-free equilibrium state (Ef)

Theorem 2.5.1 A disease-free equilibrium state of the model in (2.41) exists at

the point

Ef = (x∗0, x
∗
1, y
∗
0, y
∗
1, z
∗
00, z

∗
10, z

∗
01, z

∗
11) = (h, 0, h, 0,

αh2

δ
, 0, 0, 0),

where h =
−δ +

√
δ(δ + 2α)

2α
.

Proof Assume that (x∗0, x
∗
1, y
∗
0, y
∗
1, z
∗
00, z

∗
10, z

∗
01, z

∗
11) is the solution to the system in

(2.41). At the disease-free equilibrium, we have that

x∗1 = y∗1 = z∗10 = z∗01 = z∗11 = 0.

Then, the system of equations in (2.41) has only one equation remaining, which is

δz∗00 − αx∗0y∗0 = 0. (2.50)

Equation (2.42) becomes

2z∗00 + x∗0 + y∗0 = 1. (2.51)

From (2.50), we immediately have that z∗00 = α
δ
x∗0y

∗
0. Recall that we assume at

the start the number of males and females are equal, the proportion of the pop-

ulation in relationships (and single) remain constant. Therefore, at equilibrium,

x∗0 = y∗0. Hence, the disease - free equilibrium exists at (x∗0, 0, x
∗
0, 0,

α
δ
x∗0

2, 0, 0, 0).



CHAPTER 2. SEXUAL NETWORK MODELLING 52

Substituting z∗00 = α
δ
x∗0

2 and x∗0 = y∗0 in (2.51), we have

2
α

δ
x∗0

2 + 2x∗0 = 1

2
α

δ
x∗0

2 + 2x∗0 − 1 = 0.

Hence, x∗0 =
−δ ±

√
δ(δ + 2α)

2α
. Choose h = x∗0. Hence, the theorem is proved.

We now know that the disease-free equilibrium exists. Its stability is also

interesting. In general epidemiological models, the reproduction number, R0, is

also a threshold parameter for the stability of disease free equilibrium, such that if

R0 < 1, then the disease-free equilibrium is locally asymptotically stable; whereas

unstable if R0 > 1, (Hethcote (2000)). However, the stability may not hold for

every model. It could depend on state variables and parameters. Therefore, for

our model, we are also interested in investigating whether or not the resulting

disease-free equilibrium is stable. This will be studied in Subsection 2.5.1.2.

2.5.1.2 Local stability of disease free equilibrium (Ef)

We will start this subsection with some background knowledge and theorems that

are useful for our studies in this subsection. We begin with the stability of the

equilibrium.

Theorem 2.5.2 (Kahoui & Otto (2001)) Suppose that we have a system of ordi-

nary differential equations written in a vector form

ẋ = f(x) (2.52)

and x∗ satisfies f(x) = 0. J∗ is the Jacobian matrix of f(x) evaluated at x∗.

The equilibrium point x∗ is locally asymptotically stable if all of the eigenvalues of

J∗ have negative real parts and unstable if at least one of the eigenvalues has a

positive real part.
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The process of finding eigenvalues for high dimensional matrices (higher than 4)

can be very difficult. Usually, the calculation of eigenvalues of matrices containing

state variables and parameters involves polynomials. When polynomials contain

many unknown parameters, it is important to avoid computation of the coeffi-

cients. An alternative way of determining the stability is to replace the eigenvalue

equation, Ax = λx, by the characteristic equation det(λI − A) = 0 and deter-

mine the stability of the corresponding polynomials instead of calculate the exact

eigenvalues. One useful method is the Routh-Hurwitz criteria which is a method

of determining stability of a polynomial with real coefficients. The Routh-Hurwitz

criteria are often used to determine local asymptotic stability of an equilibrium for

non-linear system of differential equations. The criterion is stated as follows.

Theorem 2.5.3 (Gantmakher (2000), page 221) (Routh-Hurwitz criteria)

Given the polynomial,

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,

where the coefficients ai are real and non-zero, i = 1, 2, 3,..., n. The Routh-Hurwitz

criteria for n = 2, 3, 4 are

n = 2; a1 > 0 and a2 > 0

n = 3; a1 > 0, a3 > 0 and a1a2 > a3

n = 4; a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4

Note that polynomials being stable is equivalent to the roots lying in the left half

of the complex plane. In other words, the solutions of polynomials have negative

real parts. Following Theorem 2.5.3, we have Corollary 2.5.4 stating a necessary

condition for the roots of the polynomial P (λ) to have negative real parts.

Corollary 2.5.4 (Gantmakher (2000), page 220) Suppose the coefficients ai of the
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characteristic polynomial are real. If all of the roots of the following polynomial

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,

are negative or have negative real parts, then the coefficient ai must be strictly

positive, that is, ai > 0 for i = 1, 2, ..., n.

The following states some basic properties which are important for computing

determinants of matrices (Chapter 4, Cheney & Kincaid (2010)).

Theorem 2.5.5 Let A and B be n× n matrix.

1. If B is obtained by adding a multiple of one row of A to another row,

(Ri ← Ri + kRj), then det B = det A.

2. If B is obtained by multiplying a row of A by a non zero constant c, (Ri ←

cRi), then det B = c(det A).

3. If B is obtained by interchanging two rows of A, (Ri ↔ Rj), then det B =

-det A.

Now, we will start the study of the stability of the disease-free equilibrium for our

model. Define ∂xf(x∗) as the Jacobian matrix with respect to x of f at x∗ and

note that Ef is the resulting disease-free equilibrium as in Theorem 2.5.1. Let

J(Ef ) = ∂Ef
f(Ef ), we have

J(Ef ) =



−αF − γ1 0 0 δ 0 δ

0 −αF − γ2 0 0 δ δ

−αF −αF −2αF − δ γ1 − 2αF γ2 − 2αF −2αF

αF 0 0 −β1 − δ − γ1 0 γ2

0 αF 0 0 −β2 − δ − γ2 γ1

0 0 0 β1 β2 −δ − γ1 − γ2



where F = 0.5− x∗0y
∗
0α

δ
. To find the eigenvalues of the Jacobian matrix J(Ef ), we

solve det(J(Ef ) − λI6) = 0. Note that, the determinant of a triangular matrix



CHAPTER 2. SEXUAL NETWORK MODELLING 55

is the products of the entries on its diagonal. Therefore, in order to find the

determinant of matrix (J(Ef )−λI6), we use elementary row operations to obtain an

upper triangular matrix. Let Tij represent row-switching transformations between

row i and row j. Tij(m) represents row-addition transformations, adding row

j multiplied by a scalar m to row i, where m is a non-zero scalar. Let M =

(J(Ef )− λI6), and M (n) denotes the matrix M after the nth row operation. M
′

is

the final matrix after row operations, an upper triangular matrix. The sequence

of the row operations is hence written as

T13T41(1)T31

(
−
M

(2)
3,1

M
(2)
1,1

)
T24T32

(
−
M

(4)
3,2

M
(4)
2,2

)
T42

(
−
M

(5)
4,2

M
(5)
2,2

)

T52

(
−
M

(6)
5,2

M
(6)
2,2

)
T35T43

(
−
M

(8)
4,3

M
(8)
3,3

)
T53

(
−
M

(9)
5,3

M
(9)
5,3

)
T45T64(

−
M

(10)
6,4

M
(10)
4,4

)
T65

(
−
M

(11)
6,5

M
(11)
5,5

)
.

From the sequence of the row operations, we can see that there are row-

interchanging 4 times and there are no elementary products. According to The-

orem 2.5.5, the determinant changes sign 4 times, but was otherwise unchanged,

i.e. det(M) = (−1)(−1)(−1)(−1)det(M
′
) = det(M

′
). Therefore, the determinant

of M is the product of the entries on the main diagonal of M
′
, which is

(−2Fα− δ − λ)A1A2A3 = 0 (2.53)
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where

A1 = Fαβ1 + Fαλ+ Fαγ1 + β1λ+ β1γ1 + δλ+ δγ1 + λ2 + 2λγ1 + γ2
1 .

A2 = Fαβ2 + Fαλ+ Fαγ2 + β2λ+ β2γ2 + δλ+ δγ2 + λ2 + 2λγ2 + γ2
2 .

A3 = −δ − γ1 − γ2 − λ+
β1(Fαδ + Fαγ2 + λγ2 + γ1γ2)

Fαβ1 + Fαλ+ Fαγ1 + β1λ+ β1γ1 + δλ+ δγ1 + λ2 + 2λγ1 + γ2
1

+
β2(Fαδ + Fαγ1 + λγ1 + γ1γ2)

Fαβ2 + Fαλ+ Fαγ2 + β2λ+ β2γ2 + δλ+ δγ2 + λ2 + 2λγ2 + γ2
2

.

Consider type 1 as an initial individual. Then we have that ᾱ = α(y∗0 +y∗1). Since

we are looking at the disease-free equilibrium, x∗1 = y∗1 = z∗10 = z∗01 = z∗11 = 0 , and

x∗0 = y∗0. Hence, z∗00 = 0.5 − y∗0. At equilibrium, we have 0 = −αy∗02 + δ(z∗00) =

−αy∗02 + δ(0.5− y∗0), then y∗0 = 0.5− αy∗0
2

δ
= F . Therefore, we have that

ᾱ = αy∗0 = αF (2.54)

Now, we first consider the stability of the (Ef ) for the special case where

γ1 = γ2 = γ and β1 = β2 = β.

2.5.1.3 The stability of the disease-free equilibrium (Ef), for the special

case γ1 = γ2, β1 = β2, when R0 > 1.

For the case γ1 = γ2 and β1 = β2, from Lemma 2.3.1, we have that R0 = p
(1)
1,0 +

p
(1)
0,1 + 2p

(1)
1,1. Substituting in the values of p

(1)
1,0, p

(1)
0,1, and 2p

(1)
1,1, recalling the values

from (2.4), we have that

R0 =
ᾱδ(δ + 2γ + 2β)

(γ + ᾱ)(βδ + δ2 + 3δγ + 2γ2)
(2.55)

Assuming R0 > 1, by rearranging (2.55) we obtain that

ᾱβδ > γβδ + γδ2 + 3δγ2 + 2γ3 + ᾱδγ + 2ᾱγ2 (2.56)
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From (2.53), for γ1 = γ2 = γ and β1 = β2 = β, we have A1 = A2, and by

(2.54), det(M) = 0 is rewritten as follows.

(−2ᾱ− δ − λ)A2
1A3 = 0 (2.57)

where

A1 = ᾱβ + ᾱλ+ ᾱγ + βλ+ βγ + δλ+ δγ + λ2 + 2λγ + γ2.

A3 = −δ − 2γ − λ+
2β(ᾱδ + ᾱγ + λγ + γ2)

ᾱβ + ᾱλ+ ᾱγ + βλ+ βγ + δλ+ δγ + λ2 + 2λγ + γ2
.

Equation (2.57) holds if (−2ᾱ−δ−λ) = 0, A1 = 0 or A3 = 0. Thus, λ = −(2ᾱ+

δ) is a root, which is negative. Consider A1 = 0, it can be written in a standard

from of a quadratic function as λ2 +(ᾱ+β+δ+2γ)λ+ ᾱβ+ ᾱγ+βγ+δγ+γ2 = 0.

We can see that (ᾱ+β+δ+2γ) > 0 and (ᾱβ+ ᾱγ+βγ+δγ+γ2) > 0. Therefore,

according to the Routh-Hurwitz criteria for n = 2, A1 has negative roots or the

roots have negative real parts.

Now, consider A3 = 0,

0 = −δ − 2γ − λ+
2β(ᾱδ + ᾱγ + λγ + γ2)

ᾱβ + ᾱλ+ ᾱγ + βλ+ βγ + δλ+ δγ + λ2 + 2λγ + γ2

= ᾱβδ − ᾱβλ− ᾱδλ− ᾱδγ − ᾱλ2 − 3ᾱλγ − 2ᾱγ2 − βδλ− βδγ − βλ2 − βλγ

− δ2λ− δ2γ − 2δλ2 − 5δλγ − 3δγ2 − λ3 − 4λ2γ − 5λγ2 − 2γ3.

= λ3 + (ᾱ + β + 2δ + 4γ)λ2 + (ᾱβ + ᾱδ + βδ + 3ᾱγ + βγ + δ2 + 5δγ + 5γ2)λ

+ (−ᾱβδ + ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3).



CHAPTER 2. SEXUAL NETWORK MODELLING 58

Since R0 > 1, by (2.56), we have that

d = −ᾱβδ + ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3

< −(γβδ + γδ2 + 3δγ2 + 2γ3 + ᾱδγ + 2ᾱγ2) + ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3

= 0.

Hence d < 0. Since there is a negative coefficient, Corollary 2.5.4 guarantees a

positive root or a root with positive real part. We can conclude that there exists

at least one positive eigenvalue in this case. We thus establish that the disease-free

equilibrium, Ef , is unstable if R0 > 1.

2.5.1.4 The stability of the disease-free equilibrium (Ef), for the special

case γ1 = γ2, β1 = β2, when R0 < 1.

If R0 ≤ 1, then ᾱβδ ≤ γβδ + γδ2 + 3δγ2 + 2γ3 + ᾱδγ + 2ᾱγ2 (2.58)

(2.57) still holds and thus we only need to consider A3 = 0 as A1 = 0 and (−2ᾱ−

δ − λ) = 0 correspond to λ < 0. As described earlier, we have

A3 = λ3 + (ᾱ + β + 2δ + 4γ)λ2 + (ᾱβ + ᾱδ + βδ + 3ᾱγ + βγ + δ2 + 5δγ + 5γ2)λ

+ (−ᾱβδ + ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3) = 0.

We can express A3 in terms of a characteristic polynomial as λ3 + bλ2 + cλ+ d.

In this case, d > 0, as a result all coefficients are positive. According to Routh-

Hurwitz criteria for n = 3, we need to check if bc > d (see Theorem 2.5.3).
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bc = (ᾱ + β + 2δ + 4γ)(ᾱβ + ᾱδ + βδ + 3ᾱγ + βγ + δ2 + 5δγ + 5γ2)

= ᾱ2β + ᾱ2δ + 3ᾱ2γ + ᾱβ2 + 4ᾱβδ + 8ᾱβγ + 3ᾱδ2 + 15ᾱδγ + 17ᾱγ2

+ β2δ + β2γ + 3βδ2 + 11βδγ + 9βγ2 + 2δ3 + 14δ2γ + 30δγ2 + 20γ3.

Then

bc− d = ᾱ2β + ᾱ2δ + 3ᾱ2γ + ᾱβ2 + 5ᾱβδ + 8ᾱβγ + 3ᾱδ2 + 14ᾱδγ + 15ᾱγ2

+ β2δ + β2γ + 3βδ2 + 10βδγ + 9βγ2 + 2δ3 + 13δ2γ + 27δγ2 + 18γ3 > 0.

As a result, bc > d. Routh-Hurwitz criteria confirms that the polynomial is stable,

i.e. roots of A3 have negative real parts. Therefore, Ef is stable. We then establish

Theorem 2.5.6.

Theorem 2.5.6 If γ1 = γ2 and β1 = β2, then the disease-free equilibrium Ef =

(h1, 0, h2, 0,
αh2

δ
, 0, 0, 0), where h =

−δ +
√
δ(δ + 2α)

2α
is locally asymptotically sta-

ble if R0 ≤ 1 and unstable if R0 > 1.

We have proved the local stability of the disease-free equilibrium which is non-

trivial. We would expect much more difficulty with algebra for proving global

stability due to the Jacobian matrix not being sparse in this case. In terms of the

stability of the endemic equilibrium, we need an alternative approach. Lyapunov ’s

direct method has been a popular technique to study global stability of epidemic

models (Salle & Lefschetz (1961); Vargas-De-Leon (2011); Egbetade & Ibrahim

(2012) ; Korobeinikov & Wake (2012)). However, a suitable Lyapunov function

specifically for our model is not yet known to us, and to find one could require

considerably more research. Therefore, we will leave the stability of the endemic

equilibrium of both Model 1 and Model 2 for future work. Note that, the stability

of the disease-free and the endemic equilibrium for Model 2 could also be proved
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using the same approach but would be more complicated due to more parameters

(one-night stands) being included in the model.

2.5.2 Limiting Diffusion Process

According to Section 1.3.2 in Chapter 1, for N → ∞, the stochastic process

converges to the solution of the ODEs, i.e. limN→∞(XN(t),Y N(t),ZN(t)) =

(x(t),y(t), z(t)). In the deterministic process, the endemic level is steady, but we

can study the fluctuations of the stochastic process about the deterministic process.

The fluctuations of the stochastic process about the deterministic limits scaled

by
√
N ,
√
N((XN(t),Y N(t),ZN(t)) − (x(t),y(t), z(t))), converges to a diffusion

process. More importantly, if we choose an equilibrium point as an initial value of

the deterministic approximation,
√
N((XN(t),Y N(t),ZN(t)) − (x(t),y(t), z(t)))

will converge to the Ornstein-Uhlenbeck process (Pollett (2001)). This Ornstein-

Uhlenbeck has a Gaussian stationary distribution with mean-zero and covariance

matrix Σ defined by

BΣ + ΣBT = −U (2.59)

with

B = (b)i,j, i, j ∈ {1, 2, ..., 6}
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where,

b1,1 = −γ1 − αG∗3 b1,2 = 0 b1,3 = αx∗1

b1,4 = αx∗1 + δ b1,5 = αx∗1 b1,6 = αx∗1 + δ

b2,1 = 0 b2,2 = −γ2 − αG∗3 b2,3 = αy∗1

b2,4 = αy∗1 b2,5 = αy∗1 + δ b2,6 = αy∗1 + δ

b3,1 = −G∗2α b3,2 = −αG∗1 b3,3 = −G∗1α−G∗2α− δ

b3,4 = −G∗1α−G∗2α + γ1 b3,5 = −G∗1α−G∗2α + γ2 b3,6 = −G∗1α

b4,1 = αG∗2 b4,2 = −αx∗1 b4,3 = −αx∗1

b4,4 = −αx∗1 − β1 − δ − γ1 b4,5 = −αx∗1 b4,6 = −αx∗1 + γ2

b5,1 = −αy∗1 b5,2 = αG∗1 b5,3 = −αy∗1

b5,4 = −αy∗1 b5,5 = −αy∗1 − β2 − δ − γ2 b5,6 = γ1 − αy∗1

b6,1 = αy∗1 b6,2 = αx∗1 b6,3 = 0

b6,4 = β1 b6,5 = β2 b6,6 = −(γ1 + γ2 + δ)

and

U = (u)i,j, i, j ∈ {1, 2, ..., 6}

where,

u11 = αx∗1G2 + αx∗1y
∗
1 + δz∗10 + δz∗11 + γ1x

∗
1, u1,2 = αx∗1y

∗
1 + δz∗11

u1,4 = −δz∗10 − αx∗1G∗2 u1,6 = −αx∗1y∗1 − δz∗11

u2,2 = αG∗1y
∗
1 + αx∗1y

∗
1 + δz∗01 + δz∗11 + γ2y

∗
1 u2,5 = −αG∗1y∗1 − δz∗01

u2,6 = −αx∗1y∗1 − δz∗11 u3,3 = αG∗1G
∗
2 + δz∗00 + γ1z

∗
10 + γ2z

∗
01

u3,4 = −γ1z
∗
10 u3,5 = −γ2z

∗
01

u4,4 = αx∗1G
∗
2 + δz∗10 + β1z

∗
10 + γ2z

∗
11 + γ1z

∗
10 u4,6 = −β1z

∗
10 − γ2z

∗
11

u5,5 = αG∗1y
∗
1 + δz∗01 + β2z

∗
01 + γ2z

∗
01 + γ1z

∗
11 u5,6 = −β2z

∗
01 − γ1z

∗
11

u6,6 = αx∗1y
∗
1 + δz∗11 + β1z

∗
10 + β2z

∗
01 + γ1z

∗
11 + γ2z

∗
11

The remaining covariance terms are 0, and U is a symmetric matrix. Note that

matrices B and U are local drift and covariance matrices corresponding to the

system (2.46), and G1, G2 and G3 are as defined in (2.47), (2.48) and (2.49) with

equilibrium values x∗,y∗, z∗.
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It is not possible to give an algebraic solution for Σ in (2.59), but it is quite

straightforward to numerically evaluate Σ, for example, using Matlab. Note that

we are interested in studying fluctuations of infectives about the endemic level. In

particular, we are interested in mean and variance of the total number of infected

individuals. Recall that I(t) represents the total number of infectives and i is the

proportion of infectives in population size N . Let i∗be the proportion of infectives

in equilibrium. Note that i∗ = x∗1 + y∗1 + z∗10 + z∗01 + 2z∗11. Let Î denote the quasi-

stationary distribution of the epidemic process. Then Î is the limiting distribution

as t → ∞ of I(t)|I(t) > 0. As N → ∞,
√
N(Î/N − i∗) converges in distribution

to a zero mean Gaussian distribution with variance Σi, where Σi represents the

variance of the proportion of infectives obtained in the Ornstein-Uhlenbeck process

and note that ςij are elements of the covariance matrix Σ which is a solution to the

equation (2.59). Therefore, for large N the evolution of I(t) is well approximated

by an Ornstein-Uhlenbeck process with the following mean and variance

E[Î] = Ni∗ = N(x∗1 + y∗1 + z∗10 + z∗01 + 2z∗11),

V ar(Î) = NΣi = N(ς11 + ς22 + ς44 + ς55 + 4ς66 + 2ς12 + 2ς14

+ 2ς15 + 4ς16 + 2ς24 + 2ς25 + 4ς26 + 2ς45 + 4ς46 + 4ς56),

Since the standard deviation determines the size of fluctuation about the mean,

a smaller standard deviation of infectives indicates that the number of infected

individuals fluctuates closer to its mean. When the epidemic makes larger fluctua-

tions, it implies that the number of infected individuals is likely to hit zero faster.

As a result, the time to extinction is expected to be shorter. To get an idea of

variation relative to the mean, we consider the coefficient of variation (Cv) which

is defined as the ratio of the standard deviation to the mean, Cv = σi
µi

. Therefore, a

higher coefficient of variation means that the epidemic is likely to reach the disease

free state faster. The numerical studies regarding fluctuations about endemic level



CHAPTER 2. SEXUAL NETWORK MODELLING 63

will be discussed in Section 2.7.

Next, our key interest is the time to extinction starting from the endemic

equilibrium, which will be discussed in Section 2.6.

2.6 Time to Extinction

Our aim in this section is to study the expected time to extinction of the epidemic

given the process is started at the endemic level. We use stochastic simulations to

study this phenomenon. The simulation can be done using the well-known Gillespie

algorithm (Gillespie (1976)), which is discussed below. To start, we define the state

space as a set of number of individuals of each class defined in Subsection 2.5.1,

namely,

S = {X0(t), X1(t), Y0(t), Y1(t), Z00(t), Z10(t), Z01(t), Z11(t)},

where S represents the state space. Let ai represent a rate with respect to process

i, where i ∈ {1, 2, ...16}. We have the following table.
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Table 2.1: Processes and their transition rates
ai Rate Process

a1 γ1X1 Recovery of a single male.
a2 γ2Y1 Recovery of a single female.
a3 γ1Z10 Recovery of a male whose partner is susceptible
a4 γ2Z01 Recovery of a female whose partner is susceptible
a5 γ1Z11 Recovery of a male whose partner is infectious
a6 γ2Z11 Recovery of a female whose partner is infectious
a7 αX0Y0 Relationship formation between a susceptible male and female.
a8 αX1Y0 Relationship formation between an infectious male

and a susceptible female.
a9 αX0Y1 Relationship formation between a susceptible male

and an infectious female.
a10 αX1Y1 Relationship formation between an infectious male and female.
a11 δZ00 Relationship dissolution between a susceptible male and female.
a12 δZ10 Relationship dissolution between an infectious male

and a susceptible female.
a13 δZ01 Relationship dissolution between a susceptible male

and an infectious female.
a14 δZ11 Relationship dissolution between an infectious male and female.
a15 β1Z10 Infection from male to female
a16 β2Z01 Infection from female to male

According to the table above, 16 transitions together with their respective

rates are defined. First, we determine which event happens next using random

number generators. The waiting time until the next event occurs is exponentially

distributed. Once the event occurs, the state variables are updated according

to their transitions. We repeat the algorithm until the total number of infected

individuals equals 0. Namely, the algorithm is terminated when I(t) = 0.

The algorithm can be summed up in the following pseudo code.
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Algorithm 2.6.1: Stochastic(parameters, initial, tend)

1 : if (I(t) > 0) then

2 : for i = 1..16 do

Calculate ai and λi =
∑i

k=1 ai

end for

3 : τ ∼ Exp(λ16)

4 : Generate a uniform random variable r, 0 ≤ r ≤ 1

r∗ = rλ16

5 : Find i such that λi−1 < r∗ ≤ λi

6 : Set t = t+ τ

7 : Update the current state space S corresponding to

the event i found in 5.

The stochastic simulations based on the algorithm presented above are imple-

mented in Matlab. The numerical results and analysis will be shown in Section

2.7.
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2.7 Numerical Results and analysis

In this section, numerical calculations of the reproduction number (R0), the prob-

ability of extinction, and the endemic equilibrium level were performed for a range

of parameter values, using the R programming language. Time to extinction was

studied using stochastic simulations, implemented in Matlab. For the mean time

to extinction, we present no simulations for R0 ≤ 1. For R0 > 1, the mean time

to extinction results were calculated from 1000 simulations.

2.7.1 Effects of each parameter on R0 and probability of

extinction

In this Section, we first consider a simplification of the model where there is no

difference in rates between male and female, i.e. β1 = β2 = β and γ1 = γ2 = γ.

In order to gain more insight into the behaviour of the epidemic, it is worthwhile

exploring the role of each parameter on R0. Intuitively, increasing infection rates

will increase the likelihood of infection, and increase R0. If the rates of recovery

from the disease increase, it is obvious that the incidence of the disease reduces,

resulting in decreasing R0. Figure 2.4 shows the effect of each parameter on R0,

for fixed values of the other parameters. For each case, we choose 4 different sets

of parameters such that, for example, while increasing each parameter of interest

other parameters are set either high or low governing varied possible behaviours.

The parameter values can be found in Table 2.2 - 2.5. Note that, in this section,

we only want to study the effect on the behaviour of R0 of each parameter, there-

fore, there is no link from the chosen parameters to any real data. The results

corresponding to each parameter set are represented in colour.
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Table 2.2: Parameters chosen for Figure 2.4(a)

set α δ γ1 γ2 β1 β2

1 9 9 2 2 1:100 1:100
2 30 50 1 1 1:100 1:100
3 0.3 0.8 0.1 0.1 1:100 1:100
4 1000 1000 5 5 1:100 1:100

Table 2.3: Parameters chosen for Figure 2.4(b)

set α δ γ1 γ2 β1 β2

1 3 6 1:100 1:100 100 100
2 1000 1000 1:100 1:100 20 20
3 30 0.1 1:100 1:100 500 500
4 10 100 1:100 1:100 300 300

Table 2.4: Parameters chosen for Figure 2.4(c)

set α δ γ1 γ2 β1 β2

1 1:100 6 2 2 20 20
2 1:100 1000 1 1 50 50
3 1:100 1 0.1 0.1 0.5 0.5
4 1:100 0.1 1 1 80 80

Table 2.5: Parameters chosen for Figure 2.4(d)

set α δ γ1 γ2 β1 β2

1 5 1:100 1 1 100 100
2 0.8 1:100 0.02 0.02 0.5 0.5
3 100 1:100 0.1 0.1 0.2 0.2
4 200 1:100 3 3 40 40
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(a) (b)

(c) (d)

Figure 2.4: (a) Effect of an infection rate on R0, varying β: 1, 2 ,..,100.
(b) Effect of a recovery rate on R0, varying γ: 1, 2 ,..,100.
(c) Effect of a relationship formation rate on R0, varying α: 1, 2 ,..,100.
(d) Effect of a relationship dissolution (break up) rate on R0, varying δ: 1, 2 ,..,100.

We can see in Figure 2.4 (a) and (b) that whilst fixing other parameters, in-

creasing β and γ will respectively increase and decrease R0 with different slope for

different parameter sets. The results for parameter set 2 (red dash line) in Figure

2.4 (b) show a significant difference in behaviour of R0 in comparison to those

with other parameter sets. From Table 2.3, the parameters chosen for set 2 are

β = 20, α = 1000, δ = 1000, and γ varies from 1 to 100. We can see that relation-

ship formation and break up rates are very high showing that there are a lot of
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turnover of relationships with very short relationship period. Since the infection

rate is small, the disease has very low chance to be transmitted before the break up

occurs. This leads to much slower decreasing in R0. In Figure 2.4 (c), we can see

an expected behaviour of R0 such that it increases for an increasing α, but what is

worth noting is the behaviour of R0 for increasing δ in Figure 2.4 (d). We can see

that R0 can be both increasing and decreasing depending on which parameter set.

This is possibly because, in this model, the transmission only occurs within the

relationship stages. Small δ means people stay in a relationship for a long time

and eventually the disease dies out (both infectives in a relationship eventually

recover). Whereas, large δ means people spend relatively little time in relation-

ships and thus they have limited chance to pass on the infection. For moderate

δ, it means infected individuals are able to transmit the disease to their partner

and then break up and find a new partner to infect. Therefore, it is interesting to

see what happens if we keep the proportion in relationship fixed, namely, we set

F = ᾱ
δ
. The remaining parameters are kept constant. Figure 2.5 illustrates the

behaviour of R0 with respect to increasing values of δ from 1 to 2000. In this study,

we consider 6 different proportions of relationships, i.e F = 1, 5, 50, 500, 1000, 2000.

There is no difference in gender, i.e. γ1 = γ2, β1 = β2. We study 4 cases where γ

and β are set as follows :

1) γ = 0.05, β = 0.8 2) γ = 1, β = 200 3) γ = 1.5, β = 0.5 4) γ = 5, β = 30
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(a) (b)

(c) (d)

Figure 2.5: (a) Plot of R0 against δ corresponding to each fixed F for γ = 0.05, β =
0.8
(b) Plot of R0 against δ corresponding to each fixed F for γ = 1, β = 200
(c) Plot of R0 against δ corresponding to each fixed F for γ = 1.5, β = 0.5
(d) Plot of R0 against δ corresponding to each fixed F for γ = 5, β = 30

Figure 2.5 shows that, as δ increases, the behaviour of R0 is not always mono-

tonic. We also observe that R0 converges to 1 when δ −→∞ and this can be seen

in every case. It is quite straightforward to show this mathematically. Recalling an

expression of R0 when β1 = β2 and γ1 = γ2 as in (2.55) and substituting ᾱ = δF ,
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we have

R0 =
(δ2F )(δ + 2γ + 2β)

(γ + (δF ))(βδ + δ2 + 3δγ + 2γ2)

=
(δ3F ) + 2γ(δ2F ) + 2βδ2F

(δ3F ) + δ2F (β + 3γ) + 2γ2δF + δβγ + γδ2 + 3δγ2 + 2γ3.

It is straightforward to see that lim
δ→∞

R0 = 1. Moreover, we observe from the graphs

that when F increases, R0 converges to a limit. We can easily find the limiting

value :

lim
F→∞

R0 =
δ(δ + 2γ + 2β)

βδ + δ2 + 3δγ + 2γ2
.

Also, note that, F is the relative rate of formation and breakup, therefore, as

F = ᾱ
δ
→ ∞, σ = δ

ᾱ+δ
→ 0. Hence, 1 − σ → 1 as F → ∞, where 1 − σ

is the proportion of relationships in equilibrium. In other words, we could say

that as F increases and tends to infinity, we will eventually end up having only

couples in the population (nobody stays single). With both increasing ᾱ and δ, this

illustrates a scenario such that there is a large turnover of relationships. Namely,

individuals break up and form a new relationship almost immediately. Therefore,

the chance of an individual trying to infect the same individual twice converges to

0. Consequently, the model increasingly resembles a host-vector epidemic model

with infection rate β(1− σ) and recovery rate γ for both vectors and hosts.

Next, we are interested in studying the behaviour of the corresponding ex-

tinction probabilities. Figure 2.6 illustrates the behaviour of π1 corresponding to

parameter sets and fixed F in Figure 2.5. Note that the probability of extinctions

of Figure 2.5(c) will always be 1 as R0 < 1. Since β1 = β2 and γ1 = γ2, will have

that π1 = π2.
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(a) (b)

(c) (d)

Figure 2.6: (a) Probability of extinction with respect to Figure 2.5(a)
(b) Probability of extinction with respect to Figure 2.5(b)
(c) Probability of extinction with respect to Figure 2.5(c)
(d) Probability of extinction with respect to Figure 2.5(d)

We note that π1, in contrast to R0, is monotonically decreasing as δ increases.

As F increases, π1 converges to a limit. Moreover, we can see in Figure 2.6(b)

and 2.6(d) that π1 is monotonically decreasing in δ and appears to be converg-

ing as δ tends to infinity. This limiting value can be found by taking limit

of π as δ → ∞. We have proved that π is decreasing in δ in Lemma 2.4.4.

Therefore, we can say that for fixed F = ᾱ
δ
, π is monotonically decreasing in δ

and converging to a limiting value θ. According to Lemma 2.4.4, we know that
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π = p0
p2

= γ((1+F )δ2+(β+3γ+2γF )δ+2γ2)
δ2Fβ

. Then,

lim
δ→∞

p0

p2

=
γ(1 + F )

Fβ
= θ.

Substituting F = ᾱ
δ
, we have θ = γ(ᾱ+δ)

βᾱ
.

Moreover, if we take limit of π as F →∞, we have

lim
F→∞

p0

p2

=
γ

β
.

Note that, for the homogeneously mixing epidemic model, the reproduction num-

ber is R0 = β
γ

and the endemic level is 1− (1/R0) (see Section 1.2). For our model,

we have that as F →∞, π → γ
β

which is 1/R0 in a homogeneously mixing model.

Also, 1− π = 1− (1/R0), which is the endemic level. Therefore, we can say that

when β1 = β2 and γ1 = γ2, as F → ∞, the model increasingly behaves like a

host-vector model (hosts infect vectors and visa-versa), with infection rate β and

recovery rate γ for both hosts and vectors.

2.7.2 R0, the probability of extinction and the endemic

level

As we mentioned earlier, R0 determines if a major outbreak is possible. If there

is an outbreak, the epidemic will reach an endemic equilibrium and spend a long

time close to this level before eventually going extinct. The positive proportion

infected in equilibrium is called the endemic level. In this subsection, we focus on

the relationship between R0, the probability of extinction and the endemic level.

In general, we know that an epidemic has behaviour such that when R0 ≤ 1,

there is no outbreak of the epidemic, therefore the endemic level is 0, whilst for

R0 > 1, the endemic level is greater than 0. In terms of the relationship between

the endemic level and π1, as the endemic level increases, π1 decreases and goes to
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1 when the endemic level is 0, meaning that the probability of the disease dying

out is 1. In our model, as we studied in Subsection 2.7.1, R0 is monotonically

increasing and decreasing in infection and recovery rates, respectively. This is not

surprising as we can see such relationship in general epidemic models. We have

looked at the case where there is no difference in disease dynamics between the

two sexes and now we will look at the case where there is a difference. This will

be illustrated in the Figure 2.7.

(a) (b)

Figure 2.7: (a) Plot of endemic level against R0 and (b) Plot of endemic level
against probability of the disease not going extinct when γ1 = 1, γ2 = 2, δ = 6, α =
9, β2 = 18 and β1 varying from 1, 2, 3, . . . , 2000.

Figure 2.7(a) shows the expected behaviour between endemic level and R0 as

R0 increases in β. In terms of the probability of extinction, we plot endemic level

against 1 − π1 and 1 − π2, as well as the line x = y (red line). We can see from

Figure 2.7(b) that the endemic level has linear relationship with 1 − π1 close to

x = y, where as it has non-linear relationship with 1− π2.

Similarly, we consider the case where γ1 is varied. Parameter values are γ2 =

8, β1 = 300, β2 = 200, δ = 25, α = 18. γ1 varies from 1, 2, ..., 1000. See Figure 2.8.
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(a) (b)

Figure 2.8: (a) Plot of endemic level against R0 and (b) Plot of endemic level
against 1 − πi, i = 1, 2 when γ2 = 8, δ = 25, α = 18, β1 = 300, β2 = 200 and γ1

varying from 1, 2, 3, . . . , 1000.

From Figure 2.8(b), the endemic level looks non-linearly related to both 1−π1

and 1− π2. We can also see that, 1− π1 goes away from the straight line x = y in

this case.

Now, what is more interesting here is the case with increasing δ. As we can see

that for some parameter sets with reasonably large δ, R0 becomes non-monotonic.

It is interesting to investigate the behaviours of the endemic level and the probabil-

ity of extinction corresponding to such R0. Note from our studies in the previous

subsection that π has monotonic behaviour for every case as δ increases if F = ᾱ
δ

is

fixed, whereas this is not the case for R0. What if F = ᾱ
δ

is not fixed? What is the

behaviour of the probability of extinction for the super-critical case (R0 > 1) corre-

sponding to an increasing δ? For the sub-critical case, the probability of extinction

is not interesting as it will always be 1. We choose to study the parameter sets in

Table 2.5 as we have a range of behaviours of R0 for these parameter sets, both

monotonic and non-monotonic (see Figure 2.4(d)). The studies are illustrated in

Figure 2.9(a) and (b). We also recall Table 2.5 here
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Table 2.6: Parameters chosen
set α δ γ1 γ2 β1 β2

1 5 1:100 1 1 100 100
2 0.8 1:100 0.02 0.02 0.5 0.5
3 100 1:100 0.1 0.1 0.2 0.2
4 200 1:100 3 3 40 40

(a) (b)

Figure 2.9: (a) Plot of the probability of extinction against δ (b) Plot of the
endemic level against δ, with respect to parameter sets in Table 2.5

Note that in Figure 2.4(d), R0 for parameter sets 1 and 4 have non-monotonic

behaviour. Figure 2.9 shows that π and the endemic level can also have both

monotonic and non-monotonic behaviours as δ increases.

Let us now turn our attention to the case where F is fixed. In Subsection

2.7.1, we studied behaviours of R0 and π1 with respect to increasing F . We

have proved in previous section that as F → ∞, the model behaves like a two

type homogeneously mixing model (an individual can only infect someone of the

opposite sex). Therefore, numerically, we expect to see similar behaviour for the

endemic level, when F →∞, see Figure 2.10.
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Figure 2.10: Plot of endemic level against δ

2.7.3 Mean time to extinction and the fluctuations about

the endemic level

To study the mean time to extinction, the stochastic SIS simulations are utilised

and the results are calculated from 1000 simulations. We vary β1 from 13 to 33,

whilst keeping other parameter fixed; γ1 = 1, γ2 = 2, δ = 6, α = 9, β2 = 18. These

parameter sets are illustrative.
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Figure 2.11: Plot of mean time to extinction against endemic level when γ1 =
1, γ2 = 2, δ = 6, α = 9, β2 = 18 and β1 varying by 1 from 13 to 33.
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As shown in Figure 2.11, we can see that the mean time to extinction is 0 when

initially the population size (endemic level) is 0 and increases with the endemic

level. It has been shown that, the time to extinction when the epidemic is started

from the endemic level is exponentially distributed, see Andersson & Djehiche

(1998), Hakoyama & Iwasa (2000).

What if the endemic level is fixed? It is interesting to study effects of the model

parameters and how the mean time to extinction behaves in this case. Assume

that the population size is 100, our fixed endemic level is 14 infectives (endemic

level = 0.14), for each set of parameters. First, we vary the infection rates β1 and

β2, whilst keeping other parameters fixed. In the second case of Table 2.7, we also

vary β1 and β2, but in this case, γ1 6= γ2. Table 2.8 presents the same phenomenon,

but with parameter sets, where α and δ are varied. Note that the parameters used

are rounded off to 2 decimal places whilst the results are rounded off to 4 decimal

places for presentation.

Table 2.7: Time to extinction and the standard deviation (SD) of the total number
of infectives with respect to each parameter set, with 14 initial infectives (endemic
equilibrium) and population size 100, varying β1 and β2.

α δ γ1 γ2 β1 β2 SD time to extinction

9 6 1.5 1.5 100 10 10.1342 30.3325
9 6 1.5 1.5 80.02 10.45 10.1207 29.7310
9 6 1.5 1.5 10.18 90.72 10.1285 30.2474
9 6 1.5 1.5 50.22 11.90 10.0880 30.9383
9 6 1 5 103.94 120.08 10.0313 32.7467
9 6 1 5 79.90 182.09 9.9796 33.9617
9 6 1 5 181.60 78.90 10.1128 31.8276
9 6 1 5 120.90 102.99 10.0570 32.4688
9 6 1 5 69.18 270.93 9.9474 33.2564
9 6 1 5 269.60 68.00 10.1517 32.4353
9 6 1 5 111.12 111.62 10.0430 33.1308

Table 2.7 shows that when we fix other parameters apart from β1 and β2, we

can see that values of β1 and β2 do not have much effect on the fluctuation. This

is because, in this model, the transmission can only occur within relationships.

Therefore, high infection rates will affect the epidemic in such a way individuals



CHAPTER 2. SEXUAL NETWORK MODELLING 79

keep infecting each other within relationships. Since other parameters are fixed,

we have similar end results of relationships (break ups). As a result, there is not

much variation in behaviour of the epidemic.

Table 2.8: Time to extinction and the standard deviation (SD) of the total number
of infectives with respect to each parameter set, with 14 initial infectives (endemic
equilibrium) and population size 100, varying α and δ.

α δ γ1 γ2 β1 β2 SD mean time to extinction

8.90 5.00 1 2 18 20 10.0274 36.0071
8.45 8.45 1 2 18 20 9.7201 33.1603
14.01 2.00 1 2 18 20 10.8262 48.7645
8.59 6.14 1 2 18 20 9.8819 35.1701
31.58 1.00 1 2 18 20 11.3977 59.7104
8.53 10.00 1 2 18 20 9.6051 34.2544

9 4.77 1 2 18 20 10.0632 36.1874
9.61 8.04 1.5 1.5 18 18 9.8472 29.3195
11.00 4.00 1.5 1.5 18 18 10.3277 35.3000
9.76 11.00 1.5 1.5 18 18 9.6923 26.4575
17.03 2.00 1.5 1.5 18 18 10.9338 41.7632

For the case where α and δ are varied, Table 2.8 shows a clearer result that,

for fixed endemic level, the variance and the mean time to extinction could vary.

As a result, we can say that an estimation of the persistence of the epidemic is not

only relying upon the endemic level, but also the model parameters. For example,

for high α and low δ, it means individuals stay in a relationship longer and quickly

reform relationships when they do break up. Hence, individuals keep infecting each

other within the relationship, and slowly move on to other susceptible individuals

when they break up. This gives a slower move to the disease-free states. It seems

to cause persistence of relationships where the epidemic is maintained.

What if both α and δ are really high? Table 2.9 presents the result for this case.

Given α and δ are large, we require β1 and β2 to be high. We know that in this

case, individuals are very active in terms of relationship formation and breaking

up. They tend to have a very high chance of meeting new susceptible individuals,

and with reasonably high β1 and β2, the epidemic becomes very active. This is

an interesting behaviour as at the same endemic level, we obtain smaller standard
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deviation and also shorter time to extinction compared to the results presented in

Table 2.7 and 2.8.

Table 2.9: Time to extinction and the standard deviation of the total number
of infectives with respect to each parameter set, with endemic level at 14 and
population size 100, varying α and δ, for large α, δ.

α δ γ1 γ2 β1 β2 SD time to extinction

1000 10000 1.5 1.5 38.4493 38.4493 9.2528 20.9236
800 10100 1.5 1.5 47.4227 47.4227 9.2731 21.2135

10000 1000 1.5 1.5 2.7299 2.7299 9.2558 23.7921

Now, we know that β does not have much effect on the mean time to extinction.

Also, when α and δ are varied, the mean time to extinction is more affected but

not in a substantive way. Next, we will consider the case where other parameters

including γ2 are allowed to be varied, whilst γ1 is fixed to be 1.

Table 2.10: Mean to extinction and SD of the total number of infectives with
respect to each parameter set, for fixed endemic level at 14 and population size
100, fix γ1 = 1, allowing other parameters to vary.

γ2 β1 β2 α δ SD mean time to extinction

124.0645 5000 622.162 40 50 8.4697 30.9922
5.4542 15 8.2952 100 5 10.139 27.3974
0.0401 41.0168 1000 1 99 10.5436 2250

2 18.54479 20 8.59 6 9.8699 35.633
3.3 6.414945 3 264 10 9.6216 25.7637
1.13 124.0224 15 9 1 11.3229 78.1938

1 3.4758 50 14 2 10.6296 51.8529
5.4542 15 8.2952 100 5 10.1444 27.3974
0.7498 1 10.4524 150 100 10.2567 27.5222

15 100 200 243.6944 1 11.7499 57.0261
8 200 211 11 7.1065 9.8842 31.1288

2.1464 4 52 30 3 10.1384 38.0144
0.05 0.1540 30 9 10 10.9911 221.5650
0.01 1.68606 9 0.5 0.8 8.0655 2920
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Figure 2.12: Plot of the mean time to extinction against γ2 corresponding to results
in Table 2.10

According to Figure 2.12, when we fix γ1 = 1 whilst varying other parameters,

the mean time to extinction does not depend upon any other parameters in any

obvious way apart from γ2. We can clearly see a decreasing trend as γ2 increases.

This shows that γ2 is a dominant influence in the mean time to extinction.

Now, in order to study a wider range of parameters, we consider an endemic

level of 25% of the population infected. The study is similar to the previous study

for 14% endemic level. First, we fix γ1 = 1 and consider varying (β1, β2) whilst

keeping the other parameters fixed.

Table 2.11: the mean time to extinction and the standard deviation (SD) of the
total number of infectives with respect to each parameter set, for fixed endemic
level at 25 and population size 100, varying β1 and β2.
γ1 γ2 β1 β2 α δ SD mean time to extinction

1 0.1 20.74605 15 9 0.1 11.7712 1078.20
1 0.1 13.37569 25 9 0.1 12.0745 1036.80
1 0.1 40 10.94915 9 0.1 11.6239 1088.40
1 0.1 100 9.2585 9 0.1 11.4729 1010.10
1 0.1 8.57131 1000 9 0.1 12.5209 1078.10

According to Table 2.11, there are small changes in the mean time to extinction
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and the standard deviation even when there is a high level of variation of the

infection parameter which is similar to the results found in Table 2.7. We now

also consider varying γ2. The results in Table 2.12 show high variation in variance

and the mean time to extinction. For visualisation, we plot variance and the mean

time to extinction against γ2 on the log scale.

Table 2.12: The mean time to extinction and the SD of the total number of
infectives with respect to each parameter set, for fixed endemic level at 25 and
population size 100, fix γ1 = 1 and α = 9, allowing other parameters to vary

γ2 β1 β2 α δ SD mean time to extinction

0.1089641 20 20 9 0.1 11.9053 2478.05
0.2723315 1000 1000 9 0.1 11.7507 1946.05
0.01649724 3 3 9 0.1 18.5380 9968.30

0.1 5.162857 1 9 1 8.1803 2214.80
0.5 34.70589 5 9 1 10.0074 380.82
1 100000000 14.05631 9 1 10.5936 138.8699

1.136624 40 40 9 1 10.6438 270.3304
0.4777241 4 100 9 1 10.4552 319.6362
0.4684035 100 4 9 1 9.8989 390.7427

0.1 5.598458 1 9 10 7.3847 1921.40
0.5 1.787737 100 9 10 9.5383 170.8075
1 3.54577 10000 9 10 9.2636 143.5572

2.295557 30 25 9 10 9.0093 164.802
3.134849 30 80 9 10 8.8927 157.9564
1.29343 15 13 9 10 8.9874 187.0062

Figure 2.13: Plot the mean time to extinction against γ2 corresponding to results
in Table 2.12
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As we can see in Figure 2.12 and 2.13 that the mean time to extinction has

a clear decreasing trend with respect to γ2, showing that γ2 has an effect on the

time to extinction. In terms of the time to extinction and the variance about the

endemic level, we can see that they are not correlated in a simple manner. In

other words, the variance does not give us any information on how long we would

expect to wait on the mean for the epidemic to go extinct. Now, we will allow α

to vary in order to observe whether or not α has a major influence on the mean

time to extinction.

Table 2.13: Time to extinction and the SD of the total number of infectives with
respect to each parameter set, for fixed endemic level at 25 and population size
100, fix γ1 = 1, allowing other parameters to vary

γ2 β1 β2 α δ SD mean time to extinction

0.5 50 50 31.5250 0.1 11.1162 664.0552
0.0165 3 3 9 0.1 18.5370 9968.30

0.3 15 13 161.777 0.1 10.7652 244.4789
0.1 8.5713 1000 9 0.1 12.5209 1078.10
1 6.2338 6.2338 100 1 10.1185 165.4944
3 34 80.65 29.8408 1 10.8583 199.8821

0.4 100 4 7.2991 1 9.7729 469.7782
1.2 800 3 112.2586 1 10.5028 128.2327

1.1366 40 40 9 1 10.6438 270.3304
2 50 30 6.8848 10 9.0505 264.4116

2.28 150 120 5.3920 10 9.0575 152.4373
4.48 8 5 264.3126 10 8.9451 123.6751
0.2 1000 1000 1.2690 10 8.2679 1054.3
0.77 99 2 12.2224 10 9.1904 163.1799

1.2934 15 13 9 10 8.9874 187.0062
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Figure 2.14: Plot of the mean time to extinction against γ2 corresponding to results
in Table 2.13

We can see from Figure 2.14 that the mean time to extinction has a decreasing

trend in γ2 showing that α does not have a major influence on the mean time to

extinction. Precisely, for fixed γ1, other parameters except γ2 do not affect the

mean time to extinction in a predictable way, in which it supports the previous

studies for the endemic level 0.14 in Figure 2.12.



Chapter 3

Sexual network modelling with

one-night stand condition.

3.1 Introduction

In Chapter 2, individuals in the population are assumed to be faithful (transmission

of the STD within partnerships only). However, this is an unrealistic assumption

and disregards an important disease dynamic that includes transmission of the

disease outside partnerships. This could lead to a severe misunderstanding of STD

dynamics. In this Chapter, we aim to achieve a more realistic model by extending

the sexual network model formulated in Chapter 2, allowing for individuals in

the population to be unfaithful (transmission of the STD outside partnerships).

This includes allowing the transmission of the disease to occur between singles.

Therefore, we need to modify the model described in Chapter 2.

The model formulation will be described in detail in Section 3.2. In Section 3.3,

the reproduction number (R0) is derived using a 5-type branching process approx-

imation for the early stages of the epidemic instead of a 2-type branching process.

The branching process approximation also gives us formulae for the probability

that the disease goes extinct, which will be discussed in Section 3.4. Then, in

85
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Section 3.5, we move away from the early stages of the epidemic and consider the

epidemic at the endemic equilibrium. This will give us information about the en-

demic level including the proportion of infected individuals and fluctuations about

the endemic level. The mean time to extinction is studied in Section 3.6 using

stochastic modelling. Lastly, Section 3.7 discusses numerical results and compar-

ison between the model presented in this Chapter with the model of Chapter 2.

Note that the model given in Chapter 2 is a special case of the model considered

in this Chapter with the parameter for one-night stands set equal to 0.

3.2 Model formulation

Assuming that everyone in the population is faithful is unrealistic. To achieve a

more realistic model, we extend our previous model by adding one more condition

in which the possibility of unfaithfulness is now taken into account. An individual

is allowed to have casual one-off sexual experiences, which we shall term “one-night

stands”, with any random individual of the opposite sex regardless of whether the

individual is in a relationship or not. Specifically, there are 3 possible events

occurring in terms of one-night stands.

• A single individual has a one-night stand with another single individual of

the opposite sex.

• A single individual has a one-night stand with an individual of the opposite

sex in a relationship.

• Two individuals of the opposite sex in different relationships have one-night

stands with each other.

The model is an extension of the model in Chapter 2 so many of the assumptions

which were made in Chapter 2 still hold. However, there are new assumptions as

well and we give full details of the assumptions of the model below.
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1. The population is large and finite, consisting of two types of individuals:

males (type 1 individuals) and females (type 2 individuals). We assume that

the population has n individuals of each type, i.e. the numbers of males and

females are equal.

2. The epidemic starts with one infected individual in an otherwise susceptible

population.

3. A single male attempts to form a relationship with a female at the points

of a homogeneous Poission point process with rate α. The female is chosen

uniformly at random from the entire population. If the female individual is

single, a relationship is formed, otherwise nothing happens.

4. The relationship length follows an exponential distribution with mean 1
δ
. At

the end of the relationship, the relationship breaks up and both individuals

will return to the single state and will be able to form relationships with

other single individuals of the opposite sex.

5. Whilst infectious, an individual of type i makes infectious contact with their

partner at the points of a homogeneous Poisson point process with rate βi. If

the partner is susceptible, they become infected when contacted. Otherwise

the contact has no effect. Note that single infectious individuals can not

make such infectious contacts.

6. Type i individuals have infectious periods that are independently exponen-

tially distributed with rate γi.

7. The model is a stochastic SIS epidemic model. Namely, an individual can be

infected and after recovery the individual immediately becomes susceptible

to reinfection.

8. We assume that at the start of the epidemic, the population relationship
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structure is in equilibrium. Thus the proportion of the population in re-

lationships (or single) remains fairly constant throughout the course of the

epidemic. Let σ denote the proportion of the population single in equilib-

rium.

9. Individuals are allowed to have one-off sexual contacts with any individuals

of the opposite sex. However, we are only interested in infectious one-night

stands, in other words, one-night stands which result in an infectious contact.

Note that a one-night stand between two infectives will result in infectious

contacts which have no effect.

10. Infectious one-night stands attempted at rate ωi, where i is the type of the

individual who is infectious and attempting to have a one-night stand.

11. When an individual attempts to have a one-night stand, he/she attempts

to have a one-night stand with an opposite sex who is either single or in

a relationship. We let p represent the probability of an individual trying

to have a one-night stand with someone who is in a relationship. Thus

p = (1 − σ)/2, where σ = δ
ᾱ+δ

. On the other hand, q is the probability of

an individual trying to have a one-night stand with a single person, hence,

q = σ/2.

12. Not every individual would agree to have a one-night stand, especially those

who are in a relationship. Therefore, we define r as the willingness of someone

in a relationship to have a one-night stand (0 ≤ r ≤ 1). Consequently,

the probability of two individuals in a relationship agreeing to have a one-

night stand is r2. Note that 1 − r represents a reticence of individuals in

relationships to have one-night stands. Note that, r = 0 means only single

individuals partake in one-night stands. Whilst, r = 1 means everybody is

equally likely to have a one night stand.
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Using the model with a one-night stand condition, we aim to be able to answer

various questions similar to those posed in Chapter 2. For example, the question

arises as to how one-night stands have an effect on the incidence of the disease,

the time to extinction if the disease appears to persist in the population before

it goes extinct, and more importantly, how likely is the epidemic to take off? As

such, the comparisons between the two models are investigated. The structure of

the model will be described in Section 3.3.

3.3 5 - type branching process approximation

In terms of the mathematical structure, in this case, it is easier to express the pro-

cess in terms of 5-types of infection units. Therefore instead of dividing individuals

in the population into 2 types, we categorise them into 5 types corresponding to

their disease and relationship status. Namely, we consider each of infected male,

infected female, a couple within which the male is infected, a couple within which

the female is infected, and a couple within which both are infected, as infective

units. These types form the basis of our branching process approximation. The 5

types of individuals are defined as follows.

1. Type 1 - A single infected male, represented by MI .

2. Type 2 - A couple within which only the male is infected, represented by

MIFS.

3. Type 3 - A couple within which both the male and the female are infected,

represented by MIFI .

4. Type 4 - A couple within which only the female is infected, represented by

MSFI .

5. Type 5 - A single infected female, represented by FI
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Now, instead of starting the process with either an infected male or female, we

can start the process with one of the 5 types defined above. For instance, if the

process starts with an individual of type 2, MIFS, a couple within which the male

is infected. Then, one of the following events could happen.

• The male recovers from the disease, the couple then becomes susceptible

(MSFS). In this case, in the branching process approximation formulation

we have no offspring.

• The infected male infects his partner, the couple then becomes infected (type

3, MIFI). In this case, we have a type 3 offspring.

• The infected male has a one-night stand with a single susceptible female,

giving a single infected female (type 5, FI) as a result. Note that the status

of the couple remains unchanged (MIFS). In this case, we have a type 5 and

a type 2 offspring.

• The infected male has a one-night stand with a non-single susceptible female,

and she becomes infected, then we have a couple where the female is infected

(type 4, MSFI), with the original couple unchanged. In this case, we have

a type 4 and a type 2 offspring. Note that in the early stages, the number

of infectives is small so that the probability of having a relationship with

somebody whose partner is infected is close to 0.

• The relationship breaks up, giving a single infected male (type 1, MI) and a

single susceptible female. In this case, we have a type 1 offspring.

Note that in the early stages, with high probability those individuals contacted

by an infective will be susceptible. From the possible events described above, we

can see that the possible outcomes consist of single and non-single susceptible

individuals (MS, FS, and MSFS), as well as individuals of type 1, 2, 3, 4 and 5.

However, we are interested in the infected individuals only. A couple within which
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either male or female is infected, or both are infected, is capable of infecting other

individuals if one-night stands occur. Note that types 2, 3, and 4 correspond to

couples in the epidemic process. Therefore, these 5 types are the secondary cases

produced from the initial infective of each type, leading to a 5× 5 next-generation

matrix.

Throughout, we call infected individuals produced from the initial infective of

the 5 types individuals as “offspring”. Now, if we start the process with an initial

infective of type 1 (male), the infected male will either form a relationship, recover

from the disease, or have a one-night stand with either a single or non-single suscep-

tible female. Figure 3.1 illustrates this situation. Each node represents offspring

obtained from each activity and transition rates are represented by arrows.

MI

type 1

MI , FItype 1, 5 MS

MI ,MSFI

type 1, 4

MIFS

type 2

ω1q

γ1

ω1rp
ᾱ

Figure 3.1: The 5- type branching process starting with an individual of type 1.

From Figure 3.1, if he has a one-night stand with a single susceptible female

and she becomes infected, a type 1 and a type 5 offspring will be produced with

rate ω1q. With rate ω1rp, he has a one night stand with a non-single susceptible

female and she becomes infected, we have offspring of types 1 and 4. At the same

time, he could form a relationship with rate ᾱ, having a type 2 offspring, or he

could recover before anything happens with rate γ1, and consequently having no

offspring. We can see that there are 4 types of offspring produced from an infected

male (type 1), from 4 possible events. Therefore, the probability of having a type

1 offspring from a type 1 initial infective is the probability of having a one-night
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stand with a single or non-single female, that is ω1q
γ1+ᾱ+ω1q+ω1rp

+ ω1rp
γ1+ᾱ+ω1q+ω1rp

. The

probabilities of having offspring of other types are determined similarly. Hence, the

secondary cases produced from an initial infective of type 1 and their probabilities

are summarised as follows.

• type 1 offspring with probability ω1q+ω1rp
γ1+ᾱ+ω1q+ω1rp

.

• type 2 offspring with probability ᾱ
γ1+ᾱ+ω1q+ω1rp

.

• type 4 offspring with probability ω1rp
γ1+ᾱ+ω1q+ω1rp

.

• type 5 offspring with probability ω1q
γ1+ᾱ+ω1q+ω1rp

.

Another example is shown in Figure 3.2 for a couple with both infected (type

3).

MSFI

type 4

MIFIMIFI , FItype 3,5 MI , FI type 1,5

MIFI ,MSFI

type 3,4

MIFS ,MIFI

type 2,3
MI ,MIFI

type 1, 3

MIFS

type 2

ω1rq
δ

ω1r
2p

ω2r
2p

ω2rq

γ1

γ2

Figure 3.2: The 5-type branching process starting with an individual of type 3.

Figure 3.2 shows an example where the process starts with an individual of

type 3, i.e. an infected couple. In this case, there are 7 possible events, which

are the relationship breakups, the infected male recovers, the infected male has a

one-night stand with a single susceptible female or has a one night stand with a
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non-single susceptible female. These last three situations could also happen with

the infected female with the roles of males and females reversed. As such, all

5 types of offspring can be produced. In Table 3.1, we summarise the process

starting with each type of individual, together with the probabilities of having

each offspring according to each event.

Initial infective(type) Probability Offspring(type)

M
(1)
I

γ1
γ1+ᾱ+ω1q+ω1rp

0
ᾱ

γ1+ᾱ+ω1q+ω1rp
MIFS

(2)

ω1q
γ1+ᾱ+ω1q+ω1rp

MI
(1),FI

(5)

ω1rp
γ1+ᾱ+ω1q+ω1rp

MI
(1),MSFI

(4)

MIF
(2)
S

δ
δ+γ1+β1+ω1rq+ω1r2p

MI
(1)

γ1
δ+γ1+β1+ω1rq+ω1r2p

0
β1

δ+γ1+β1+ω1rq+ω1r2p
MIFI

(3)

ω1rq
δ+γ1+β1+ω1rq+ω1r2p

FI
(5),MIF

(2)
S

ω1r2p
δ+γ1+β1+ω1rq+ω1r2p

MIFS
(2),MSFI

(4)

MIF
(3)
I

δ
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MI
(1),FI

(5)

γ1
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MSFI
(4)

γ2
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MIFS
(2)

ω1rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MIFI
(3),FI

(5)

ω1r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MSFI
(4),MIFI

(3)

ω2rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MI
(1),MIFI

(3)

ω2r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MIFS
(2),MIFI

(3)

Table 3.1: Probabilities of having each type of offspring produced from an initial
infective of each type.

Initial infective(type) Probability Offspring(type)

MSF
(4)
I

δ
δ+β2+γ2+ω2rq+ω2r2p

F
(5)
I

β2
δ+β2+γ2+ω2rq+ω2r2p

MIS
(3)
I

γ2
δ+β2+γ2+ω2rq+ω2r2p

0
ω2rq

δ+β2+γ2+ω2rq+ω2r2p
MSF

(4)
I , M

(1)
I

ω2r2p
δ+β2+γ2+ω2rq+ω2r2p

MSF
(4)
I , MIF

(2)
S

F
(5)
I

γ2
α̃+γ2+ω2q+ω2rp

0
ᾱ

ᾱ+γ2+ω2q+ω2rp
MSF

(4)
I

ω2q
ᾱ+γ2+ω2q+ω2rp

M
(1)
I , F

(5)
I

ω2rp
ᾱ+γ2+ω2q+ω2rp

MIF
(2)
S , F

(5)
I
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We now have the probabilities of having offspring produced from each type of

an initial infective. The next-generation matrix can now be constructed as a 5× 5

matrix, such that each element is the probability of having each type of offspring

produced from each type of initial infective. The branching process is based upon

infectious units in the epidemic which changes (produces offspring) each time an

event occurs.

Now, we let M denote the next- generation matrix, therefore, mij represents

the probability of offspring of type j produced from an initial infective of type i.

Note that individuals produce only 0 or 1 offspring of a given type so the mean

is equal to the probability of having an offspring of the given type. According to

Table 3.1, Matrix M is constructed as follows.

The next-generation matrix

M =



m1,1 m1,2 0 m1,4 m1,5

m2,1 m2,2 m2,3 m2,4 m2,5

m3,1 m3,2 m3,3 m3,4 m3,5

m4,1 m4,2 m4,3 m4,4 m4,5

m5,1 m5,2 0 m5,4 m5,5


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where

m1,1 = ω1q+ω1rp
γ1+ᾱ+ω1q+ω1rp

. m1,2 = ᾱ
γ1+ᾱ+ω1q+ω1rp

.

m1,3 = 0. m1,4 = ω1rp
γ1+ᾱ+ω1q+ω1rp

.

m1,5 = ω1q
γ1+ᾱ+ω1q+ω1rp

. m2,1 = δ
β1+γ1+δ+ω1rq+ω1r2p

.

m2,2 = ω1rq+ω1r2p
β1+γ1+δ+ω1rq+ω1r2p

m2,3 = β1
β1+γ1+δ+ω1rq+ω1r2p

m2,4 = ω1r2p
β1+γ1+δ+ω1rq+ω1r2p

m2,5 = ω1rq
β1+γ1+δ+ω1rq+ω1r2p

m3,1 = δ+ω2rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,2 = γ2+ω2r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,3 = ω1rq+ω1r2p+ω2rq+ω2r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,4 = γ1+ω1r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,5 = δ+ω1rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m4,1 = ω2rq
γ2+β2+δ+ω2rq+ω2r2p

m4,2 = ω2r2p
γ2+β2+δ+ω2rq+ω2r2p

m4,3 = β2
γ2+β2+δ+ω2rq+ω2r2p

m4,4 = ω2rq+ω2r2p
γ2+β2+δ+ω2q+ω2rp

m4,5 = δ
γ2+β2+δ+ω2rq+ω2r2p

m5,1 = ω2q
γ2+ᾱ+ω2q+ω2rp

m5,2 = ω2rp
γ2+ᾱ+ω2q+ω2rp

m5,3 = 0 m5,4 = ᾱ
γ2+ᾱ+ω2q+ω2rp

m5,5 = ω2q+ω2rp
γ2+ᾱ+ω2q+ω2rp

.

Recall that the reproduction number R0 is the dominant eigenvalue of the

matrix M . However, solving R0 algebraically for this case is complicated. Hence,

for this model, we will calculate R0 numerically using the R statistical language

and the results will be presented in section 3.7.

The probability of having offspring produced from each type of individuals

is not only useful for determining R0, but also for determining the probability

of extinction. In the special case where there are no gender differences in rates,

β1 = β2, γ1 = γ2, ω1 = ω2, the transmission from male to female and from

female to male are the same, the branching process can be considered as 3 types

of individuals. Namely, the infective units consist of a single infective, a couple

within which only one person is infected, a couple within both are infected. As a

result, the 5-type branching process can be reduced to 3 types: a single infective

(type1), a couple with one infective (type 2), a couple with both infectives (type
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3). Hence, the next-generation matrix defined by K is a 3× 3 matrix, as follows.

K =


k1,1 k1,2 0

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3

 (3.1)

where

k1,1 = 2ωq+ωrp
γ+ᾱ+ωq+ωrp

. k1,2 = ᾱ+ωrp
γ+ᾱ+ωq+ωrp

.

k1,3 = 0. k2,1 = δ+ωrq
β+γ+δ+ωrq+ωr2p

.

k2,2 = ωrq+2ωr2p
β+γ+δ+ωrq+ωr2p

k2,3 = β
β+γ+δ+ωrq+ωr2p

k3,1 = 2δ+2ωrq
δ+2γ+2ωr2p+2ωqr

k3,2 = 2γ+2ωr2p
δ+2γ+2ωr2p+2ωqr

k3,3 = 2ωrq+2ωr2p
δ+2γ+2ωr2p+2ωqr

Then, R0 is the largest positive solution of the following cubic equation, λ3 −

(k3,3+k2,2+k1,1)λ2−(−k2,3k3,2+k2,2k3,3−k1,2k2,1+k1,1k3,3+k1,1k2,2)λ−k1,1k2,2k3,3+

k1,1k2,3k3,2 + k1,2k2,1k3,3 − k1,2k2,3k3,1 = 0. This is useful in terms of mathematical

analysis. If we set ω = 0, Model 2 represents the same scenario as Model 1 in

which there is no one-night stands. We are interested in the relationship between

R0 obtained from Model 1 and Model 2. Throughout this thesis where conducting

comparison between models we define R1
0 and R2

0 as the reproduction number

obtained from Model 1 and Model 2, respectively.

3.3.1 Relationship between R1
0 and R2

0

In this subsection, we study the relationship between the reproduction number

obtained from Model 1 (R1
0) and the reproduction number obtained from Model

2 (R2
0). We focus on the special case where there is no distinction between the

sexes, β1 = β2, γ1 = γ2, ω1 = ω2 . As mentioned earlier, Model 1 is a special case
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of Model 2 when ω = 0. Now, we set ω = 0, the next generation matrix, K, in

(3.1) becomes

K =


0 ᾱ

γ+ᾱ
0

δ
δ+γ+β

0 β
δ+β+γ

2δ
δ+2γ

2γ
δ+2γ

0

 (3.2)

To find eigenvalues of matrix K, we solve det(K − λI) = 0, which is

{(γ + ᾱ)(δ + β + γ)(δ + 2γ)}λ3 − {2γβ(γ + ᾱ) + δᾱ(δ + 2γ)}λ− ᾱβ(2δ) = 0.

(3.3)

Recall from (2.55), we have that

R1
0 =

ᾱδ(δ + 2γ + 2β)

(γ + ᾱ)(βδ + δ2 + 3δγ + 2γ2)
(3.4)

It follows that

R1
0 = 1⇐⇒ ᾱβδ = γβδ + γδ2 + 3δγ2 + 2γ3 + ᾱδγ + 2ᾱγ2 (3.5)

R1
0 > 1⇐⇒ ᾱβδ > γβδ + γδ2 + 3δγ2 + 2γ3 + ᾱδγ + 2ᾱγ2 (3.6)

R1
0 < 1⇐⇒ ᾱβδ < γβδ + γδ2 + 3δγ2 + 2γ3 + ᾱδγ + 2ᾱγ2 (3.7)

Rewriting equation (3.3), we have

Aλ3 −Bλ− C = 0, (3.8)
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where,

A = (γ + ᾱ)(δ + β + γ)(δ + 2γ) > 0

B = 2γβ(γ + ᾱ) + δᾱ(δ + 2γ) > 0

C = ᾱβ(2δ) > 0.

Let k be the largest solution to equation (3.8). Therefore, the following equation

holds.

Ak3 −Bk = C (3.9)

Because

Ak3 = (γ + ᾱ)(δ + β + γ)(δ + 2γ)k3

= (2ᾱβγ + ᾱδ2 + 3ᾱδγ + 2βγ2 + ᾱβδ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3

= (2ᾱβγ + ᾱδ2 + 2ᾱδγ + 2βγ2)k3 + (ᾱδγ + ᾱβδ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3

Bk = (2γβ(γ + ᾱ) + δᾱ(δ + 2γ))k

= (2ᾱβγ + ᾱδ2 + 2ᾱδγ + 2βγ2)k

C = ᾱβ(2δ).

Then by (3.9) we have

2ᾱβδ = (2ᾱβγ + ᾱδ2 + 2ᾱδγ + 2βγ2)k3 + (ᾱδγ + ᾱβδ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3

− (2ᾱβγ + ᾱδ2 + 2ᾱδγ + 2βγ2)k

= (2ᾱβγ + ᾱδ2 + 2ᾱδγ + 2βγ)(k3 − k) + (ᾱβδ)k3

+ (ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3
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Rearranging to get (ᾱβδ)k3 on the left hand side and using the fact that (ᾱβδ)k3 =

2(ᾱβδ)k3 − (ᾱβδ)k3, we have

(ᾱβδ)k3 = (2ᾱβγ + ᾱδ2 + 2ᾱδγ + 2βγ)k(k2 − 1) + 2(ᾱβδ)(k3 − 1)

+ (ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3 (3.10)

Now, we consider 3 possible k situations, k < 1, k > 1 and k = 1.

If k = 1, (3.10) is satisfied if and only if

(ᾱβδ) = (ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)

⇐⇒ R1
0 = 1 by (3.5). (3.11)

If k < 1, we can see that the first and the second term on the right hand side of

equation (3.10) are negative. This gives

(ᾱβδ)k3 < (ᾱβγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3

(ᾱβδ) < (ᾱδγ + +2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)

⇐⇒ R1
0 < 1 by (3.7). (3.12)

Similarly, if k > 1, the first and the second term on the right hand side are positive.

We have

(ᾱβδ)k3 > (ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)k3

(ᾱβδ) > (ᾱδγ + 2ᾱγ2 + βδγ + δ2γ + 3δγ2 + 2γ3)

⇐⇒ R1
0 > 1 by (3.6). (3.13)

Since k is the largest solution that solves equation (3.3), it is a dominant eigenvalue

of Matrix K which is equivalent to the reproduction numberof Model 2, R2
0. As a
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result, we conclude that R1
0 ≤ 1 if and only if R2

0 ≤ 1.

3.4 Extinction probability

We now turn our attention to the extinction probability of the approximating

branching process. Let xi be the number of offspring of type i, where i ∈ {1, 2, 3, 4, 5},

xi ∈ {0, 1}. Let s = (s1, s2, s3, s4, s5), where 0 ≤ s1, s2, s3, s4, s5 ≤ 1. Let p
(k)
x is

the probability of having x offspring produced from an initial infected individual

of type k, where x = (x1, x2, x3, x4, x5). The probability generating function for

the number of offspring of a type k individual can be written as,

gk(s) =
∑

x1,x2,x3,x4,x5

p(k)
x1,x2,x3,x4,x5

sx11 s
x2
2 s

x3
3 s

x4
4 s

x5
5 . (3.14)

Note that if vector x = 0, it means that the individual has no offspring of any type.

Therefore, p
(k)
0 represents the probability of having 0 offspring produced from an

initial infective of type k. For convenience, if there exists i, j ∈ {1, 2, ..., 5} such

that for k 6= i or j, xk = 0 we write x = (xi, xj). For example, (0, 0, x3, 0, x5) is

abbreviated as (x3, x5). Thus, we express the probability generating functions as

follows.

g1(s) = p
(1)
0 + p

(1)
(x2)s2 + p

(1)
(x1,x5)s1s5 + p

(1)
(x1,x4)s1s4.

g2(s) = p
(2)
0 + p

(2)
(x1)s1 + p

(2)
(x3)s3 + p

(2)
(x2,x5)s2s5 + p

(2)
(x2,x4)s2s4.

g3(s) = p
(3)
(x1,x5)s1s5 + p

(3)
(x4)s4 + p

(3)
(x2)s2 + p

(3)
(x3,x5)s3s5 + p

(3)
(x3,x4)s3s4

+ p
(3)
(x1,x3)s1s3 + p

(3)
(x2,x3)s2s3. (3.15)

g4(s) = p
(4)
0 + p

(4)
(x5)s5 + p

(4)
(x3)s3 + p

(4)
(x1,x4)s1s4 + p

(4)
(x2,x4)s2s4.

g5(s) = p
(5)
0 + p

(5)
(x4)s4 + p

(5)
(x1,x5)s1s5 + p

(5)
(x2,x5)s2s5.

Let πi denote the probability of extinction given that an infected individual
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of type i is introduced into the population. Let π = (π1, π2, π3, π4, π5). The

probability of extinction is then the non-negative root of the equations

g(π) = (g1(π), g2(π), g3(π), g4(π), g5(π)) = π. (3.16)

It is not possible to obtain a general analytical solution. Therefore, it will be solved

numerically using R programming language. In the special case where there is no

differences in rates between male and female the probability of extinction can be

found using a 3-type branching process.

3.4.1 Probability of extinction for the special case β1 =

β2, γ1 = γ2, ω1 = ω2

Considering the case where β1 = β2, γ1 = γ2, ω1 = ω2, then male offspring and

female offspring have identical probability distribution. As a result, the mean

number of offspring of the following types are equal, MI = FI , and MIFS = MSFI .

Therefore, it is clear to see that π1 = π5, and π2 = π4. In other words, there is no

gender distinction, therefore we can reduce types of singles and couples. Hence, we

have 3 types of offspring: a single infective represented by SI , a couple within which

one person is infected represented by C1I , a couple within which two persons are

infected represented by C2I . As such, in terms of branching process approximation,

we can reduce a 5-type branching process into 3-type branching process in this case.

The corresponding probability generating functions are expressed as in 3.17.

g1(s) = p
(1)
0 + p

(1)
(x2)s2 + p

(1)
(x1,x5)s

2
1 + p

(1)
(x1,x4)s1s2.

g2(s) = p
(2)
0 + p

(2)
(x1)s1 + p

(2)
(x3)s3 + p

(2)
(x2,x5)s2s1 + p

(2)
(x2,x4)s

2
2. (3.17)

g3(s) = p
(3)
(x1,x5)s

2
1 + 2p

(3)
(x2)s2 + p

(3)
(x3,x5)s3s1 + p

(3)
(x3,x2)s3s2 + p

(3)
(x1,x3)s1s3

+ p
(3)
(x3,x2)s3s2.



CHAPTER 3. ONE-NIGHT STAND MODELLING 102

Giving,

(g1(π), g2(π), g3(π)) = π, where π = (π1, π2, π3). (3.18)

To seek the solutions of equations (3.16) and (3.18), deriving them algebraically

appears to be too complex. However, we know that if R0 ≤ 1, then π = 1. If

R0 > 1, then π < 1. We use R software to determine the numerical results, see

Section 3.7.

3.5 Endemic Level

As in Section 2.5, we explore the endemic level of the disease. To study the

endemic level, we employ the deterministic model as shown in Section 3.5.1. To

study the fluctuations about endemic level, an Ornstein-Uhlenbeck approximation

is utilised, see Section 3.5.2. The mean time to extinction is investigated using

stochastic simulations described in Section 3.6.

3.5.1 Deterministic Model

Similar to Section 2.5.1, the population is classified into 8 disjoint classes according

to sex, disease status and relationship status. Recall the definition of each class

as follows.

x0(t) denotes the proportion of non-infected single males at time t,

x1(t) denotes the proportion of infected single males at time t,

y0(t) denotes the proportion of non-infected single females at time t,

y1(t) denotes the proportion of infected single females at time t,

z10(t) denotes the proportion of couples with an infected male only at time t,

z01(t) denotes the proportion of couples with an infected female only at time t,

z11(t) denotes the proportion of couples with both an infected male and female
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at time t,

z00(t) denotes the proportion of couples with no infected at time t,

Then, the deterministic counterpart to the stochastic model including the one-

night stand condition is described by the following system of differential equations:

dx0(t)

dt
= γ1x1(t) + δ(z01(t) + z00(t))− αx0(t)(y1(t) + y0(t))− ω2x0(t)y1(t)

− ω2rx0(t)(z01(t) + z11(t))

dx1(t)

dt
= −γ1x1(t) + δ(z11(t) + z10(t))− αx1(t)(y1(t) + y0(t)) + ω2x0(t)y1(t)

+ ω2rx0(t)(z01(t) + z11(t))

dy0(t)

dt
= γ2y1(t) + δ(z10(t) + z00(t))− αy0(t)(x1(t) + x0(t))− ω1x1(t)y0(t)

− ω1ry0(t)(z10(t) + z11(t))

dy1(t)

dt
= −γ2y1(t) + δ(z11(t) + z01(t))− αy1(t)(x1(t) + x0(t)) + ω1x1(t)y0(t)

+ ω1ry0(t)(z10(t) + z11(t))

dz00(t)

dt
= γ1z10(t) + γ2z01(t) + αy0(t)x0(t)− δz00(t)− ω2ry1(t)z00(t)− ω1rx1(t)z00(t)

− ω2r
2pz00(t)(z01(t) + z11(t))− ω1r

2z00(t)(z10(t) + z11(t))

dz10(t)

dt
= γ2z11(t)− β1z10(t)− γ1z10(t) + αx1(t)y0(t)− δz10(t) + ω2ry1(t)z00(t)

+ ω2r
2z00(t)(z01(t) + z11(t))− ω1rx1(t)z10(t)− ω1r

2z10(t)(z10(t) + z11(t))

dz01(t)

dt
= γ1z11(t)− γ2z01(t)− β2z01(t) + αx0(t)y1(t)− δz01(t) + ω1rx1(t)z00(t)

+ ω1r
2z00(t)(z10(t) + z11(t))− ω2ry1(t)z01(t)− ω2r

2z01(t)(z11(t) + z01(t))

dz11(t)

dt
= β1z10(t) + β2z01(t)− γ1z11(t)− γ2z11(t) + αy1(t)x1(t)− δz11(t)

+ ω1rx1(t)z10(t) + ω1r
2z10(t)(z10(t) + z11(t)) + ω2ry1(t)z01(t)

+ ω2r
2z01(t)(z10(t) + z11(t))

n(t) = x1(t) + x0(t) + y1(t) + y0(t) + 2z00(t) + 2z10(t) + 2z01(t) + 2z11(t) = 1.

(3.19)
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An equilibrium point (x̃, ỹ, z̃) = (x̃0, x̃1, ỹ0, ỹ1, z̃00, z̃10, z̃01, z̃11) is a solution of the

simultaneous non-linear equations obtained by finding the stationary points to the

system of differential equations defined above. Solving the system of differential

equations of 8 dimensions is difficult, therefore, it will be solved numerically using

R language and will be presented in Section 3.7.

3.5.2 Limiting Diffusion Process

As in Section 2.5.2, we study the fluctuations about endemic level using Ornstein-

Uhlenbeck process. We seek the covariance matrix Σ = (σij) such that it solves

the matrix equation

DΣ + ΣDT = −C (3.20)

where matrices D and C are the local drift and covariance matrix. Note that,

the system of linear equations in (3.20) has a unique solution if and only if D is

of full rank. We can see that the system of equations in (3.19) are not linearly

independent, giving the rank of D less than 8 which is not of full rank. Therefore,

to solve (3.20), with our assumption that the proportions of males and females are

equal, i.e. x0(t) + x1(t) = y0(t) + y1(t), similarly to Section 2.5.1, we can reduce

the number of equations to 6.

Q1(t) = x0(t) = 0.5− z10(t)− z00(t)− z01(t)− z11(t)− x1(t) (3.21)

Q2(t) = y0(t) = 0.5− z10(t)− z00(t)− z01(t)− z11(t)− y1(t) (3.22)

Substituting (3.21) and (3.22) in (3.19), we have 6 equations in 6 variables, giving

the local drift matrix D as 6× 6 matrix, defined as follows. For convenience, let

Q3(t) = 0.5− z10(t)− z00(t)− z01(t)− z11(t) (3.23)
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Therefore, (3.19) can be reduced to 6 differential equations as follows

dx1(t)

dt
= −γ1x1(t) + δ(z11(t) + z10(t))− αx1(t)Q3(t) + ω2Q1(t)y1(t)

+ ω2rQ1(t)(z01(t) + z11(t))

dy1(t)

dt
= −γ2y1(t) + δ(z11(t) + z01(t))− αy1(t)Q3(t) + ω1x1(t)Q2(t)

+ ω1rQ2(t)(z10(t) + z11(t))

dz00(t)

dt
= γ1z10(t) + γ2z01(t) + αQ1(t)Q2(t)− δz00(t)− ω2ry1(t)z00(t)− ω1rx1(t)z00(t)

− ω2r
2z00(t)(z01(t) + z11(t))− ω1r

2z00(t)(z10(t) + z11(t))

dz10(t)

dt
= γ2z11(t)− β1z10(t)− γ1z10(t) + αx1(t)Q2(t)− δz10(t) + ω2ry1(t)z00(t)

+ ω2r
2z00(t)(z01(t) + z11(t))− ω1rx1(t)z10(t)− ω1r

2z10(t)(z10(t) + z11(t))

dz01(t)

dt
= γ1z11(t)− γ2z01(t)− β2z01(t) + αQ1(t)y1(t)− δz01(t) + ω1rx1(t)z00(t)

+ ω1r
2z00(t)(z10(t) + z11(t))− ω2ry1(t)z01(t)− ω2r

2z01(t)(z11(t) + z01(t))

dz11(t)

dt
= β1z10(t) + β2z01(t)− γ1z11(t)− γ2z11(t) + αy1(t)x1(t)− δz11(t)

+ ω1rx1(t)z10(t) + ω2ry1(t)z01(t) + ω2r
2z01(t)(z10(t) + z11(t))

+ ω1r
2z10(t)(z10(t) + z11(t))

(3.24)

The local drift matrix (D) and the covariance matrix (C) corresponding to (3.20)

are defined as follows.

D = (d)i,j, i, j ∈ {1, 2, ..., 6}
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where,

d11 =
∂

∂x1

(dx1)

(dt)
= −γ1 − αQ∗3 − ω2y

∗
1 − ω2r(z

∗
01 + z∗11)

d12 =
∂

∂y1

(dx1)

(dt)
= ω2Q

∗
1

d13 =
∂

∂z00

(dx1)

(dt)
= αx∗1 − ω2y

∗
1 − ω2r(z

∗
11 + z∗01)

d14 =
∂

∂z10

(dx1)

(dt)
= δ + αx∗1 − ω2y

∗
1 − ω2r(z

∗
11 + z∗01)

d15 =
∂

∂z01

(dx1)

(dt)
= αx∗1 − ω2y

∗
1 − ω2r(z

∗
11 + z∗01) + ω2rQ

∗
1

d16 =
∂

∂z11

(dx1)

(dt)
= δ + αx∗1 − ω2y

∗
1 − ω2r(z

∗
11 + z∗01) + ω2rQ

∗
1

d21 =
∂

∂x1

(dy1)

(dt)
= ω1Q

∗
2

d22 =
∂

∂y1

(dy1)

(dt)
= −γ2 − αQ∗3 − ω1x

∗
1 − ω1r(z

∗
10 + z∗11)

d23 =
∂

∂z00

(dy1)

(dt)
= αy∗1 − ω1x

∗
1 − ω1r(z

∗
10 + z∗11)

d24 =
∂

∂z10

(dy1)

(dt)
= αy∗1 − ω1x

∗
1 − ω1r(z

∗
10 + z∗11) + ω1rQ

∗
2

d25 =
∂

∂z01

(dy1)

(dt)
= δ + αy∗1 − ω1x

∗
1 − ω1r(z

∗
10 + z∗11)

d26 =
∂

∂z11

(dy1)

(dt)
= δ + αy∗1 − ω1x

∗
1 − ω1r(z

∗
10 + z∗11) + ω1rQ

∗
2
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d31 =
∂

∂x1

(dz00)

(dt)
= −ω1rz

∗
00 − αQ∗2

d32 =
∂

∂y1

(dz00)

(dt)
= −ω2rz

∗
00 − αQ∗1

d33 =
∂

∂z00

(dz00)

(dt)
= −δ − ω2ry

∗
1 − ω1rx

∗
1 − ω2r

2(z∗11 + z∗01)− ω1r
2(z∗10 + z∗11)− α(Q∗1 +Q∗2)

d34 =
∂

∂z10

(dz00)

(dt)
= −r2ω1z

∗
00 + γ1 − α(Q∗1 +Q∗2)

d35 =
∂

∂z01

(dz00)

(dt)
= −r2ω2z

∗
00 + γ2 − α(Q∗1 +Q∗2)

d36 =
∂

∂z11

(dz00)

(dt)
= −r2ω1z

∗
00 − r2ω2z

∗
00 − α(Q∗1 +Q∗2)

d41 =
∂

∂x1

(dz01)

(dt)
= αQ∗2 − ω1rz

∗
10

d42 =
∂

∂y1

(dz01)

(dt)
= rω2z

∗
00 − αx∗1

d43 =
∂

∂z00

(dz01)

(dt)
= −αx∗1 + ω2ry

∗
1 + ω2r

2(z∗11 + z∗01)

d44 =
∂

∂z10

(dz01)

(dt)
= −β1 − γ1 − αx∗1 − δ − ω1rx

∗
1 − ω1r

2(z∗10 + z∗11)− ω1r
2z∗10

d45 =
∂

∂z01

(dz01)

(dt)
= ω2r

2z∗00 − αx∗1

d46 =
∂

∂z11

(dz01)

(dt)
= −r2ω1z

∗
10 + r2ω2z

∗
00 − αx∗1 + γ2
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d51 =
∂

∂x1

(dz10)

(dt)
= rω1z

∗
00 − αy∗1

d52 =
∂

∂y1

(dz10)

(dt)
= αQ∗1 − ω2rz

∗
01

d53 =
∂

∂z00

(dz10)

(dt)
= −αy∗1 + ω1rx

∗
1 + ω1r

2(z∗10 + z∗11)

d54 =
∂

∂z10

(dz10)

(dt)
= r2ω1z

∗
00 − αy∗1

d54 =
∂

∂z01

(dz10)

(dt)
= −γ2 − β2 − αy∗1 − δ − ω2ry

∗
1 − ω2r

2(z∗11 + z∗01)− ω2r
2z∗01

d56 =
∂

∂z11

(dz10)

(dt)
= r2ω1z

∗
00 − r2ω2z

∗
01 − αy∗1 + γ1

d61 =
∂

∂x1

(dz11)

(dt)
= rω1z

∗
10 + αy∗1

d62 =
∂

∂y1

(dz11)

(dt)
= αx∗1 + rω2z

∗
01

d63 =
∂

∂z00

(dz11)

(dt)
= 0

d64 =
∂

∂z10

(dz11)

(dt)
= β1 + ω1rx

∗
1 + ω1r

2(z∗10 + z∗11) + ω1r
2z∗10

d65 =
∂

∂z01

(dz11)

(dt)
= β2 + ω2ry

∗
1 + ω2r

2(z∗01 + z∗11) + ω2r
2z∗01

d66 =
∂

∂z11

(dz11)

(dt)
= r2ω1z

∗
10 − δ − γ1 − γ2 + r2ω1z

∗
10

and the covariance matrix,

C = (c)i,j, i, j ∈ {1, 2, ..., 6}

where,

c1,1 = αx∗1Q
∗
2 + αx∗1y

∗
1 + δz∗10 + δz∗11 + γ1x

∗
1 c1,2 = αx∗1y

∗
1 + δz∗11

c1,3 = 0 c1,4 = −δz∗10 − αx∗1Q∗2

c1,5 = 0 c1,6 = −αx∗1y∗1 − δz∗11

c2,2 = αQ∗1y
∗
1 + αx∗1y

∗
1 + δz∗01 + δz∗11 + γ2y

∗
1 c2,3 = 0

c2,4 = 0 c2,5 = −αQ∗1y∗1 − δz∗01

c2,6 = −αx∗1y∗1 − δz∗11
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c3,3 = αQ∗1Q
∗
2 + δz∗00 + γ1z

∗
10 + γ2z

∗
01 c3,4 = −γ1z

∗
10

c3,5 = −γ2z
∗
01 c3,6 = 0

c4,4 = αx∗1Q
∗
2 + δz∗10 + β1z

∗
10 + γ2z

∗
11 + γ1z

∗
10 c4,5 = 0

c4,6 = −β1z
∗
10 − γ2z

∗
11

c5,5 = αQ∗1y
∗
1 + δz∗01 + β2z

∗
01 + γ2z

∗
01 + γ1z

∗
11 c5,6 = −β2z

∗
01 − γ1z

∗
11

c6,6 = αx∗1y
∗
1 + δz∗11 + β1z

∗
10 + β2z

∗
01 + γ1z

∗
11 + γ2z

∗
11

C is a symmetric matrix and the remaining covariance terms are 0. Note that,

Q∗1, Q
∗
2 and Q∗3 are defined in (3.21), (3.22) and (3.23) with equilibrium values

x∗,y∗, z∗. According to Section 1.3.2 in Chapter 1, if we choose an equilibrium

point as an initial value of the deterministic approximation, for large N , the pro-

cess
√
N((XN , YN , ZN)− (x∗,y∗, z∗)) is approximated by the Ornstein-Uhlenbeck

process, which has a Gaussian stationary distribution with mean-zero and covari-

ance matrix Σ defined in (3.20). Similar to Chapter 2, with the same definition of

the variables, we have the following

E
[
Î
]

= Ni∗ = N(x∗1 + y∗1 + z∗10 + z∗01 + 2z∗11),

V ar(Î) = NΣi = N(ς11 + ς22 + ς44 + ς55 + 4ς66 + 2ς12 + 2ς14

+ 2ς15 + 4ς16 + 2ς24 + 2ς25 + 4ς26 + 2ς45 + 4ς46 + 4ς56),

The coefficient of variation is Cv =
√
NΣi

i∗
. We are interested in how the coefficient

of variation (Cv) tell us about the fluctuations about the endemic level by looking

at the relationship between the Cv and the endemic level as well as the mean time

to extinction for various parameter sets. The experiments will be done numerically

in Section 3.7.
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3.6 Time to extinction

To study the expected time to extinction of the epidemic given that the process is

started in the endemic level, we use Stochastic simulation as in Section 2.6. The

set of the state space is again

S = {X0(t), X1(t), Y0(t), Y1(t), Z00(t), Z10(t), Z01(t), Z11(t)}

As shown in Table 3.2, we have 34 events instead of 16. Recall that ai represent

a rate with respect to process i, where i ∈ {1, 2, 3, ..., 34}. Table 3.2 presents the

rate corresponding to each event in the epidemic process.

Table 3.2: Events and their transition rates
ai Rate Event

a1 γ1X1 Recovery of a single male.
a2 γ2Y1 Recovery of a single female.
a3 γ1Z10 Recovery of a male whose partner is susceptible
a4 γ2Z01 Recovery of a female whose partner is susceptible
a5 γ1Z11 Recovery of a male whose partner is infectious
a6 γ2Z11 Recovery of a female whose partner is infectious
a7 αX0Y0 Relationship formation between a susceptible male and female.
a8 αX1Y0 Relationship formation between an infectious male

and a susceptible female.
a9 αX0Y1 Relationship formation between a susceptible male

and an infectious female.
a10 αX1Y1 Relationship formation between an infectious male and female.
a11 δZ00 Relationship dissolution between a susceptible male and female.
a12 δZ10 Relationship dissolution between an infectious male

and a susceptible female.
a13 δZ01 Relationship dissolution between a susceptible male

and an infectious female.
a14 δZ11 Relationship dissolution between an infectious male and female.
a15 β1Z10 Infection from male to female
a16 β2Z01 Infection from female to male
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ai Rate Process

a17 ω1X1Y0 A single infected male has a one-night stand with a single susceptible
female

a18 ω1rX1Z10 A sing infected male has a one-night stand with a non-single susceptible
female with an infected partner.

a19 ω1rX1Z00 A single infected male has a one night stand with a non-single susceptible
female with a susceptible partner

a20 ω2X0Y1 A single infected female has a non-night stand with a single
susceptible male.

a21 ω2rY1Z01 A single infected female has a one-night stand with a non-single
susceptible male with an infected partner

a22 ω2rY1Z00 A single infected female has a one-night stand with a non-single
susceptible male with a susceptible partner

a23 ω1rZ10Y0 A non-single infected male has a one-night stand
with a single susceptible female.

a24 ω1r
2Z10Z10 A non-single infected male has a one-night stand

with a non-single female with an infected partner.
a25 ω1r

2Z10Z00 A non-single infected male has a one-night stand
with a non-single female with a susceptible partner.

a26 ω1rZ11Y0 A non-single infected male with an infected partner
has a one-night stand with a single susceptible female.

a27 ω1r
2Z11Z10 A non-single infected male with an infected partner

has a one-night stand with a single susceptible female.
a28 ω1Z11Z00 A non-single infected male with an infected partner

has a one-night stand with a non-single with
a susceptible partner.

a29 ω2rZ01X0 A non-single infected female has a one-night stand
with a single susceptible male.

a30 ω2r
2Z01Z01 A non-single infected female has a one-night stand

with a non-single susceptible male with an infected partner.
a31 ω2r

2Z01Z00 A non-single infected female has a one-night stand
with a non-single susceptible male having an infected partner.

a32 ω2rZ11X0 A non-single infected female has a one-night stand
with a single susceptible male.

a33 ω2r
2Z11Z01 A non-single infected female with an infected partner

has a one-night stand with a non-single male
having an infected partner.

a34 ω2r
2Z11Z00 A non-single infected female with an infected partner

has a one-night stand with a non-single
male having a susceptible partner.

The simulation is based on Gillespie algorithm, which can be summed up in

the following pseudocode.
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Algorithm 3.6.1: Stochastic(parameters, initial, tend)

1 : if (t < tend) and (X1(t) + Y1(t) + Z10(t) + Z01(t) + Z11(t)) 6= 0 then

2 : for i = 1..34 do

Calculate ai and λi =
∑i

k=1 ai

end for

3 : τ ∼ Exp(λ34)

4 : Generate a uniform random variable r

r∗ = rλ34

5 : Find i such thatλi−1 < r∗ ≤ λi

6 : Set t = t+ τ

7 : Update the current state S
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3.7 Numerical Results and analysis

The objective of the numerical studies in this Section is to explore the model be-

haviour based on various set of parameters, as well as illustrating some of the

theoretical results obtained in this Chapter. In particular evaluating the repro-

duction number, the probability of extinction and the endemic level for which no

explicit formulae exist. For convenience, we label the model without one-night

stands in Chapter 2 as Model 1, and the model with one-night stands in Chapter

3 as Model 2. In this subsection, similar to Model 1, we study the behaviour of

the epidemic based on the model parameters.

Firstly, Model 1 is a special case of Model 2 when the rate at which an individual

attempts to have a one-night stand is zero (ω = 0). Different branching process

approximations are used for the early stages of the two models. For Models 1 and

2, 2-type and 5-type branching process approximations are used, respectively. It is

interesting to compare the results from the branching processes, the reproduction

number and the probability of extinction, between both models for which ω = 0.

This will be done in subsection 3.7.1.

In subsection 3.7.2, we are interested in exploring the general behaviour of

Model 2 focusing on the case that one-night stands play a part in the model

(ω > 0). We first look at the relationship between the endemic level, R0 and the

probability of extinction, then followed by the study of varying δ based on various

sets of parameters, in which we know from Model 1 that moderate δ assists the

epidemic. The study of F = ᾱ
δ

is also included to see if the model converges to the

two type homogeneously mixing model when F → ∞. Lastly in this subsection,

there is a comparison between the two extremal cases: the disease transmission

occurs only within relationships (ω = 0) and the disease is transmitted only outside

relationships (β = 0) in order to investigate which kind of infection makes higher

impact on the spread of the disease.
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In subsection 3.7.3, we emphasise the effects of one-night stands on the model

in the case that one-night stands can take place only between singles. As a result,

the proportion of singles in equilibrium and the amount of time spent whilst being

single are important factors. We explore a range of behaviours by looking at

R0, the probability of extinction and the endemic level based on different sizes of

proportion of single individuals.

In terms of infections outside relationships, an individual can only be infected

through a successful one-night stand. Someone attempting a one-night stand will

not pass on the disease without another person agreeing to have one-night stand.

In other words, an infectious one-night stand does not only depend upon the rate

at which someone attempting one-night stands (ω), but also the probability of

someone agreeing to have a one night stand (r). Therefore, in subsection 3.7.4,

the constant rate of one-night stands for individuals is of our interest. R0, the

probability of extinction, as well as the endemic level are subsequently explored.

Lastly, in subsection 3.7.5, we study the mean time to extinction and the

fluctuations about the endemic level based on a range of parameters for fixed

endemic level. We look at the endemic level of 14% and 25% to be consistent with

the study in Model 1 with the objective of investigating the effect of each model

parameter on the mean time to extinction. In particular, in Model 1, γ2 is the

main influence on the mean time to extinction, we are interested in investigating

similar behaviours.

3.7.1 Relationship between Model 1 and Model 2 (ω = 0)

In this subsection, we explore the relationship between Model 1 and Model 2 by

comparing the behaviour of R0 between both models. For Model 2, we consider

the case without one-night stands (ω = 0). Again, we recall parameter sets from

Table 2.5 here.
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Table 3.3: Parameters chosen
set α δ γ1 γ2 β1 β2

1 5 1:100 1 1 100 100
2 0.8 1:100 0.02 0.02 0.5 0.5
3 100 1:100 0.1 0.1 0.2 0.2
4 200 1:100 3 3 40 40

(a) (b)

Figure 3.3: Plots of R0 of Model 1 and Model 2 against δ using parameter sets in
Table 3.3

Note from Figure 3.3(a) that each colour represents the same set of results as

labelled in Figure 3.3(b). The 4 numbers in the label correspond to the sets of

parameters illustrated in Table 3.3. Note also that, R0 obtained from Model 1

in Figure 3.3(a) is R1
0 and R0 obtained from Model 2 is R2

0. As we can see from

Figure 3.3, R1
0 and R2

0 display similar behaviour as δ varies. Also, when R1
0 ≤ 1,

R2
0 ≤ 1 and R1

0 > 1, R2
0 > 1 even though R1

0 and R2
0 have different values.
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(a) (b)

Figure 3.4: Plots of the probability of extinction (π1) of Model 1 and Model 2
corresponding the parameter sets in Table 3.3

In terms of probabilities of extinction related to R1
0 and R2

0 in Figure 3.3, Figure

3.4 shows that that the probability of extinction obtained from Model 1 and Model

2 are the same.

3.7.2 General behaviour of the model with one-night stands

(Model 2 : ω1, ω2 6= 0)

In Section 2.7, we studied the effects of each parameter on the threshold parameter

R0, such that R0 increases when the infection rate increases, whereas R0 decreases

if there is an increasing of the recovery rates. For increasing δ, R0 can either

increase or decrease both monotonically and non-monotonically. In this section,

it is interesting to see what happens in the model with one-night stands as the

infection is allowed to be transmitted outside relationships in this case. We will

restrict our attention to the rate at which one-night stand occurs, i.e. ω1, ω2 6=

0. Generally, a one-night stand should increase the chance of infection between

individuals of the opposite sex, resulting in an increasing in number of infected

individuals, leading to an increasing of R0. We investigate the relationship between
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R0, the endemic level and the probability of extinction of two cases : no difference

in parameters between the two sexes (Figure 3.5) and there is the difference (Figure

3.6). The parameters are chosen as labelled in the Figures.

(a) (b)

Figure 3.5: (a) Plot of endemic level against R0 (b) Endemic level against probabil-
ity of the disease not going extinct, for varying ω1, ω2 : 1, 2,...,100. Other param-
eters are fixed : γ = 2, β = 1, α = 9, δ = 6, ᾱ = 3, p = 0.1667, q = 0.3333, r = 0.5.

(a) (b)

Figure 3.6: (a) Plot of endemic level against R0 (b) Endemic level against probabil-
ity of the disease not going extinct, for varying ω1: 1, 2,...,100. Other parameters
are fixed : ω2 = 1, γ1 = 5, γ2 = 1, β1 = 0.1, β2 = 5, δ = 15, α = 10, ᾱ = 3.9564, p =
0.1044, q = 0.3956, r = 0.5.
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We can see in Figure 3.5 and 3.6 that R0 and the endemic level are increasing

while ω increases. The endemic level increases as R0 increases in a monotonic

manner. Note that in Figure 3.5(b) only 1 − π1, 1 − π2 and 1 − π3 are plotted

as when β1 = β2, γ1 = γ2, ω1 = ω2, we have that π1 = π5 and π2 = π4. We can

see that the endemic level has a non-linear relationship with 1 − π1, 1 − π2 and

1 − π3, even though it looks very close to linear with 1 − π1 and 1 − π2. For the

case where β1 6= β2, γ1 6= γ2 and ω1 6= ω2, Figure 3.6 shows similar relationship

between R0 and endemic level. The endemic level also has non-linear relationship

with 1− πi, i = 1, 2, 3, 4, 5.

The above relationships with varying ω are as we would expect. Given the

observations in Chapter 2 and Section 3.7.1 it is interesting to look at how the

quantities of interest vary as δ varies. The key point is that, in Model 1, the

disease is allowed to be transmitted only within relationships whereas in this model

the transmission can occur outside relationships. Therefore, it is interesting to

investigate R0, the endemic level, and the probability of extinction with regards

to increasing δ into the model incorporating one-night stands. Parameter sets are

chosen as illustrated in Table 3.4.

Table 3.4: parameters chosen
set α δ γ1 γ2 β1 β2 ω1 ω2 r
1 5 0.001:2000 0.1 0.1 0.5 0.5 0.1 0.1 0.5
2 10 0.001:2000 30 30 1 1 100 100 0.5
3 0.1 0.001:2000 10 10 50 50 30 30 0.5
4 100 0.001:2000 5 5 50 50 0.8 0.8 0.5

Figure 3.7 shows the behaviours of R0 as δ increases corresponding to each

parameter set in Table 3.4. Note that there is no difference between parameters of

both sexes, i.e. β1 = β2, γ1 = γ2 and ω1 = ω2. Recall our model assumption that

we start with 1 infective individual in a susceptible population, assuming that it

is of type 1. Therefore, throughout our numerical studies in this Chapter, we are

interested in the probability of extinction starting from a type 1 individual. As a
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result, the probability of extinction in Figure 3.7 is π1.

(a) (b)

Figure 3.7: Plots of R0 and probability of extinction against δ using parameter
sets in Table 3.4

According to Figure 3.7, we can see that R0 exhibits a range of behaviour. For

parameter set 1 and 4, R0 is largest when the level of δ relative to α is moderate.

Note that β is considerably higher than ω meaning that infections occur mainly

within relationships. Therefore, when the epidemic is driven by β, the spread of

the epidemic is maximum when the time spent in a relationship is moderate. This

coincides with our results for Model 1 (see Figure 2.4(d)). At the same time, when

the disease transmission outside relationships is substantial, R0 will increase as δ

increases (parameter set 2 and 4). This is because the chance that transmission

outside relationships will occur is higher when individuals are single. Therefore,

increasing the level of individuals being single will also increase the spread of the

disease.

Fixing F = ᾱ
δ

and letting δ increase, is also interesting for Model 2, especially

when F → ∞. Intuitively, we know that α = ᾱ(σ
2
) and σ = δ

ᾱ+δ
= 1

F+1
. There-

fore, as F → ∞, we have that σ → 0 and α → ∞. The key point is as δ and F

increase then an individual spends most of their time in a relationship but moves
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very quickly from one relationship to another. Therefore every within relationship

infection is almost certainly with somebody different. As such, the model increas-

ingly behaves like a two type homogeneously mixing model. This agrees with our

numerical study which is illustrated in Figure 3.8. Parameter sets are chosen from

parameter set 4 in Table 3.4, which are γ = 5, β = 50, ω = 0.8, r = 0.5. F is

fixed at F = 1, 5, 50, 500, 1000, 2000 and δ increases by 1 from 1 to 100. Note that

ᾱ = dF .

(a) (b)

Figure 3.8: Plots of R0 and π1 against δ for Fixed F, where γ = 5, β = 50, ω =
0.8, r = 0.5, δ = 1, 2, ..., 100 and ᾱ = dF
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(a) (b)

Figure 3.9: Plots of R0 and π1 against δ for Fixed F, where γ = 30, β = 1, ω = 100,
δ = 1, 2, ..., 100 and ᾱ = dF .

Figure 3.9 shows that as F increases, the level of R0 is decreasing in contrast

with the behaviour of R0 for the case that β is driving in which it is increasing,

as seen in Figure 3.8. However, as F tends to infinity, the model still increasingly

mimics the two type homogeneously mixing model.

Now, we have noticed from our previous studies in Figure 3.7 that with high

ω, there is a rapid increase in R0. It is interesting to compare and contrast two

extremal cases. Case 1 is ω = 0, no one-night stands so infection only takes place

in relationships. Case 2 is β = 0 where the disease can only be transmitted outside

relationships. Parameters chosen for both cases are γ1 = 3, γ2 = 3, δ = 11, ᾱ =

15, r = 0.5. For the first case (red line), we fix ω = 0 and increase β from 1, 2,

...,2000. On the other hand, we fix β = 0 for the second case (black line) and

increase ω from 1 to 2000. Note that β1 = β2 = β and ω1 = ω2 = ω. In Figure

3.10, R0 corresponding to the two cases mentioned above are plotted against ω for

the first case, and β for the second case.
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Figure 3.10: R0 corresponding to the case where β = 0 and ω = 0.

As we can see from Figure 3.10 the starting points of R0 from both cases are

nearly the same before increasing in a different speed. Therefore, it clearly to

see that ω makes a greater impact on R0 as compared to β. Note that, in this

case, if a single person attempts to have a one night stand, it is 50% chances

the one-night stand with a non-single person is successful (r = 0.5). In other

words, 50% of individuals in relationships who have attempted one-night stands

with a single person will eventually agree to have a one-night stand. Therefore, in

general, it makes sense that a higher chance of individuals having one-night stands

will increase the incidence of the disease.

As such, for the model with one-night stands, we could see that not only the

rate at which individuals attempt to have one-night stand plays an important role

in the model, but also the probability of such a one-night stand being successful.

Note that by the model assumptions, a one-night stand between singles is 100%

successful. In an extreme case if r = 1, this means whoever attempts to have a

one-night stand, it is 100% successful. If r = 0, it means nobody in relationships

agrees to have a one-night stand (one-night stands only occur between singles).
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The behaviour of R0 for which r = 0, one-night stands occur only among single

individuals, is interesting. This is because, when one-night stands only occur

between singles, the proportion of single individuals in the population at that time

matters. If the population only consists of couples (when σ ≈ 0), even though the

rate of attempting one-night stands is high, there is no chance that the disease is

transmitted as nobody is single. Namely, a high value of ω will have no effect on

R0. For that reason, in Subsection 3.7.3, we investigate the behaviour of R0, the

probability of extinction, as well as the endemic level for which r = 0.

3.7.3 One-night stands occur only between singles (r = 0)

In this subsection, the objective is to emphasise the epidemic behaviours driven

by infections through one-night stands given that only singles can have one-night

stands. We explore behaviours corresponding to varied sizes of the proportion

of singles (σ) in the population and the time one spends being single between

relationships. It is interesting to study the following 3 different scenarios: large

proportion of singles (close to 1), moderate proportion of singles, and extremely

small proportion of singles (close to 0). Since σ is a function of ᾱ and δ, the

experiments will be carried out through a ratio of ᾱ to δ, i.e. F = ᾱ
δ
. Three

different situations are thus considered : extremely small F (F ≈ 0), moderate F

(F = 1 and F = 10 ), and extremely large F (F ≈ ∞). Note that each F results

in a different value of σ, such that F = 0.0001 ≈ 0 gives σ = 0.9999 ≈ 1, F = 1

and F = 10 give σ = 0.5 and 0.09 respectively, and F = 10000 ≈ ∞ gives σ =

0.00009 ≈ 0. Also, how an individual spends time inside or outside relationships

are represented through high values or low values of ᾱ and δ. Therefore, in each

case, we study two different sets as labelled on the graphs. The fixed parameters

are γ1 = 8, γ2 = 8, β1 = 5, β2 = 5. In each case, ω1 and ω2 increase from 1,2, ...,

100. Figure 3.11 shows the behaviour of R0 corresponding to each case.
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(a) (b)

(c) (d)

Figure 3.11: (a) Plot of R0 corresponding to F ≈ 0, σ ≈ 1
(b) Plot of R0 corresponding to F = 1, σ = 0.5
(c) Plot of R0 corresponding to F = 10, σ = 0.09
(d) Plot of R0 corresponding to F ≈ ∞, σ ≈ 0

From Figure 3.11, in the last case (F ≈ ∞), it is seen that ω has almost no

effect whilst it increases in which such behaviour has been described before we

start this subsection. Considering the other cases (F ≈ 0, F = 1, F = 10), when

there is a slow rate in changing partners (the red line), R0 starts to dramatically

increase when ω reaches a large enough value. As a consequence, we could say that

when ω is substantial, a high breakup rate drives the epidemic since the disease is
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being transmitted mostly among singles. In the case when an individual spends

very short time being single leading to a very small or no chance a single person

is infected by a one-night stand, an increasing ω has almost no effect on R0 even

though the proportion of singles are moderate (σ = 0.5 and 0.09), as seen as the

black dash line in the cases F = 1 and F = 10. In contrast, the black dash line in

F ≈ 0 shows a dramatic increases in ω. This case represents the scenario as such

an individual spends a lot of time being single increasing the chance of the disease

being transmitted.

Next, we are interesting in their corresponding probabilities of extinction and

the endemic level. The case that F ≈ ∞ will not be considered as we know that

the probability of extinction will always be 1 and the corresponding endemic level

will be 0. The results are plotted in Figures 3.12, 3.13 and 3.14.

(a) (b)

Figure 3.12: Plots of the probability of extinction and the endemic level against r
corresponding to F ≈ 0
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(a) (b)

Figure 3.13: Plots of probability of extinction and the endemic level against r
corresponding to F = 1

(a) (b)

Figure 3.14: Plots of probability of extinction and the endemic level against r
corresponding to F = 10

In Figure 3.12, the probability of extinction and the endemic level correspond-

ing to F ≈ 0 are nearly the same for the two sets of ᾱ and δ. Note that in the case

that R0 looks steady around 1, it might have some effect and even cross 1 at some

point, in which the effect is too little to be seen in the graph. The probability
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of extinction and the endemic level indicate clearer behaviours as we can see in

Figures 3.13 and 3.14 that the black dash line deviates from 0 (R0 > 1) after a

certain value of ω.

3.7.4 Constant rate of successful one-night stands (rω)

We know from the previous studies that R0 increases in ω. As ω increases whereas

the probability that an individual in a relationship agrees to have a one-night

stand (r) is fixed, we will have an increasing rate of successful one-night stands.

Therefore, it makes sense that the incidence of the disease will also increase. We

also know that as r increases, there is a higher chance that non-singles will agree to

have one-night stands, R0 should also increase. What if we have the rate at which

one-night stands being successful (rω) fixed? We know that in order to fix rω, ω

will be decreasing as r increases and vice versa. Therefore, in this subsection, we

are looking at the case for which r increases from 0 to 1 by 0.01 and ω consequently

decreases. Different sets of parameters are chosen as illustrated in Table 3.5. We

deliberately chose the underlying parameter sets to cover a range of R0 behaviours.

rω is fixed for the following two cases : rω = 5 and rω = 0.1. Note that there is

no distinction between parameters of the two sexes in this case.

Table 3.5: Parameters chosen
set α δ γ β
1 100 1 1 3
2 1 100 1 2
3 6 5 20 5
4 0.01 0.02 0.01 0.02



CHAPTER 3. ONE-NIGHT STAND MODELLING 128

(a) (b)

Figure 3.15: Plot of R0 against r corresponding to parameter sets in Table 3.5

We can see from Figure 3.15, R0 is not always monotonic in which we can

clearly see in Figure 3.15(a) parameter set 1. In Figure 3.15(b), parameter set

1, R0 also displays a non-monotonic behaviour even though it is not as clear.

Corresponding to the same parameter sets in Table 3.5, we are interested in how

the endemic level and the probability of extinction would look like. Figure 3.16

and 3.17 show the plots of the underlying endemic level and the probability of

extinction.



CHAPTER 3. ONE-NIGHT STAND MODELLING 129

(a) (b)

Figure 3.16: Plot of the probability of extinction (π1) against r corresponding to
parameter sets in Table 3.5

(a) (b)

Figure 3.17: Plot of the endemic level against r corresponding to parameter sets
in Table 3.5

The results shown in Figure 3.16 and 3.17 are as expected. It is worth drawing

attention to the parameter set 1 where an individual spends a long time in a

relationship due to a high value of α in which it shows the minimum incidence of

the disease at moderate ω and r in contrast with the other parameter sets in the

same table that R0 is minimum at highest r, in other words, smallest ω.
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3.7.5 Fluctuations about the endemic level and the mean

time to extinction

In subsection 2.7.3, we have studied the fluctuations about the endemic level of

Model 1 and the effect of each parameter on the mean time to extinction given

that the endemic level is fixed. The results of Model 1 show that the standard

deviation of the total number of infectives is not informative for the mean time to

extinction. In terms of the effect of the model parameters, we found that β does

not have much effect. It is interesting to see if such behaviour also holds for ω

as both are parameters subject to infection. Moreover, in Model 1 with γ1 fixed

equal to 1, we found that the mean time to extinction decreases with γ2 and that

the other parameters had little effect for a fixed endemic level. It is worthwhile

to investigate whether or not such similar behaviour holds for Model 2. In this

subsection, we will carry out similar studies focusing on ω. First, in order to

see whether or not ω has a significant effect on the mean time to extinction, we

fix the other parameters and vary ω1 and ω2. For convenience, throughout this

subsection, we define T the time to extinction and thus E[T ] denotes the mean

time to extinction.

Table 3.6: Mean time to extinction and the standard deviation (SD) of the total
number of infectives about the endemic level 0.14 and population size 100, varying
ω1 and ω2.

α δ γ1 γ2 β1 β2 ω1 ω2 SD E[T ]

9 6 1 2 3 4 5.8066 1 9.1887 24.5115
9 6 1 2 3 4 0.3501 10 9.4199 21.6592
9 6 1 2 3 4 9.9643 0.1 9.8439 21.2822
9 6 1 2 3 4 10.7483 0.0010 9.9775 21.0696
9 6 1 2 3 4 2.6645 3 8.8380 25.8982
9 6 1 2 0.1 0.5 52.2169 0.1 14.4172 8.1118
9 6 1 2 0.1 0.5 0.1239 100 17.6199 5.5126
9 6 1 2 0.1 0.5 0.5139 30 11.3493 11.9459
9 6 1 2 0.1 0.5 5.1136 3 8.7451 24.9835
9 6 1 2 0.1 0.5 13.5998 1 9.8771 17.2025
9 6 1 2 0.1 0.5 0.0010 363.0310 31.3905 4.0084
9 6 1 2 0.1 0.5 4 3.8898 8.6498 25.1970
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In Table 3.6, two cases are carried out ; β1 = 3, β2 = 4, and β1 = 0.1, β2 = 0.5.

The second case was chosen so that the epidemic is driven by one-night stands. In

the first case when the epidemic is driven by both infections within and outside

relationships, we can see that varying ω1 and ω2 does not have much effect on the

mean time to extinction in which it agrees with the results of varying β1 and β2

in Model 1. In the second case when the one-night stand infection is the main

spreader, we can see variation in the mean time to extinction varying from 4 - 25.

Moreover, in Table 3.6, we observe that there is a clear decreasing trend of the

mean time to extinction in the standard deviation of the total number of infectives,

see Figure 3.18.

Figure 3.18: Plot of the mean time to extinction against standard deviation of the
results in Table 3.6

Next, we want to explore the relationship between the mean time to extinction

and γ2 where ω1 and ω2 are included in the model. Similar to the study for Model

1 in subsection 2.7.3, we consider the endemic level of 14% and fix γ1 = 1 whilst

allowing other parameters to vary.
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Table 3.7: Mean time to extinction and the standard deviation (SD) of the total
number of infectives about the endemic level 0.14 and population size 100, fixing
γ1 = 1

set α δ γ2 β1 β2 ω1 ω2 E[T ] SD

1 6 9 8.0261 30 40 3 4 26.7766 8.5825
2 40 30 62.6539 8 9 100 1 21.1299 11.4899
3 1 10 0.7788 0.1 8 5 0.5 30.2420 9.6062
4 100 2 35.4244 30 80 5 6 28.2738 8.6099
5 1.5 100 269.4014 3 8 50 30 36.4013 6.6987
6 15 9 1 1.9810 3 2 1 27.4466 8.8231
7 5 25 2.5 1.4942 1 2 7 22.4006 8.9796
8 20 10 3.3 12.3853 5 1.5 1.5 26.2574 9.2365
9 10 11 0.5 1.2454 1.5 1.5 1.25 52.8581 8.3249
10 10 1 10 7.9699 30 5 6 28.8461 8.3202
11 3 1 0.0297 0.1 0.8 0.5 0.2 5326.4 7.3143
12 105 8 5 0.0033 0.1 2 70 11.8250 8.8367
13 5 95 31.7168 15 11 11.2 15 28.5174 7.4212
14 9 6 3.9465 3 2 5.55 4.48 24.5216 8.5202

As we can see in Table 3.7, a high variation in γ2, ranging from 0.0297 -269.4014,

only has a small influence on the mean time to extinction with the exception of

parameter set 11. In parameter set 11, small γ2 gives rise to a very large mean

time to extinction. This is probably because other parameters in this set are also

small so that the epidemic moves with a very slow rate to the disease-free stages.

In Figure 3.19, we plot the mean time to extinction against γ2 and the standard

deviation in order to see clearer relationships.



CHAPTER 3. ONE-NIGHT STAND MODELLING 133

(a) (b)

Figure 3.19: Plot of the mean time to extinction against γ2 and against standard
deviation (SD) of the results in Table 3.7

According to Figure 3.19(a), apart from a very high mean time to extinction

for γ2 = 0.02968, we can see small fluctuations in the mean time to extinction with

no clear pattern. Also, in Figure 3.19(b), there is no obvious relationship between

the mean time to extinction and the standard deviation.

Now, we will explore a higher range of the parameters by considering the higher

endemic level which is 25%. In this case, we reduce the range of δ and keep it

fixed to be 0.1, 1, 10 and 15 in order to see the behaviour of the epidemic as such

the breakup rate is not too high. α is varied freely and can be as high as 100.

Other parameters are varied accordingly whilst keeping γ1 = 1 fixed. Note that,

the parameters are chosen to cover a range of epidemic behaviours, such as the

epidemic is driven either by infections within relationships or outside relationships

or by both.
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Table 3.8: Mean time to extinction and the standard deviation (SD) of the total
number of infectives about the endemic level 0.25 and population size 100, fixing
γ1 = 1
set γ2 β1 β2 α δ ω1 ω2 E[T] SD

1 0.5 3 10 30 0.1 0.1412 2 294.1279 9.6579
2 124 762.6021 100 9 0.1 2 3 9.0710 6.1588
3 6.7121 0.1 0.2 1 0.1 10 20 159.3167 12.4487
4 11 1 0.1 3.1917 1 100 2 37.6065 11.0856
5 0.2729 4 5 9 1 0.01 0.02 520.1180 9.6904
6 1.6998 0.1 0.2 1 1 5 4 142.9227 8.2957
7 5 8.5388 2 5 1 8 6 124.6031 10.0900
8 15 32.5414 7 0.3 1 16 6.5 210.4932 7.9944
9 0.8912 5.8075 5 1.27 10 2.5 2 197.8008 8.5498
10 0.35 0.4274 1.98 100 10 1 1 357.9315 4.6859
11 0.0549 0.5 5 0.1 10 1.5 0.25 5396.7 6.8668
12 20.8775 11 9 9 10 15 10 311.4344 7.8752
13 1.1354 9 11 9 10 0.25 0.1 74.8351 8.1172
14 80 5.3865 50 10 15 1 100 12.1832 4.3081

(a) (b)

Figure 3.20: Plot of the mean time to extinction against γ2 and against standard
deviation (SD) of the results in Table 3.7

In Figure 3.20(a), we can see a clearer decreasing behaviour of the mean time to

extinction in γ2. Whereas, the mean time to extinction and the standard deviation

still do not display any clear relationship. We know that each model parameter has

some impact on the mean time to extinction, especially, γ2 is a dominant influence
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on the mean time to extinction for Model 1. However, in Model 2, γ2 still plays

an important role in influencing the mean to extinction but it seems that it is not

as dominant as it is in Model 1, depending on how the model parameters are set.

In particular, γ2 is a within relationship recovery and thus an infective despite

how she becomes infectious ( either by infections inside or outside relationships)

will be recovering only after an episode of a relationship. Therefore, if there is a

sizeable infections from outside relationships (ω) taking part in the model, we can

intuitively see that γ2 will have less impact.



Chapter 4

Control strategies and case

studies

4.1 Introduction

We have studied mathematical models describing the dynamical behaviour of STDs

and their impact in Chapters 2 and 3. However, another question arises as to what

can we do if there is a major outbreak of the disease? How can we control the

diseases? To answer these questions, in this Chapter, we focus our studies on

control strategies.

For sexually transmitted diseases, various control strategies such as vaccination,

condom use, and antiviral drugs, have been used. To study their impacts, we

apply these strategies into our models to intervene in the spread of the disease.

Regarding vaccination and condom use, it will reduce the chances that a susceptible

becomes infected. In other words, it reduces the infection rate. For example, if the

rate at which males use condoms is v, then the infection rate becomes (1 − v)β1.

Thus, to investigate these strategies, we only need to adjust the model parameters

without changing the structure. Therefore, in this Chapter, we focus primarily

on incorporating medication use as a control measure leading to a change in the

136
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model structure.

In Section 4.2 we incorporate a control strategy in Model 1, and study its impact

on the reproduction number, the probability of extinction, and the endemic level.

Similarly, the control strategy is applied to Model 2 with the results discussed

in Section 4.3. Numerical results and discussion will be presented in Section 4.4.

Moreover, the applications of Model 1 and Model 2 to a specific disease, gonorrhoea

are also illustrated in Section 4.5.

4.2 Model 1 with a control measure

Recall that Model 1 is a sexual model without one-night stands (Chapter 2).

We studied its early stages using a two-type branching process to determine the

reproduction number and probability of extinction. In this Section, we use a

similar approach such that the two-type branching process can still be considered.

We introduce additional assumptions to those made in Chapter 2 (Section 2.2).

The additional assumptions are:

1. Within a relationship where both the male and the female are infected, either

or both of them could go to a doctor and be diagnosed with an STD. The

male is diagnosed and recovers with rate γ1, whilst the female is diagnosed

and recovers with rate γ2.

2. An infected individual is given two treatment prescriptions, one for them-

selves and one to pass onto their partner. When an infected individual is

given extra drugs, he/she can either pass it on to his/her partner or not. If

they pass the drugs on to their partner, their partner may take the drugs

and also recover. Hence, the individuals in a relationship can recover simul-

taneously.

3. Let v1 be the probability that a male on diagnosis passes the drugs onto his
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partner and the female takes them and recovers. Otherwise with probability

1− v1 the female does not recover. Let v2 be the corresponding probability

for a diagnosed female.

From the above assumptions, we can construct a sexual network model focusing

on the relationship stage using a two-type branching process as in Chapter 2. The

explanation of the model incorporating the control measure and the derivation of

the reproduction number, R0, as well as the probability of extinction are discussed

in section 4.2.1.

4.2.1 The reproduction number (R0) and the probability

of extinction

According to the assumptions stated above, we can see that the original model in

Chapter 2 is unchanged apart from the relationship stages. Figure 4.1 illustrates

scenarios occurring among those relationships within which both are infected, only

one person is infected, and nobody is infected. All parameters and variables are

as defined in Chapter 2.

Z11

Z00

Z01Z10

v1γ1 + v2γ2

(1− v1)γ1

(1− v2)γ2 β2

γ1

β1

γ2

Figure 4.1: Sexual network diagram within a relationship stage when there is a
control measure.

Note that Figure 4.1 shows only the process within the relationship stages,
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whilst the rest of the process has not changed. Starting from the stage at which

both are infected, the following possible events could happen.

• A male is diagnosed and recovers with rate γ1, he is given extra drugs and

passes them on to his partner. His partner takes the drugs and recovers

with probability v1. The infected relationship will become an uninfected

relationship with rate v1γ1. At the same time, if a female is diagnosed, she

will pass on the extra drugs to her partner, the relationship will become

uninfected with rate v2γ2. Therefore, in this case, the rate of moving from

state Z11 to Z00 is v1γ1 + v2γ2.

• A male is diagnosed but the extra drugs have no effect on his partner (either

he does not pass them or she does not take them). Therefore, only the male

recovers in this case with rate (1− v1)γ1 of moving from state Z11 to Z01.

• A female is diagnosed but the extra drugs have no effect on her partner.

Only the female recovers in this case and with rate (1−v2)γ2 of moving from

state Z11 to Z10.

When there is only one infected person, they will be diagnosed and recover with

rate γ1 if it is male, and γ2 if it is female. Since the extra drugs given to such an

individual will have no effect on their susceptible partner, the recovery rates are

unchanged in this case. Therefore, the process moves from state Z10 to state Z00

with rate γ1, and from state Z01 to Z00 with rate γ2. The remaining events and

their probabilities occurring in the original model are unchanged. Additionally, the

process still gives the same outcomes when the relationship ends (male and female

infected, male infected, female infected and nobody infected) but the probabilities

have changed. Hence, we obtain a formulation amenable to study. Using the same

approach as in Section 2.3, we obtain the formulae for h
(k)
i,j , the probability of

having i infected males j infected females, where i, j ∈ {0, 1}, starting from an
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infected individual of type k, such that type 1 is male and type 2 is female, as

follows. Let

D1 = (δ + β1 + γ1) [(δ + γ1 + γ2)(β2 + δ + γ2)− (1− v1)γ1β2]− (1− v2)γ2β1(β2 + δ + γ2)

D2 = (δ + β2 + γ2) [(δ + γ1 + γ2)(β1 + δ + γ1)− (1− v2)γ2β1]− (1− v1)γ1β2(β1 + δ + γ1).

Then

h
(1)
0,0 =

γ1

γ1 + ᾱ
+

[(1− v1)γ1γ2β1 + β1(v1γ1 + v2γ2)(δ + β2 + γ2) + γ1((δ + γ1 + γ2)(δ + β2 + γ2)− (1− v1)γ1β2)] ᾱ

D1(γ1 + ᾱ)

h
(1)
1,0 =

(δ(δ + γ1 + γ2)(β2 + δ + γ2)− (1− v1)δγ1β2)ᾱ

D1(γ1 + ᾱ)

h
(1)
0,1 =

(1− v1)γ1δβ1ᾱ

D1(γ1 + ᾱ)

h
(1)
1,1 =

β1δ(δ + β2 + γ2)ᾱ

D1(γ1 + ᾱ)

Similarly, the probabilities for each of the 4 outcomes starting with an infected

female are

h
(2)
0,0 =

γ2

γ2 + ᾱ
+

[(1− v2)γ1γ2β2 + β2(v1γ1 + v2γ2)(δ + β1 + γ1) + γ2((δ + γ1 + γ2)(δ + β1 + γ1)− (1− v2)γ2β1)] ᾱ

D2(γ2 + ᾱ)

h
(2)
1,0 =

(1− v2)γ2δβ2ᾱ

D2(γ2 + ᾱ)

h
(2)
0,1 =

(δ(δ + γ1 + γ2)(β1 + δ + γ1)− (1− v2)δγ2β1)ᾱ

D2(γ2 + ᾱ)

h
(2)
1,1 =

β2δ(δ + β1 + γ1)ᾱ

D2(γ2 + ᾱ)
.

Recall that R0 is the dominant eigenvalue of the next generation matrix. Therefore,

we have the same expression as in (2.7), that is

R1
0 =

T +
√
T 2 − 4D

2
, (4.1)
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where

T = h
(1)
10 + h

(1)
11 + h

(2)
01 + h

(2)
11 and

D = (h
(1)
10 + h

(1)
11 )(h

(2)
01 + h

(2)
11 )− (h

(1)
01 + h

(1)
11 )(h

(2)
10 + h

(2)
11 ).

We have an expression for R1
0 and its value will be computed numerically. The

probability of extinction is the smallest non-negative fixed point of the probability

generating functions as discussed in Section 2.4, Chapter 2, but with probabilities

h
(k)
i,j .

gk(s1, s2) =
∑
j,i

h
(k)
i,j s

i
1s
j
2, k = 1, 2. (4.2)

Now, consider the case where there are no differences in parameters for both

genders. According to Lemma 2.3.1 and Lemma 2.4.1 in Chapter 2, we can reduce

the model to a single type model with

R0 = h
(1)
1,0 + h

(1)
0,1 + 2h

(1)
1,1 = 1 + h1,1 − h0,0

z = min

{
1,
h0,0

h1,1

}
.

where z is the probability of extinction. For equal probability for both genders,

we have the following

D1 = (δ + β + γ) {(δ + 2γ)(δ + β + γ)− 2(1− v)βγ}

We can see that D1 can be rewritten in the form A + Bv where A and B are
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functions of parameters other than v.

h0,0 =
γ

γ + ᾱ
+

(1− v)βγ(γ − 1)ᾱ + β(2vγ)(δ + β + γ)ᾱ + γᾱ(δ + 2γ)(δ + β + γ)ᾱ

(γ + ᾱ)D1

h1,1 =
βδ(δ + β + γ)ᾱ

D1(γ + ᾱ)
.

Similarly, h0,0 can be rewritten as

h0,0 =
γD1 + (C + Ev)

(γ + ᾱ)D1

.

where C and E are functions of parameters other than v. Therefore,

h0,0

h1,1

=
γD1 + (C + Ev)

βδ(δ + β + γ)ᾱ
.

Now we can note that v also features in D1 which is a linear function in v.

Therefore h0,0/h1,1 is of the form (a + bv)/c where a, b and c are functions of

parameters other than v, so the probability of extinction, z, is linear in v until it

hits 1. Similarly we have that R0 is of the form 1 + (a + bv)/(c + dv) with b < 0

and d > 0. Thus we can show that R0 is decreasing as v increases.

4.2.2 Endemic level

In this subsection, we study effects on the endemic level when the control measure

is incorporated. With the control parameter v > 0, we should expect to see a

lower endemic level in this case. In terms of the model development, according

to our assumptions in Subsection 4.2.1, we have that only the relationship states

are adjusted, while the remaining equations in the deterministic model in 2.5.1 are
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unchanged. Therefore, we have

dx0(t)

dt
= γ1x1(t) + δ(z01(t) + z00(t))− αx0(t)(y1(t) + y0(t)),

dx1(t)

dt
= −γ1x1(t) + δ(z11(t) + z10(t))− αx1(t)(y1(t) + y0(t)),

dy0(t)

dt
= γ2y1(t) + δ(z10(t) + z00(t))− αy0(t)(x1(t) + x0(t)),

dy1(t)

dt
= −γ2y1(t) + δ(z11(t) + z01(t))− αy1(t)(x1(t) + x0(t)),

dz00(t)

dt
= γ1z10(t) + γ2z01(t) + αy0(t)x0(t)− δz00(t) + (v1γ1 + v2γ2)z11(t), (4.3)

dz10(t)

dt
= −β1z10(t)− γ1z10(t) + αx1(t)y0(t)− δz10(t) + (1− v2)γ2z11(t),

dz01(t)

dt
= −γ2z01(t)− β2z01(t) + αx0(t)y1(t)− δz01(t) + (1− v1)γ1z11(t),

dz11(t)

dt
= β1z10(t) + β2z01(t)− (γ1 + γ2)z11(t) + αy1(t)x1(t)− δz11(t).

n(t) = x1(t) + x0(t) + y1(t) + y0(t) + z00(t) + z10(t) + z01(t) + z11(t) = 1.

Note that, similar alterations are applied in the stochastic analogue of the deter-

ministic model.

4.3 Model 2 with a control measure

Model 2 is a sexual model with one-night stands in Chapter 3. Similar to Section

4.2, we are looking at incorporating medication use as a control measure into

the model. Recall that, for model 2, we constructed a 5-type branching process

approximation for determining and the probability of extinction.

4.3.1 The reproduction number and probability of extinc-

tion

The 5 types of individuals are composed of a single infected male, a couple within

which only the male is infected, a couple within which both male and female are
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infected, a couple within which only the female is infected, and a single infected

female. They are classified as individuals of type 1, 2, 3, 4 and 5, respectively.

From previous studies, to incorporate the control measure, we observe that only

the relationship state within which both male and female are infected is adjusted

(type 3). Table 4.1 shows the probabilities of events occurring when the process

starts from an individual of type 3. Note that other events with their probabilities

in Table 3.1 remain the same.

Table 4.1: Events and their corresponding probabilities when the process starts
with an individual of type 3.

Initial infective(type) Probability Offspring(type)

MIF
(3)
I

δ
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MI
(1),FI

(5)

ω1rq
δ+γ1+γ2+(ω1+ω2)(rq+rp)

MIFI
(3),FI

(5)

ω1r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MSFI
(4),MIF

(3)
I

ω2rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MI
(1),MIFI

(3)

ω2r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MIFS
(2),MIFI

(3)

(1−v1)γ1
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MSF
(4)
I

(1−v2)γ2
δ+γ1+γ2+r(ω1+ω2)(rq+r2p)

MIF
(2)
S

v1γ1+v2γ2
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

MSF
(∅)
S

To seek the reproduction number, we generate a 5× 5 next-generation matrix

such that an element mi,j denotes the probability of having 1 offspring of type j

from an initial offspring of type i. Using the information from Table 3.1 and 4.1,

we have the next-generation matrix as follows.



CHAPTER 4. CONTROL STRATEGIES AND CASE STUDIES 145

The next-generation matrix

M =



m1,1 m1,2 0 m1,4 m1,5

m2,1 m2,2 m2,3 m2,4 m2,5

m3,1 m3,2 m3,3 m3,4 m3,5

m4,1 m4,2 m4,3 m4,4 m4,5

m5,1 m5,2 0 m5,4 m5,5


(4.4)

m1,1 = ω1q+ω1rp
γ1+ᾱ+ω1q+ω1rp

. m1,2 = ᾱ
γ1+ᾱ+ω1q+ω1rp

.

m1,3 = 0. m1,4 = ω1rp
γ1+ᾱ+ω1q+ω1rp

.

m1,5 = ω1q
γ1+ᾱ+ω1q+ω1rp

. m2,1 = δ
β1+γ1+δ+ω1rq+ω1r2p

.

m2,2 = ω1rq+ω1r2p
β1+γ1+δ+ω1rq+ω1r2p

m2,3 = β1
β1+γ1+δ+ω1rq+ω1r2p

m2,4 = ω1r2p
β1+γ1+δ+ω1rq+ω1r2p

m2,5 = ω1rq
β1+γ1+δ+ω1rq+ω1r2p

m3,1 = δ+ω2rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,2 = (1−v2)γ2+ω2r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,3 = ω1rq+ω1r2p+ω2rq+ω2r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,4 = (1−v1)γ1+ω1r2p
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m3,5 = δ+ω1rq
δ+γ1+γ2+(ω1+ω2)(rq+r2p)

m4,1 = ω2rq
γ2+β2+δ+ω2rq+ω2r2p

m4,2 = ω2r2p
γ2+β2+δ+ω2rq+ω2r2p

m4,3 = β2
γ2+β2+δ+ω2rq+ω2r2p

m4,4 = ω2rq+ω2r2p
γ2+β2+δ+ω2q+ω2rp

m4,5 = δ
γ2+β2+δ+ω2rq+ω2r2p

m5,1 = ω2q
γ2+ᾱ+ω2q+ω2rp

m5,2 = ω2rp
γ2+ᾱ+ω2q+ω2rp

m5,3 = 0 m5,4 = ᾱ
γ2+ᾱ+ω2q+ω2rp

m5,5 = ω2q+ω2rp
γ2+ᾱ+ω2q+ω2rp

.

Again, R0 is the dominant eigenvalue of matrix M above. The probability

of extinction is the smallest non-negative root of the system of equations of the

probability generating functions defined similarly to (3.14), Chapter 3, which is

gk(s) =
∑

x1,x2,x3,x4,x5

h(k)
x1,x2,x3,x4,x5

sx11 s
x2
2 s

x3
3 s

x4
4 s

x5
5 . (4.5)
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We have proved in Section 4.2 that R0 is a decreasing function in v for Model 1.

We are also interested in the relationship between R0 and the control parameter v

for Model 2 but this is more difficult to analyse. However R0 is only one indicator

of the likelihood of a major epidemic outbreak with the probability of extinction

being more informative. We analyse the probability of extinction for Model 2 in the

case where there is no distinction between the sexes and can reduce the analysis

to a 3-type branching process approximation. Specifically we consider a 3 type

branching process, consisting of type 1 - a single infective, type 2 - a couple within

which only 1 infective, and type 3 - a couple with 2 infectives. These correspond

to the infectious units in the branching process. Therefore, we will refer them

as types 1, 2 and 3 infective, respectively. Each type of infective will produce at

most 2 offspring. Type 1 infectives produce either 2 offspring of type 1, 1 offspring

of type 1 and 1 offspring of type 2, or 1 offspring of type 2. Type 2 infectives

produce either 1 offspring of type 1 and 1 offspring of type 2, 2 offspring of type

2, 1 offspring of type 3, or 1 offspring of type 1. Type 3 infectives produce either

1 offspring of type 1 and 1 offspring of type 3, 1 offspring of type 2 and 1 offspring

of type 3, 1 offspring of type 2, or 2 offspring of type 1. We then construct 2

branching processes.

Let Bk represent the branching process of index k, for k = 1, 2, and vk be

a control parameter used in the branching process Bk. Let pknimj
(l) denote the

probability of n offspring of type i and m offspring of type j produced from a type

l infective in the branching process Bk, where m,n = {0, 1, 2} and l, i, j = {1, 2, 3}.

For example, p1
12

(3) denote the probability of 1 offspring of type 2 produced from

a type 3 infective in the branching process B1. According to the construction of

the branching processes, we have that for B1 and B2, p1
nimj

(l) = p2
nimj

(l) except

p1
12

(3) 6= p2
12

(3). Suppose v1 > v2. Then, in B2, let

p2
12

(3) = p1
12

(3) + p∗, p∗ > 0 (4.6)
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We couple the two branching processes such that every individual in B1 has a

corresponding individual in B2 and that the corresponding individuals have the

same offspring except that there is probability p∗ that there will be a type 2

individual born in B2 from a type 3 individual in cases where the corresponding

individual in B1 has no offspring. The type 2 individual and their offspring have

no corresponding individuals in the branching process B1. Define

pk1113
(3) + pk1213

(3) + pk12(3) + pk21(3) = ak

According to (4.6), we have that p2
12

(3) = p1
12

(3) + p∗. Therefore, in B2, we have

p1
12

(3) + (1− a1)
p∗

1− a1
= p1

12
(3) + p∗ = p2

12
(3) (4.7)

Let πkj denote the probability of a branching process Bk going extinct starting

from a type j infective. The above statement immediately implies that π2
j ≤ π1

j .

It also follows that if π1
j = 0, then π2

j = 0. Therefore, we want to ensure that this

also holds for the case that the branching process B1 does go extinct, i.e. π1
j > 0.

Assume that π1
j > 0. Again, we consider a type 3 infective. For convenience, we

drop the index l of type 3 here. In B2, we have

π2
3 = p2

1113
π2

1π
2
3 + p2

1312
π2

3π
2
2 + p2

12
π2

2 + p2
21

(π2
1)2 + (1− a2)

= p1
1113

π2
1π

2
3 + p1

1312
π2

3π
2
2 + p1

12
π2

2 + p∗(π2
2 − 1) (using (4.7))

+ p1
21

(π2
1)2 + (1− a1)

< p1
1113

π2
1π

2
3 + p1

1312
π2

3π
2
2 + p1

12
π2

2 + p1
21

(π2
1)2 + (1− a1) (iff π2

2 < 1)

≤ p1
1113

π1
1π

1
3 + p1

1312
π1

2π
1
3 + p1

12
π1

2 + p1
21

(π1
1)2 + (1− a1) (∵ π2

j ≤ π1
j )

= π1
3

Therefore, π2
3 < π1

3. This argument has shown that if v2 < v1, then π2
j < π1

j ,
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implying that the probability of extinction strictly increases as v increases. This

is informative in terms of the epidemic behaviour for which the probability of

extinction less than 1, especially the behaviour of R0 with respect to v is not

achieved in this case. The probability of extinction indicates that v decreases the

incidence of the disease since the disease dies out faster. Based upon our previous

studies, we would not expect different behaviour for R0. Our conjecture can be

further supported in the numerical studies in Subsection 4.4.2.
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4.3.2 Endemic level

In this Subsection, similarly, the relationship states are adjusted to take into ac-

count of medication whilst the remaining states are unchanged. The equations are

expressed as follows.

dx0(t)

dt
= γ1x1(t) + δ(z01(t) + z00(t))− αx0(t)(y1(t) + y0(t))− ω2x0(t)y1(t)

− ω2rx0(t)(z01(t) + z11(t)),

dx1(t)

dt
= −γ1x1(t) + δ(z11(t) + z10(t))− αx1(t)(y1(t) + y0(t)) + ω2x0(t)y1(t)

+ ω2rx0(t)(z01(t) + z11(t)),

dy0(t)

dt
= γ2y1(t) + δ(z10(t) + z00(t))− αy0(t)(x1(t) + x0(t))− ω1x1(t)y0(t)

− ω1ry0(t)(z10(t) + z11(t)),

dy1(t)

dt
= −γ2y1(t) + δ(z11(t) + z01(t))− αy1(t)(x1(t) + x0(t)) + ω1x1(t)y0(t)

+ ω1ry0(t)(z10(t) + z11(t)), (4.8)

dz00(t)

dt
= γ1z10(t) + γ2z01(t) + αx0(t)y0(t)− δz00(t)− ω2ry1(t)z00(t)− ω1rx1(t)z00(t)

− ω2r
2z00(t)(z01(t) + z11(t))− ω1r

2z00(t)(z10(t) + z11(t)) + (v1γ1 + v2γ2)z11(t),

dz10(t)

dt
= (1− v2)γ2z11(t)− β1z10(t)− γ1z10(t) + αx1(t)y0(t)− δz10(t) + ω2ry1(t)z00(t)

+ ω2r
2z00(t)(z01(t) + z11(t))− ω1rx1(t)z10(t)− ω1r

2z10(t)(z10(t) + z11(t)),

dz01(t)

dt
= (1− v1)γ1z11(t)− γ2z01(t)− β2z01(t) + αx0(t)y1(t)− δz01(t) + ω1rx1(t)z00(t)

+ ω1r
2z00(t)(z10(t) + z11(t))− ω2ry1(t)z01(t)− ω2r

2z01(t)(z11(t) + z01(t)),

dz11(t)

dt
= β1z10(t) + β2z01(t)− (1− v1)γ1z11(t)− (1− v2)γ2z11(t) + αy1(t)x1(t)− δz11(t)

+ ω1rx1(t)z10(t) + ω1r
2z10(t)(z10(t) + z11(t))− (v1γ1 + v2γ2)z11(t)

We now have the ingredients for analysing the effect of the control measure. We

will be looking at R0, the probability of extinction, and the endemic level. This

will be done numerically in Section 4.4.
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4.4 Numerical Results

We implemented the models derived in Section 4.2 and 4.3 in R. The numerical

results are presented in this Section. We first study Model 1 in Section 4.4.1.

4.4.1 Model 1 with a control measure

Our aim in this subsection is to investigate the effect of v on R0 and the endemic

level. First, we start with the case where there is no difference in rates between

sexes, that is γ1 = γ2, β1 = β2, and v1 = v2. As v increases, there is a higher chance

that a diagnosed individual and his/her partner will be recovering simultaneously

with rate 2vγ, and with rate (1 − v)γ if only one person in a relationship is

recovering. The chance that infected individuals will be simultaneously recovering

also depends upon the proportion of individuals in relationships and how fast

the turnover of relationships. Therefore, it is worthwhile to explore the correlation

between v and the model parameters. We know from Section 4.2 that R0 decreases

as v increases. Therefore, in this case, we choose the most effective control measure

which is v = 1 and explore how v influences the model whilst varying each of the

model parameters. We choose the study in Subsection 2.7.1 as the basis for this

case. Therefore, our parameters are chosen as the same as in Table 2.2 -2.5 which

are recalled here.

Table 4.2: Parameters chosen for varying infectious rate
set α δ γ1 γ2 β1 β2

1 9 9 2 2 1:100 1:100
2 30 50 1 1 1:100 1:100
3 0.3 0.8 0.1 0.1 1:100 1:100
4 1000 1000 5 5 1:100 1:100
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Table 4.3: Parameters chosen for varying recovery rate
set α δ γ1 γ2 β1 β2

1 3 6 1:100 1:100 100 100
2 1000 1000 1:100 1:100 20 20
3 30 0.1 1:100 1:100 500 500
4 10 100 1:100 1:100 300 300

Table 4.4: Parameters chosen for varying rationship formation rate
set α δ γ1 γ2 β1 β2

1 1:100 6 2 2 20 20
2 1:100 1000 1 1 50 50
3 1:100 1 0.1 0.1 0.5 0.5
4 1:100 0.1 1 1 80 80

Table 4.5: Parameters chosen for varying breakup rate
set α δ γ1 γ2 β1 β2

1 5 1:100 1 1 100 100
2 0.8 1:100 0.02 0.02 0.5 0.5
3 100 1:100 0.1 0.1 0.2 0.2
4 200 1:100 3 3 40 40

Note that, we are interested only in the behaviour of R0 as each parameter

increases, therefore, the results are plotted on the log scale in Figure 4.2. Each

colour in Figure 4.2 represents the following : blue - set 1, red - set 2, green - set 3

and black - set 4. There are two lines for each colour. The normal line represents

R0 for the original model without control (v = 0) and the dash line represents R0

for the model with control (v = 1). The distance between the normal line and the

dash line of the same colour shows the effectiveness of v.
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(a) (b)

(c) (d)

Figure 4.2: (a) Plot of R0 for the model with and without control measure, whilst
varying β based on parameter sets in Table 4.2
(b) Plot of R0 for the model with and without control measure, whilst varying γ
based on parameter sets in Table 4.3
(c) Plot of R0 for the model with and without control measure, whilst varying α
based on parameter sets in Table 4.4
(d) Plot of R0 for the model with and without control measure, whilst varying δ
based on parameter sets in Table 4.5

According to Figure 4.2, v has no effect on R0 when δ is large as we can

see from parameter set 4 (black) in Figure 4.2(a) and parameter set 2 (red) in

Figure 4.2(b), 4.2(c) and 4.2(d). In the case where the model parameters are
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moderate, we observe that as β and α increase, v is increasingly effective and

decreasingly effective as γ and δ increase. Moreover, parameter sets 3 and 4 in

Figure 4.2(b) and 4.2(c) are also very interesting as v has a dramatic effect on

R0. δ in both sets are very small in comparison to α. This describes that the

model has large proportion of couples and small relationship turnovers. In other

words, individuals spend some time in relationships. We note that the control

measure v takes place within relationships. Therefore, as individuals tend to stay

in a relationship, the probability that the recovery takes place within relationships

increases. However, even given high α, if δ is high as well, this means there is large

relationship turnovers in which the breakup and forming relationships happen too

fast before other events could happen. We see that v has no effect on R0 in this

case (set 4 and 2 in Figure 4.2(a) and (b)).

Now, we consider investigating effect of v on R0 for varied set of parameters. In

this case, we vary v from 0 to 1 by 0.01. We know that v = 1 is the most effective

strategy. However, in some cases, choosing v = 1 is unnecessary if v < 1 has a

significant effect and is able to bring R0 below 1. As a result, we are interested in

investigating how v affects the model as v increases, so as to provide a guide to

the required level of the control measure v. The parameters are chosen as in Table

4.6.

Table 4.6: Parameters chosen
set α δ γ β R0

1 15 10 2 50 1.2190
2 100 1 0.1 0.2 1.0369
3 200 10 3 40 1.4211
4 30 50 2 100 1.3955
5 1 0.01 0.01 0.8 1.6456

Figure 4.3 shows the behaviour of R0 and the endemic level, when v increases

with respect to 5 sets of parameters in Table 4.6. As we are interested in the

actual effect of v, the results plotted in Figure 4.3 are on a linear scale. Each

colour represents R0 with respect to each parameter set as labelled in the figure.
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(a) (b)

Figure 4.3: Plot of R0 and the endemic level corresponding to parameter sets in
Table 4.6

We can see in Figure 4.3(a) that R0 decreases as v increases. We can also see

that v has different impact on R0 for different parameter sets. However, v has

small effect on R0 for parameter set 2 and 4, whereas, there is a significant effect

on R0 for parameter set 5.

Note that, our aim in reducing the spread of the disease is to be able to reduce

the number of infected individuals in the population. R0 is an indicator whether

or not the disease is severe, but the effect on the endemic level is important.

Once we reduce R0 below 1 the endemic level is 0 and stays there as v increases.

Therefore, we are also interested to see how v makes an impact on the endemic

level corresponding to the same parameter sets as in Table 4.6, see Figure 4.3(b).

We can see from the figure that the endemic level becomes 0 at v = 0.35 for

parameter set 5. For parameter set 1, the endemic level becomes 0 at v = 0.79. In

the case that R0 is not reduced below 1, we would choose to reduce the endemic

level as much as possible. Also, we can see that a dramatic decrease in R0 tends

to coincide with a dramatic decrease in the endemic level.

We know that v affects R0 and the endemic level in a different manner de-
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pending upon how the model parameters are varied. Now, we are interested to see

how v affects R0 if the chosen sets of parameters give the same endemic level. We

investigate this by studying different sets of parameters which all have an endemic

level of 14% when v = 0. We study how R0 changes as v varies from 0 to 1 whilst

keeping the other parameters constant. In particular, we are interested in the value

of v, if any, for which R0 = 1 as this can be used to identify the critical vaccination

coverage beyond which the disease can not become endemic. Note that, the sets

of parameters are chosen from Table 2.10 and the rates between the two sexes are

different in this case.

Table 4.7: Parameters chosen for fixed endemic level at 0.14
set α δ γ1 γ2 β1 β2 R0

1 40 50 1 124.0645 5000 622.162 1.0174
2 100 5 1 5.4542 15 8.2952 1.0349
3 1 99 1 0.0401 41.0168 1000 1.0396
4 8.59 6 1 2 18.5448 20 1.0498
5 243.6944 1 1 15 100 200 1.1126
6 9 10 1 0.05 0.1540 30 1.0056
7 150 100 1 0.7498 1 10.4524 1.0041
8 0.5 0.8 1 0.01 1.6861 9 1.0152
9 14 2 1 1 3.4758 50 1.0483
10 11 7.1065 1 8 200 211 1.0436

(a) (b)

Figure 4.4: Plots of R0 against v corresponding to parameter sets in Table 4.7



CHAPTER 4. CONTROL STRATEGIES AND CASE STUDIES 156

From Figure 4.4, we can see that v affects R0 in a different manner for different

sets of parameters. However, for parameter sets 3 and 7, we can see that v makes

too small effect on R0 so we can not see the decrease on the scale of the graph.

Whereas, R0 for other parameter sets are brought below 1 very quickly. As soon

as R0 is below 1, the effect of v on R0 is no longer interesting. We also investigate

how v affects the endemic level based on the same parameter sets in Figure 4.5.

(a) (b)

Figure 4.5: Plots of the endemic level against v corresponding to parameter sets
in Table 4.7

In Figure 4.5, the behaviour of endemic level is consistent with the behaviour

of R0. What we can see clearer is the parameter sets 3 and 7 that the endemic

level shows clearer decreasing behaviour. In the next subsection, we will study the

effect of v on Model 2.
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4.4.2 Model 2 with a control measure

Similar to Subsection 4.4.1, we study the effect of v on Model 2. In Subsection

4.4.1, we explored the relationship between the effectiveness of v and each param-

eter, β, γ, α and δ, by comparing R0 between the model without control (v = 0)

and with control (v = 1). In this subsection, we are also interested in ω. We also

start our studies with no difference in rates between the two sexes. 4 different sets

of parameters covering a range of behaviours, such as large α and small δ and vice

versa. ω is increasing from 1 to 100 and v = 1. The colours representing each

set of parameters are as labelled in Figure 4.6. The normal line represents the

model without control (v = 0) and the dash line represents the model with control

(v = 1). The distance between the two lines shows how much R0 is reduced by

v = 1, in other words, the effectiveness of v. Parameters are chosen as shown in

Table 4.8.

Table 4.8: Parameters chosen
set α δ γ β
1 100 0.1 1 80
2 9 6 30 2
3 0.1 100 1 2
4 1000 1000 3 8

Figure 4.6: Plots of the R0 against v corresponding to parameter sets in Table 4.8
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In Figure 4.6, we can see that v almost has no effect on R0 for parameter set 3

and 4 in which δ is large for both sets. This supports our studies for Model 1. For

parameter set 1, v has significant effect on R0 and is increasingly less effective as ω

increases. Similarly, for parameter set 2, v is less effective as ω increases since we

can see for both sets that the normal line and the dash line converges. As a result,

we can say that when ω is large, v has no effect on the model. This makes sense

as when ω is reasonably large, the infection is driven by one-night stands which

can occur outside relationships, whereas, the control measure v helps increasing

the recovery only within relationships.

In terms of the effect of v on R0 whilst v increases from 0 to 1, we should see

a decreasing behaviour as it has been addressed in Section 4.3 that R0 decreases

in v. However, for different sets of parameters, we expect to see v affect R0 in a

different manner. It is worth exploring what kind of behaviours we could see in

this model. From our previous studies, we know that for very large ω or δ, v has

no effect on R0 so it is no longer interesting to explore the effect of v in these cases.

Therefore, we choose different sets of parameters ensuring there is an effect on R0

in order to study how v affects R0 as v increases. Parameters are as the following.

Plots in Figure 4.7 are on a linear scale.

Table 4.9: Parameters chosen
set α δ γ β ω
1 5 1 1 100 10
2 6 9 1 2 2
3 100 0.1 2 50 3
4 0.1 0.01 0.1 0.2 0.5
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Figure 4.7: Plots of R0 against v corresponding to parameter sets in Table 4.9

As expected, we see a decreasing behaviour of R0 as v increases but with a

different slope for different parameter sets. We can see that v is most effective on

parameter set 1 and 3, whereas for other parameter sets we only see slight effect.

Next, we plot the corresponding endemic level to the R0 in Figure 4.7 using the

same parameters in Table 4.9.

Figure 4.8: Plots of R0 against v corresponding to parameter sets in Table 4.9
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As we can see in Figure 4.8, the endemic level has a consistent behaviour

corresponding to R0. In other words, R0 < 1, the endemic level is 0 and greater

than 0 if R0 > 1. Also, we can see that a large decrease in R0 results in a large

decrease in the endemic level as well.

In reality, it is hard to control v as there are several factors influencing the

value of v. However, studying how v affects the quantities of interest is useful in

terms of investigating whether or not it is worthwhile to invest for higher v.

4.5 Applications to gonorrhoea

We have constructed a mathematical model describing sexually transmitted disease

dynamics with the theoretical and numerical results being extensively studied. In

this section, we are interested in seeing how our model fits to real world situations

by considering how it can be used to describe a particular disease. One of the most

common STDs is gonorrhoea and it has received a lot of attention in the literature

(Hethcote & Yorke (1984); Kretzschmar et al. (1996); Lloyd-Smith et al. (2003);

Garnett et al. (1999)). Gonorrhoea is an STD caused by bacteria that has the 3

following epidemiological characteristics (Hethcote & Yorke (1984)) :

• The infection does not confer protective immunity, which means individuals

will be susceptible again as soon as they recover from infection.

• The latent period is much shorter than the infectious period.

• It has relatively small seasonal oscillations resulting in good approximation

by a model with constant parameter values.

Based upon the above characteristics of gonorrhoea the SIS epidemic model

gives a reasonable approximation of the disease dynamics. Since gonorrhoea is the

most frequently reported STD, almost 700,000 cases were reported in 1990 (Tanfer

et al. (1995)), we can obtain parameter estimates from the literature for our case
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study. In this section, we will look at 3 case studies : Case study 1, there is no

difference in parameters for males and females ; Case study 2, the parameters are

different for both sexes; and Case study 3, the inclusion of one-night stands into

the model. Note that one-night stands are not taken into account in Case study 1

and Case study 2.

Case study 1 : In this study, our parameter values will be chosen based on

the parameter estimates available in Stigum et al. (1997). The paper focuses

on the study of 3 different sexually transmitted diseases; gonorrhoea, chlamydia,

and human immunodeficiency virus (HIV) of which gonorrhoea will be our focus

here. The data were collected from 8,477 heterosexual Norwegians aged 18-52 with

3,060 people subject to potential STD risk behaviour. The authors considered two

levels of sexual activity, high and low. The population with high level of sexual

activity is referred to as the “core group” and the other group is referred to as

the “non-core group”. The effect of migration from the core group to the non-

core group in which there is a partner mixing between the two groups was also

considered. In our case, we will consider the case under the assumption of no

partner mixing between the two groups ( 0% migration) and compare our results

with the literature. Our chosen time unit is one year. The relevant parameter

values provided in the literature are summarised in Table 4.10. Note that, the

data is a per year average.

Table 4.10: Parameter values taken from Stigum et al. (1997)

value

parameter (symbol) core noncore

Proportion of the population (θ) 0.025 0.975
Partner frequencies (ν) 7.6 0.77
Unprotected intercourses (λ) 109.6 55.9
Transmission rate per episode of sexual intercourse (κ) 0.3 0.3
Duration of infectiousness (D) 0.3 0.3

The parameters in Table 4.10 will be recalculated to fit with our model as-
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sumptions. The calculations for the infection rate (β) and the recovery rate (γ)

appear to be straightforward and will be carried out according to the following

formulae, β = λκ, γ = 1/D. In order to determine δ and α, we employ the

assumption that healthy individuals will divide their time spent approximately

equally between being single and in a relationship, see for example, Lloyd-Smith

et al. (2003). Therefore, δ = ᾱ. Then δ and α can be calculated in terms of the

mean number of partners: ν = 1
ᾱ

+ 1
δ
. Also, since ᾱ = α(σ/2), then δ and α can

be determined accordingly. The results of the calculations are expressed in Table

4.11. The results based on the parameters in Table 4.12 are illustrated in Table

4.11.

Table 4.11: parameter values used in the simulations

value

Parameter core non-core

Relationship breakup rate (δ) 15.20 1.54
Relationship formation rate (α) 60.80 6.16
Infection rate (β) 32.70 16.77
Recovery rate (γ) 3.33 3.33

Table 4.12: Result from Model 1 using parameters in Table 4.11

Result

Quantity of interest core non-core

R0 1.2061 0.3091
Probability of extinction 0.5441 1
Endemic level 0.5059 0

The results in Table 4.12 show that infection can persist in the core group but

not in the non-core group alone (R0 > 1 for core group and R0 < 1 for non-core

group). This agrees with the results in the literature for the case that there is no

migration from the core group. In the case where there is migration, our model

could also be extended to two groups of individuals with different level of sexual

activities. When there is migration, an individual from the core group can also

choose to form a relationship with individual of the opposite sex in the non- group
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and that there is the proportional mixing between the two groups. The rate of

mixing between the two groups would then need to be defined.

In terms of the mean time to extinction, due to the large proportion infected

with the endemic level slightly greater than 50% in the core group, the disease

would persist in the population for a very long time before going extinct. The

study in Britton & Neal (2010) suggested that the mean time to extinction should

decrease in the infection rate within household, but the actual analysis could not be

presented in the case that the endemic level is greater than half of the population

with the reason being that the mean time to extinction is very large even for a

small population. As a result, in our case, we would also not expect to be able to

achieve the mean time to extinction from the simulation.

Case study 2: Similar to Case study 1, we employ parameter estimates existing

in the literature and in this case the rates between genders are different (Over

& Piot (1993)). The authors studied the transmission dynamic of HIV as well

as other types of sexually transmitted diseases including gonorrhoea. Core and

non-core groups which have different sizes and different rates of sexual activity

are also considered. The size of core and non-core group were assumed to be

1,000 and 50,000 individuals, respectively. This was based upon an assumption

that the size of core group is 2% of the non-core population. It is assumed that

individuals in the core group are 10 times as sexually active as those in the non-

core group. Individuals in the core group tend to have a new sexual partner every

5 days and every 50 days for individuals in the non-core group (Hethcote & Yorke

(1984)). The information was based on the daily basis, therefore we will see much

smaller parameter values in this case. Parameter estimates from the literature are

summarised in Table 4.13. Parameters used in our model which have already been

recalculated in order to fit with our model assumption are shown in Table 4.14.

The results are illustrated in Table 4.15.
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Table 4.13: Parameters taken from Over & Piot (1993)

parameter estimated value

Transmission probability per sexual partner
Male to female 0.6
Female to male 0.4
Duration of infectivity
Male 45
Female 120
New sexual partners per day
Core group 0.2
Non-core group 0.02

Table 4.14: Recalculated parameter values

Sexual activity

parameter symbol core non-core

Infection rate from male to female β1 0.12 0.012
Infection rate from female to male β2 0.08 0.008
Recover rate for male γ1 0.02 0.02
Recover rate for female γ2 0.008 0.008
Relationship formation rate δ 0.4 0.04
Relationship dissolution rate α 1.6 0.16

Table 4.15: Result from Model 1 using parameters in Table 4.14

Result

Quantity of interest core non-core

R0 1.1165 0.7248
Probability of extinction (π1, π2) (0.3600 , 0.2712) 1
Endemic level 0.5612 0

The results show that the epidemic also persists in the core group in this case.

This agrees with many studies the literature that a small core group can be very

important in the spread of gonorrhoea causing gonorrhoea to remain endemic

(Hethcote & Yorke (1984)).

Case study 3: In this study, we focus on the case where individuals in the pop-

ulation are unfaithful. Namely, individuals seek to engage with casual sex outside
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relationships. Sexual contacts outside relationships are often termed as casual sex

(Garcia et al. (2002)). There have been several studies concerning high-risk sexual

behaviour including casual sex (Bersamin et al. (2012); Sonnenberg et al. (2015);

Castor et al. (2002)). Here, we based our case study upon Kretzschmar et al.

(1996) in which the authors focus attention on a highly sexually active core group

where the unfaithfulness mostly occurs. Our objective is not to specifically com-

pare our results with the primary literature, but to investigate whether or not the

spread of gonorrhoea could similarly be described by our model based upon the

empirical data and parameter estimates provided in the literature. The data was

drawn from a national survey in the Netherlands of the sexual behaviour of Dutch

adults (Zessen & Sandfort (1991)). The relationships were stratified into 2 types,

steady and casual relationships. Individuals were either involved in a steady or a

casual relationship or both. Table 4.16 shows the number of respondents (based

on 926 respondents who reported only heterosexual relationships) that had no sex,

only a steady relationship, only casual relationships, or both in the last year.

Table 4.16: Relational status in the past year for survey respondents

Survey

Relational status Men Women

No sex 129 11
Steady 636 737
Both 53 35
Casual 107 54

The author estimated their transmission and recovery rates for both steady and

casual relationships based upon the transmission probability and the infectious pe-

riod provided in the classical literature for gonorrhoea (Hethcote & Yorke (1984)).

Table 4.17 summaries their parameter values in which they correspond to our

model parameters as presented in the last column.
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Table 4.17: Disease-specific parameter values (/day)

Parameter value for gonorrhoea model parameter

Transmission rate from male to female, 0.15 β1

steady relationships
Transmission rate from female to male, 0.0625 β2

steady relationships
Transmission rate from male to female, 0.6 ω1

casual relationships
Transmission rate from female to male, 0.25 ω2

casual relationships
Recovery rate for men 0.04 γ1

Recovery rate for women 0.03 γ2

Separation of a relationship 0.0004 δ
Formation of a partnership 0.006 α

Table 4.17 has given us most of the parameters needed in our model. Note that, α

and δ given in the table were based on the length of steady relationships. In order

to proceed further, we also need to specify the probability that somebody in a

relationship agrees to have a one-night stand (r). According to Table 4.16, we can

see that 53 of men and 35 of women are in both steady and casual relationships,

respectively. This shows the proportion of individuals in relationships that would

agree to casual contacts. Note that, the probability r is not differentiated according

to gender. Therefore, we will take their average which is 44. According to 926

individuals, we have r = 0.0457. Hence, we choose r = 0.0457. The results are

obtained as follows : R0 = 1.7341 and the endemic level is 46 which is the number

of infected cases in the population. The number of infected cases in Kretzschmar

et al. (1996) based on gonorrhoea for the case with no intervention or prevention

for 10,000 individuals is 74 people. We can see that the results obtained from our

model have a similar number of infected cases to the survey.

We now turn our attention to the control measure. We are also interested in

seeing how a control measure (v1, v2) reduces the prevalence of gonorrhoea. Note

that, we will not assess the cost-effectiveness. Therefore, we will choose the most

effective strategy in which v1 = 1 and v2 = 1 are chosen. We consider the above
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3 case studies, the results are illustrated in Table 4.18, showing the proportion

infected. Clearly the prevalence of gonorrhoea is reduced and it is most effective

on Case study 1 such that the disease completely dies out.

Table 4.18: Intervention results
Case study Endemic level (No control) Endemic level (control)

1 0.5059 0
2 0.5612 0.4488
3 0.4641 0.3905

We have noticed that v1 and v2 have the most effect on Case study 1. This

could be explained in terms of the parameter values. As we have studied in Section

4.4.1, the effectiveness of the control measure increases in α and β since the control

measure helps recovery only within relationships. We can see in Case study 1 that

α = 60.80 and β = 32.70 relative to γ = 3.33 are large. Wherease, in Case study

2 and 3, β and α relative to γ are not that high. Therefore, this makes sense that

the control measure has the most effect on Case study 1.

Moreover, since the control measure manages to completely control the disease

for Case study 1, it is worthwhile to look at what value of v would be optimal.

We have done this by increasing the value of v1 and v2 from 0 to 1, where v1 = v2.

The results are plotted in Figure 4.9.
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Figure 4.9: Plot of the endemic level against v for Case study 1, Case study 2, and
Case study 3.

According to Figure 4.9, we can see that the endemic level goes to 0 at v around

0.85. Therefore, choosing v > 0.85 does not confer any additional benefits. For

Case study 2 and Case study 3, the graphs are close to linear with a small concavity

in Case study 3. In all cases the endemic level is monotonically decreasing with

v. Therefore in Case studies 2 and 3 we should look to try and make v as large as

possible but also look to control the transmission via one-night stands.



Chapter 5

Conclusions

5.1 Recap of Thesis

In this thesis, we propose two mathematical models describing dynamics of STDs,

one of which incorporates one-night stands. We focus our studies on both early be-

haviour and long-term behaviour of the STD. A branching process approximation

is employed to approximate the early stages of epidemics leading us to the results

of the basic reproduction number (R0) and the probability of extinction. The

long-term behaviour concerning the endemic level, fluctuations about the endemic

level and the mean time to extinction are also investigated. Those two models

are amendable to control strategies. We suggest a medication use based control

measure to prevent the epidemic from causing a major outbreak.

In Chapter 2, we study the model of sexually transmitted diseases without

one-night stands. We begin by establishing a branching process approximation for

the early stages of the epidemic which leads us to a surprising result such that

R0 has no effect by swapping parameter values between male and female. If the

proportion of relationships in the population is fixed ( ᾱ
δ

is fixed), the result shows

that the probability of extinction is decreasing as δ increases. In terms of the long-

term behaviour of the disease, we establish a threshold result such that if R0 ≤ 1,

the endemic level is zero, and if R0 > 1 the endemic level displays a positive

value. As the endemic level increases, we observe that the time to extinction is

169
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generally increasing. We explore fluctuations of the epidemic about the endemic

level for different parameter sets whilst having the endemic level fixed. The results

show that there is not an obvious relationship between the variance and the mean

time to extinction. When δ and α increase to infinity, we achieve shorter time to

extinction as compared to other parameter sets, even though we consider the same

endemic level. Additionally. the variance is smaller which tells us that there are

smaller fluctuations about the endemic level for large δ and α.

In Chapter 3, we extend the sexual model from Chapter 2. New parameters

regarding one-night stands are introduced. The model in Chapter 2 is a special

case of this model when the model parameters representing one-night stands are

0. A 5-type branching process is established. In the simplest case where the rate

parameters of male and female are identical, i.e. β1 = β2, γ1 = γ2, ω1 = ω2, the

5-type branching process can be reduced to 3 types. Quantities of interest are

also explored through similar approaches in Chapter 2. In the case where we set

ω1 = ω2 = 0, Model 2 becomes a model without one-night stands, linking back to

Model 1. The basic reproduction number obtained from Model 1 (R1
0) and the ba-

sic reproduction number obtained from Model 2 (R2
0) will have different values but

still play the same role as threshold parameters. In this chapter, we concentrate

on numerical analysis due to the complexity of mathematical formulae. There-

fore, most results concerning epidemic behaviours are obtained through numerical

studies using Matlab and R programming language.

The proposed models give answer to the questions we are interested in. They

are also amenable to mathematical and numerical analysis. In Chapter 4, a control

measure is suggested for both models by introducing a new parameter governing

the medication use (v). We found that R0 decreases when v increases. In addition,

we also illustrate some applications in this Chapter.
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5.2 Suggested future work

Taking into account all the factors in the spread of STDs can make the model too

difficult to analyse. Therefore, it remains extremely challenge to make the model

more realistic while retaining the simplicity of the network model.

The proposed models showed reasonable results for general sexually transmit-

ted diseases. However, more work can be done in order to obtain more realistic

models. The following is our suggestions.

5.2.1 Extended compartment structure (SEIS and SEIRS)

The present model is an SIS epidemic model which can be extended to include

compartment structures such as SEIS and SEIRS model. In the early stages of

infection, infected individuals may not exhibit obvious sign of infection, and more

importantly, the individuals are not yet able to transmit the disease as it develops

within them. When an “exposed” stage is taken into account the model become

SEIS model. This is interesting because whilst individuals are in an exposed

stage, they have no ability to infect other individuals for some period of time until

they become infectious. This might affect the incidence of the disease. Another

interesting model is when temporary immunity is taken into account, and after

the immunity wears off, the individuals become susceptible again (SEIRS).

5.2.2 Non-exponentially distribution for infectious period

In our model we assume that the infectious period follows an exponential dis-

tributed, which implies that the rate of recovery within a given time interval is

constant. This is unrealistic in an epidemiological context. Other infectious pe-

riod distributions are more realistic. Non-exponential distributed infection periods

have already been studied in the literature for simple epidemic models (see, Keel-

ing & Grenfell (1988) and Feng et al. (2007)). Particularly, Vergu et al. (2010)
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explores the spread of epidemic in the context of metapopulation model when the

infection period is chosen to be either constant or gamma distributed. It would

be interesting to explore how this applies in sexually transmitted disease models,

especially, how the gamma-distributed infectious periods make an impact on the

epidemic dynamics. According to Krylova & Earn (2013), a gamma distribution

with integer shape parameter is strongly preferred as it is equivalent to a sequence

of independent and identically distributed exponential distributions. This can be

done using the method of stages as follows. If the infectious period is Gamma(k, l),

then the infectious period is the sum of k exponential random variables with mean

1/l. We then let an individual go through the stages of the infectious period with

an exponential stay in each. This is useful because the model is still Markovian.

5.2.3 Age groups

Another interesting factor influencing the dynamics of sexual behaviour is the age

ranges of individuals. We can classify individuals in terms of teenagers and adults,

where teenagers have higher contact rates. To deal with this assumption, for our

model where individuals are classified according to sex, relationship and disease

status, we can include the status of individuals being teenagers or adults. Individ-

uals are more likely to form relationships with individuals of a similar age. We can

also divide the population into two groups: adults and teenagers. Individuals are

allowed to make both local and global contacts, in other words, individuals can

be mixed within groups (teenagers contact with teenagers and adults contact with

adults), and among groups (teenagers contact with adults). The heterogeneity in

transition rate could be applied in our case because teenagers tend to have higher

sexual contacts with teenagers and less with adults, and vice versa.
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