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Abstract 37 

Risk-based approaches to managing contaminated land, rather than approaches based on 38 

complete contaminant removal, have gained acceptance as they are likely to be more 39 

feasible and cost effective. Risk-based approaches aim to minimise risks of exposure of a 40 

specified contaminant to humans. However, adopting a risk-based approach over alternative 41 

overly-conservative approaches requires that associated uncertainties in decision making 42 

are understood and minimised. Irrespective of the nature of contaminants, a critical 43 

uncertainty is whether there are potential risks associated with exposure to the residual 44 

contaminant fractions in soil to humans and other ecological receptors, and how they should 45 

be considered in the risk assessment process. This review focusing on hydrophobic organic 46 

contaminants (HOCs), especially polycyclic aromatic hydrocarbons (PAHs), suggests that 47 

there is significant uncertainty on the residual fractions of contaminants from risk 48 

perspectives. This is because very few studies have focused on understanding the 49 

desorption behaviour of HOCs, with few or no studies considering the influence of exposure-50 

specific factors. In particular, it is not clear whether the exposure of soil-associated HOCs to 51 

gastrointestinal fluids and enzyme processes release bound residues. Although, in vitro 52 

models have been used to predict PAH bioaccessibility, and chemical extractions have been 53 

used to determine residual fractions in various soils, there are still doubts about what is 54 

actually being measured. Therefore it is not certain which bioaccessibility method currently 55 

represents the best choice, or provides the best estimate, of in vivo PAH bioavailability. It is 56 

suggested that the fate and behaviour of HOCs in a wide range of soils, and that consider 57 

exposure-specific scenarios, be investigated.  Exposure-specific scenarios are important for 58 

validation purposes, which may be useful for the development of standardised methods and 59 

procedures for HOC bioaccessibility determinations. Research is needed to propose the 60 

most appropriate testing methods and for assessing potential risks posed by residual 61 

fractions of HOCs. Such investigations may be useful for minimising uncertainties associated 62 

with a risk-based approach, so that consideration may then be given to its adoption on a 63 
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global scale. This review critically appraises existing information on the bioavailability of 64 

HOC residues in soil to establish whether there may be risks from highly sequestered 65 

contaminant residues.    66 

 67 

 68 
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1. Introduction 72 

“To forget how to tend soils is to forget ourselves” (Mahatma Gandhi). 73 

Chemical contamination of soils is a global problem 1 and is arguably of similar 74 

significance as other major environmental challenges such as climate change and 75 

biodiversity loss 2. Sustainable soil management has a vital role for addressing the challenge 76 

of widespread contamination, especially with regard to attaining the United Nations 77 

‘Sustainable Development Goals’ 3. Among the anthropogenic contaminants of soils, 78 

hydrophobic organic contaminants (HOCs) require attention as they are persistent, they 79 

bioaccumulate, and are toxic and potentially carcinogenic 4-6. Examples of important HOCs 80 

include PAHs, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 81 

dichloro-diphenyl-trichloroethane (DDT) and other chlorinated pesticides. The risk of soil 82 

contamination by HOCs is a matter of great concern for human and ecological health 7. 83 

Human exposure to HOCs in soils may be by oral ingestion, inhalation, and/or dermal routes 84 

7, 8. Ingestion has been regarded as very important for HOCs, such as the PAHs 7, 9. 85 

Assessment of HOC contamination in soils is currently based on the measurement of 86 

total concentrations and the assumption that the measured HOCs are 100% bioavailable 10-87 

13. It has been reported that total contaminant concentrations in ingested soil or food do not 88 

provide a good measure of the contaminant’s absorption via the organism’s gut membrane 89 

or that absorbed into its systemic circulation 11, 14-18. This may be due to the interactions 90 

between the contaminant and the soil. Wide variations in soil and HOC properties may 91 

significantly affect bioaccessibility (bioavailability + potential bioavailability) of HOCs in 92 

humans 14, 19-21. For example, when HOCs enter soil, sequestration processes such as 93 

diffusion of molecules into inaccessible micro- and nano-pores, as well as sorption to soil 94 

components, are known to affect bioavailability and bioaccessibility 19, 22-27. Consequently, 95 

varying soil-organism-HOC interactions may influence the significance of potential harm that 96 

may result from exposure. Hence, the bioaccessible contaminant concentration rather than 97 

the total concentration in soil is more important for realistic risk assessment (RA) purposes. 98 
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Risk-based approaches to contaminant management and remediation offer feasible 99 

remediation practices in that they recognise that complete removal of a contaminant is likely 100 

to be technically very difficult, expensive, and sometimes unnecessary 28-31. Risk-based 101 

approaches need to be underpinned by a thorough understanding of the chemical behaviour 102 

of HOCs in soils, and in particular definition of the fraction of the total concentration that is 103 

relevant to biological or environmental impacts, i.e. bioaccessibility. Adoption and application 104 

of risk-based approaches face a significant hurdle due to the lack of regulatory recognition of 105 

the bioavailability concept which underpins the approach, although it is perceived as an 106 

important concept for RA within certain sections of the regulatory 32 and scientific 11-13, 15, 33 107 

communities. This is related to the lack of standard operating procedures (SOPs) for 108 

measuring the bioavailable fractions of HOCs in soil, as such measurements are still in their 109 

infancy. Although validated SOPs for bioavailability of thoroughly studied inorganic 110 

contaminants such as lead in soil have gained regulatory approval and are currently in use in 111 

the USA 34, there is no generally accepted SOPs for determining HOC bioavailability in soil. 112 

In addition, information on the bioavailability and risks associated with ‘residual’ HOCs in soil 113 

is limited. 114 

Although bioavailable fractions of HOCs are by definition of most concern in assessing 115 

their environmental and health risks in soil, it is yet to be demonstrated conclusively whether 116 

residues that remain following removal of the bioavailable fractions pose ongoing risk from 117 

long-term exposure, especially in historically contaminated soils 29, 35-39. In the absence of 118 

conclusive evidence regarding potential risk arising from long-term exposure to residual 119 

fractions, the adoption of the risk-based approach for HOCs is often challenged. There have 120 

been arguments regarding the significance of non-extractable residual (NER) fractions, 121 

defined in this review as highly sequestered residues, to ongoing risks in the long term 35, 36, 122 

39-45, because changes in environmental or exposure conditions may mobilise residual pools 123 

in soil 30, 43, 46-48. A number of papers have argued that long-term exposure to NER fractions 124 

in soil poses little or no risk because of the strong interactions between HOCs and soil 125 

components especially organic matter (OM), resulting in very slow remobilisation HOCs, 126 
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mainly through desorption 25, 26, 30, 31, 43, 49-51. Desorption rates of HOCs from historically 127 

contaminated soils and sediments have been reported to be slow or very slow (10-2 to 10-4 h-128 

1) 26, 49, and with half-lives that could last decades 50. For example, a study reported that the 129 

slowly desorbing fraction of 14C-phenanthrene slightly increased between 2 and 10 d in 4 130 

different artificially-spiked soils (4.8 - 10.25 % OM), with the soil richest in OM showing more 131 

pronounced effects with ageing 52. Other studies have corroborated these findings, with 132 

increases in the desorption-resistant (i.e. residual) fraction by up to 2 - 10 fold with ageing 26, 133 

53, 54. The implication is that with increase in the residual (or strongly-sorbed) fraction as 134 

ageing progresses, desorption of contaminants becomes increasingly difficult. Even when 135 

desorption does occur, it does so at a very slow rate such that the risk is acceptable, or that 136 

no risk is likely to be posed 55. However, this argument is mainly derived from indirect 137 

empirical relationships between contaminant sorption behaviour and soil OM structure 56. 138 

Although the afore-mentioned studies have been useful for understanding soil-HOC 139 

interactions on a macroscopic scale, more convincing molecular-level based approaches 140 

which directly depicts these interactions are lacking, especially given the current availability 141 

of advanced analytical techniques such as the nuclear magnetic spectroscopy (NMR) among 142 

others 56-58. While such advanced approaches may not be needed for routine assessment of 143 

residual fractions, detailed investigations of residual HOCs in a wide range of long-term 144 

contaminated soils will provide much needed data to regulators on potential long-term risks 145 

arising from such fractions remaining in soils. 146 

In contrast, it has been argued that long-term exposure to NER in soil may be harmful to 147 

receptors. For instance, enhanced PAH mobilisation has been speculated in long-term aged 148 

(50 years) soils from manufactured gas plant sites (MGP) under anoxic conditions and other 149 

changing environmental conditions such as temperature 55, 59, 60. Some studies also reported 150 

that higher organisms may have the capacity to access HOC residues, which were hitherto 151 

classified as inaccessible by microbial processes; this is due to differences in uptake 152 

mechanisms and exposure conditions such as gut conditions of specific organisms, including 153 

humans 38, 47, 61-65. However, none of these approaches would be a measure of the 154 
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bioaccessible fraction. Mayer et al. 65 also noted that it was important to investigate the 155 

potential availability of strongly-sorbed contaminant fractions to non-microbial receptors such 156 

as humans using in vitro gastrointestinal (GI) models, to further support the consideration of 157 

bioavailability and the risk-based approach within regulatory structures. In addition, it has 158 

been advised that regardless of whether risk-based land management (RBLM) approaches 159 

are adopted, monitoring will be useful to check contaminant remobilisation should there be 160 

changes in land use or environmental conditions 32. Such an approach is commonly used as 161 

part of monitored natural attenuation of groundwater or contaminated soils 66-73. 162 

These contrasting arguments raise the questions: 163 

(a) should RA be about the present, rather than the future? 164 

(b) what are the residual and bioaccessible HOC fractions in soils? 165 

(c) how they should be defined, classified, and measured? and  166 

(d) whether remobilisation of residual HOCs in soil and its associated potential risks are 167 

exposure-specific, for example, upon contact of residues with the GI fluid. 168 

To date, there have been only a few published studies that have reported potential 169 

remobilisation of HOC residues in long-term aged or historically contaminated soils, and 170 

potential risks to receptors 50, 55. These studies have mostly focused on ecological receptors, 171 

especially microbes and earthworms. Other sensitive receptors, especially those that 172 

simulate human physiology, are yet to be studied. The focus of much of the studies using 173 

animal models has been the assessment of bioavailable fractions rather than the more 174 

tightly bound residual fractions. While there have been studies that have attempted to 175 

elucidate soil-contaminant relationships using advanced molecular based techniques, such 176 

as the NMR, they have not focused on the dynamics of release or retention of residual 177 

HOCs in soil with respect to the combined effects of ageing, varying soil properties, 178 

environmental conditions and realistic exposure scenarios, or the controlling mechanisms 56, 179 

58. 180 

To minimise uncertainties associated with risk-based approaches, understanding the 181 

influence of soil properties, ageing and exposure-specific factors on the potential release 182 
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and harmful effects of HOC residues in soil is necessary. Importantly, understanding the 183 

mechanisms controlling underlying processes, especially at a molecular scale, may 184 

complement previous empirical relationships describing the fate and behaviour of HOCs in 185 

soil. Within the context of RBLM approaches for soils contaminated with HOCs, the objective 186 

of this article is to critically review existing information on the bioaccessibility of HOC 187 

residues in an attempt to establish whether there is a need to further investigate potential, or 188 

the likelihood of harm being caused by highly sequestered residues in soil. 189 

2. Fate and behaviour of HOCs in soil 190 

The fate and behaviour of HOCs, such as PAHs, in soil has been studied for more than 191 

two decades 21, 29, 74, 75. Following their addition to soil, PAHs are subjected to various physio-192 

chemical, biological, and environmental processes that are summarised in Fig. S1 in the 193 

supplementary material 21, 29, 74, 76, 77. In the longer term, PAHs in soil are subject to the 194 

‘ageing effect’ 19, 22, 75, 78-81 that results in significant partitioning of PAHs within the soil 195 

leading to a reduction in mobility, extractability (bioaccessibility), and bioavailability. Over 196 

time, HOC in soil becomes less available to exposed biological membranes (Fig. 1). The 197 

ageing effect is due to the increasing HOC interactions with heterogeneous soil matrix 198 

components, including mineral and organic matter and their associated pore structures and 199 

spaces 27, 82, 83. Persistent HOCs diffuse into micro- and nano-interstitial spaces within the 200 

soil matrix and interact through a number of potential physical and physiochemical 201 

processes with soil components 25, 27, 54. The behaviour is termed ‘sorption’ and results in 202 

weak or strong HOC retention in soil 22, 82, depending on the key soil properties that influence 203 

the sorption at a particular time 26, 27, 75, 84-89. Not only do soil-related properties influence 204 

sorption, but the physicochemical properties of the HOCs (Table S1 in supplementary 205 

material) may also influence the process as well 26, 89.  In addition, the degree of 206 

hydrophobicity or aqueous solubility may indicate whether HOCs associate with the organic 207 

or mineral solid phases of the soil matrix, and could influence associated rates and extents 208 

of sorption and desorption in soil. 209 
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2.1. Mechanisms controlling sequestration of HOCs in soils: Implications for mobility and 210 

bioaccessibility 211 

The heterogeneity of soils at macro- (aggregate) and micro-(particle) scales may 212 

influence HOC accessibility and potential risk upon biological exposure 19, 27, 82, 85, 87, 88, 90. 213 

However, modifying processes may influence risks due to exposure (Fig. S1 in 214 

supplementary material). Sorption and desorption play major roles in controlling HOC 215 

bioaccessibility in soil 26, 27, 60, 82, 91, 92. Soil organic matter and mineral heterogeneity play 216 

significant roles in dictating mechanisms of sorption and desorption of contaminants, as they 217 

may control rates of diffusion of the contaminants in the soil matrix 27, 93.  218 

Isotherms fitted to sorption models (e.g. Freundlich and Langmuir, among other models) 219 

have shown that sorption is mostly non-linear as solution concentrations increase 85. The 220 

non-linearity index (n) is reported as less than unity, indicating heterogeneity of sorption sites 221 

in soil 88, 94. Two sequestration phases are likely within soil, i.e. external (as influenced by 222 

advection and diffusion) and internal (influenced by diffusion and adsorption) 82. While the 223 

former is unlikely to be rate-limiting in determining slow sorption and especially slow 224 

desorption, the latter is likely 27, 82, 84, 85, 95, 96. In a particle of soil, a HOC molecule could be 225 

small enough that it fits into minute pore spaces, following diffusion through the dissolved 226 

water phase. Such a tortuous journey occurs with increased ageing such that contaminant 227 

remobilisation is unlikely 84, unless influenced by changing environmental conditions. Soil 228 

conditions such as absence of oxygen, increased temperature, and soil mixing may 229 

potentially influence the release of previously sorbed HOCs via a tortuous and reverse-230 

phase journey (i.e. from the sorption sites within the soil matrix back to the dissolved water 231 

phase or soil surface) 59, 60, 97. 232 

 Pignatello and Xing 82 explained that to better understand mechanisms of slow sorption, 233 

it was important to consider the following: 234 
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(a) That mass transfer processes including associated rate constants differ tortuous 235 

diffusion. This may be related to the diverse activation energies associated with 236 

different sorption sites within the soil matrix 84, 85, 98; 237 

(b) It appears that sorption becomes stronger with decreasing sorbate concentration. 238 

Sorption equilibrium of HOCs in soil is concentration-dependent 99, 100; and 239 

(c) The kinetic-hysterical nature of sorption-desorption processes, whereby the rate 240 

constants during slow sorption appear greater than slow desorption for the same HOC 241 

and soil. Hence, the rate and extent of formation of strong HOC-soil bonds becomes 242 

faster compared to breaking such bonds 84, 85. 243 

Models describing sorption and desorption mechanisms include diffusion in organic matter, 244 

sorption-retarded pore diffusion, intra-particle organic matter diffusion, pore deformation, and 245 

pore swelling, among others. These mechanisms may be stand-alone or synergistic in 246 

different situations; detailed reviews have been presented elsewhere 27, 38, 39, 82, 101-104. 247 

Many researchers have focused on sorption and associated mechanisms. Of more 248 

importance, however, is desorption which dictates contaminant mobility, accessibility and 249 

potential risks. Hence, understanding desorption of HOCs in soil, especially from residual 250 

pools, including associated mechanisms is important. Nonetheless, because of the interplay 251 

between both processes in defining rates and extents of HOC release from soil, and hence, 252 

potential risks, both processes are discussed in detail in subsequent sections. 253 

2.1.1. Sorption of HOCs by soil and contaminant pool classification 254 

Sorption plays an important role in influencing HOC bioavailability, and hence, associated 255 

mobility, transport, loss, and biological effects such as bioaccumulation, biomagnification 256 

and biotransformation 82, 84, 105, 106. HOC pools in soil can be segregated into fractions ranging 257 

from that which is weakly sorbed to the strongly sorbed 22, 27. The continuum may comprise 258 

dissolved, weakly sorbed and rapidly desorbed, the slowly desorbed, and the strongly bound 259 

fractions (Fig. 2). Although, this contaminant sorption continuum is a simplification 260 

considering the complex and dynamic nature of soil-contaminant interactions, it helps 261 
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understanding of complex processes 25, 54, 82. These pools presents different barriers for HOC 262 

desorption, mobility, and availability. For example, PAHs in dissolved and weakly sorbed 263 

(rapidly desorbing) pools are likely to be readily accessible to exposed organisms 10, 12, 15, 107, 264 

108. However, the strongly sorbed and bound (slowly desorbing) pool is presumed to be less 265 

bioavailable 43, 50, 109. 266 

Earlier studies have mostly focused on using sorption isotherms (e.g. Freundlich and 267 

Langmuir) and distribution coefficients (Kd) in describing the mostly non-linear HOC sorption 268 

behaviour in soil 85, 110. These have resulted in proposing empirical relationships between 269 

distribution and partitioning coefficients (Log Kd or Log Koc) of different HOCs and soil 270 

properties 88, 94, 111-114. However, the sole use of Log Koc or octanol-water partition coefficient 271 

(Log Kow) to describe HOC sorption in soil should be used with caution, as other intrinsic soil 272 

properties such as SOM-clay mineral interactions may play greater roles in influencing 273 

sorption processes 113, 115. In addition, while these empirical relationships are valuable and 274 

have formed the basis for emerging investigations, inferences regarding the relationship 275 

between soil properties and HOC sorption behaviour have been based on indirect 276 

observations 56.  277 

Of the current advanced analytical techniques, NMR has been reported to provide 278 

mechanistic information on molecular-scale soil-contaminant interactions at the solid, liquid, 279 

and soil-water (gel) phases 56, 57. In many NMR investigations, the soil is physically or 280 

chemically fractionated into operationally defined pools in an attempt to obtaining direct 281 

molecular information about SOM composition 57, 116-120 and understand precise HOC 282 

sorption behaviours in soil 99. Although, the actual nature of the SOM is still contentious 121, 283 

these investigations provide detailed understanding on the dynamics of SOM-HOC 284 

interactions. However, physical or chemical fractionation is likely to change the behaviour of 285 

HOCs. Some NMR investigations of soil-contaminant interactions have been reviewed 286 

elsewhere 56, 58. However, while applications of NMR spectroscopy in soil science are 287 

emerging, investigations towards understanding HOC sorption mechanisms especially for 288 

historically contaminated soils are still lacking. Therefore, molecular level understanding of 289 
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the long-term stability of strongly sorbed HOC residues in historically contaminated soils 290 

would help minimise uncertainties relating to risk based approaches to managing 291 

contaminated soils. Such investigations should employ both empirical and advanced 292 

molecular-based techniques in a complementary and multi-tiered manner to provide robust 293 

evidence on the long-term stability of highly sequestered contaminant residues in soil. 294 

2.1.1.1. HOC residual pools in soils 295 

The total contaminant pool is made up of potentially labile and non-labile pools (Figs. 1 296 

and 2). While the labile fraction consists of the dissolved and rapidly desorbable fractions, 297 

the non-labile component is comprised of the non-desorbable and irreversibly sorbed or 298 

recalcitrant fractions 10, 79, 107, 122, 123. There are no methods for the determination of non-labile 299 

residual HOC fractions, especially relating to changing exposure scenarios and estimations 300 

of harm. Furthermore, a residue which may not be accessible to microorganisms may be 301 

accessible to other living organisms such as earthworms, plants and other higher forms 302 

including humans due to differences in the mechanisms of contaminant uptake and release 303 

32, 62, 124. Specifically in relation to HHRA, that fraction of the mobilised or dissolved 304 

contaminant in the gut, following ingestion, which is absorbed and may cause harm is the 305 

bioavailable fraction 28 and the un-mobilised fraction is referred to as the residue 125. 306 

However, there seems to be confusion regarding what the residual fraction in soil really is. It 307 

could be the fraction remaining after the complete release of the labile fraction (measured by 308 

an in vitro technique) or the residues from historically contaminated soils. The NER, 309 

especially in EHRA, is mostly regarded as the fraction that is left behind after solvent 310 

extraction 126. Tao et al. 61, 127 suggested that the difference between the concentration of 311 

PAH and organochlorine pesticides mobilised by an in vitro digestion model (which was 312 

greater) and that extracted by accelerated solvent extraction represents a part of the residual 313 

fraction. On the other hand, Juhasz et al. 62 suggested that the residual fraction was that 314 

which remained after long-term ongoing bioremediation of a field-contaminated soil; this 315 

description appears similar to that in Thavamani et al. 30. While the former description of the 316 
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residual fraction may be more relevant for HHRA purposes, the extracting medium should 317 

mimic the GI fluid.  318 

A residual fraction from an EHRA perspective may differ from an HHRA perspective with 319 

respect to concentrations and specific receptors. Hence, while the use of highly sequestered 320 

fraction may be relevant for EHRA purposes 107, its relevance for HHRA purposes must also 321 

be demonstrated 19. To the regulator, a remediated soil is one in which risk from exposure to 322 

remaining or residual fraction is reduced to an acceptable level which may depend on 323 

ultimate end use. 324 

2.1.2. Desorption of HOCs in soil 325 

2.1.2.1. Slow desorption of HOCs in long-term contaminated soils  326 

The bioavailability of HOCs in soil following exposure is limited by its desorption kinetics 327 

97, 128. Desorption rates and extents may influence various contaminant loss processes such 328 

as biodegradation, uptake and bioaccumulation among others, and are therefore key factors 329 

for RA. Carmichael and others investigated whether microbial mineralisation of PAHs in soil 330 

is limited by their desorption rates 91. Using 14C-radiolabelling, they examined the desorption 331 

kinetics and microbial mineralisation kinetics of freshly spiked 14C- and aged 12C-332 

phenanthrene and chrysene in two soils from a tar and oil-recycling sites. The key findings 333 

were that the rates of desorption were faster than mineralisation rates in 14C-PAH spiked 334 

contaminated soils, however, the mineralisation rates of native PAHs in the organic carbon-335 

rich contaminated soil were faster than or equal to their desorption rates. Hence, the rates 336 

and extents of PAH desorption in historically-contaminated soils may represent a limitation to 337 

their biodegradation. This may be one reason why PAHs persist in microbially-active soils 338 

129. Based on their results, the sole use of 14C-radiolabels in describing fate and behaviour of 339 

PAHs in soil should be applied with caution 91. 340 

One study combined both 14C- and 12C- techniques to monitor the long-term fate and 341 

behaviour of HOCs in soil 50. Extractability was observed to be low and desorption very slow 342 

(calculated half-lives of up to 38 years for fluoranthene), which supports the notion that risks 343 
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from exposure will be minimal 31, 55. However, it was pointed out that the results were only 344 

applicable to contaminated agricultural soils used. They recommended that similar 345 

investigations be conducted on historically-contaminated soils from different sources 50. It is 346 

further suggested here that different exposure scenarios and other key risk endpoints, such 347 

as earthworm bioaccumulation, plant uptake, and animal-based bioavailability and in vitro 348 

bioaccessibility assays, should be considered in addition to microbial degradation and 349 

chemical extractability for a robust conclusion. For instance, following maximum desorption 350 

of labile HOCs in field-contaminated sediments, slow intercompartmental reorganisation and 351 

remobilisation of HOCs have been observed 46. It is also known that gastric, and intestinal 352 

fluids especially bile and other intestinal enzymes, can influence the solubility and 353 

mobilisation of soil-associated HOCs 61, 125, 130. Such gastrointestinal effects may influence 354 

HOC desorption behaviour from residual pools and their remobilisation. Hence, considering 355 

other exposure scenarios, other than microbial-specific ones, may further demonstrate and 356 

authenticate the fact that historically aged HOCs in field-contaminated soils are mostly 357 

residual and slowly desorbing, and as a result, pose minimal risks. Again, application of 358 

direct molecular-level tools in this regard may be useful. 359 

2.1.2.2. Desorption phases of HOCs and associated kinetics in soil 360 

Studies using artificially-spiked and historically-contaminated soils have described HOC 361 

desorption in two or three-phases 26, 49, 52, 60, 83, 91, 131-133. While biphasic desorption comprise 362 

both rapid (Frapid) and slowly (Fslow) desorbing fractions including associated rate constants 363 

(krapid and kslow respectively), triphasic desorption includes a very slowly desorbing fraction 364 

and rate constant (Fvery slow and kvery slow). However, considering the heterogeneity and 365 

complexity of soil-HOC interactions in the field, it is likely biphasic and triphasic models are 366 

simplifications of multiple desorption phases in reality 134. 367 

To describe desorption kinetics of HOCs in different soils and humic materials, various 368 

models that assume different desorption phases have been used 26, 49, 83, 134, 135. The key 369 

observations from these studies were that the 3-parameter biphasic (i.e. one that assumes 370 

quick equilibration for Frapid) and 3-parameter biphasic polymer diffusion models were 371 
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recommended as preferable for predicting HOC desorption kinetics in contaminated soils 372 

compared to others, although rate limiting site-specific conditions must be considered. 373 

Importantly, these studies revealed that rates of slow desorption (kslow) from strongly sorbed 374 

pools could range from between 10-2 to 10-4 h-1 26, 49, 134, depending on stage of SOM 375 

diagenesis and hydrophobicity of the HOCs of concern 37, 136, 137. Generally, kslow was 376 

reported to be up to 2 orders of magnitude lower than krapid 
50. Similarly, the highly 377 

condensed soil or humic material (e.g. kerogen-like shale) tends to retain a greater 378 

percentage (up to 70%) of the residual HOC fractions 49, 134. This residual fraction may 379 

increase by up to 2 - 10 folds with ageing 26, 53, 54. These observations support the argument 380 

that long-term exposure to NER fraction may pose no risk 31. However, a complementary 381 

molecular-scale approach to providing such evidence for different exposure scenarios is still 382 

necessary 56, 57. 383 

2.2. Biodegradation of HOCs in historically contaminated soils 384 

Biodegradation influences the fate and behaviour of HOCs in soil 12, 138. However, HOCs 385 

sequestration happens along with the biodegradation process. Biodegradation is often 386 

observed as a biphasic process which occurs in two phases, i.e. fast and slow loss phases. 387 

Due to its biphasic nature, biodegradation may not necessarily lead to the total removal of 388 

contaminants in soil, but may result in transformations that lead to reductions in initial 389 

concentrations, mobility and toxicity of contaminants, thereby, reducing the level of harm to 390 

flora and fauna 139-141. Bacteria, fungi and algae play important roles in the biotransformation 391 

and biodegradation of contaminants in soil 142-144. Generally, for biodegradation to occur, 392 

microorganisms with sufficient capacity to degrade the contaminant of concern (i.e. 393 

possesses relevant degradation enzymes) should be present in soil; the contaminant must 394 

be bioavailable or become bioavailable, and environmental factors must permit the 395 

biodegradation process 133, 142, 145, 146. Microbial mineralisation of HOCs is limited by HOCs’ 396 

desorption kinetics, especially in long-term contaminated soils, thereby supporting its 397 

biphasic nature 91. Therefore, bioremediation (cost-effective remediation technique relying on 398 
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optimising contaminant biodegradation) is sometimes constrained due to sorption limitations 399 

which limits microbial accessibility to HOCs in aged soils leaving behind residual 400 

contamination in soil or sediment 29, 47. Different mechanisms through which microorganisms 401 

circumvent accessibility limitations include attachment to soil surfaces to allow HOCs 402 

partitioning from soil into microbial cell membrane, co-metabolism, and production of 403 

extracellular enzymes and biosurfactants to enhance HOCs mobilisation from sorbed phases 404 

to microbially-accessible spaces in soil 145, 147.  405 

The lingering question is whether the residual contaminant fraction (i.e. the fraction that is 406 

not biodegradable or extractable/mobile/bioaccessible) in soil could potentially cause harm? 407 

With regards to biological uptake of contaminants, microbial inaccessibility of HOCs in 408 

historically contaminated soil may not mean inaccessibility by other exposed higher 409 

organisms, as contaminant accessibility is species and matrix dependent 62, 133. A 410 

contaminant must desorb or be bioaccessible to allow biological uptake. Hence, like 411 

sorption/desorption processes, different soil and organism properties may modify 412 

contaminant uptake in soil. Other abiotic loss processes such as volatilisation, photolysis, 413 

leaching, and chemical transformations may also affect fate and behaviour of HOCs in 414 

historically contaminated soils (Fig. S1 in supplementary material). However, these effects 415 

are mostly insignificant compared to losses by biodegradation, especially for very 416 

hydrophobic HOCs 29. 417 

3. Bioavailability and bioaccessibility of HOCs in soil 418 

The concept of HOC availability has increasingly attracted diverse discussions within the 419 

scientific and regulatory community 11, 107, 148. The concept has been used differently in 420 

specific fields such as toxicokinetics, pharmacokinetics, agriculture, and environmental 421 

science among others 11, 22, 77, 149. The terms ‘bioavailability’ and ‘bioaccessibility’ have mostly 422 

been used interchangeably in the literature 150, 151, within EHRA and HHRA. However, the 423 

terms are different but related measures 15, 77. Specifically for HHRA, Hack and Selenka 125 424 

and Ruby et al. 151 considered the bioaccessible contaminant fraction as the dissolved and 425 
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mobilisable fraction within simulated GI fluid, following ingestion of HOC-laden soil. This 426 

bioaccessible fraction, therefore, represents the contaminant fraction maximally available for 427 

intestinal absorption (Fig. 3). For EHRA, the different definitions proposed for bioavailability 428 

and bioaccessibility has been compared and reviewed elsewhere 77, 149. 429 

A quick citation analysis of the definitions by Peijnenburg and Jager 152, Semple et al. 15 430 

and Reichenberg and Mayer et al. 153 which are mostly used for EHRA is presented in Fig. 4. 431 

The analysis was performed by comparing the number of times each definition was cited as 432 

revealed from Web of science, Scopus, and Google Scholar on 02 December 2015. The 433 

definitions provided by Semple et al. and Reichenberg and Mayer had been more cited. 434 

However, this analysis does not suggest actual uses of the bioavailability definitions within 435 

the scientific and regulatory communities. The recent European Centre for Ecotoxicology 436 

and Toxicology of Chemicals (ECETOC) workshops 35, 36, 107 adopted the bioavailability and 437 

bioaccessibility concept by Semple and others 15. Recently, the mostly used definitions of 438 

contaminant availability in RA were articulated 10, as shown in Fig. 5. Hence, bioavailability 439 

and bioaccessibility in this article and with respect to EHRA follows definitions by Semple et 440 

al. and Reichenberg and Mayer. 441 

3.1. Measurement techniques for bioaccessible and residual HOC fractions in soil 442 

Various techniques have been developed for HOC bioavailability or bioaccessibility 443 

measurement, and are presented in Table 1. However, there is no consensus on the choice 444 

technique. While it has been documented that a few methods are being standardised for 445 

ecological receptors such as microbes 10, there is an urgent need to develop and validate 446 

SOPs for HOC bioaccessibility in soil, especially for HHRA. 447 

Ultimately, a biological experiment is needed to study HOC bioavailability in soil. For 448 

example, if humans are the most sensitive receptors for a particular RA procedure, then a 449 

human or higher vertebrate model will be most appropriate test organism. However, this 450 

approach is unethical and in fact, there have been moves away from  animal-based testing 451 

154, 155. Also, animal-based studies are expensive, time consuming, and may have challenges 452 
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with reproducibility 33. Hence, over the past few decades, focus has shifted to development 453 

and validation of simple and complex in vitro, including in silico, approaches for contaminant 454 

bioavailability or bioaccessibility assessments. Ideally, the expectation for these in vitro 455 

approaches are that they serve as uncomplicated bioavailability surrogates for the 456 

environmental receptor of concern. This implies that for any realistic applications in RA, 457 

these alternative approaches must be validated and standardised. However, while much 458 

efforts has been focused on the development side, less efforts has been devoted to 459 

validation of in vitro approaches for use in reality. It is therefore suggested that while 460 

development of innovative bioavailability techniques are necessary, validation and 461 

standardisation of existing promising in vitro methods are important for minimising 462 

uncertainties in RA. 463 

3.1.1. Brief classification of techniques 464 

The approaches for determining bioavailability and bioaccessibility can either be 465 

classified as biological (in vivo), chemical extraction (in vitro) or computer modelling (in 466 

silico). A clear distinction has to be made between the actual bioaccessible fraction and the 467 

residual fraction as has been previously emphasised. Most currently developed in vitro 468 

methods have focused on microbial degradation and earthworm bioaccumulation as 469 

ecological endpoints, hence, various biodegradation and ecotoxicity assays are available 30. 470 

However, significant efforts at developing in vitro bioaccessibility assays for HOCs, such as 471 

PAHs, in soil especially for HHRA is only beginning to gain attention.  472 

A detailed review of simple chemical extraction techniques for measuring bioaccessibility 473 

for specified ecological endpoints can be found elsewhere 12, 77, 133, 156, 157. Some of these 474 

methods include Soxhlet extraction, solid-phase extraction (SPE), negligibly depleting solid-475 

phase micro-extraction (nd-SPME), hydroxypropyl-β-cyclodextrin (HPCD) extraction,  476 

supercritical fluid extraction (SFE), use of complexation or solubilisation agents and 477 

surfactants, microwave extraction, persulphate oxidation, thermodesorption, soil-sediment 478 

availability ratio (SARA), use of polyethylene devices (PEDs), semipermeable membrane 479 
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devices (SPMDs), polyoxymethylene (POM) sampler, and thin ethylene vinyl acetate (EVA). 480 

While the in silico approaches for bioaccessibility calculations and predictions with computer-481 

based programs could be potentially useful 158, significant developments may be limited by 482 

the quality and quantity of reliable bioavailability data from laboratory or field experiments. 483 

None of the methods summarised above provide a clear measure of residual fraction.  484 

Given this scenario, the most likely approach to assessing potential risks arising from such a 485 

fraction may be via toxicological studies that expose sensitive receptors to such fractions. 486 

Whether these highly sequestered fractions do get released in the gut or are bioaccumulated 487 

in organisms including earth worms or plants may then be investigated. 488 

3.1.2. Exhaustive extraction techniques (EETs) versus non-exhaustive extraction 489 

techniques (NEETs) 490 

The feasibility of using chemical extractions to predict the bioavailability or bioaccessibility 491 

of HOCs and to determine associated residues in soil has been proposed and widely 492 

discussed. Mostly, apolar and polar solvents of varying extraction strengths have been used. 493 

Harsh extractions (or EETs) use strong solvents such as dichloromethane (DCM), hexane, 494 

acetone, and toluene 159. Mild extractions (or NEETs) make use of weaker solvents (or mild 495 

solvent - water mixture) such as methanol, n-butanol or propanol 160. The extraction with 496 

EETs and NEETs simply involves thorough mixing of a contaminated soil sample with 497 

solvent for a given duration. Analysis of the extract is then performed by chromatography 498 

(HPLC or GC), mass spectrometry, spectrophotometry, or radio-isotopic analysis 22, 133, 159, 499 

161, 162. 500 

Exhaustive extractions generally overestimate the bioavailable contaminant fractions. As 501 

a result, they are over-predictive of actual risks and often seen as too conservative and as a 502 

consequence are likely to result in a technically difficult and expensive remediation of 503 

contaminated sites 75, 159, 161, 163, 164. The effect of ageing (120 d) on HOCs extractability was 504 

unchanged using DCM, while it is well known that ageing results in a decrease in 505 

bioavailability of HOCs in soil 161. Kelsey et al. 159 showed that DCM extractions failed to 506 
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predict the availability of phenanthrene and atrazine to specialized bacteria and earthworms 507 

over a 120 d period, while better prediction was achieved when mild extractions (n-butanol 508 

and methanol-H2O) were used 159. Similarly, a strong correlation was reported between 509 

butanol extractability and microbial bioavailability for phenanthrene (R2 = 0.971; y = 0.952x + 510 

0.943) and pyrene (R2 = 0.994; y = 0.998x - 0.990) in artificially spiked soil 165. These studies 511 

support the use of NEETs, rather than EETs, to predict HOCs bioavailability in soil. In 512 

addition, the use of harsh and mild solvents for HOC bioaccessibility determination in RA 513 

has been deemed unreliable, for example in Germany, since they do not possess a clear 514 

mechanistic basis 108. 515 

Advanced NEET methods exploit HOCs’ hydrophobicity to allow their partitioning or 516 

mobilisation towards a hydrophobic aqueous or solid phase within a soil or sediment 517 

suspension. Advanced NEETs include an aqueous-based technique such as hydroxylpropyl-518 

beta-cyclodextrin (HPCD) for extraction of HOCs in soil especially low molecular weight 519 

(LMW) PAHs 164, 166, 167. They also include solid-phase adsorbents, such as SPME or Tenax, 520 

for extraction of HOCs in sediments and soil-water suspensions 26, 64, 168. Various studies 521 

have shown that HOC extractability from a wide range of contaminated soils using these 522 

techniques often correlates with different ecological endpoints such as microbial 523 

degradation, earthworm bioaccumulation, and plant uptake 53, 64, 169, 170. Nonetheless, these 524 

techniques have also shown poor HOCs bioaccessibility correlations especially when a non-525 

microbial receptor is considered 19, 64, 79, 171. Factors which may affect bioavailability such as 526 

ageing, soil properties among others are presented in Table S2 in the supplementary 527 

material and have been reviewed in detail elsewhere 75, 77, 133, 161, 172, 173. 528 

3.1.3. Can the desorption-resistant fraction be measured or estimated? 529 

Desorption techniques are presented in Table 1 and are further discussed below. These 530 

techniques have different guiding principles and none has been standardised to date. They 531 

have mostly been devoted to measuring the leachable, extractable, bioaccessible fractions 532 

using microbes and earthworms among other ecological receptors, as sensitive endpoints. 533 

However, measurements of the bioavailable and residual pools, as currently delineated, is 534 
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problematic 43. The residual fraction may not simply be the total minus the bioavailable or 535 

bioaccessible fraction. In a study by Cuypers et al. 129, it was observed that persulphate 536 

oxidation of soils (n = 7) and sediments (n = 7) under-predicted the biodegradable fractions 537 

of 5 and 6 rings PAH. In contrast, the residual fractions after oxidation and biodegradation 538 

agree with an almost 1:1 correlation. It is not clear if desorption and bioavailability which 539 

impact biodegradation are similar to those for a toxic endpoint. According to ISO 17402 174 540 

and as documented by Kordel et al. 108, there are practical differences between 541 

‘environmental availability, environmental bioavailability, and toxicological bioavailability’. If 542 

these do differ, it may imply that residual fractions may also vary for biodegradation and 543 

toxicological endpoints, and between EHRA and HHRA. However, to predict the significance 544 

of harm that may be caused from exposure, desorbable concentration from residual fractions 545 

in soil must then be considered. 546 

Recently, Mayer and others developed an isolation and quantification technique for the 547 

so called ‘desorption-resistant’ or residual fraction using a contaminant trap method 65. The 548 

contaminant trap was simply a PDMS-activated carbon sink and a cyclodextrin diffusive 549 

carrier in a custom-made un-agitated reactor. In this study, 12 PAHs in two industrial-550 

contaminated soils from different sources were studied; a contaminated material dumpsite in 551 

Austria (4.6% organic carbon, OC, w/w) and a former historically-contaminated MGP site 552 

(1.5% OC w/w). The soils were incubated in the trap for 1, 7, 31 and 92 d, and for 4, 7, 14, 553 

28, 56, 77 and 92 d for desorption and biodegradation experiments respectively. After soil 554 

slurry filtration following desorption and biodegradation, the filtrate and residual samples 555 

were exhaustively extracted and analysed for PAH concentrations using HPLC-FLD and 556 

reverse phase HPLC-FLD respectively, and then compared. The elimination kinetics and 557 

trapping efficiency of the contaminant trap for the PAHs in soil were reportedly adequate, 558 

and improved if the traps were agitated 65. Although, the residual concentrations of individual 559 

and total PAHs quantified by the trap in the first soil were less than those analysed after 560 

biodegradation, desorption limits by the trap and biodegradation limits plateaued similarly 561 

above the Danish regulatory limit of 40 mg/kg dry weight of soil. However, PAH desorption 562 
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and biodegradation in the second soil was hardly noticed, as both processes were in good 563 

agreement. The PAHs were strongly sorbed in both soils, however, the soil with lower 564 

amounts of OC exhibited stronger sorption resulting in smaller biodegradative losses and 565 

greater residual PAH concentration, compared to the soil richer in OC. The authors noted 566 

that the quality (origin, type, and composition) of OC and pollution history of soil, rather than 567 

quantity of OC determines HOCs sorption behaviour 65. This observation further revealed the 568 

importance of using direct molecular-level techniques with the capacity for such information 569 

to complement empirical approaches, for a robust description of HOC sorption-desorption 570 

behaviour in soil. 571 

An improved extraction method was developed which included a silicone rod as an 572 

adsorption sink to optimise mass transfer, and HPCD as diffusive carrier 175. This silicone-573 

based extraction (SBE) method was based on the principle that after desorption from the 574 

solid to aqueous phase in soil, uptake by a microbial receptor creates a gradient which 575 

facilitates mass transfer processes until equilibrium is reached. In the SBE method, the 576 

silicone rod acted as a quasi-reservoir, rather than a trap, such that sorbed residues could 577 

be back-extracted. Using the SBE method, the researchers evaluated desorption of PAHs 578 

from wood soot (50 mg), as the sorbent matrix, with initial PAH concentration (mg/kg) 579 

ranging from 7.02 ± 0.22 - 108.54 ± 3.36 (median and total PAHs concentration = 55.47 ± 580 

1.42 mg/kg and 646.96 ± 19.95 mg/kg respectively). The mobilised and desorbed fraction 581 

were compared in the presence and absence of sink (i.e. HPCD only). In comparison with 582 

the HPCD only extraction, SBE extracts contained up to 3 - 25 times greater individual PAH 583 

concentrations. Although, extractions using the SBE were compared with HPCD extractions, 584 

direct comparison of SBE extractable and associated residue with the microbially degradable 585 

fractions and residues may be more useful, as in Mayer et al. 65. However, the SBE 586 

procedure seems complex and may be technically demanding, and does not demonstrate 587 

the relevance of the derived residual fractions to HHRA. 588 

It appears that only a few studies have focussed on understanding HOCs desorption or 589 

extractability from residual pools in soil, especially with respect to HHRA 61, 62, 127, 176. A 590 
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reliable measurement approach for the desorption-resistant fraction may be very useful in 591 

RA. For example, such methods may be needed to test the effectiveness of techniques 592 

which are based on extraction of the labile pools, in that the residue remaining after 593 

extraction is investigated for further extractability. Such approach, may then reveal whether 594 

the residual contaminants are actually bound in soil or could be potentially mobilised. Hence, 595 

there is a need for further investigation into the development of a simple, reliable, robust, 596 

adjustable, and exposure-relevant technique for delineating and quantifying residual HOC 597 

pools in a wide range of soils. 598 

3.1.3.1. Can chemical extractions be used to classify HOC residues in soil? 599 

In a recent ECETOC report, extractions using mild extractions (including NEETs) and 600 

EETs were denoted as extractable and NER fractions 35. The ‘NER’ term as used implies not 601 

extractable by mild extractions, but by exhaustive extractions. However, this ‘NER’ term 602 

could be a misnomer and its use is confusing as a contaminant fraction is either extractable 603 

or not. Hence, NER is referred to as a highly sequestered contaminant fraction in this article. 604 

The residues left after exhaustive extractions which can only be assessed using 14C-605 

radiocombustion methods were referred to as bound residues 35. Although the residue 606 

classification scheme was only relevant for EHRA, it appears superficial and may not even 607 

be appropriate for all ecological receptors. This is because the proposed scheme did not 608 

fully consider issues such as relationships between reversibility of sorbed HOCs, physico-609 

chemical properties of HOCs and the soil matrix, and physiological variations within complex 610 

organisms such as plants and aquatic organisms, let alone humans. Therefore, the 611 

development of an ‘intelligent extraction strategy framework’ which considers some of the 612 

aforementioned issues has been proposed 107. Such an approach must enable risk 613 

assessors including regulators to predict with confidence whether highly sequestered 614 

fractions do pose ongoing risks from long-term exposure to historically contaminated soils. It 615 

is therefore important to re-emphasise the need to investigate the differences in mechanisms 616 

of desorption and uptake from residual HOC pools in soils by key organism classes, and to 617 

conclude whether these differences can be measured and/or described using chemical 618 
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extractions. Such investigations may help in properly delineating residual and non-residual 619 

HOC pools in soil, and help minimise uncertainties associated with RA. 620 

3.2. General comments on the bioavailability or bioaccessibility of highly sequestered 621 

residues in soil and their implications for RA 622 

There are obvious challenges associated with the incorporation of bioavailability or 623 

bioaccessibility concepts within current regulatory structures including the lack of precision 624 

and inconsistency in the use of the bioavailability and bioaccessibility terms; confusion 625 

regarding what is actually being measured; inadequate systematic comparisons to reveal the 626 

most reliable prediction methods for bioavailability or bioaccessibility after considering 627 

contaminant-organism-matrix differences; contaminant availability prediction methods that 628 

are not validated; and scarcity of clear guidance on how the contaminant availability concept 629 

can be incorporated into current RA frameworks. While bioavailability underpins a risk based 630 

approach, most regulators and risk assessors persist with total extractable concentration. 631 

Unlike toxic metals for which the Australian National Environment Protection Measure 632 

(NEPM) and the United States Environment Protection Agency (USEPA) includes standard 633 

operating procedures for assessment of the bioavailable fraction 34, 177, there are still no 634 

SOPs for HOCs. Comparison of studies may be difficult and caution must be applied when 635 

interpreting HOCs bioavailability data generated from the different techniques. However, 636 

both HPCD and TENAX extractions seem promising for standardised use for HOC 637 

bioavailability determinations in soil and/or sediments for EHRA purposes 10. The former is 638 

simpler and time-efficient compared to the latter 53. On the other hand, only a few studies 639 

have investigated PAH in vitro bioaccessibility for HHRA purposes and have been reviewed 640 

in detail elsewhere 178-182. In addition, in vitro bioaccessibility-in vivo bioavailability 641 

correlations for HOCs, such as PAHs, in soil have not been established. More so, 642 

comparisons between PAH in vitro GI bioaccessibility and in vivo bioavailability are scarce, 643 

revealing the paucity of data to allow such comparisons. However, these are likely to 644 

become subjects of future investigations 19, 62, 183-186.  645 
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It may be worthwhile to subject a wide range of soils to single or sequential extractions 646 

using aqueous, aqueous-based, solid-phase extraction, and sink-included in vitro GI 647 

digestion techniques to differentiate between the labile and non-labile HOC fractions, as 648 

validated using relevant receptors. Similarly, the non-labile/residual fractions obtained from 649 

methods such as persulphate oxidation, SFE, and contaminant trap among other relevant 650 

methods could be tested for remobilisation under weak to strong extraction regimes and 651 

varying exposure conditions, for example under the influence of in vitro gut fluid. Further, the 652 

labile and residual HOC fractions obtained using different techniques could be compared to 653 

confirm if they had been obtained from the same (or similar) pools in soil. The use of 654 

advanced analytical and empirical methods to understand the mechanisms controlling soil-655 

HOC-organism interactions in these investigations should be key, and efforts should be 656 

made to validate and standardise the choice methods. Such investigations may contribute to 657 

understanding the kinetics, risks and associated significance of potentially desorbing HOC 658 

fractions from non-residual and residual pools in soil, which may in turn be useful for RA. 659 

4. Does exposure to residual HOC fractions in soil pose risks to receptors? 660 

A recent study using a series of multi-species ecotoxicity assays revealed that exposure 661 

to residual total petroleum hydrocarbons in field contaminated soils had no environmental 662 

risk 30. Similarly, ecological risk from exposure to pesticide residues in soil is deemed 663 

minimal 43, 44. In addition, HOCs associated with diagenetically-advanced and recalcitrant 664 

humic materials (e.g. black carbon and biochar) in soil are unlikely to be remobilised 51. One 665 

of the most important reasons advocated for such minimal or no risks is that aged HOCs are 666 

highly sequestered within the soil matrix 21, 25, 31, 133. Further, it is interesting that in most 667 

previous studies no significant relationship was reported between bioavailability and total 668 

PAH concentrations (extractable) in soil, while a recent study that investigated the relative 669 

bioavailability (RBA) of B[a]P in juvenile swine using 8 soils, and silica sand as reference 670 

material, both spiked at the same B[a]P concentration found significant correlation between 671 

the RBA of B[a]P in spiked soils and DCM/ACE extractable fraction (R2 = 0.67, p < 0.05) and 672 
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butanol extractable fraction (R2 = 0.75, p < 0.01), but not HPCD or Milli-Q water extractable 673 

fractions 19. Although, RBA of contaminants as measured by time-based blood 674 

concentrations following soil ingestion has been criticised 178, 180, it may still be a reliable 675 

estimate of oral bioavailability compared to other bioavailability endpoints since systemic 676 

toxicity is mostly due to the effect of parent PAHs in systemic circulation 183.  677 

For clarity, it is important to carefully consider the following, bearing in mind previous 678 

discussions in this article. By ECETOC’s classification, the total HOC residue (TR) 679 

comprises the extractable (ER) + non-extractable residue (NER) + bound residue (BR), 680 

which is based on Zarfl et al. delineation of TR in soil 35, 122. According to the bioavailability 681 

framework suggested by Ortega-Calvo and others for use in regulation and modified from an 682 

earlier study 187, the total extractable residue (TER) = ER + NER 10. Further, the TER 683 

comprise the slowly and very slowly desorbing + rapidly desorbing + dissolved fractions 188. 684 

Also note that a single HPCD or Tenax extraction of ≤ 20 h measures the rapidly desorbing 685 

fraction 49, 108, whereas sequential extractions can also access the slowly desorbing pool 49, 686 

83. However, the TER has been defined as the fraction measurable by EETs, while an 687 

apparent earthworm- or microbial-bioavailable fraction is measurable by NEET 79; and it has 688 

been frequently reported that RA which assumes that TER is bioavailable overestimate risks 689 

to humans, plants, and animals 11, 15, 43. Hence, the implications of the reported correlation 690 

between RBA and EETs, but not NEETs 19 are 3-fold: 691 

(a) That the so called ‘highly sequestered residue’ may still be accessible upon human or 692 

animal exposure to aged HOC-laden soil; 693 

(b) That chemical stability of residues must be complemented by biological stability. 694 

There may be a need to support the wide use of simple chemical extractions for 695 

classifying bioavailable and residual HOC pools in soil, to EHRA and HHRA. Perhaps, 696 

through validation with biological experiments and the complementary use of 697 

advanced molecular techniques, while simple chemical extractions may be restricted 698 

to uses in the EHRA, rather than the HHRA; and that  699 
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(c) There is a need for clearer characterisations of the residual and non-residual HOC 700 

pools in soil, and further investigations into the potential risks associated with 701 

consequent exposure to these residues. 702 

5. Risk assessment framework for contaminated sites 703 

The general RA framework for contaminated sites consist of a series of preliminary and 704 

detailed phases of investigation which must be completed to determine the certainty of risk 705 

from exposure to a contaminated site 108, 189, 190. The preliminary investigation phase (Tier 1) 706 

includes site reconnaissance; design of a conceptual site model (CSM); and confirmation of 707 

potential contamination by sampling soil and analysing its total extractable contaminant 708 

concentrations (TER) for comparison with soil guideline values (SGVs). The detailed 709 

investigation phases (Tiers 2 and 3) usually proceeds when TER exceeds the SGV 710 

considered as safe. A detailed investigation of the sources, pathways, and receptor 711 

relationships (or pollutant linkage) is then conducted and the CSM is subsequently modified 712 

to reflect realistic exposure scenarios on the site. Establishing a significant pollutant linkage 713 

implies that there is a risk, hence, such sites must be managed or remediated to minimise 714 

the risks, protect receptors of concern, or permit proposed changes to land uses. 715 

While such pollutant linkages could be established, associated human or ecological 716 

health risks are frequently overestimated. This is because the total contaminant load 717 

quantified on a site, at every point in time, is traditionally equated to potential risks that may 718 

result following exposure 10, 187. In fact, the criteria for developing SGVs do not consider 719 

contaminant-matrix-organism dynamics 191 which may modify biological exposure conditions 720 

and consequent risks. This traditional approach for risk estimation by measuring total 721 

contaminant load in soil (including overly-conservative regulatory guidance) has resulted in 722 

high costs and slow pace of remediation, including dereliction of potentially reusable lands 723 

32. These challenges are constraints to efficient contaminated land management 30. 724 

Risk-based approaches can ensure cost- and time-effectiveness in contaminated land 725 

management and may have positive socio-economic implications such as rapid 726 
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redevelopment of derelict sites, but its regulatory adoption is largely constrained by 727 

uncertainties as described previously. Perhaps, the most confounding problem may be the 728 

unclear fate associated with the residual contaminant fraction in soil. 729 

Bioavailability research has gained increasing attention, and the determination of 730 

bioavailability and its consideration for incorporation into risk assessment policies is 731 

considered essential 192. Clear framework guidance documents to support wide regulatory 732 

adoption of the bioavailability concept have recently been published 10, 32, 108, 187, 189, 190. It still 733 

appears unlikely that regulators are ready to make the change from the traditional to the risk-734 

based approach for contaminated site land management. Some researchers have recently 735 

argued that while current available evidence may not be sufficient for such departure from 736 

the status quo, the bioavailability concept is sufficiently developed for inclusion into existing 737 

RA framework, as part of higher tier steps (i.e. Tiers 2 and 3) to modify exposure scenarios 738 

and risk estimations 10, 187, 189. Perhaps, the ideal but unlikely situation would be to consider 739 

contaminant bioavailability at the initial stages of developing SGVs, and throughout the 740 

preliminary and detailed RA phases. While the proposed frameworks may ensure a realistic 741 

RA process, uncertainties with the risk-based approach need to be considerably minimised. 742 

5.1. Could the residual fraction be the defining point for risk based land management?  743 

The importance of the risk-based approach to contaminated land management cannot be 744 

over-emphasised. There has been moves to include bioaccessibility or bioavailability into RA 745 

to reduce the overprotective nature of RA caused by the use of total extractable 746 

concentrations. By including an extractable fraction (bioaccessible) which is less than the 747 

total extractable concentration as part of site-specific RA, and thus reducing remedial 748 

concentration endpoints, site management becomes more achievable and less expensive. 749 

Further, by considering bioaccessibility in RA rather than bioavailability, there is still a degree 750 

of overprotection, although it is not just as conservative as using total concentrations. 751 

However, should the associated uncertainties especially those related to the fate of residual 752 

contaminant fractions be overlooked, or resolved to allow seamless incorporation of the risk-753 
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based approach into existing regulatory structures? Exposure to the rapidly desorbing 754 

contaminant fractions (i.e. the bioavailable) in soil defines realistic risks, therefore 755 

understanding the dynamic processes that control bioavailable fractions may be more critical 756 

than the residual fractions, as suggested in the pesticides literature 43. Whether pesticide 757 

residual fractions should be included in RA is still being debated, including clear guidance on 758 

how they should be considered 40, 126.  Arguably, bringing ‘residual HOC fractions’ into the 759 

RA debate, may negatively impact on RA making it more expensive and time consuming to 760 

remediate contaminated land, thereby, making pragmatic remediation to an acceptable level 761 

almost impossible. Nonetheless, regulatory confidence in adopting the risk-based approach 762 

may be significantly increased when convincing evidence shows that contaminant residues 763 

in soil are not taken up by a wide range of receptors, and in the event they are taken up, 764 

consequent biological effects are non-existent or negligible 48. In other words, the so called 765 

‘contaminant residues’ must be demonstrated to pose minimal or no risks, from exposure, in 766 

the short- and long-term. It is suggested that future investigations should focus on clearly 767 

answering the key question: how bioavailable are soil-associated HOC residues to key 768 

receptors and are there potential risks from exposure? Finally, whether the need for 769 

investigations into the likely role played by residual fractions in potentially defining risk based 770 

land management, is merely a routine academic endeavour or one which is necessary for 771 

pragmatic and realistic RA would be beyond the scope of this review and is thus subject to 772 

discussions in the future. 773 

6. Conclusion and future research prospects 774 

The overall purpose of the risk-based approach to managing contaminated lands is to 775 

minimise risks from exposure. However, adopting the risk-based approach within current 776 

regulatory structures over the overly-conservative traditional approach, requires that 777 

associated uncertainties are understood and minimised. One such uncertainty is whether 778 

there are potential risks associated with exposure to the residual contaminant fractions in 779 

soil and how they should be considered in the risk assessment process. There have been 780 
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arguments for and against the certainty of risks in this regard. However, evidence supporting 781 

these arguments is based on empirical observations which may not be completely 782 

convincing. The review of the literature suggests that the exclusion of the residual fractions 783 

appears inappropriate since very few studies have focused on systematically understanding 784 

desorption behaviour of residual hydrophobic organic contaminants in soil, with few studies 785 

considering the influence of exposure-specific factors on residual contaminant mobilisation. 786 

For example, the exposure of soil-associated hydrophobic organic contaminants to 787 

gastrointestinal fluids and enzyme processes may elicit dynamic contaminant release 788 

responses, which may affect remobilisation of highly sequestered residues. Although, in vitro 789 

models have been used to predict PAH bioaccessibility and chemical extractions used to 790 

determine different residual fractions in soils, there are still doubts as to what is actually 791 

being measured given variations in results generated. Therefore, it is not certain which 792 

bioaccessibility model currently represents the best choice, or provides the best fit for in vivo 793 

bioavailability determinations. Neither, has the relevance of current definitions of the residual 794 

contaminant fractions to ecological and human health risk assessments been convincingly 795 

demonstrated. How should the residual and bioaccessible contaminant pools be defined? 796 

Would it be prudent to define the residual contaminant fractions in soil based on exposure-797 

specific scenarios? How should these highly sequestered contaminant residues in soil be 798 

isolated and quantified? Is it possible to predict potential risks from exposure to these 799 

residual fractions? And in fact, could there be any scientific, regulatory and/or pragmatic 800 

basis for these investigations? These remain questions of concern which may hamper the 801 

adoption of the risk based approach. To provide convincing evidence, it is suggested that 802 

desorption behaviour of hydrophobic organic contaminants in a wide range of aged 803 

historically contaminated soils should be investigated, considering exposure-specific 804 

scenarios and also bearing in mind the importance of mechanistic molecular-level data to 805 

supporting empirically-derived data. Investigations to develop and validate standard 806 

operating procedures for hydrophobic organic contaminants bioavailability determinations 807 

are required, and inter-laboratory research efforts may be needed to propose the most 808 
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appropriate testing method(s). Such investigations may be useful for minimising 809 

uncertainties associated with the risk-based approach, so that due consideration may then 810 

be given to its regulatory adoption on a wider scale. 811 
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