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ABSTRACT

In the context of the depth adjustment of the dl@mnomy and wild fluctuations in energy pricdse t
vulnerability issue of the coal mining industriatosystem (CMIES) has seriously affected the sueitden
development of the regional economy. Comparison€MIES health status at a regional level are wouhy
being conducted. This not only contributes to us@grding a particular coal mining area’s situationegards to
CMIES vulnerability, but also helps to discover aamingful benchmark to learn the experiences imgeof
action programmes formulation. In this study, basedhe analysis of the vulnerability response raa@m of
CMIES to economic fluctuations, an initial indicateystem for vulnerability assessment of CMIES was
constructed. Ultimately, 14 vulnerability-evalugtimdicators and their weights were obtained usmggh set
attribute reduction. Based on a composite CMIESwidbility Index (CVI), the Rough Set-Technique €nder
Preference by Similarity to Ideal Solution-Rank-siatio (RS-TOPSIS-RSR) methodology is proposed to
conduct the CMIES vulnerability assessment proéesa an overall perspective. Using this methodo|dgfy
coal mining areas in China are ranked as well agpgd into three specific groups based on the Cbfiles The
results demonstrate the feasibility of the propasethod as a valuable tool for decision making perdormance
evaluation with multiple alternatives and criteria.

Keywords industrial ecosystem; vulnerability; composite ixd@ategrated assessment; coal mining area
1. Introduction

For a long time, the coal industry has caused ereasingly serious ecological crisis as well as enaus
inevitable social problems under the one-way lirgaduction model of ‘resources-products-waste’'dket al.,
2015), despite the fact that it contributed siguifitly to economic development (Moran et al., 20Uf)der the
background of ecological civilization constructiaime industrial metabolism model of ‘resources-doicis-
regenerated resources’ has become the basic pfattehe green and intensive development of coalnygiareas
(Li and Wang, 2015; Ren, 2011). In fact, industdaterprises mostly focused on their core busiress,could
not ensure that the secondary activities of vahan; such as pollution prevention and controleiez adequate

attention. However, integrating resources througlhndustrial symbiosis network could relieve theiténess of
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the resources and ability of environment governamdech also provides the most suitable way foemsive
industry development (Korhonen et al., 2004; Yuaét 2015a). Recently, the United Nations Induktria
Development Organization has advocated and pronategional ecological development strategy inviloeld.
The Chinese government has focused on ecologicdemization, green growth, and low-carbon develagme
and made the circular economy development as aopdine national ecological security strategy. (Gen al.,
2013). Under the guidance, intervention, and evamidance of government bodies at all levels, mbem t40
large-scale mining areas in China have constructead mining industrial ecosystem (CMIES) by builglin
circular economy parks.

CMIES' is formed by optimizing industrial chains vertigaind horizontally according to the principle of
material cycling and harmonious symbiosis betwe@gy and industry in a coal mining area (Zhancakt
2013). CMIES is an open and complex giant systensuch a complex system, a minor change in economic
environmental factors can trigger enormous chanmgdle mining areas’ economic development (Martid a
Sunley, 2015). CMIES vulnerability has restrainkd sustainable development of coal mining areasoving
to the theory of vulnerability, CMIES does not afwalemonstrate vulnerability under any kind ofufisance. It
displays different characteristics of vulnerability facing different types of disturbance. TherefoCMIES
vulnerability is always closely related to certaiisturbances imposed on the system. The major iresif
CMIES (e.g., coal, electronics, and coal chemiodustry) are all the fundamental industries of tia¢ional
economy. According to the Morgan Stanley Capitaérmational Index, these industries are more seasib
economic fluctuations and are relatively more affdcby fluctuations compared with general lightustlies.
Thus, economic fluctuations play an important rolemany disturbance factors which affect the health
development of CMIES. For example, as coal pricegltbeen falling since 2012, many coal mining aseigb as
Changzhi, Hauibei, Panzhihua, Qitaihe, and Jincheng suffered an economic slowdown and even riiédl i
serious crisis, with unemployment rates of more 820, 000.

In recent years, many challenge-seeking researchmieng both academia and industry have spent
considerable efforts on the CMIES’ developmenttsgg (Muduli et al., 2013a), evolution mechanisrar{\Beers
et al., 2007), efficiency evaluation (Kulshreshtinad Parikh, 2002), and resource metabolism (S&060;7).
However, literature shows that studies on the caibpandex and method of CMIES vulnerability asaesst are
limited, despite the fact that they are the keycpsses affecting the success of comprehensive maread of
CMIES. Evaluating vulnerability is an interestingdachallenging problem, and always an importanceom for
both managers and policymakers. Therefore, we pttesome exploratory research on the vulnerability
assessment related to CMIES under economic fluotugtscenario. This study contributes to the It in
three ways. First, we propose a new RS-TOPSIS-R&fhadology to assess CMIES vulnerability. The
integration of three isolated models can give fldly to each other's advantages as well as overdbeie

disadvantages. Second, we introduce a hierarcbtcatture of CMIES Vulnerability Index (CVI). TheMC

! CMIES - Coal Mining Industrial Ecosystem; CVI - CMIE@Inerability Index; RS - Rough Set; TOPSIS - Techeidor Order
Preference by Similarity to Ideal Solution; RSR - Raom Ratio.



captures a multitude of risk information in a copfmnsive way instead of considering isolated indrsa and
offers advantages in terms of benchmarking ands@ecimaking. Third, the 33 coal mining areas ofrfahare
ranked and classified into three groups, and theesof high-vulnerability pattern are revealedsThfavorable
for policymakers in drawing up targeted programmes.

The remainder of this paper is structured as falodfter the introduction, Section 2 reviews thi&ated
literature. Section 3 introduces a hierarchicalctire of the composite CMIES Vulnerability Inde&\{1) of coal
mining areas as well as the study areas and dat@eso Section 4 presents the integrated RS-TORSIFS-
methodology for CMIES vulnerability evaluation. 8en 5 reports the application of the methodology a
computational results. Section 6 discusses theegsponding results and implications. Finally, Sectip

summarizes the key conclusions and outlook.
2. Literature Review

The concept of vulnerability originated from stuglabout natural disaster in 1960s (Janssen @08I6). As
a new analysis tool in the area of sustainabilifiersce, the vulnerability research has been appiiedisaster
management (Zhang and Huang, 2013), ecology (CatithMelloul, 2003), economics (Serwa and Bohl,5200
etc. Among them, some natural science fields siclhlimate change and natural disaster always taka u
dominant position. In recent years, as many rebdaastitutions (e.g. Intergovernmental Panel om@te Change)
increasing emphasis on the response and adaptdtiorman society to global change (Marshall et24114), the
researches on the vulnerability of human systemsawdl-economic-natural complex ecosystem haverbea
new trend. From the point of view of research iffiedént fields, natural sciences consider thatdisturbance
imposed on the system, the exposure degree anti\sgnsf the system to disturbance are the deteamts of
system vulnerability. However, humanities take thénerability of human system as an intrinsic pmpe
originated from the internal of the system. Andytfecus on the discussion of the system, economiccalture
factors that cause the human society to be easilgaded. The researches on the vulnerability of texmp
ecosystem explain emphatically the interaction agnuature, society, and economic systems.

In order to better carry out vulnerability assesstnecholars have proposed many vulnerability ditaly
frameworks, such as risk-hazards (RH) model, PresState—Response (PSR) model (Wolfslehner andk,Vaci
2008), the Exposure—Sensitive—Adaptation (ESA) rh¢Belsky et al., 2007), and airlie house vulndibi
(AHV) (Turner et al., 2003). In terms of evaluatingethod, most of the extant studies adopt compasitex
method (Zhang and Huang, 2013). However, based ifiarestht analytical frameworks, the vulnerability
assessment indexes built by the scholars are @lifférom each other. For example, when assessignpact of
disasters or climate change based on RH model.efposure and sensitivity of hazard-affected body to
environment change are often emphasized. Accorirtge models of PSR and ESA, the vulnerabilityeste}s
on how the system can respond to disasters. Thierefompared to RH model, these two models morehasipe
that the resilience has the decisive significancalisaster vulnerability.

The extant studies suffer from a few limitationfieTfirst issue is related to the assessment iralEaif



CMIES vulnerability. The existing studies tend ®sdribe industrial ecosystem property from difféngoints of
view (Chopra and Khanna, 2014; Li and Shi, 2015eyldoesn’t presents an overall perspective omthestrial
ecosystem health by capturing a multitude of vidbgity information in one index score (Jiao andoBs, 2014;
Wang et al., 2013). Comparing each indicator irdiligily doesn’t account for the aggregation of iattics. This
may then make coal mining areas have differentuaimin results using different exposure informatitinis
unfavorable for policymakers in assessing their aetative CMIES vulnerability and drawing up tamgbt
programmes. Consequently, it is attractive, deldrabd necessary to create an overall CMIES vuliésaindex.
Further more, the combination of CMIES vulnerapiiihdicators into an index is a methodologicallyeimsive
process. It includes assigning weights of indicaed aggregating these indicators. In this respegt methods

are worthwhile exploring and testing for the CMI&8nerability case.
3. Indicators and data

3.1. Composition of CMIES
Coal mining areas are the economic geography arkigh are formed during the process of coal mirdng
processing and have common features in economraatieaistics, social functions, and environmentaltaites.

According to Mathews and Tan (2011) and Yao e{2015), CMIES consists of four subsystems (as shiown

Fig.1), namely, original industrial subsystem, exied industrial subsystem, resources and environhmen

subsystem, and social service subsystem. The aligidustrial and extended industrial subsystenmstitoite the
living system of CMIES, while the resources andiemment and social service subsystems constituge t
life-support system of CMIES.
® The original industrial subsystem refers to thedpation system of the coal mining and coal processi
industries.
® The extended industrial subsystem is the colleatibmdustries which use coal to produce directig a
their corresponding downstream industries, sucbhasicals, electronics, building materials, metghu
and manufacturing industries.
® The resources and environment subsystem is theridabase of the mining industrial ecosystem’s
development, including an exhaustible resourcelesawell as regenerated resources such as latdy,w
creatures and atmosphere.
® The social service subsystem provides all kindssefvices to ensure the normal operation and
development of the above three subsystems, ingdudaological restoration, landscape design, public
administration, research institutes, finance asdrance, circulation service, mediation service, et
The development and evolution of CMIES is the aiile effect of collaborative development of thead
four subsystems. In other words, the overall evmtuand healthy development of CMIES can be agtuall

promoted only if each subsystem is organized, restde, orderly, and coordinates with other subsyste
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Fig.1. The basic structure of coal mining industrial g&bem
3.2. Vulnerability response mechanism of CMIES

In recent years, many analytical frameworks ar@@sed to explore the causes of vulnerability, saglthe
PSR model (Wolfslehner and Vacik, 2008) and the E®Ael (Polsky et al., 2007). The principle of #8R
model is to explore the relationships among pressiate, and response in terms of the causalbredaip. More
specifically, external disturbances imposed cenpa@ssures on the system. Owing to these pressheesystem
changed its original nature or status. Then in ptdegestore the system function or prevent sysdegradation,
people responded to these changes by adopting sopirgy strategies. Although the PSR conceptual irfuelps
to clarify the causal relationship, it is difficulh have a rigorous classification of these indidem example, a
non-biological index in status indicators can bgarded as a status of the ecosystem when it istaffeor as a
certain kind of pressure. The ESA model can makéouphe defect. According to this model, vulnetiyiis
divided into three dimensions (namely exposure,sitiga, and adaptation) in terms of the system’s
comprehensive vulnerability properties (e.g. sensit fragility, adaptive capacity, and even dedgton).
Therefore, we combine PSR model and ESA model atyaa the vulnerability response mechanism of CMI&ES
economic fluctuations, as shown in Fig.2.

The structural characteristics of CMIES are thedicause for vulnerability, while external distambes or
pressures as well as interactions between theggliisaces and CMIES are the driving factors ofehaution of
vulnerability. Finally the vulnerability is refleetl by exposure, sensitivity, and response capactitihe system.
To be specific, in the context of economic fluciias, disturbance factors (e.g. energy prices, atatkmands,
and government policy) will break the original bade of supply and demand within the system, or gtevthe
significant strategic adjustment of focal entemgsisThen this could change the internal structacketagger the
inherent vulnerability of CMIES. However, as an wpe&omplex, and adaptive system, CMIES tends to
demonstrate three kinds of defense mechanisms extlenal shocks. First, it is sensitive to theeexdl changes
to give the system more response time. Secondultidake effective resistance to maintain theesy& stability
and to reduce the degree of danger or disasterd,Tihithe system is destroyed, it can repair ftsela certain

extent.
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Fig.2. The vulnerability response mechanism of CMIESdon®mic fluctuations
3.3. Identification of vulnerability indicators

We argue that, among the three kinds of defensehamesms, sensitivity and resilience are the main
functions of living system, while stability is timeain function of life-support system. The reasomsas follows.
First, the carriers of economic fluctuations are ithdustries in coal mining area. Sensitivity aesilrence reflect
the abilities of the industries to perceive andhoesl to environmental changes, which is a proadfense
behavior. And the behavioral agent of them is nyathke industrial system, including original induss$r and
extended industries, which has the characterigtfcdife body’. Second, when macroeconomic envir@mtn
changed greatly, the living system should cope Witk change positively rather than maintaining steus quo
(that is stability). Meanwhile, for life-supportstgm, it should have a certain stability to provigag system
with various resources and services continuousigel on the above analysis and a wide literatwiewgthe
important indicators related to CMIES vulnerabilitgve been selected to construct a hierarchiazitsine of the
CMIES Vulnerability Index (CVI). The reasons follesgting indicators and the references are presentéable A
in Appendix.

The CVI is then used to measure the degree ofthedévelopment of CMIES in terms of four dimensions
economic fluctuations risk, sensitivity of livinggsgem, resilience of living system, and stabilifylite-support
system. Economic fluctuations risk is the risk egldy the changes in energy prices, market demamdk,
government policy in the context of economic flattans. Sensitivity of living system is definedthe degree to
which it is affected by environment changes sucmasket, policy, and so on. Resilience of livingtgyn refers
to the capacity of the industrial system to corgirto survive when facing disturbance factors. 8tabof
life-support system denotes the ability of resosiraed environment as well as social service subsgsto
support the healthy development of the living systBach sub-dimension is broken down into seveditators.

The hierarchical structure of CVI is presentediln3:
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3.4. Data collection

There are 46 major large coal mining areas in Ghimanly distributed in Hebei, Henan, Guizhou, Stian
Xinjiang, Shaanxi, Sichuan, Shandong, Liaoning, atiter provinces. Considering the availability eftal we
mainly selected 33 coal mining areas as objects/ddrerability assessment. The location and distidims of
these areas are shown in Fig.4. These areas in€udes (OR) and Baotou (BT) of the Inner Mongolia
Autonomous Region, Fuxin (FX) of Liaoning Provint&goyuan (LY) of Jilin Province, Shuangyashan (SX¥i
(IX), and Qitaihe (QT) of Heilongjiang Province, 2kiwu (XZ) of Jiangsu Province, Huainan (HN) and iHaa
(HB) of Anhui Province, Panzhihua (PZ) of Sichuanvince, Qujing (QJ) of Yunnan Province, Yulin (Yahd
Xianyang (XY) of Shaanxi Province, Yinchuan (YC)tbé Ningxia Hui Autonomous Region, Urumgi (UR) and
li (IL) of the Xinjiang Uygur Autonomous Regionahzhou (LZ) of Gansu Province, Tangshan (TS) anutglia
(HD) of Hebei Province, Taian (TA), Jining (JN),dadaozhuang (ZZ) of Shandong Province, Shangqiu),(SQ
Zhengzhou (ZH), Pingdingshan (PD), and Sanmenxi#) (& Henan Province, Taiyuan (TY), Yangquan (YQ),
Shuozhou (SZ), Changzhi (CZ), Datong (DT), and ld#mg (JC) of Shanxi Province. In order to reveal th
evolution laws of CMIES vulnerability in the contesf economic fluctuations, we assessed the vutilégaof
the industrial ecosystem of 33 coal mining areayéars of 2007, 2010, and 2013.

Data pertaining to<;1, X1», X13, andXz;were obtained from the China Coal Market net (wwatdaom.cn),
the China Economic Net (www.ce.cn), China Coal BiduYearbook (2007-2013), and Marketization Indéx
China’s Province (2007-2013), respectively. Theaiging index data were obtained from each registadistics
yearbook (2006—2014). In general, indicators hafferdnt positive and negative effects on CMIESnaxhbility.
For some indicators, the higher values indicatégadr level of vulnerability in a coal mining areand these
indicators are regarded as positive indicatds, (K12, X13, Xo1, Xo4, Xos, Xos, X42). Nevertheless, for some other
indicators, the higher values indicate a lower ll@fesulnerability in a coal mining area, and théseicators are
regarded as negative indicato¥sA Xz, Xa7, Xa1, Xaz, Xas, Xaa, Xas, X3e, Xaz, Xa1, Xaz, Xaa, Xas, Xag, Xaz, Xag, Xag,
Xa10r Xa11, X412)-

Fig.4. Location and distributions of the 33 coal minimgas in China



4. Methodology

4.1. Framework
We proposed the CMIES vulnerability assessment inodeed on the RS-TOPSIS-RSR methodology, as

shown in Fig.5. The basic flow of this assessmevdehis shown as below. First, the importance cheadicator
in the initial indicator system for vulnerabilitgsessment of CMIES was different. What's more ctireelations
among indicators easily make the result distoridéebrefore, we conducted attribute reduction basethe rough
set method, which can eliminate redundant inforomatind keep the ability of classification. Thus, etsained
the final indicators and their corresponding wesgtadr vulnerability assessment. Considering thatrtbugh set
can only deal with discrete values, we discretitedcontinuous attributes using fuzzy c-means (FCM3tering
algorithm first. Then, after normalization of thiadl indicators, we calculated the relative clossnef each
evaluation object to the object with highest vuddstity as the CMIES Vulnerability Index (CVI) bydapting the
TOPSIS method. The coal mining areas are rankeedbais the CVI. Finally, we introduced CVI into tRSR
model to calculate the distribution of the RSR &ach evaluation object and the corresponding reigires

equation, thus obtaining the vulnerability gradeath evaluation object.

o Attribute T final indicators | |
Initial indicator FCM Indicator reduction | ,nd corresponding |

system discretization .
weights

Designing and weighting the evaluation indictors based on RS

| Normalization of | TOPSIS Calculate the C,VI of Rank the evaluation
each evaluation

final indicators ) objects |
object |

I
Ii{anking the evaluation objects based on TOPSIS

_________ @_ S |

I Replace RSR value Calculate the Group the evaluation I

|| with CVIto calculate q regression p objects |

the distribution of RSR equation |
Grading and grouping the evaluation objects based on RSR

- - - - L e e - d

Fig.5. The basic principle of CMIES vulnerability assesstmmodel

4.2. Attribute reduction and weighting based on RS
In general, indicator weights can be determinedtiycipal components analysis (PCA) (Gitelman et al

2010), experts’ opinions (e.g. analytic hierarcligogess (AHP) (Chen et al., 2014; Ren et al., 2Q1&@lytic
network process (ANP) (Kilic et al., 2015), Delghlakkonen, 2016)), fuzzy set theory (e.g. fuzzy AHRdic et
al., 2013; Ren and Sovacool, 2014), fuzzy ANP (Beal., 2015b)), etc. For these methods, indicawights are
mostly determined by experts’ opinions. This regsithem to have a wide spectrum of knowledge apdreance.
Owing to the subjective nature of these methodmniistency is inevitable (Hermans et al., 2008)addition,
the existing studies usually use the designed irmysiem as input to the evaluation model directigt ynore

correlations among indicators. This would caustodisns in the evaluation results.



Rough set (RS) is an effective mathematical tooliéal with vagueness and uncertainty (Pawlak, 1982)
which can eliminate redundant information witholo foss of key information and evaluate data depecids
effectively (Wang et al., 2015; Zheng et al., 2014jerefore, we simplified the indicator system amdghted the
effective indictors based on the RS theory. Bec#lusevariables selected for vulnerability assessraEEMIES
are mostly continuous attributes and the rougleaetonly deal with discrete data, the clusterimggaihm should
be applied to discretize the continuous data. Fig; tve combined fuzzy clustering algorithm wittioinmation
entropy to discretize the continuous attributes, #uen obtained the final indictor system basetherRS theory.

(1) Discretization of continuous attributes

The discretization algorithm based on Fuzzy c-m@aM) clustering is widely used in machine learning
and data mining, which group a collection of olgdoto a limited number of categories in termshef similarity
among objects (Coletta et al., 2012). Compared wilter algorithms, this algorithm does not requirenass
amount of prior knowledge, and can combine thesis@mguage description habits for the researcleathyith
data processing (Bose and Chen, 2015).

In fuzzy clustering, the numbeK of the cluster should be set in advance, whidtiffscult to ensure the
clustering quality. To address this problem, wepaeld the size of information entropy to judge tlhenber K
by combining the pedigree clustering method to sssiwely select different numbers for clusteringafiy et al.,
2015). The distribution of the data points is samito that of the atoms; moreover, the more reddenihe
clustering division is, the more certain the atttibn of data points in a cluster and the smalfilestclustering
information entropy. Therefore, if the data poitiriaute is identified as accurately as possibld aminimum

information entropy clustering results are obtajrted purpose of clustering can be realized.
The range of clustering numbef€..,.,Cna] and accuracy threshold, a decimal value between 0 and 1,

should be defined first when we adopted the pedignethod. The values of usually range from 0.01 to 0.2;
here, smaller values reflect more accurate resailtispugh this process may be time consuming. Echrgter
number K would produce a membership matrix which corresponds to the information entropy valdg

ranging from C,.x to C,. If the column value is set to data pointand the train value is set to cluster
categoryj , then H, (x) =X\ H, (x), in which H, (x) =-X.,u, *log, u; is the information entropy of each data
point. Selecting the cluster numbé of the minimal H, (x) as the ultimate cluster numbe, the result is
finally obtained by FCM algorithm.

(2) Heuristic attribute reduction based on disitslity matrix
Attribute reduction based on discernibility matwas first put forward by Skowron and Rauszer (199&)
define information system as$=(U,AV,f), where U ={x, x,,---,x} is the non-empty finite set of objects,

A={a,a,---,a} isthe non-empty finite set of attributésis the attribute subset aRd] A. Let a(x;) be the
value of sample x; at attribute a . Then, the discernibility matrixM can be defined as
¢, ={ala OpOa(x) za(x)}, wherei,j=1,2;.- n. The classical Skowron method based on disceityibil

matrix should convert conjunctive normal forms ohrempty elements in the matrix into the minimajjaictive
norm form. This process is quite complex and diffido realize by computer programming. Therefore,
adopted a heuristic attribute reduction algoritramdd on discernibility matrix. The basic flow oisthalgorithm is
shown as follows.



Step 1: Initialization. Let CORE = ¢, a reduction RED = ¢.
Sep 2: Calculate the discernibility matrixM =(c;),., of the information table.
Step 3: Check each item forc; # ¢, and if |c; 1, let CORE = COREU{c} .

Step 4: Let RED = CORE .
Sep 5: For eachg, # ¢, if RED(N¢; # ¢, let ¢; =g, else count the frequency of each attributecjn and

define the attribute with maximum frequency as
Sep 6: If [c; =g, stop and inputRED,CORE , else let RED = REDUc, and turn to Step 5.

(3) Weighting based on knowledge information gitgnt
According to the RS theory, the indictor weights d&e obtained by calculating the attribute impar&an
which is determined by the amount of knowledge rimfation it contains. First, the knowledge inforroati

|
quantity of the equivalence relati®hcan be defined asg (P) =1—ﬁ2|xi . After the attribute is eliminated,

k
the knowledge information quantity oP{r} can be represented dgP-{r}) =1—ﬁZ|Xi|2. Then the

importance of attribute can be calculated by the attribute importance &ams, (r) = 1 (P) -1(P—{r}) . Finally,
the weight of each indictor is obtained by normalizthe importance of all attributes
4.3. Ranking the evaluation objects based on TOPS S

Multiple criteria decision making is a well-establed methodology aggregating indicators. The main
methods include data envelopment analysis (DEAh(&seal., 2013), preference ranking organizatiotho for
enrichment evaluations (PROMETHEE) (Corrente et28l13; Ren et al., 2016), elimination et choiemstating
reality (ELECTRE) (Chen, 2014), ViseKriterijuska fpizacija | Komoromisno Resenje (VIKOR) (Yang &t a
2013), and weighted product (WP). These method® hlgir own set of advantages and disadvantages. Fo
example, DEA does not need to set the weights mittand outputs in advance, which reduce thednfie of
subjective factors (Ren et al., 2014). Howeves thiethod takes all random disturbance items agfffaency
factors, and is easy to be affected by the extreathges. In this study, we integrate TOPSIS and Rfels in a
systematic way. TOPSIS (Hwang and Yoon, 1981), ainthe well-known classical multiple criteria ddois
making methods, is investigated. The RSR is integréo group coal mining areas with inherent siritijan their
practices (Chen et al., 2015).

TOPSIS is a kind of effective multiple attributecgon making method (Hwang and Yoon, 1981) that ha
been used in many research fields (Guo and Zhdd; Z&vana et al., 2015). The basic principle «f thethod is

to rank the evaluation objects according to thatre closeness degree.
Sep 1. Define the evaluation object with the highest vudtdity (the ideal solution) as

Z" =(z, zy,--+» z,) , and define the evaluation object with the lowasgherability (the negative solution) as
Z =(z, z» Z,),where z] :maxjsism{zij}, z] :minjsism{zij} j=12--, n.
Step 2: Calculate Euclidean distancB,” between the evaluation object with the highesherability and

other evaluation objects, as well & between the evaluation object with the lowest grability and other

evaluation objects respectively. And then calculdte relative closeness of each evaluation objecthe



evaluation object with the highest vulnerability = 5 D, We denoteC, as the CVI. Thus, the higher the

i_ + Di+ .

value of CVI, the higher the vulnerability level thie evaluation object.

Sep 3: Rank the evaluation objects based on CVI.

4.4, Grading and Grouping the evaluation objects based on RSR

Rank-sum Ratio (RSR) is a kind of synthetic evatutmimethod, which integrates the classical pardametr
statistics and modern nonparametric statistics 1{Céieal., 2015). It represents the average of thasibn
attribute’s rankings. It is a nonparametric metma has the characteristics of 0-1 interval comtirsuvariables.
The basic idea of this method is to obtain the disienless statisticlRSR through rank transformation in a
mxn matrix. On this basis, the distribution &SR can be determined by using the parametric anatystbod,
and then the evaluation objects can be rankedaupgd by their RSR value. By replacingRSR value in the
RSR model withC,, the information loss in the process of rank tfamsation in the RSR model can be
effectively avoided (Chen et al., 2015). Then tiaal@ation objects can be ranked by th&8R value. In doing
so, the ranking and grouping of evaluation objeets be combined, and more basis could be providethé
CMIES vulnerability assessment. The basic flowhis algorithm is shown as follows.

Sep 1: Determine the distribution of the RSR for each eatibn. RSR distribution refers to the specific
downward cumulative frequencies of RSR values, Wiligcexpressed by probit. RepladesR value with the
relative closeness degre@ . Arrange the evaluation objects in ascending oadeording to RSR value. List the
frequencies f; and cumulative frequencies$ ;. Calculate the percentile® and convert them into prob¥t .

The probitY corresponding to percentileB is presented in Table B.1.

fii

=i -, |= -1. = —i 0
s =i; R el 12,---, m-1; P, =(1 4m)><100A: 1)

Sep 2: Calculate the regression equation. Take the phbitrresponding to cumulative frequencies as the
independent variable and the RSR value as the depewariable to calculate the regression equation.
RSR=a+bY 2)
wherea andb are regression coefficients.
Sep 3: Group the evaluation objects. Choose the apprepniamber of grouping according to the amount of
evaluation objects. Then the percentil® and probit Y° will be determined according to Table B.2.

Subsequently, calculate the interval of groupiR§R" by means of the regression equation (2)
RSR =a+bY’ (3)
Group the evaluation objects by theRSR value, taking theRSR as the interval of grouping. Then

conduct analysis of variance to ensure that theging is statistically significant.
5. Results

5.1. Reduction and weighting
The fuzzy clustering algorithm based on informagortropy is adopted to discretize the continuoua,dand
this process is realized by programming in MatlbThe final discretization results were obtaingdblving the

fuzzy clustering algorithm, as shown in Table 1eTata results show that compared to the otheradst{e.g.



the equal frequency and equidistance discretizattoe discretization results of fuzzy clusterirgagithm based
on information entropy are more consistent withegbiye reality. The discrete indictors are reduaed weighted
based on the RS theory, and then a relative smhafldaction set {X11, Xo2, Xo3, Xo7, Xa2, X33, X37, Xa2, X45, Xa7,
Xag, X410, Xa11, X412} @and the weight of each attribute can be obtaiféxht is the final indicator system for CMIES
vulnerability assessment with corresponding weigigsshown in Table 1.

Table 1 Discretization, reduction and weights afi¢ators

Type Symbol Discretization result Reduction result eifyut
Economic fluctuations risk Xi; 4 classes retain 0.0976
X1 X1z 3 classes delete —
Xi3 2 classes delete —
Sensitivity of living system X,; 2 classes delete —
Xo Koo 2 classes retain 0.0976
Koz 3 classes retain 0.0244
Xoa 2 classes delete —
Xos 2 classes delete —
Xog 2 classes delete —
Ko7 2 classes retain 0.0976
Resilience of living system X3; 2 classes delete —
X3 X3z 2 classes retain 0.0488
Xaz 2 classes retain 0.0488
X34 2 classes delete —
X35 2 classes delete —
K36 2 classes delete —
Xs7 2 classes retain 0.0488
Stability of life-support X, 2 classes delete —
system X, Xaz 2 classes retain 0.1220
Xaz 2 classes delete —
Xaz 2 classes delete —
Xas 2 classes retain 0.0976
Xag 2 classes delete —
Xa7 2 classes retain 0.0488
Xag 3 classes retain 0.0732
Xag 2 classes delete —
Xaic 3 classes retain 0.0732
Xar1 2 classes retain 0.0976
X1z 3 classes retain 0.0244

5.2. Ranking based on CVI score

By means of the RS-TOPSIS—-RSR model introducecati@ 3, the overall index score (CVI score) @& th
33 coal mining areas in three years of 2007, 2@M0@,2013 is obtained, and each coal mining aredeaanked
based on its score. The results and the correspgnalikings are shown in Table 2.

The results present a broader picture of CMIES enalbility degree, and will help coal mining areas t
assess their industrial ecosystem health statasnmparison to other areas. It can be seen that{@RJN, ZZ,
and ZH are the top five best-performing coal minargas, with the lowest industrial ecosystem vualbiity,
since they obtain the optimal CVI score in the midadehree years of 2007, 2010, and 2013. While es@wal
mining areas such as JX, QT, HN, HB, PZ, IL, YQd &t are low-ranked in three years, and considierdx
under-performing. Consequently, these mining afaees greater challenges in industrial ecosystemerability.

In other words, there is still sufficient room fahese mining areas to improve their industrial

ecosystem health status.



Table 2 Rankings based on CVI score

2007 2010 2013

Mining area CVI score Ranking CVI score Ranking CVI scor Ranking
OR 0.4964 9 0.4237 3 0.3688 1
BT 0.5282 16 0.4986 16 0.4334 7
FX 0.5475 19 0.4874 14 0.5154 21
LY 0.4458 3 0.4650 11 0.5074 19
SY 0.6411 30 0.6162 31 0.4540 11
JX 0.7540 33 0.6412 33 0.5527 27
QT 0.6201 29 0.6152 30 0.6149 32
Xz 0.4584 4 0.3616 1 0.3832 2
HN 0.6441 31 0.5520 25 0.5473 25
HB 0.5675 24 0.5559 26 0.5717 30
Pz 0.5816 26 0.6373 32 0.5732 31
QJ 0.4882 6 0.4935 15 0.5078 20
YL 0.5248 15 0.4601 9 0.5193 23
XY 0.5482 20 0.4433 6 0.4514 9
YC 0.4939 8 0.4590 8 0.4573 12
WL 0.6648 32 0.6117 29 0.4448 8
IL 0.5737 25 0.6032 28 0.5505 26
LZ 0.5546 21 0.5203 22 0.5047 17
TS 0.5136 12 0.4688 12 0.5066 18
HD 0.6029 27 0.4782 13 0.5540 28
TA 0.4656 5 0.4621 10 0.4871 14
JN 0.3931 1 0.4316 5 0.4168 4
zz 0.4428 2 0.3911 2 0.4311 6
SQ 0.4991 10 0.5048 18 0.4164 3
ZH 0.4907 7 0.4240 4 0.4275 5
PD 0.5552 22 0.5216 23 0.4785 13
SM 0.5204 13 0.5036 17 0.4894 15
TY 0.5076 11 0.4542 7 0.5173 22
YQ 0.5657 23 0.5282 24 0.5441 24
Sz 0.5362 17 0.5128 20 0.4519 10
cz 0.5222 14 0.5191 21 0.5633 29
DT 0.5400 18 0.5096 19 0.4949 16
JC 0.6050 28 0.5989 27 0.6666 33

5.3. Grouping coal mining areas

It is possible to make comparisons between allntivéng areas as a single group. However, it shbeld
taken into account that differences exist betwdemtining areas concerning industry developmemniy@mment
variables, etc. Therefore, it is more realisticctompare mining areas with similar backgrounds (Edustry
systems, ecological level). In conclusion, it igfprable to group comparable mining areas and tih@ompare
the mining areas within a specific group.

In this study, coal mining areas are classifiechwvriherent similarity in their industrial ecosyststatus and
operation to enable comparisons between miningsasdtain similar backgrounds. Based on the CVI scthe
distribution of the RSR values of coal mining aréashown in Tables C.1, C.2, and C.3, and thees=ijon

equations are determined as follows:

RSR (2007)=0.07148+0.1796 (4
RSR'(2010)=0.0705%+0.1498 (5)
RSR (2013)=0.0657%+0.1635 (&)

The confidence limits were calculated at a 95% llex 0.05 significance level, the three regression
equations above are all statistically significah&(0.001).

It is appropriate to compare the coal mining aseitlsin three groups, due to the fact that the anhoficoal



mining areas would be too large for accurate corspas to be made were they contained within a toalls
number of groups. The corresponding percenffeand probitY” are determined accordingly. Then, the interval
of groupingRSR’ is calculated by means of the above regressioatiequ Finally, the coal mining areas are
classified into three groups by th&8R value, taking thdRSR as the interval of grouping. The three groups of
coal mining areas are presented in Table 3.

As shown in Table 3, 33 coal mining areas are diithto three categories from the most preferabliné
least preferable. It can be seen that in 2013, X0R,SQ, and JN are classified in Group |, exhilgjtime most
favorable level of industrial ecosystem healthusta€CZz, HB, PZ, QT, and JC are classified in Graypvith high
vulnerability compared to other groups. The renmagrtoal mining areas are classified in Grdhpwith medium
vulnerability. Additionally, we can find that, aacling to the CVI score, some areas (e.g. OR, SQ,&Z# HB,

IL, LY) exhibit distinct levels of vulnerability ahare assigned to different groups in differentryea

Table 3 Three groups of coal mining areas.

. 2007 2010 2013
Group P " — : — ; —
RSR Coal mining area RSR Coal mining area RSR Coal mining area
Low <15.866 <4 <0.465 JN, ZZ, LY, XZ <0.432 XZ,ZH, OR, ZZ, JN <0.426 OR, XZ, SQ, JN

0)
Medium 15.866- 4- 0.466- TA, QJ, ZH, YC, ORQ.432- XY, TY, YC, YL, TA, 0.426- ZH, ZzZ, BT, WL, XY,

(I SQ, TY, TS, SM, CzZ, LY, TS, HD, FX, QJ, Sz, SY, YC, PD, TA,
YL, BT, Sz, DT, FX, XY, BT, SM, SQ, DT, Sz, SM, DT, LZ, TS, LY, QJ,
LZ, PD, YQ, HB, IL, PZ, CZ, LZ, PD, YQ, HN, FX, TY, YL, YQ, HN, IL,
HD, JC HB JX, HD

High  84.134- 6- 0.608- QT, SY, HN, WL, JX 0.572- JC, WL, QT, SY, 0.558- CZ, HB, PZ, QT, JC

() PZ, IX

6. Discussions

6.1. Comparisons of vulnerability of coal mining areas
On the basis of the CVI scores derived from the TRERSIS-RSR method, the comparison of mining areas’
rankings in different years is shown in Fig.6. Tokowing observations can be made:
® From the time dimension point of view, there aredal mining areas whose industrial ecosystem
vulnerability degree decreased year by year, inctu®R, BT, JX, HN, and UR; there are 10 coal ngnin
areas whose vulnerability degree increased yegeby; including LY, QT, HB, QJ, YC, TS, TA, ZZ, YQ,
and CZ; there are 8 coal mining areas whose vuhilgyadegree decreased first and then increased,
including FX, XZ, YL, XY, HD, ZH, TY, and JC; therare 10 coal mining areas whose vulnerability
degree increased first and then decreased, ing@&WhPZ, IL, LZ, JN, SQ, PD, SM, SZ, and DT.
® From the horizontal comparison point of view, thare 5 coal mining areas whose CVI scores always
remained at a low level (which were ranked in thye 10 for the 3 years), including OR, XZ, JN, ZAda
ZH. These areas were mostly distributed in eadihima, where the economy is relatively developed.

There are 5 coal mining areas whose CVI scoresyalwamained at a high level (which were ranked in



the bottom 10 for the 3 years), including JX, QN,HHB, PZ, IL, YQ, and JC. These areas were mostly
distributed in western China and northeast Chirfegrevthe economy is relatively undeveloped.
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Fig.6. Rankings of coal mining areas based on CVI score
In order to explore the major determinants of vrabdity pattern, we further calculated the followi
indices: Sensitivity Index (SEI) of living systeResiliencdndex (RI) ofliving system, and Stability Index (STI)
of life-support system respectively. The resules presented in Tables D.1, D.2, and D.3. The caaihgnareas’
rankings based on the scores of SEI, RI, and ST$laown in Figures 7, 8, and 9. The following obatons can
be made:
® Even though the vulnerability degree of some coalimg areas always remained at a low level and
demonstrated a gradual downward trend, they fataiogoroblems, some of which are very serious. For
example, Ordos mine’s industrial ecosystem vulritgllegree decreased year by year (it has risem f
ninth to first place in the ranking), but its resice of living system was relatively weak (ranlﬁéﬂ’ in
2007, 24'in 2010, and 13in 2013 respectively). As the largest and the rimpbrtant coal industry base
of China, Ordos has found a number of large, coitiygetcoal enterprises (e.g. Shenhua Group, Yitai
Group) in recent years. These enterprises stilhtaai a high level of profit, even in the conditiohthe
current coal market downturn. Meanwhile, Ordos iowes the ecological environment of the mining
areas steadily by developing its circular economylementing scientific innovation, and strengthmeni
ecological restoration. However, while the abovkei@gements have been obtained, the mining arda stil
faces certain problems and challenges. AccordiribedDrdos statistics yearbook (2001-2014), theaddd
value of the coal industry has accounted for ov@¥o 7of the GDP since 2001. It indicated that the
economic development of Ordos relies heavily ondbal industry. However, the other underdeveloped
industries, especially non-resource-based indgsthias reduced the resilience of CMIES. This isseor
for the sustainable development of Ordos.
® Some coal mining areas share similar overall valbidity degree, whether with high vulnerability with
low vulnerability. However, the causes of theirnerdability patterns are different. In 2013, for exde,

although OR and JN are all in the top 4 in the @ifiking, the low vulnerability level of OR is maynl



due to its low sensitivity of living system (rank2t) and high stability of life-support system (ranki},
while the low vulnerability level of JN is mainlyd to its high resilience of living system (rankiéhl and
high stability of life-support system (ranke&').4 Furthermore, although PZ, QT, and JC are alhim
bottom 4 in the CVI ranking, the causes of theinewability are not the same. The vulnerabilitydeof
PZ and QT are relatively high mainly owing to thieigh sensitivity of living system (ranked’?and 28
respectively) and low stability of life-support sgm (ranked 28and 32° respectively), in spite of their
relatively high resilience of living system (ranKIaﬂh and &' respectively). As for JC, it performed poorly

in three aspects, which led to its highest vulniéitpliegree.
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Fig.7. Rankings of coal mining areas based on SEI score
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Fig.8. Rankings coal mining areas based on RI score
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Fig.9. Rankings of coal mining areas based on STI score
6.2. ldentification of groups of coal mining areas
The proposed model grouped mining areas basedetnGN| score, with inherent statistically similigti To
test the statistical significance of the groupitize descriptive statistics and the analysis ofavere of 14
variables after grouping were conducted in SPS®. Ikhis step is crucial, as the results providetemigine
whether or not the grouping of coal mining areasnmaningful and acceptable for business managets an
policymakers. The results are shown in Table 4. §taéstics shows that each variable in the diffegroup had

significant differencespk0.05). This implies that the grouping is reasoeabl

Table 4 Descriptive statistics and variance anslgsthe variables after grouping

Group 2007 2010 2013
N Mean Std. Dev. Sig.(P) N Mean Std. Dev.  Sig.(P) MNean Std. Dev.  Sig.(P)

Xu 1 4 12546 4.521 0.002 5 43.002 24.305 0.009 4 7080. 19.594 0.003
I 24 19.828 14.164 21 54.219 30.588 24 68.238 .5039
1II 5 31.017 10.943 7 85.093 48.709 5 102.069 3#4.3

X 1 4  2.000 0.951 0.009 5 1.031 0.968 0.002 4 .45 0.232 0.008
1I 24 2.187 1.464 21 1.779 2.405 24 0.166 3.956
1II 5 1.248 1.024 7 1.386 1.442 5 -1.528 4.596

X 1 4 2834 1.360 0.002 5 1.395 1.552 0.001 4 1.4001.073 0.002
1I 24 2.352 1.327 21 2.849 1.588 24 1.557 3.891
11 5 3.422 2.419 7 2.010 0.604 5 -0.402 2.837

Xz 1 4 8.261 3.677 0.000 5 16.740 6.432 0.000 4 126 2.781 0.000
1I 24 7.235 4.674 21 7.426 4.896 24 5671 4.334
11 5 3.675 2.531 7 7.586 3.699 5 2.308 2.657

Xz2 I 4 0.141 0.005 0.000 5 0.153 0.016 0.000 4  0.166 0.025 0.000
I 24 0.164 0.025 21 0.159 0.024 24 0.158 0.027
11 5 0.189 0.040 7 0.196 0.040 5 0.176 0.042

X33 I 4 85.000 37.833 0.000 5 64400 44.881 0.006 4.75D 52.265 0.002
11 24 44.080 27.142 21 49.380 30.541 24 48.170 .1080
11 5 34400 14.011 7 30.860 9.686 5 28.200 17.254

Xaz I 4 6.570 1.367 0.000 5 7.974 1.438 0.000 4  8.6952.195 0.000
11 24 4.842 0.796 21 6.199 1.101 24 6.738 1.236
11 5 4.596 0.440 7 5.583 0.694 5 6.754 0.889

Xaz I 4 0.429 0.115 0.000 5 0.723 0.480 0.000 4 0.5850.299 0.000
11 24 1.570 0.584 21 0.902 0.394 24 0.677 0.391
1II 5 2573 0.362 7 1.536 0.272 5 1542 1.275

Xas I 4 54515 3.866 0.007 5 60.356 17.578 0.008 4 .01BL 2.125 0.005
11 24 34797 24.213 21 58.312 10.420 24 59.848 .88B6

111 5 14870 14.501 7 25.084 16.318 5 50.514 m.75




K1 4 0.283 0.301 0.001 50.326 0.086 0.006 4 0.2910.052 0.005

I 24 0.320 0.187 21 0.519 0.265 24 0.528 0.283
I 5 0.364 0.345 7 0571 0.305 5 0.583 0.314

Xeg 1 4 69.160 17.925 0.000 5 71673 14.438 0.002 .62 21.832 0.000
I 24 62173 17.705 21 60.147 16.417 24 66.145 .2067
I 5 65487 16.503 7 53.040 11.212 5 61.031 B.76

Xpo 1 4 2.208 0.561 0.000 5 2.059 0.258 0.003 4  3.2241.536 0.006
I 24 2507 1.010 21 2.669 0.878 24 3.056 1.188
il 5 2747 0.762 7 3.118 1.653 5 3.105 0.331

X 1 4 1.101 0.790 0.000 5 2834 1.005 0.000 4  3.8091.909 0.000
I 24 1.135 0.869 21 1.268 0.781 24 1.659 1.148
il 5 0.589 0.277 7 0771 0.445 5 1.098 0.483

Xpz 1 4 58.160 20.595 0.002 5 72.080 11.736 0.001 £8.418 24.994 0.001
I 24 55596 15.197 21 51590 15.335 24 55.048 .39¢7
I 5 54758 31.324 7 52370 22.010 5 49.614 12.48

Fundamentally, the essence of cooperation is legrinom each other to which comparing can be distar
point. The next step is to benchmark the perforreamith other so-called ‘low vulnerability’ coal niing areas
which have already obtained outstanding indus&@@system management. In terms of benchmarking,nibt
only the final ranking or grouping that is of irgst, but also the contribution of each indicatothiem. This is
crucial and will be a valuable asset for identifythe problems in the industrial ecosystem of d owaing area.

For example, practices of CMIES governance of Xuzhhose vulnerability always remained at a lowelev
can provide the model and the reference for otleat mining areas with high vulnerability level. Ascoal
resource-based region and an old industrial basgzhdl has been committed to promoting industrial
transformation and ecological environment consioncin recent years. First, in order to override ttependence
on coal industry, Xuzhou actively nurtures non-tese-based industries such as biomedical, iron siedl,
engineering machinery, and so on. This improved el of regional industrial diversification. Add
geographical center of Huaihai Economic Zone aral ttAnsportation hub, Xuzhou vigorously develops th
logistics, trade, and tourism industry. While dniyithe transformation of traditional energy entisgs, Xuzhou
energetically develops the new energy industry sischhotovoltaic, wind power, and so on. After hyeh® years
of development, Xuzhou has been one of the lagyggiheering machinery industry and the new energystry
base in China. Second, Xuzhou continuously stramgthhe ecological restoration and environmenteptiatn,
and strives to improve the level of ecological laation construction. In 2008, Xuzhou establishibe
Sino-German Center for Energy & Ecological Envir@aminin Mining Areas through cooperation with the
German government, universities, and researchtutistis. The center aims to promote ecologicalorasion,
land reclamation, energy conservation, emissiomataoh, and the construction of ecological cultimdustry
park in Xuzhou mining area. So far, Xuzhou has msigmificant achievements in ecological environment
construction. The cumulative amount of controllething subsidence area in Xuzhou was more than 60, 0
acres, and its forest coverage rate reached 33@&hou has been successively evaluated as Chio@'set
investment environment city, the National Sanit@ity, and one of the first 7 national ecologicatdgn cities in
China.

6.3. Implication

Coal mining areas are special areas characterizsttdng man-land interaction. Reducing the vulbiity



of industrial ecosystem in coal mining areas haoob® an urgent task for the local government. Imglco,

policymakers are required to assess the CMIES valtildy situation from an overall perspective. Vheould

compare it with other coal mining areas and leemmfthose that are superior performers, specifiéalterms of
action programmes formulation by means of benchimgrkn addition, the assessment results show ttiet
vulnerability level of each CMIES changes continsiglas time goes on. This requires policymakermsstablish
the dynamic evaluation and prediction mechanismb@fCMIES vulnerability, and identify its changdas and
causes. Then they can develop the coping stratpgiéisently in advance.

In order to gain a thorough understanding of tiseilte of the ranking and grouping, it is necessanake a
closer look at the data behind each indicator. Wilk support the policymakers in making the apprafe
decisions and taking necessary actions to redécethustrial ecosystem vulnerability of these aindhe future.
For the coal mining areas with high sensitivityaw resilience of living system, developing noneece-based
industries and increasing the investment in sci@mcktechnology play an important role in reducinfperability.
Most coal mining areas with low stability of lifeqgport system in China are in the remote areas, dbdity to
attract external investment is inadequate. Thigearie central government to provide the necedsapcial
support and favorable policies on one hand, onadter hand, requires the local government to improv

investment environment by facilitating the constiare of infrastructure and restoring the ecosystem.
7. Conclusions

7.1. Key conclusions

In this study, a set of indicators related to tHdIES vulnerability was selected to construct a &iehical
structure of the CMIES Vulnerability Index (CVI).aBed on the primary vulnerability assessment imsdice
reducing the condition attributes by using a rosghtheory, we obtained 14 valid vulnerability exdion indices
without the loss of information. Subsequently, R&-TOPSIS-RSR methodology was structured in a sygie
way to evaluate CMIES vulnerability from an overpdirspective. The integration of three isolated ef®dan
exert each other’'s advantages as well as overctwie disadvantages. Therefore, this method proviaes
promising decision support system for adaptive rgameent of coal mining areas.

In application, the 33 coal mining areas of Chinerevranked and classified into three groups by CMIE
vulnerability from low to high, based on the CVbse derived from the RS-TOPSIS-RSR method. In afgit
by evaluating the CMIES’ sensitivity index, resilee index, and stability index, we showed the keplems and
their causes, which led to higher degree of CMIEBerability. The results verified the feasibiliy applying the
method to solve performance evaluation problemgaiming multi-alternative and multi-criteria, as Nvas
various decision-making activities in many othetds.

7.2. Outlook

Although initial results show the validity of theSRTOPSIS-RSR method, there are still some crifeetors

which need to be further explored. First, a setnofe comprehensive assessment indicators shoufdriber

investigated to provide a sound overall picturéndiustrial ecosystem vulnerability. Second, thesltssobtained



from the RS-TOPSIS-RSR model might be sensitivéhéo priority weights of the decision attributes.usha
change in the set of industrial ecosystem vulnétgalimdicators may lead to a different conclusidio. ensure the
robustness of the results to the utmost extengm@iaty analysis and sensitivity analysis couldpbgormed, by
changing indicator weights, or inputting data iffetent ways. This would also enable policymakeragsess the
effects on the evaluation process, in terms ofitmgact that a change in an indicator’'s weight retsn, or

indicator’s set could make.
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Appendix
Table A explains the reason for selecting eachuat@mlg indictor as well as the related referentables B.1
and B.2 provide the necessary information for eatidun basis. Tables C.1, C.2, and C.3 reproduceethdts in

Subsection 5.3. Tables D.1, D.2, and D.3 reprodineeesults in Subsection 6.1. These tables agdletkin the

Supplement file.
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Highlights

Introducing a hierarchical structure of Coal Mining Industrial Ecosystem Vulnerability Index.
Obtaining fourteen evaluating indexes without losing information using rough sets.
Proposing a new method to compare the vulnerability of coal mining industrial ecosystem.

Providing with a promising decision support system for industrial ecosystem management.



