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Abstract: The reverse polarity Kiaman Superchron has strong evidence for three, probably four normal 9 

magnetochrons during the early Permian. Normal magnetochrons are during the early Asselian (base 10 

CI1r.1n at 297.94±0.33 Ma), late Artinskian (CI2n at 281.24±2.3 Ma), mid Kungurian (CI3n at 11 

275.86±2.0 Ma) and Roadian (CI3r.an at 269.54 ±1.6 Ma). The mixed polarity Illawarra Superchron 12 

begins in the early Wordian at 266.66 ±0.76 Ma. The Wordian to Capitanian interval is biased to normal 13 

polarity, but the basal Wuchiapingian begins the beginning of a significant reverse polarity magnetochron 14 

LP0r, with an overlying mixed polarity interval through the later Lopingian. No significant 15 

magnetostratigraphic data gaps exist in the Permian geomagnetic polarity record. The early Cisuralian 16 

magnetochrons are calibrated to a succession of fusulinid zones, the later Cisuralian and Guadalupian to a 17 

conodont and fusulinid biostratigraphy and Lopingian magnetochrons to conodont zonations. Age 18 

calibration of the magnetochrons is obtained through a Bayesian approach using 35 radiometric dates. 19 

95% confidence intervals on the ages and chron durations are obtained. The dating control points are 20 

most numerous in the Gzhelian-Asselian, Wordian and Changhsingian intervals. This significant advance 21 

should provide a framework for better correlation and dating of the marine and non-marine Permian. 22 

 23 

24 
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Igneous and sedimentary rocks record the earth’s magnetic field at the time of their formation, via their 25 

small content of mostly Fe-oxides. This is recorded as a remanent magnetisation, which needs to be both 26 

stable with time, resist potential later re-magnetisation events, and be subsequently extracted using 27 

palaeomagnetic measurements. The first study of remanent magnetisation of Permian rocks was 28 

Mercanton (1926) using volcanic rocks from near Kiama on the New South Wales coast in Australia.  29 

This followed earlier studies on much younger rock by Brunhes (1906), in which the remanent 30 

magnetisation directions recorded, had orientations similar to the modern field, which is now defined as 31 

having normal polarity. However, some volcanic rocks recorded a remanent magnetisation direction 32 

opposite to the modern field (reverse polarity), which Matuyama (1929) suggested recorded a reversal in 33 

the main (i.e. dipole) component of the Earth’s magnetic field (see discussion of these early 34 

developments in Jacobs 1963). Mercanton (1926) was the first to identify remanent magnetisation in 35 

Permian rocks with a reverse polarity, but science did not recognise the significance of these Australian 36 

volcanics until the re-study of the New South Wales coastal sections by Irving & Parry (1963). The 37 

reverse polarity of other early Permian volcanics were studied earlier by Creer et al. (1955), and red-bed 38 

sediments by Doell (1955), Graham (1955) and Khramov (1958). 39 

 40 

The pioneer in our understanding of using changes in the polarity of the earth’s magnetic field for 41 

correlation and dating was A. N. Khramov, who in Khramov (1958), outlined a rudimentary polarity 42 

stratigraphy from late Permian and early Triassic sections in the Vyatka River region of the Moscow 43 

Basin, with  details of this work later appearing in Khramov (1963a). Khramov (1958) discussed issues 44 

of data quality and cross-validation by exploring the concepts of utilising data from multiple sections, 45 

with minimum sampling requirements to define intervals (magnetozones) of single polarity, concepts 46 

which are now embodied in the magnetostratigraphic quality criteria proposed by Opdyke & Channel 47 

(1996). 48 

 49 

Irving & Parry (1963) later defined a polarity stratigraphy from the late Carboniferous through the 50 

Permian, and into the Triassic, using Permian palaeopole-type palaeomagnetic data coming from 51 

sedimentary, volcanic and igneous units from most of the major continents. They proposed to use the 52 

name Kiaman (from Mercanton’s early work near Kiama), for the predominantly reverse polarity interval 53 

from the late Carboniferous until the mid Permian. Later Irving (1971) suggested substituting the more 54 

cumbersome ‘late Palaeozoic Reversed Interval’ for the Kiaman interval, based on limiting proliferation 55 

of new names, for geomagnetic chron intervals (see longer discussion in Klootwijk et al. 1994). This 56 
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work will refer to this long duration polarity interval as the Kiaman Superchron (as opposed to the more 57 

cumbersome ‘Permo-Carboniferous quiet interval’ or superchron of Irving & Pullaiah 1976). The start of 58 

the reverse and normal polarity interval following the end of the Kiaman Superchron in the mid Permian, 59 

Irving & Parry (1963) referred to as the ‘Illawarra reversal’; a confusing terminology, since the ‘reversal’ 60 

by definition is the base of the first major overlying normal magnetozone, which they hypothesized 61 

occurred in ca. 100 m of unsampled strata. We like others (e.g. Klootwijk et al. 1994), refer to this 62 

interval beginning in the mid Permian as the Illawarra Superchron (hyperchron in Russian literature; 63 

Molostovsky et al. 1976), composed of normal and reverse polarity intervals, extending into the Triassic 64 

(Hounslow & Muttoni 2010). Although perhaps from historical precedent, a better term for this interval 65 

might be the ‘Volga-Kama superchron’ since the best type area and first identification of the Illawarra 66 

Superchron was in these Russian river basins. In Australian sections the first normal polarity in the 67 

Narrabeen Shale, originally defining the upper boundary of the ‘Illawarra reversal’ of Irving and Parry 68 

(1963), was studied by Embleton & McDonnell (1980) in the Kiama area and shown to be Triassic in 69 

age. Later studies of the units equivalent to the Illawarra Coal Measures, however do appear to show both 70 

reverse and normal polarity in the Illawarra Superchron (Klootwijk et al. 1994). 71 

Development of a Permian geomagnetic polarity timescale 72 

There have been several previous attempts at a construction of a Permian polarity stratigraphy, such as 73 

Khramov (1963a,b, 1967), McElhinney & Burek (1971), Irving & Pullaiah (1976), Molostovsky et al. 74 

(1976), Klootwijk et al. (1994), Opdyke (1995), Jin (2000) and Molostovsky (2005). The latest 75 

comprehensive attempt for the mid and late Permian is that of Steiner (2006), with Shen et al. (2010), 76 

Henderson et al. (2012) and Hounslow (2016) attempting integration with geochronology to produce a 77 

geomagnetic polarity timescale (GPTS). The 2012 Permian polarity timescale (Henderson et al. 2012), 78 

uses data from only a small number of key sections, plus several of the pre-1996 composites.  79 

 80 

Over the half century since the first Permian magnetostratigraphy, palaeomagnetic methods that extract 81 

the original remanent magnetisation (i.e. characteristic remanence) of the geomagnetic field have 82 

improved. There has been increasing focus on improving the sensitivity of magnetometers (Kirschvink et 83 

al. 2015), the magnetic cleaning techniques (i.e. demagnetisation), and the rate of specimen 84 

measurements (Kirschvink et al. 2008). Measurements on Permian sediments in the 1960’s- 1980’s often 85 

focussed on red-bed successions, since these provided both large remanent magnetisation intensity, and 86 

stable magnetisations, but often lacked detailed biochronology. This evolved during the 1990’s to 87 

examination of carbonate and non-red clastic rocks, with weaker characteristic remanences, but often 88 
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much better biochronology. These improvements need to be borne in mind when considering Permian 89 

magnetostratigraphic data; it is not that early datasets are necessarily more unreliable than recent data, it 90 

is that they need to be considered in this wider improvement in palaeomagnetic techniques and associated 91 

chronology. 92 

 93 

In this work, we primarily utilise the original magnetostratigraphic or palaeomagnetic datasets, rather 94 

than rely on previously constructed composites. Some of the section magnetozones boundaries have been 95 

modified from the original publications, to maintain a consistent data style. The associated biochronology 96 

and correlations have been supplemented by additional available biostratigraphic data since the original 97 

publication. Finally, a GPTS for the Permian in constructed using radiometric dates where available, 98 

starting from the section composting procedures in Hounslow (2016). 99 

 100 

 A magnetochron labelling scheme 101 

Naming conventions for pre-late Jurassic magnetochrons have not been standardized, with Permian 102 

conventions based on either stage-abbreviation-number labels (Ogg et al. 2008, Ogg 2012), or labelling 103 

individual magnetochrons (Creer et al. 1971; Davydov et al. 1992; Steiner 2006). The mid to late 104 

Permian Russian labelling system is perhaps the most widely used (Molostovsky 1996), but not easily 105 

adaptable to the early Permian, or to areas outside Russian sections, since correlations are somewhat 106 

debatable. Like the Triassic (Hounslow & Muttoni 2010), the stability in the stage-boundary dating of 107 

Permian magnetochrons has not solidified sufficiently at this time, so it is not always crystal clear what 108 

stage every magnetochron belongs to. Hence, applying the stage-abbreviation-number labels of Ogg  et 109 

al. (2008), could require major future changes, whereas stability with respect to Series is more stable. For 110 

ease of description, the Permian magnetozones have been formally numbered in couplets (i.e. a normal 111 

with overlying reverse) for each of the Permian Series, from CI1 to CI3 (Cisuralian), GU1 to GU3n 112 

(Guadalupian), and LP0r to LP3 (Lopingian, to not confuse with the Lower Ordovician, LO; Hounslow 113 

2016). The basal Triassic magnetochron labelling is after Hounslow & Muttoni (2010). Chrons are 114 

grouped according to polarity dominance in the section data, except in the Cisuralian (see Murphy & 115 

Salvador 1999, for chronostratigraphic definition of magnetochrons and their sub-divisions). Sub-116 

magnetochron labelling is applied (i.e. n.1r or r.1n), to less dominant chrons or those with less supporting 117 

data, but seen in multiple sections. Tentative sub-chrons are labelled .ar and .an if the subchron is 118 

considered to possess insufficiently strong evidence from multiple sections. This hierarchical labelling 119 

gives a clue to the strength of evidence available, and allows easier re-labelling in later studies. The 120 
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chron numbering is in the opposite direction (i.e. younger magnetochrons given larger number) to the 121 

Cenozoic and late Mesozoic chron labelling (Ogg 2012), which starts from 0 Ma. This follows the 122 

procedure suggested by Kent & Olsen (1999), but widely adopted in other Mesozoic and Palaeozoic 123 

studies since the studies of Khramov (1967) and McElhinney & Burek (1971).  124 

The early Permian and the Kiaman Superchron 125 

The early Permian is characterised by the Kiaman Superchron, the interval of predominantly reverse 126 

polarity, well known from studies in the 1960’s and 1970’s (Irving & Parry 1963; Irving & Pullaiah 127 

1976). The main issue for defining the nature of the GPTS for the early Permian is therefore the age and 128 

duration of any normal polarity magnetozones in the Kiaman Superchron. There have been a great many 129 

(in excess of 400) palaeomagnetic studies of the early Permian, primarily focussing on palaeopole type 130 

studies (i.e. defining tectonic motions etc). These have shown that if there are normal polarity 131 

magnetozones in the early Permian, they are likely to be short in duration (Irving & Pullaiah 1976; 132 

Opdyke 1995). Sampling density and stratigraphic dating issues with palaeopoles-type studies often 133 

mean that stratigraphic relationships between samples may be poorly defined, ages poorly defined, 134 

sampled horizons may be few, and widely spread out through a large stratigraphic range, so they cannot 135 

be used to build a reliable polarity stratigraphy (but can indicate polarity bias). However, sampled sites 136 

with normal polarity from such studies, do give strong evidence for the presence of a limited number of 137 

normal polarity magnetozones in the Kiaman Superchron (Table 1). In spite of the very large number of 138 

early Permian palaeomagnetic palaeopole-type studies, there is a much small number of conventional 139 

magnetostratigraphic studies in this interval, that have used closely-spaced stratigraphic sampling. 140 

 141 

In spite of an often perceived lack of normal magnetozones in the Kiaman, expressed in polarity 142 

composites like Opdyke (1995), there are sufficient datasets that show a consistent pattern of normal 143 

magnetozones in the early Permian, which are reasonably well-dated (Table 1). These data suggest at 144 

least three probably four normal magnetozones in the early Permian, during the early Asselian (CI1r.1n), 145 

late Artinskian (CI2n), mid Kungurian (CI3n) and mid Roadian (C3r.1n).  As a result of the occasional 146 

difficulty in distinguishing CI1r.1n from a normal magnetozone in the underlying (Carboniferous) late 147 

Gzhelian strata (CI1n), we discuss the data relating to CI1n and CI1r.1n together. We take the late 148 

Gzhelian CI1n normal magnetochron as the start of the labelled Permian chrons, since the CI1n-CI1r.1n 149 

interval straddles the Carboniferous-Permian boundary. 150 
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Gzhelian and Asselian magnetochrons CI1n and CI1r.1n 151 

The study of Khramov (1963b) was the first to identify a likely normal polarity magnetozone in the 152 

Kiaman Superchron (here called CI1n), from the Donets Basin, located in the Kartamysh Suite 153 

(Kartamyshskaya Formation), in the upper Gzhelian between limestones Q4 and Q8 (Davydov & Leven 154 

2003; Fig. 1). In spite of it being established with many specimens (Table. 1), it was only located in the 155 

Suhoj-Jaz section, with the specimens not subject to conventional modern demagnetisation techniques. 156 

Fusulinids found in marine analogues of the Kartamyshskaya Formation (Fm) in the Predonets Trough 157 

suggest correlation of limestones Q1-Q6 with the late Gzhelian Ultradaixina bosbytauensis-Schwagerina 158 

robusta fusulinid zone and limestones Q7-Q12 with the early Asselian Sphaeroschwagerina vulgaris-159 

Sch. fusiformis fusulinid zone (Davydov et al. 1992). However, the palaeo-pole type study of Iosifidi et 160 

al. (2010), which sampled this same formation and the same section, failed to find evidence of normal 161 

polarity. However, this may relate to the wide sample spacing used, indicating that the equivalent of CI1n 162 

found by Khramov (1963b) is brief in duration, as suggested by other studies.  163 

 164 

The base Permian GSSP section at Aidaralash contains a tentative normal magnetozone that is restricted 165 

to the U. bosbytauensis-Sch. robusta fusulinid zone, directly below the Carboniferous- Permian 166 

Boundary (Fig. 1). This normal magnetozone, which was named the “Kartamyshian”  by Davydov & 167 

Khramov (1991) has also been detected in the Nikolsky section of the southern Urals, the Belaya River 168 

section of the Northern Caucasus, and the Ivano-Darievka section of the Donets Basin (Khramov 1963b; 169 

Khramov & Davydov 1984; Davydov et al. 1998; Davydov & Leven 2003). A study with widely-spaced 170 

samples, from three overlapping sections (Dzhingilsaj, Uchbulak and Dastarsaj), in Ferghana 171 

(Uzbekistan; Davydov & Khramov 1991), identified four normal polarity intervals (all based on single 172 

samples, multiple specimens) in the Gzhelian - Asselian, dated by a fusulinid zonation (Fig. 1). The data 173 

from the oldest section (Dzhingilsaj) being the best defined, with the closest spaced sampling in the 174 

Gzhelian parts of these sections. Like the Suhoj-Jaz, Nikolsky and Aidaralash sections, the  S. Ferghana 175 

Uchbulak  section contains a tentative normal magnetozone approximately within age-equivalent 176 

foraminifera zones, indicating substantive evidence for CI1n.  177 

 178 

 Higher in the Aidaralash section, a normal magnetozone, CI1r.1n (defined by 2 sample level), occurs in 179 

the early Asselian Sph. vulgaris - Sch. fusiformis Zone (equivalent to Sph. aktjubensis – Sph. fusiformis 180 

Zones of Schmitz & Davydov 2012). The youngest tentative normal polarity magnetozone in the S. 181 

Ferghana, Dastarsaj section, is in the Sph. sphaerica- Sch. firma zone, equivalent to the late Asselian Sph. 182 

gigas Zone of Schmitz & Davydov (2012). Hence, it is not clear if this is the same magnetozone as at the 183 



Permian GPTS. 7

 

 

 

Aidaralash section, in spite of Davydov & Leven (2003) ‘moving’ the Dastarsaj section normal 184 

magnetozone into the early Asselian. The interval containing the equivalent Sp. vulgaris - Sc. fusiformis 185 

Zone in the Dastarsaj section has not closely samples, so it is possible the equivalent of CI1r.1n was 186 

unsampled. 187 

 188 

Nawrocki & Grabowski (2000) collected some 300 samples, supporting a detailed magnetostratigraphy 189 

through the early Permian in Spitsbergen (Fig. 2). Three short normal polarity intervals occur, one within 190 

the base of the Tyrrellfjellet Member (Mb), one in the lower parts of the Svenskegga Mb and a probable 191 

third in the base of the Hovtinden Mb (Fig. 2; data of Nawrocki & Grabowski 2000, but using the 192 

lithostratigraphy in Hounslow & Nawrocki 2008). The normal magnetozone in the Tyrrellfjellet Mb is 193 

just below the Palaeoaplysina build-ups in the upper part of the Brucebyen Beds . At levels below the 194 

top of the Brucebyen Beds, there are a succession of Gzhelian fusulinid zones, with the boundary 195 

between the Zigarella furnishi and the Sch. robusta zones marking the probable Gzhelian-Asselian 196 

boundary (Nilsson & Davydov 1997; Davydov et al. 2001). In the underlying Cadellfjellet Mb the 197 

conodont Streptognathodus alekseevi also indicates a Gzhelian age (Nakrem et al. 1992; Fig. 2). 198 

However, in contrast the conodont Str. barskovi (Fig. 2) is normally considered indicate of the mid 199 

Asselian in the Urals (Nakrem et al. 1992). The overlying part of the Tyrrelfjlellet Mb has two further 200 

Asselian foraminifera zones (Sch. princeps and Sch. sphaerica), with the uppermost Eoparafusulina 201 

paralinearis assigned to the Sakmarian by Nilsson & Davydov (1997). This suggests the normal 202 

magnetozone in the Tyrellfjellet Mb, probably represents the equivalent of the late Gzhelian normal 203 

magnetozone CI1n (Fig. 2). If the Asselian magnetozone CI1r.1n is present it is rather too brief to have 204 

been detected by the ca. 5-10 m spaced samples of Nawrocki & Grabowski (2000). There is a notable 205 

disparity between the foraminifera based ages in the upper part of the Tyrrellfjellet Mb and the presence 206 

of Sweetognathus sp., which usually suggests an Artinskian age (Nakrem et al. 1992), although there are 207 

taxonomic issues with Sw. inornatus (Mei et al. 2002). 208 

 209 

Several studies have examined the reversal stratigraphy through the Lower Rotliegend, which should 210 

include the Gzhelian-Asselian interval (Fig. 2). Menning et al. (1988) summarised and synthesized these 211 

studies, which appear to show a tentative normal polarity interval in the mid parts of the Manebach Fm in 212 

non-red mudstone samples from locality ‘Hinteres schulzental’, isolated with AF demagnetisation 213 

(Menning, 1987; Menning et al. 1988). Representatives of the insect zone Sysciophlebia ilfeldensis occur 214 

as fragments in the Manebach Fm suggesting the formation spans the Gzhelian - Asselian boundary 215 
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(Schneider et al. 2013), so it is not totally clear if this normal polarity magnetozone represents CI1n or 216 

CI1r.1n, although it is most likely to be equivalent to CI1n (see below). 217 

 218 

The CI1r.1n magnetozone may have been detected in the Nohfelden and Donnersberg rhyolites in the 219 

Saar-Nahe Basin (Berthold et al. 1975). More recent dating of associated extrusives and intrusives 220 

associated with these volcanic centres, using Rb-Sr, K-Ar and 40Ar-39Ar radiometric ages from rhyolites, 221 

yields ages of 300 to 290 Ma (Schmidberger & Hegner 1999), suggesting an Asselian age. 222 

 223 

The coal-bearing Dunkard Group in West Virginia was reconnaissance sampled by Helsley (1965), with 224 

his lowest sample level ~8 m above the Washington Coal, with data displaying tentative normal polarity 225 

using undemagnetised samples (Fig. 2). Gose & Helsley (1972) subsequently demagnetised these normal 226 

polarity samples and found 2 of the 3 samples to be stable to demagnetisation, which indicates the good 227 

likelihood of a normal magnetozone. The highest resolution biochronology data for these units appears to 228 

be spiloblattinid insects with Sysciophlebia balteata occurring in the earliest part of the Dunkard Group 229 

(Schneider et al. 2013), suggesting the entire Dunkard Group is early Permian. This probably places the 230 

Dunkard normal magnetozone in the Asselian, equivalent to CI1r.1n. The parts sampled by Helsley 231 

(1965), which did not include the youngest Dunkard Group, probably extend into the Sakmarian (Di 232 

Michel et al. 2013; Lucas 2013). The occurrence of S. ilfeldensis in the German Manebach Fm of the 233 

Lower Rotliegend, places the Dunkard Grp normal magnetozone as probably younger than that in the 234 

Manebach Fm (Fig. 2). 235 

 236 

The study of Diehl & Shive (1979) on the Ingleside Fm in northern Colorado (in Owl Canyon), tried to 237 

locate normal polarity intervals in the early Permian by collecting samples through this formation at an 238 

average spacing of 0.28 m. In the original study the Ingleside Fm was assigned to the early Permian, 239 

however, the fusulinid Triticites ventricosus in the base of the formation (Hoyt & Chronic 1961) suggests 240 

a Virgilian age (late Gzhelian), according to Gomez-Espinosa et al. (2008) and Wahlman & West (2010). 241 

The formations younger age is not clear, since it is overlain unconformably by the Owl Canyon Fm of 242 

early Permian age, although the formation presumably covers the Carboniferous- Permian boundary 243 

interval into the Sakmarian (Sweet et al. 2015). However, Diehl & Shive (1979) failed to find normal 244 

polarity samples in the complete 70 m of the formation, which should have covered magnetochron 245 

interval CI1n - CI1r.1n. 246 
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Sakmarian- Artinskian  247 

The Sakmarian is consistently reverse polarity in all studies. The earliest study to detect the equivalent of 248 

normal magnetochron CI2n in the Artinskian was the palaeopoles-type study of Peterson & Nairn (1971) 249 

on the Garber Fm of Oklahoma, who performed thermal demagnetisation up to 600oc to isolate normal 250 

polarity in 7 specimens (Table 1). According to Giles et al. (2013) the Garber Fm is mid Artinskian in 251 

age based on regional correlation of the laterally equivalent Hennessey Shale. A younger age straddling 252 

the Artinskian-Kungurian boundary was suggest by May et al. (2011), based on vertebrate (dissorophids) 253 

ranges. Other palaeopole-type studies in red-beds of Artinskian age with normal polarity intervals, are 254 

from the Pictou Grp of Prince Edwards Island, Canada (Symons 1990). The Pictou Group data were from 255 

megasequence IV (Orby Head Fm, Ziegler et al. 2002) with nine specimens from three blocks, 256 

demagnetised to 650oC, showing apparently two normal polarity intervals. One of these is from near the 257 

base of the formation, but with most of the normal polarity data from two sites near the top of the 258 

formation. Plant fossil data suggests a late Artinskian age for the Orby Head Fm (Zeigler et al. 2002). 259 

Considering the uncertainty in age assignment for the Orby Head Fm, it is possible the lower normal 260 

polarity level is CI2n and the upper one CI3n.  261 

 262 

Irving & Monger (1987) found normal polarity samples in their palaeopole-type study of the volcanic 263 

units of the Asitka Group (British Columbia). Modern demagnetisation techniques were employed, and 264 

normal polarity was found in multiple specimens (Table 1). The Asitka Group is dated, by overlying 265 

limestones, containing Sakmarian and Artinskian conodonts (MacIntyre et al. 2001), but fusulinids 266 

suggests a late Sakmarian to early Artinskian age (Ross & Monger 1978). This suggests the 267 

magnetochron detected in the Asitka Group is probably CI2n.  268 

 269 

Palaeopole and magnetostratigraphic studies of Valencio et al. (1977), Sinito et al. (1979) and Valencio 270 

(1980) measured a predominantly reverse polarity stratigraphy through the La Colina Fm from the 271 

Paganzo Basin in Argentina. Based on palynological and radiometric dating, their data likely ranges in 272 

age from the Asselian to Artinskian (Césari & Gutiérrez 2000; Césari et al. 2011). Valencio et al. (1977) 273 

detected a single normal polarity interval, which is correlated Artinskian CI2n. Normal polarity samples 274 

below this level were detected by Sinito et al. (1979), but are less reliably located stratigraphically and 275 

appear to have less reliable palaeomagnetic data. In the same area, normal polarity samples measured by 276 

Thompson (1972) were from the overlying Amana Fm, which is now assigned to the Triassic (Césari et 277 

al. 2011). 278 

 279 
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The magnetostratigraphic data from Spitsbergen of Nawrocki & Grabowski (2000), through the upper 280 

part of the Tyrrellfjellet Mb into the Gipshuken Mb shows only reverse polarity. The Tyrrellfjellet Mb 281 

contains the conodont Sweetognathus inornatus, indicating a Sakmarian-Artinskian age, whereas the rich 282 

fusulinid assemblages suggest age ranges from the Asselian to Sakmarian (Nakrem et al. 1992). The 283 

more restricted range of conodont and foraminifera faunas from the Gipshuken Fm suggests a probable 284 

age range into the Artinskian. A regional hiatus is widely concluded at the base of the overlying Kapp 285 

Starostin Fm (Blomeier et al. 2011), but the age gap is below the resolution of biostratigraphy. Nawrocki 286 

& Grabowski (2000) found normal polarity in three specimens from the lower part of the Svenskegga Mb 287 

(above the Vøringen Mb), two at Kapp Wijk (30 m from the base of the Kapp Starostin Fm; Fig. 2) and 288 

one at Trygghamna, which probably represents the equivalent normal magnetozone.  The normal 289 

magnetozone in the lower parts of the Svenskegga Mb is CI2n (Table 1).  The Vøringen Mb contains a 290 

diverse marine fauna, with conodonts including Sweetognathus whitei and S. clarki, indicating a probable 291 

late Artinskian age (Nakrem et al. 1992; Nakrem 1994). A Sr-isotope value of 0.70746 from the 292 

Vøringen Mb also suggests an Artinskian age (Ehrenberg et al. 2010).  The overlying mid and upper 293 

parts of the Svenskegga Mb contain foraminifera assigned to the Gerkeina komiensis assemblage zone 294 

(Sosipatrova, 1967; Nakrem et al. 1992), correlated to the Iren Horizon in the Uralian successions, where 295 

it is assigned a mid Kungurian age (Lozovsky et al. 2009). This suggests the Artinskian-Kungurian 296 

boundary occurs in the lower-mid parts of the Svenskegga Mb (Fig. 2). 297 

 298 

Kungurian to Roadian 299 

Graham (1955) was the first to identify a normal polarity interval in the Kungurian. His palaeopole type 300 

study (using undemagnetised specimens) identified both reverse and normal polarity in samples, from the 301 

Supai Group in the Oak Creek and Carrizo Creek sections in Arizona. Although precise details of 302 

stratigraphic levels sampled are not clear, both these locations have good sections through the upper part 303 

of the ‘Supai’ (Corduroy, Big A Butte members, Esplanade Sandstone, Hermit Fm; Winters 1962; 304 

Blakey & Middleton 1987), which probably locate Graham’s samples in the upper-most Supai Group and 305 

overlying Schnebly Hill Fm, using the modern lithostratigraphy (Blakey 1990). Conodonts within the 306 

Fort Apache Mb of the Schnebly Hill Fm date Graham’s data to the mid Leonardian (Blakey 1990; Eagar 307 

& Peirce 1993), which is early-mid Kungurian (Henderson et al. 2012). The study of Graham (1955) has 308 

not been re-evaluated using modern palaeomagnetic techniques. 309 

 310 
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Wynne et al. (1983) performed a palaeopole-type study of the Esayoo Volcanic Fm on Ellesmere Island, 311 

N. Canada, which they initially assumed was Artinskian in age, but has been re-dated as Kungurian 312 

(Table 1). The  Esayoo Volcanic Fm is sandwiched between the Great Bear Cape and the overlying 313 

Sabine Bay formations (Morris 2013), although no data on stratigraphic position in the lava succession is 314 

described by Wynne et al. (1983). Le Page et al. (2003) suggested the sediments overlying the Esayoo 315 

Volcanics are mid to late Kungurian based on plant megafossils, and the youngest part of the Sabine Bay 316 

Fm is late Kungurian based on conodonts such as Mesogondolella idahoensis (Henderson & Mei 2000). 317 

The youngest part of the Great Bear Cape Fm, underlying  the Esayoo Volcanic Fm, is earliest Kungurian 318 

in age (Mei et al. 2002), suggesting the normal polarity interval is early-mid Kungurian. 319 

 320 

In the Spitsbergen magnetostratigraphic data of Nawrocki & Grabowski (2000), the best quality data 321 

showing normal polarity in these Permian successions is in cherts from the base of the Hovtinden Mb at 322 

Trygghamna (Hounslow & Nawrocki 2008).  Brachiopod and bryozoans faunas from the youngest parts 323 

of the Kapp Starostin Fm suggest equivalence with Ufimian and Kazanian faunas from Greenland and 324 

Novaya Zemlya, suggesting possible late Kungurian to Roadian ages (Stemmerik 1988; Nakrem et al. 325 

1992). Foraminiferal and coral assemblages suggest Kungurian - Ufimian ages when compared to the 326 

Urals successions (Nakrem et al. 1992; Chwieduk 2007). A conodont fauna of Mesogondolella 327 

idahoensis and Merrillina sp. from the upper most part of the Kapp Starostin (Nakrem et al. 1992) 328 

suggests, the latest Kungurian- early Roadian. Since reverse polarity dominates to the topmost part of the 329 

Kapp Starostin Fm (Fig. 2; Hounslow et al. 2008), without major intervals of normal polarity, it suggests, 330 

like the faunal data, that most of the Wordian, Capitanian and late Lopingian (and their normal polarity 331 

intervals) are missing on Spitsbergen. This suggests the Hovtinden Mb normal magnetozone is probably 332 

Kungurian in age. However, ~70 m above this normal magnetozone, an interpreted late Capitanian low in 333 

Sr-isotope data has been detected (Ehrenberg et al. 2010; Bond et al. 2015), which contradicts the faunal 334 

and magnetostratigraphic data. This occurs prior to a brachiopod extinction and negative excursion in 335 

δ13Corg in the Kapp Starostin Fm, which occur ca. 45 m below the top of the formation (Bond et al. 336 

2015). A partial reconciliation of the magnetostratigraphic and Sr-isotope data is if the normal polarity 337 

intervals in the Wordian and Capitanian are missing, so the reverse polarity in the early Wuchiapingian 338 

(to preserve lows in Sr-isotope, and early Wuchiapingian δ13C excursion) sits on Roadian or late 339 

Kungurian strata in the upper part of the Hovtinden Mb. However, this option remains incompatible with 340 

the key conodont data, and there is no evidence of a major mid Permian hiatus in the Barents Sea 341 

(Ehrenberg et al. 2001). The Spitsbergen brachiopod extinction is quite dramatic, and using the age 342 
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model proposed here, likely corresponds instead with a latest Kungurian bivalve extinction event seen in 343 

NE Asia (Biakov 2012).  344 
 345 
The detailed magnetostratigraphy from the Adz’va River section in the Pechora Basin through the Tal’bei 346 

and upper-most Inta formations (Balabanov 1988) shows the Illawarra Superchron in the Phylladoderma 347 

beds, underlain by predominantly reverse polarity down into the Inta Fm (Fig. 1). The biostratigraphic 348 

ages of these units in the Pechora Basin has been much debated (Rasnitsyn et al. 2005; Lozovsky et al. 349 

2009; Kotylar 2015). Based on floral, fish and insect remains the Inta Fm is probably placed in the 350 

Ufimian (late Kungurian?). This suggests the tentative normal polarity interval in the lower part of the 351 

Seida Fm may be the equivalent of CI3n (Fig. 1). There is tentative (single sample) evidence for a normal 352 

polarity magnetozone in the Tal’bei Fm (CI3r.1r) that may equate with a tentative normal polarity level 353 

in the Trygghamna section from Spitsbergen (Figs 1, 2), although other extensive data through the 354 

Russian Ufimian-Kazanian sections show no substantiated evidence of normal polarity (Burov et al. 355 

1998). 356 

 357 

The age of CI3n is perhaps best constrained in the Esayoo Volcanic Fm, by the over and underlying 358 

sedimentary units with conodont ages, along with its relationship to the magnetostratigraphy from 359 

Spitsbergen sections, which suggests the age of CI3n is mid Kungurian. 360 

Other normal polarity intervals in the early Permian?  361 

The palaeopole type study of Rakotosolofu et al. (1999) found normal polarity in the lower Sakamena 362 

and Lower Sakoa formations from Madagascar, originally allocated to the Permian. However, the basal 363 

tillites sampled from the Lower Sakoa Group are probably early Pennsylvanian in age (Wescott & 364 

Diggens 1998) and the those from the lower Sakamena Formation are from the late Permian (Illawarra 365 

Superchron) according to palynological dating (Wescott & Diggens 1998).  366 

 367 

Halvorsen et al. (1989) published work on dual polarity magnetisations from the Karkonosze Granite, 368 

SW Poland, which was originally dated to the 305 to 281 Ma interval, but now has a more precise 369 

chronology (Kryza et al. 2014) with a main intrusion age of 311 ± 3 Ma, placing it in the Moscovian. 370 

 371 

Creer et al. (1971) reported normal polarity in 31 Permian andesitic and basaltic specimens from the San 372 

Rafael area of Argentina. These are now assigned to the Cerro Carrizalito Fm of the upper part of the 373 

Choiyoi volcanics (Rocha-Campos et al. 2011), and dated using SHRIMP U–Pb zircon ages to the mid 374 
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Guadalupian and younger (265±2.9Ma to 252±2.7 Ma), not so different from the K-Ar age (263±5 Ma) 375 

determined by Creer et al. (1971). These indicate these normal polarity data are from the Illawarra 376 

Superchron. 377 

 378 

There have been several other reported normal polarity sample-sets in the Permian (e.g. Klootwijk et al. 379 

1983, Geuna & Escosteguy 2004; Pruner 1992; Vozárová & Túnyi 2003). These share the characteristics 380 

of having very poor age control and a very wide spacing of stratigraphic sampling, in palaeopole type 381 

studies, so it is impossible to evaluate their usefulness for construction of a magnetostratigraphy. 382 

 383 

McMahon & Strangway (1968) identified normal polarity samples in the red-bed Maroon Fm in 384 

Colorado, but with inadequate AF demagnetisation. These were in the lower parts of the Maroon Fm and 385 

underlying (Pennsylvanian) Minturn Fm (Fig. 2). The youngest age of the Maroon Fm is constrained by 386 

the overlying State Bridge Fm, which contains Guadalupian fossils (Johnson et al. 1990). The youngest 387 

detrital zircons from the Maroon Fm suggest an age no older than Wolfcampian (Soreghan et al. 2015). 388 

However, large age uncertainties from the zircon populations and similar mean ages (~293.1 ±4.5 Ma), 389 

from the top and bottom of the formation, do not help constrain its age duration, but rather suggest it is 390 

restricted to a Sakmarian age. The Maroon Fm sits unconformably on the mid Pennsylvanian Minturn 391 

Fm, so the Gzhelian-Asselian boundary interval may be missing.  A later ca. 1 m spaced 392 

magnetostratigraphic sampling of the Maroon Fm by Deon (1974) found that 99.2% of the samples were 393 

of reverse polarity, with only three specimens of interpreted normal polarity (but not in adjacent strata). 394 

Miller & Opdyke (1985) purposefully re-sampled the Red Sandstone Creek section used by McMahon & 395 

Strangway (1968) to try to locate the tentative normal polarity intervals, but found no normal polarity 396 

samples. These data may indicate, like the zircon populations, that the Maroon Fm occupies the reverse 397 

polarity late Asselian- early Artinskian interval (Fig. 2). 398 

North American early Permian studies 399 

Red-bed and limestone bearing Permian strata in the American SW in Utah, Colorado and Wyoming 400 

have a distinct absence of early Permian normal polarity intervals, in spite of several detailed studies, and 401 

apparently appropriate ages of strata. We critically examine this data, since it clearly has a bearing on the 402 

reliability of these studies, and opens the question of the reliability of the normal polarity intervals in the 403 

Cisuralian, seen in studies outside the American SW. These studies have critically influenced the 404 

conventional hypothesis of the reverse-only character of the Permian part of the Kiaman Superchron. 405 

 406 
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In the marine sandstone and limestone beds in the Casper Fm of Wyoming (at Horse Creek), Diehl & 407 

Shive (1981) sampled 190 m in total of the 220 m of this formation at 0.33m spacing and found only 408 

reverse polarity. The age of the Casper Fm sampled is Desmoinesian (late Moscovian) to Wolfcampian 409 

(Sakmarian?), based on brachiopod, fusulinids and conodonts. Red-bed units of the Cutler Group at 410 

Moab in Utah were also extensively sampled (Fig. 2), at close stratigraphic spacing by Gose & Helsely 411 

(1972) but again failed to find normal polarity samples, through a Wolfcampian (possibly Virgilian; 412 

Soreghan et al. 2002; Condon 1997; Scott 2013) to Leonardian interval (i.e. Gzhelian- Kungurian). Based 413 

on vertebrate data Scott (2013) has suggested the Carboniferous Permian boundary is in the lower 10 m 414 

of the Halgaito Fm in SE Utah (Fig. 2). Vertebrates from the Organ Rock Shale indicate a Seymouran 415 

land vertebrate zone (Lucas 2006), implying the section sampled by Gose & Helsley (1972) at Moab may 416 

extend into the Kungurian. However, this does not seem to be borne out by the detailed sampling 417 

showing only reverse polarity (Fig. 2), which implies the section may end before the Artinskian. Reasons 418 

for the absence of normal polarity in the Cutler Group are unclear, possibly due to unsampled intervals in 419 

the Halgaito Fm, unsuspected hiatus, and a shorter age range than anticipated, not extending into the 420 

Artinskian-Kungurian.  421 

 422 

Farther east in northern Colorado, the magnetostratigraphic study of the red-beds of the Ingleside Fm 423 

(Diehl & Shive 1979), specifically tried to find the normal polarity intervals in the Gzhelian-Asselian 424 

interval, but failed. The same study-targeting issue applied by Miller & Opdyke (1985) to the Maroon Fm 425 

in Colorado. Steiner (1988) also sampled extensively the lower and central portions of the Laborcita 426 

Formation (Gzhelian- early Asselian; Krainer et al. 2003) and about 1/3rd of the overlying Abo Fm 427 

(Asselian to late Sakmarian) in New Mexico, but found only reverse polarity. 428 
 429 
The reasons for these studies on North American sections inability to detect the brief early Permian 430 

normal polarity intervals, seen in other areas are not clear; but there may be several possibilities:  431 

1) The stratigraphic complexity and often poor-dating resolution in the red-beds may mean that the 432 

Carboniferous-Permian boundary interval, containing the latest Gzhelian- early Asselian, may be 433 

missing (though this does not apply to the Laborcita Fm; Krainer et al.  2003). Likewise, in some 434 

cases the red-bed units may not extend up to the CI2n magnetochron, as usually implied by the low 435 

resolution biochronology from these strata.  436 

2) Issues with diagenetically delayed magnetisations (Turner 1979; Kruiver et al. 2003; Van der Voo & 437 

Torsvik 2012 ) or late Kiaman remagnetisations (e.g. Magnus & Opdyke 1991) may be more 438 

common in these units than currently realised. In the front ranges of the Rocky Mountains, Kiaman-439 
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age remagnetisations, carried by haematite, appear to be widespread and associated with modest 440 

burial, connected with deformation of the ancestral Rocky Mountains (Geissman & Harlan 2002). It 441 

is not clear if this situation in Colorado applies also to the Permian in the Paradox Basin in Utah, or 442 

the Casper Fm of Wyoming. However, there have been suggestions that a late Permian-Triassic 443 

remagnetisation may be affecting some datasets from the North American Craton (Steiner 1988; Pan 444 

& Symonds 1993). 445 

 Guadalupian 446 

Age of the start of the Illawarra Superchron 447 

The chronostratigraphic age of the end of the Kiaman Superchron is in the early Wordian. The first 448 

normal polarity magnetochron of the Illawarra Superchron, appears to be shown in the mid and 449 

upperparts of the back-reef Grayburg Fm (and overlying Queen Fm) in the Guadalupe Mts in W. Texas 450 

(Steiner 2006). The Grayburg Fm is inferred to be early Wordian in age, based on its lateral relationship 451 

to conodont and fusulinid dated units. This is based on the basinal to back reef stratigraphic correlations 452 

of Lambert et al. (2007), Barnaby & Ward (2007), Olszewski & Erwin (2009), Rush & Kerans (2010). 453 

Nicklen (2011) has suggested the Queen and Grayburg formations correlate to the basinal South Wells 454 

Mb (of the Cherry Canyon Fm), which has an associated U-Pb  ID-TIMS date (using EARTHTIME 455 

standards) of 266.5±0.24Ma, potentially directly dating the start of the Illawarra Superchron. 456 

Alternatively, Olszewski & Erwin (2009) correlate the South Wells Mb to a level higher than the Queen 457 

Fm. Normal and reverse polarity intervals in the Manzanita Mb of the Cherry Canyon Fm in the 458 

Guadalupe Mts (Burov et al.  2002) derive from the late Wordian (Olszewski & Erwin 2009), probably 459 

corresponding to the GU2 magnetochron (Fig. 6). Nicklen (2011) suggested the zircon U-Pb date of 460 

265.3±0.2Ma of Bowring et al. (1998) provides a date for the bentonites in the Manzanita Mb. 461 

 462 

The end of the Kiaman Superchron is also shown in the Kyushu sections in Japan (Fig. 4), occurring in 463 

the Neoschwagerina craticulifera fusulinid assemblage zone (Kirschvink et al. 2015). N. craticulifera 464 

has its first appearance in the late Roadian (Henderson et al. 2012), but Kasuya et al. (2012) correlate the 465 

N. craticulifera Zone in these Japanese sections to the early Wordian.  466 

 467 

The end of the Kiaman Superchron is very well-defined in numerous sections from Russia, in the upper 468 

Urzhumian Stage within the Biarmian Series (Molostovsky 1996; Molostovsky et al. 1998; Burov et al. 469 

1998). The base of the underlying Kazanian Stage and the Biarmian Series, is marked by the first 470 
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occurrence of the Roadian conodont Kamagnathus khalimbadzhae, and this is further emphasised by an 471 

assemblage of ammonoids, slightly above the base of the Kazanian, which dates it to the Roadian 472 

(Silantiev et al. 2015a). The regional stages Urzhumian, Severodvinian and Vytakian are demarcated by 473 

the first occurrence of non-marine ostracod species in continuous phylogenetic lineages (Tverdokhlebova 474 

et al. 2005; Silantiev et al. 2015a). These series are also sub-divided by detailed freshwater bivalve, 475 

tetrapod and fish biozonations (Tverdokhlebova et al. 2005; Silantiev et al. 2015a). As such the Biarmian 476 

and Tatarian Series have a very detailed internal biozonation, but wider correlation to the international 477 

stages is reliant on Eurasian-wide correlation of these non-marine faunas (Kotlyar, 2015). Multiple 478 

sections, borehole cores and studies through the Kazanian (Silantiev et al. 2015c) and lower Urzhumian 479 

have failed to substantiate any normal polarity intervals below the Russian NRP mixed polarity 480 

magnetozone (Fig. 3), so the top of the Kiaman Superchron is very clearly expressed (Burov et al. 1998). 481 

However, the Russian regional stages have long been problematic to correlate in detail to marine sections 482 

with conodont and fusulinid zonations, but the Wordian is widely inferred to correlate approximately to 483 

the Urzhumian (Lozovsky et al. 2009; Henderson et al. 2012; Kotlyar 2015). Although not commonly 484 

discussed its clear, that at least locally there are a number of hiatus or unconformities in the Tatarian 485 

successions (of unknown duration) such as Urzhumian erosion contact on the Kazanian, and the locally 486 

the Vyatkian on the Severodvinian (Tverdokhlebova et al. 2005). Integration of sequence stratigraphic 487 

concepts in these successions with the magnetostratigraphy needs to evolve in this respect, to better 488 

understand issues of missing strata. 489 

 490 

In the Monastyrski Ravine (Monastery Ravine, type section of the basal Severodvinian) section (Fig. 3) 491 

the base of the Illawarra Superchron corresponds to the Paleodarwinula tuba–P. arida–P. torensis 492 

ostracod Zone (Mouraviev et al. 2015; Kotlyar 2015). The better biostratigraphic dating of the end of the 493 

Kiaman from the sections in Texas and Japan, suggest the base of the NRP magnetozone (in the late 494 

Urzhumian) is slightly older than commonly inferred (e.g. Golubev 2015), and should equate to the 495 

earliest Wordian or latest Roadian. 496 

 497 

Other more poorly dated, non-marine sections, also probably displaying the end of the Kiaman 498 

Superchron are the Taiyuan section in China, within the lower member of the Upper Shihhotse Fm 499 

(Embleton et al. 1996; Stevens et al. 2011). This occurs between two floral extinction events. The earlier 500 

one in the Lower Shihhotse Fm (inferred to be Roadian).  Two later extinction events in the middle and 501 

upper members of the Upper Shihhote Fm, are inferred to be late Guadalupian (Stevens et al. 2011; Fig. 502 

4).  503 
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 504 

The start of the Illawarra Superchron is present in European red-bed successions in the German Upper 505 

Rotliegend, Parchim Fm (Langereis et al. 2010; Fig 7), and in southern England in the Exeter Group 506 

(Hounslow et al. 2016). The biostratigraphic age dating of these units is low resolution, largely based on 507 

tetrapods (Rotleigend only), footprints and occasionally long-ranging palynomophs such as 508 

Lueckisporites virkkiae (Edwards et al. 1997; Słowakiewicz et al. 2009). Generally, the end of the 509 

Kiaman provides a higher resolution-dating tool in these successions. The base of the Illawarra 510 

Superchron has also probably been detected in Kansas (USA) in the Rebecca K Bounds core (Soreghan 511 

et al. 2015), in a succession which lacks independent evidence of age, but whose age is approximately 512 

constrained by sub-surface regional relationships (Sawin et al. 2008).  513 

 514 

In the type region of the Illawarra Superchron in Australia, magnetic polarity details and ages are less 515 

clear. The base of the Illawarra Superchron is thought to be within the Mulbring Siltstone in the Hunter 516 

Valley region of New South Wales (Idnurum et al. 1996; Foster & Archibold 2001). The Mulbring 517 

Siltstone correlates to the Broughton and underlying Berry formations of the southern Sydney Basin in 518 

SE Australia around the Kiama area, because of the Echinalosia wassi brachiopod range zone and 519 

palynological zones, in these two areas (Campbell & Conaghan 2001; Cottrell et al. 2008). The lateral 520 

equivalent to the Broughton Fm (Campbell & Conaghan 2001) is the lower part the Gerringong 521 

Volcanics (Blowhole, Bumbo, Dapto and Cambewarra flows), which is reverse polarity and widely 522 

considered to be within the end of the Kiaman Superchron (Irving & Parry 1963; Cottrell et al. 2008). 523 

Irving & Parry (1963) also found reverse polarity in the youngest, Berkeley flow, of the Gerringong 524 

Volcanics. This suggests the base of the Illawarra Superchron may be within the laterally equivalent and 525 

overlying Pheasants Nest Fm (of the Illawarra Coal measures, Campbell & Conaghan 2001; Metcalfe et 526 

al. 2014) in the southern Sydney Basin. Foster & Archibold (2001) infer the brachiopod faunas of the 527 

Broughton Fm have similarity to latest Ufimian to Kazanian brachiopod assemblages. However, the 528 

Mulbring Siltstone has U-Pb SHRIMP ages of  ca. 264 ±2.2 Ma (Retallack et al. 2011), and the laterally 529 

equivalent uppermost part of the Broughton Fm has a U-Pb IDTIMS date of 263.5 ±0.31 Ma (Metcalfe et 530 

al. 2014), suggesting an early Capitanian age in the timescale of Henderson et al. (2012), and that 531 

proposed here. These inconsistencies probably indicate the Sydney Basin brachiopod fauna’s are of little 532 

use for international correlation (as suggested by Metcalfe et al. 2014) and the new radiometric dates 533 

suggest the reverse polarity Gerringong Volcanics may not be within the Kiaman Superchron, but instead 534 

correlate to GU2r? 535 

 536 



Permian GPTS. 18

 

 

 

Guadalupian data from marine sections 537 

The Nammal Gorge section (Hagg & Heller 1991) is a key marine section for the mid Permian 538 

magnetostratigraphy, since it has an associated conodont biostratigraphy, but in its original publication 539 

had very little supporting biostratigraphic detail (Fig. 4). However, based on nearby sections (Saidu Wali, 540 

Kotla Lodhian, Zalucj Nala, Chihidru Nala and Kathwai sections) conodont ranges (Fig. 4), can be 541 

related to the magnetostratigraphic data in the Nammal Gorge section (Wardlaw & Pogue 1995, Wardlaw 542 

& Mei 1999). These conodont ranges are correlated onto the magnetostratigraphy, using the 543 

lithostratigraphy and bed numbers from published sedimentary logs (Baud et al. 1995; Waterhouse 544 

2010). A hiatus in the Nammal Gorge section is present in the late Capitanian (i.e. missing conodont 545 

zones) between the Lakriki and the Sakesar members of the Wargal Fm (Mei & Henderson 2002; 546 

Mertmann 2003; Waterhouse 2010). This hiatus separates dominantly normal polarity below from 547 

reverse polarity in the upper part of the Wargal Fm (Fig. 4). Hence, the oldest normal polarity interval in 548 

the original published data (Haag & Heller 1991) is probably magnetozone GU2n in the late Wordian to 549 

earliest Capitanian. No magnetostratigraphy was measured from the underlying Amb Fm, which posses 550 

an array of conodonts indicating a Wordian age (Wardlaw & Mei 1999). The early Wordian to 551 

Capitanian fusulinid Neoschwagerina margaritae is found in unit 2 of the Wargal Fm (Jin et al. 2000; 552 

Waterhouse 2010; Fig. 4). 553 

 554 

The Shangsi section magnetostratigraphy has key for radiometric date for age calibration of the 555 

Lopingian, and the section probably extends down into the Capitanian. Unfortunately, the three studies of 556 

the Permian magnetostratigraphy (Heller et al. 1988; Steiner et al. 1989; Glen et al. 2009) in this section, 557 

display differences in the interpretations of the polarity (Fig. 5). A composite magnetostratigraphy was 558 

constructed using the agreement between these, based on the sampling positions. The study of Glen et al. 559 

(2009) has many sampling levels in the Wujiaping Fm which failed to yield polarity information, 560 

whereas the study of Steiner et al. (1989) yielded a relatively simple polarity pattern through this 561 

formation. The age of the lower part of the Wujiaping Fm is not clear from the faunal data due to a barren 562 

interval (Sun et al. 2008). ID-TIMS U-Pb radiometric dates  (260.4±0.8Ma; 259.1±0.9Ma), which appear 563 

to be from reworked material from the Emeishan volcanics (Zhong et al. 2014), suggest a maximum age, 564 

but are consistent with the normal polarity interval in bed-7 being of late Capitanian age. The underlying 565 

Maokou Fm at Shangsi contains the late Roadian through Wordian to earliest Capitanian, with a major 566 

hiatus at the base of the Wujiaping Fm (Sun et al. 2008). The cyclostratigraphy at Shangsi suggests large 567 

changes in sedimentation rates (Fig. 5). The biostratigraphy of the Maokou Fm in the Wulong section is 568 

based on unattributed conodont data in Jin et al. (2000). 569 
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 570 

Details of the Guadalupian and Wordian magnetostratigraphy are generally poorly-defined from marine 571 

sections alone, but show both polarities in the early Wordian and early Capitanian (Figs. 4, 6). The upper 572 

Capitanian is normal polarity dominated as the chron GU3n (the ‘Capitan-N’ chron of Steiner 2006). 573 

This is shown by the data from the Wulong section (Heller et al. 1995), the Emeishan Basalts (Zheng et 574 

al. 2010; Liu et al. 2012), and data from the Yabiena through Lepodolina fusulinid zones from Kyushu in 575 

Japan (Fig. 4).  The Ebian county magnetostratigraphy through the Emeishan basalts, and overlying units 576 

(Ali et al. 2002) together with the radiometric dates suggest a mid to late Capitanian age for the 577 

Emeishan Basalts (He et al. 2007; Zheng et al. 2010; Liu et al. 2012). This is supported by the mid to late 578 

Capitanian age suggested by the conodonts J.altudaensis (conodont zone G5) and J. xuanhanensis (zone 579 

G7) from the few metres of the Maokou Fm that underlie the Emeishan Basalts (Sun et al. 2010). The 580 

predominantly normal polarity Emeishan Basalts continue into an overlying reverse polarity 581 

magnetozone (Ali et al. 2002), which is inferred to be the latest Capitanian LP0r (Fig. 4).  582 

Guadalupian data from non-marine sections 583 

Magnetic polarity data from Russian sections through the Urzhumian and early parts of the 584 

Severodvinian provide detail through the earliest parts part of the Illawarra Superchron, suggesting the 585 

Wordian-Capitanian interval has a bias towards normal polarity (Fig. 3). The Russian NRP mixed 586 

polarity magnetozone appears to show two major reverse polarity intervals, the upper one of which is 587 

sub-divided by a normal polarity sub-magnetozone. In these sections the structure of the earliest normal 588 

magnetozones in the Illawarra Superchron are best represented by the thick Cheremushka section 589 

(Silantiev et al. 2015b), which is the parastratotype of the Urzhumian. Similar polarity structure, is shown 590 

in other Russian sections, such as Tetyushi, Monastyrski and Murygino (Burov et al. 1998; Gialanella et 591 

al. 1997; Balabanov 2014), which allow a division into two major normal magnetochrons (GU1n and 592 

GU2n), most clearly seen in the Murygino core and Khei-yaga River section (Fig. 3).  However, the NRP 593 

polarity interval has problems of partial normal overprints, making magnetozones in the NRP zone 594 

difficult to define (Westfahl et al. 2005; Silantiev, 2015b). However, normal polarity intervals detected in 595 

the many sections in the upper Urzhumian, suggests a Permian geomagnetic signature, rather than a later 596 

overprint.  597 

 598 

Like the marine-section data, and the Russian sections, the dominance of normal polarity through the 599 

later parts of the Guadalupian (i.e. GU3n) are well-displayed in other non-marine sections, such as the 600 
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Whitehorse Fm in Kansas (Fig. 6) and the Havel Subgroup, and Exeter Mudstone and Sandstone Fm in 601 

the Rotliegend equivalent in Europe (Fig. 7).  602 

 603 

Options for the Magnetostratigraphy of the Wordian  604 

A key problem in comparing marine and non-marine sections in the earliest part (i.e. Wordian) of the 605 

Illawarra Superchron, in that there are two likely magnetic polarity models for this interval, a ‘long-606 

GU1r’ option and a ‘brief-GU1r’ option:  607 

 608 

Long-GU1r option: In sections such as at Wulong, Taiyuan and those in W. Texas (Figs. 4, 6), thicker 609 

intervals of reverse polarity are displayed, compared to the associated normal magnetozones in the GU1 610 

to GU2 interval. Sections through the Abrahamskraal Fm in the lowermost Beaufort Group (South 611 

Africa) have similar characteristics. Crucially the South African sections have SHRIMP U/Pb dates, 612 

which overlap the ID-TIMS radiometric dates from the Guadalupian type area, allowing fuller integration 613 

of the geochronology and magnetostratigraphy. This is the option used here in the Permian GPTS, but 614 

Hounslow (2016) uses the ‘brief GU1r option’ 615 

 616 

Brief-GU1r option: This is exemplified by the Russian Urzhumian data (Fig. 3), where there is 617 

dominance of normal polarity in the earliest parts of the Illawarra (GU1- GU2 interval), and the reverse 618 

polarity magnetozones appear generally briefer than the normal magnetozones (e.g. Russian composite; 619 

Fig. 3). The Wargal Fm, Whitehorse Fm and the SW English coast data share similar characteristics 620 

(Figs. 4, 6, 7).  621 

 622 

Lanci et al. (2013) measured a magnetostratigraphy through the Waterford Fm (Ecca Grp) and the 623 

overlying lower parts of the Abrahamskraal Fm (Beafort Grp) and interpreted these data as evidence of 624 

the base of the Illawarra Superchron because of three normal polarity magnetozones  (N1 to N3, Figs. 1, 625 

6). They interpreted N3 magnetozone (identified in two separate sections), as the start of the Illawarra 626 

Superchron. Normal polarity dominates the overlying argillaceous mid-parts of the Abrahamskraal Fm in 627 

the Buffels River area (Tohver et al. 2015; Fig. 6). Tohver et al. (2015) estimated the base of the 628 

Abrahamskraal Fm is some 340 m below their lowest sampled levels, suggesting the youngest polarity 629 

data in the Ouberg Pass study of Lanci et al. (2013) is approximately equivalent with the oldest strata 630 

sampled by Tohver et al. (2015) at Buffels River (Fig. 6).  A correlation more likely than that proposed 631 

by Lanci et al. (2013) is that magnetozone interval N2-N1 is the equivalent of GU1n, marking the base of 632 
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the Illawarra Superchron (Fig. 1), indicating one reverse subzone (GU1n.1r) in GU1n. This ‘long-GU1r’ 633 

option suggests magnetozone N3 is the magnetochron CI3r.1n (Figs. 1, 6). In the same general area as 634 

the study of Tohver et al. (2015), Jirah & Rubidge (2014) measured the total stratigraphic thickness of 635 

the Abrahamskraal Fm as 2565 m, suggesting the upper-most sampled levels of Tohver et al. (2015) at 636 

Buffel River are ca. 920 m from the base of the Abrahamskraal Fm. These upper samples are therefore 637 

approximately at the upper range of the Eodicynodon Assemblage Zone (Jirah & Rubidge 2014).  The 638 

‘long-GU1r’  option is supported by the similarity in U-Pb SHRIMP dates of 266.4 ±1.8 Ma (Lanci et al. 639 

2013) from near the base of N2 (GU1n) and from the ID-TIMS date 266.5 ±0.24 Ma near the base of the 640 

Wordian in Texas/New Mexico sections (Bowring et al. 1998; Fig. 6).  The youngest U-Pb SHRIMP date 641 

in the Ouberg Pass section of 264.4 ±1.9 Ma indicates a level in GU1r. Zircon ID-TIMS dates from ca. 642 

1.5 km higher in the Beaufort Group, than the Buffels River magnetostratigraphy (Fig. 6), suggests the 643 

Capitanian-Wuchiapingian boundary (at ca. 260 Ma) approximates the boundary between the tetrapod 644 

Tropidostoma and Pristerognathus Assemblage Zones (Rubidge et al. 2013). Using this date and the 645 

‘long-GU1r’ option suggest that the bulk of this additional 1.5 km of strata is predicted to be normal 646 

polarity, corresponding to most of GU3n (Fig. 6). 647 

 648 

Palynological zonations of the underlying Ecca Group generally support the ‘long-GU1r’ option 649 

suggesting the youngest parts may be late Cisuralian or possibly Roadian in age (Modie & Le Hérissé 650 

2009). This is largely based on correlation of the Ecca Group assemblage zones (in upper half of the Ecca 651 

Group) to the Lueckisporites virkkiae Interval Zone of the Parana Basin, where in Argentina the base of 652 

the interval zone is dated (using SHRIMP U/Pb on zircons) to 278.4 Ma (Modie & Le Hérissé 2009), 653 

placing its base in the Kungurian. This is a similar position to the first occurrence of L. virkkiae in the 654 

Svalbard sections (Fig. 2). 655 

 656 

 Tetrapod fauna of the Beaufort Group Eodicynodon Assemblage Zone, forms the key components of the 657 

Kapteinskraalian land vertebrate faunachron (LVF) of Lucas (2006). The fauna of this LVF is most 658 

similar to the Ocher and part of the Mezen tetrapod assemblages from Russia (Lucas, 2006), which occur 659 

within the Shesmian (upper interval of Ufimian) to Kazanian to the mid Urzhumian (Goulbev 2015). In 660 

Russian sections this interval is reverse polarity only (Figs. 1,3), whereas the assumed equivalent 661 

Eodicynodon Assemblage interval is associated with both polarities. Hence, the ‘long-GU1r’ option 662 

indicates diachroneity of the Kapteinskraalian LVF, with the Russian faunas being the oldest 663 

representatives of this LVF. 664 

 665 
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The alternative ‘brief-GU1r’ option places the start of the Illawarra Superchron c. 400 m above in the 666 

mid parts of the Abrahamskraal Fm (Buffels River section), at the base of the interval of normal polarity 667 

dominance (Fig. 6).  This option suggests the Ouberg Pass section N2-N3 magnetozones represent the 668 

Kungurian magnetochron CI3n, and magnetozone N3 is possibly CI2n (or a tentative magnetozone 669 

between CI2n and CI3n; Fig. 1). This ‘brief-GU1r’ option is compatible with the normal polarity 670 

dominance in the mid parts of the Abrahamskraal Fm in the Buffels River area (Fig. 6). However, it 671 

requires the overlying 1.5 km of strata to the Wuchiapingian boundary in the Beaufort Group to be 672 

largely normal polarity corresponding to the younger part of GU3n. This option makes the correlations 673 

between the Russian and South African expression of the Kapteinskraalian LVF more consistent in terms 674 

of the reverse polarity dominance, in the inferred late Ufimian to mid Urzhumian age for the 675 

Eodicynodon Assemblage Zone. However, it does push the base of the Eodicynodon Assemblage Zone 676 

into the Kungurian potentially as early as the Kungurian- Artinskian boundary, which is counter to 677 

current thinking which suggests tetrapod assemblages yielding “bona fide therapsids” are mid Permian 678 

(Lucas 2006). The two older Littlecrotian and Redtankian LVF’s (Lucas, 2016) have little independent 679 

age control. The older LVF the Redtankian, has equivalent tetrapod fauna from the Garber Fm (in which 680 

CI2n has been inferred; Table 1), suggesting that the Waterford Fm magnetozone N3 is a good deal 681 

younger than late Artinskian. Supporting evidence for the ‘brief-GU1r’ option is the re-assessment of the 682 

detrital zircon SHRIMP ages (due to suspected lead loss) from the top of the Ecca Group (Tohver et al. 683 

2015) which suggest ages as old as 275 Ma (i.e. Kungurian) for deposition of the upperparts of the Ecca 684 

Group.   685 

 686 

Broadly, the ‘long-GU1r’ option implies polarity dominance over the GU1 magnetochron is poorly 687 

represented by the Russian Urzhumian dataset (Fig. 3), supporting suspected normal polarity overprints 688 

in this dataset. It also implies a large diachroneity of the Kapteinskraalian LVF. The crucial supporting 689 

data are the age overlap between the radiometric dates from the Abrahamskraal Fm and those from the 690 

Guadalupian type area (Fig. 6).  691 

 692 

The ‘brief-GU1r’ option relies on the large wealth of data from the Russian sections through the 693 

Urzhumian, and requires that the U-Pb SHRIMP ages from the Abrahamskraal Fm are too young, 694 

probably impacted by lead loss (e.g. Tohver et al. 2015). It also indicates the Kapteinskraalian LVF 695 

extends into the Kungurian, counter to vertebrate workers hypotheses. 696 

 697 

 698 
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 699 

Lopingian and the Permian-Triassic boundary 700 

The key part of the Lopingian magnetochron pattern is the reverse polarity dominated early 701 

Wuchiapingian (i.e. LP0r), a key feature clearly seen in many marine and non-marine datasets. This 702 

reverse polarity interval and its transition from GU3n, is seen by the relatively thick LP0r, overlying a 703 

relatively thick GU3n in many sections.  The LP0r is followed through the late Wuchiapingian and 704 

Changhsingian, by a pattern of reverse and normal magnetozones with similar relative thickness (Figs. 3, 705 

4). 706 

 707 

Biochronological control of the magnetic polarity changes across the Guadalupian-Lopingian boundary is 708 

probably best defined in the Kyushu sections (Kirschvink et al. 2015), where an extinction level and 709 

change to the Wuchiapingian fusulinid Codonofusiella - Reichelina Zone is seen (Fig. 4). The extinction 710 

level appears to be located in a ca. 2-3 m thick normal polarity interval (LP0r.1n), within an interval of 711 

predominant reverse polarity. There are tentative brief normal polarity intervals in other sections (e.g. 712 

Wulong, Shangsi, Sukhona River) at around this level following GU3n (Figs. 3,4), but none of them have 713 

a better biochronology. Magnetostratigraphic studies on the Laibin section (and the Wuchiapingian GSSP 714 

section) by M. Menning and S. Shen have only recovered remagnetisations (Jin et al. 2006b). 715 

 716 

The normal magnetochron LP0r.2n is clearly shown in the Wulong and Linshui section in China, and 717 

tentatively in the Shangsi and Nammal Gorge sections. This magnetozone is the ‘P3’ normal chron of 718 

Steiner (2006). It occurs within the range of the conodont Clarkina asymmetrica (L3 standard conodont 719 

zone) in the Nammal Gorge section, placing it in the early Wuchiapingian. The age of unit 5 of the 720 

Longtan Fm in the base of the Linshui section, is based on regional correlations of brachiopod 721 

assemblages, suggesting a late Wuchiapingian age (Chen et al. 2005). This age is supported by the 722 

presence of the conodont C. liangshanensis (equivalent to conodont zones L6-L7; Shen et al. 2010) in the 723 

basal beds of the Longtan Fm, ca. 300 m below the measured magnetostratigraphy (pers comm. 724 

Shuzhong Shen 2010). Equivalents to magnetochron LP0r.2n also occur in the Rustler Fm in New 725 

Mexico, and the Littleham Mudstone Fm in England (Figs. 6, 7). 726 

 727 

The base of magnetochron LP1n is a clear stratigraphic marker in many Lopingian marine sections, 728 

following the LP0r chron (Fig. 4). In non-marine sections in Russia and Europe, this is a very clear 729 

boundary to an overlying interval with several major normal polarity intervals (Fig. 3, 7). The base of 730 
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LP1n is within the range of the Wuchiapingian conodont C. guangyuanensis (L5 standard conodont 731 

zone) at Nammal Gorge, with LP1n extending to near the top of the late Wuchiapingian C. 732 

transcaucasica Zone (conodont zone L6) at the Shangsi section (Fig. 4).  733 

 734 

The interval LP1n to base LP2r shows a pattern of polarity changes, which tend are dominated by normal 735 

polarity in marine sections, yet include regular reverse polarity intervals. This interval is the ‘Chang-N’ 736 

chron of Steiner (2006). The Linshui section (which has a high accumulation rate), displays this interval 737 

particularly well, whereas the Wulong, Shangsi and Nammal Gorge sections do not display the 738 

intervening reverse magnetozones well. In New Mexico, the Quartermaster and Dewey Lake formations 739 

clearly show a pattern of three major reverse magnetozone (Fig. 6), like the Linshui section. The upper 740 

boundary of the LP2n.3n magnetochron is within the Changhsingian C. subcarinata Zone (L9) at the 741 

Abedah section, but probably within the C. changxingensis Zone (L10) at the Shangsi section.  742 

 743 

The three studies on the Changhsingian and Induan GSSP’s at Meishan (Fig. 8) show a poor degree of 744 

similarity in the magnetic polarity through the section (Li & Wang 1989; Liu et al. 1999, Meng et al. 745 

2000). An additional summary in Yin et al. (2001) shows some additional details, although the source 746 

data is not published. The low degree of consistency between the magnetostratigraphic data does 747 

suggests a normal polarity interval (the LP2n.2n-LP2n.3n interval?) in the C. wangi- C. subcarinata 748 

zones (L8-L9) and mixed polarity in the C. changxingensis Zone;  possibly corresponding to the LP2r-749 

LP3r  interval (Fig. 8).  750 

Lopingian Non-marine sections 751 

Magnetic polarity data from marine sections display more detail in magnetozones through the Lopingian, 752 

than the Russian non - marine sections (Figs. 3, 4). The simplest interpretation of this is the absence of 753 

most of the late Changhsingian often inferred in Russian sections (Lozovsky 1998; Tverdokhlebov et al. 754 

2005; Lozovsky et al. 2014). The oldest units of the Vetlugian (i.e. Vokhmian, considered early Triassic) 755 

have a transitional latest Changhsingian flora and reverse polarity (i.e. upper part of LP3r), clearly resting 756 

on an eroded surface of the late Vyatkian (Lozovsky et al. 2001). The Permian-Triassic boundary is 757 

therefore clearly within the basal-most Vokhmian. 758 

 759 

In Russian Tatarian sections the uppermost normal polarity parts of magnetozone R3P (i.e. n1R3P and 760 

n2R3P) are missing from some sections, but are clearly present at the Oparino and Boyevaya Gora 761 

sections and other sections shown in Burov et al. (1998).  This likely reflects the variable erosion at the 762 
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base of the Vokhmian. Both in the marine and non-marine sections, the three reverse magnetochrons in 763 

the magnetochron interval LP1- LP2 vary greatly in thickness (Figs. 3, 4). Some of this variation in the 764 

Russian sections may be due to channel bodies, which can give variable accumulation rates, together 765 

with likely local hiatus, features that are being investigated in more detail (Arefiev et al. 2015). 766 

 767 

In Europe magnetostratigraphic studies in the Upper Rotliegend of the southern Permian Basin (well 768 

Mirow 1/1a/74, Menning et al. 1988; Langereis et al. 2010), and wells in Poland (Nawrocki 1997) clearly 769 

show the reverse polarity LP0r. Above this is a mixed polarity interval, which includes the Zechstein 770 

(Fig. 7). The incomplete sampling of the normal and reverse magnetozones in the Notec and Hannover 771 

formations, are more fully represented by studies from the laterally equivalent Lower Leman Sandstone 772 

from the Johnston and Jupiter gas fields in the southern North Sea (Turner et al. 1999; Lawton & 773 

Roberson 2003). In the Southern Permian Basin, these European-wide correlations are strongly 774 

constrained by the overlying Zechstein, the base of which is usually inferred to be an isochronous 775 

lithostratigraphic marker. In the southern German Obernsees core, normal polarity dominates the Z1 to 776 

Z3 interval (Szurlies 2013), with a briefer reverse polarity magnetozone near the base of the Z1 interval, 777 

which may correlate to the upper-most tentative reverse seen in the Polish Czaplinkek, Pila and Jaworzna 778 

IG-1 well (Fig. 7). Like the Everdingen-1 and Schlierbachswald-4 wells the Z4-Z6 interval is dominated 779 

by normal polarity in the Obernsees core (Szurlies 2013). 780 

 781 

Correlations in Fig. 7 imply that the base of the Zechstein (basal Z1 cycle) occurs in the oldest parts of 782 

magnetochron LP2n.3n in the mid Changhsingian. The equivalent of LP2n.3n seems to be exceptionally 783 

thick in the Zechstein successions (ca. Z1-Z3 interval), which may be explained by the rapid infilling of 784 

the Zechstein Basin upon initial flooding. Additional support for the Changhsingian age of the Zechstein 785 

comes from Sr-isotope data, which indicates a short duration for the Zechstein of ca. 2 Ma, and an age 786 

range in the interval 255-251.5 Ma, placing it firmly in the Changhsingian (Denison & Peryt 2009). 787 

Attempts at direct dating of the Kupferschiefer (the base of the Zechstein- Z1 cycle) have failed to yield 788 

consistent results, with Re-Os ages giving wide 95% confidence intervals (Pašava et al. 2010). The 789 

Changhsingian age conflicts with conventional age interpretation of the basal Zechstein, which is usually 790 

assigned to the early Wuchiapingian (Szurlies 2013). This is primarily based on the conodonts Merrillina 791 

divergens and Mesogondolella britannica from the Kupferschiefer and Zechsteinkalk of the Z1 792 

Formation (Swift 1986; Korte et al. 2005; Legler et al. 2005; Słowakiewicz et al. 2009; Szurlies 2013), 793 

since according to Kozur in Szurlies (2013),  Mer. divergens occurs in the range interval of Clarkina 794 

leveni (conodont L4 standard zone) in Iran. However, Mer. divergens is found from the uppermost 795 
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Alibashi Fm in the Changhsingian C. yini–C. zhangi Zone in Iran (Kozur 2007), and from Wordian, 796 

Capitanian and late Cisuralian strata (Swift 1986; Nakrem et al. 1991). Therefore, Zechstein conodont 797 

faunas do not provide a precise biochronology- due to differences between cold and warm water faunas 798 

they only provide an approximate Lopingian age (Henderson & Mei 2000).  799 

The Permian-Triassic boundary 800 

The late Changhsingian transition towards the Permian-Triassic boundary has been well documented in 801 

terms of magnetic polarity in both marine (Gallet et al. 2000; Glen et al. 2009; Li et al. 2016) and non-802 

marine successions (Glen et al. 2009; Hounslow & Muttoni 2010; Szurlies 2013), where a reverse 803 

polarity dominated interval (LP2r-LP3r) occupies the late Changhsingian. This occupies the C. yini (L11) 804 

and C. meishanensis (L12) conodont zones (and parts of the C. changxingensis in some sections), prior to 805 

the main extinction event in the latest Changhsingian. In spite of the well-studied nature of this interval, 806 

the conodont zonal boundaries are not consistently located with respect to the polarity boundaries, 807 

perhaps indicating placement issues with the conodont standard zones. In this interval the normal 808 

magnetozone LP3n is the ‘P5’ chron of Steiner (2006), and is clearly seen in several marine and non-809 

marine sections (Figs. 4, 7).  810 

 811 

In the Induan GSSP at Meishan (Fig. 8), the exact relationship between the polarity stratigraphy and the 812 

first occurrence of Hindeodus parvus is not clear, but the Shangsi and Abedah sections indicate the 813 

inferred base of the Induan is consistently in the lower part of the LT1n.1n magnetochron (Glen et al. 814 

2009; Hounslow & Muttoni 2010; Szurlies 2013). The Shangsi section probably provides the most 815 

precise placement of the Permian-Triassic boundary interval with respect to the magnetostratigraphy 816 

(Fig. 9). At Shangsi the base of LT1n is near the base of the C. meishanensis conodont zone, within 0.5 817 

m of the extinction event bed (Glen et al. 2009). A variety of CA-ID-TIMS U/Pb radiometric dates 818 

indicates ca. 252.3Ma for the age of the base of LT1n, in the latest Changhsingian (Fig. 9). At Shangsi, 819 

the precisely correlated base of the Induan (base of H. eurypyge Zone; Shen et al. 2011) is based on 820 

CONOP correlation and the occurrence of H. changxingensis rather than H. parvus, whose first 821 

occurrence is younger in the section (Metcalfe et al. 2007). 822 

 823 

In Russian Platform sections, there is dispute about the continuity of the successions across the Permian-824 

Triassic boundary with some preferring a lack of hiatus (Sennikov & Golubev 2006; Krassilov & 825 

Karasev 2009; Taylor et al. 2009) but others suggesting hiatus (Lozovsky et al. 1998; Tverdokhlebov et 826 

al. 2005); much depends upon the stratigraphic resolution of the dating tools. However, it is clear in the 827 
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magnetostratigraphy from the Russian sections, there are insufficient magnetozones following LP1n (N2P 828 

in Russian magnetozones, Fig. 3) to accommodate the entire Lopingian, indicating a major hiatus at the 829 

base of the Vokhmian, or locally in the Vyatkian. The basal Vokhmian  typically shows a magnetite 830 

abundance increase, expressed by increases in magnetic susceptibility and remanence intensity (Burov et 831 

al. 1998;  Lozovsky et al. 2014), which appears to be associated with an enhanced volcanic ash 832 

contribution (Burov 2004). In some other sections, where magnetozone n2R3P is not seen, the late 833 

Permian magnetozones are variably removed by erosion at the base of the Vokhmian, indicating that 834 

Russian magnetozone n2R3P is the equivalent of LP2n.3n (Fig. 3). However, in the Yug River basin, the 835 

transition of LP3r into LT1n (or perhaps LT1n.1r into LT1n.2n), and the transition into the Triassic may 836 

be preserved in the Nedubrovo Member. This member has plant and spore remains typical of the Tatarian 837 

and the Zechstein, as well as megaspores Otynisporites eotriassicus and O. tuberculatus typical of the 838 

earliest Triassic (Burov, 2004; Lozovsky et al. 2014; Arefiev et al. 2015).  839 

 840 

In sections (East and West Lootsberg Pass and Komandodriftdam sections) from the Karoo Basin (S. 841 

Africa), the turnover in vertebrate assemblages is seen just below the Balfour Fm - Katburg Fm boundary 842 

(Fig. 9). This change is inferred to represent the Permian-Triassic boundary, because of association 843 

between the vertebrate biochronology, expected magnetostratigraphy (Fig. 9) and negative 13Corg isotopic 844 

excursions (De Kock & Kirschvink 2004; Ward et al. 2005). However, magnetostratigraphy and U-Pb 845 

ID-TIMS dating from the nearby Old Lootsberg Pass (Gastaldo et al. 2015) suggest these supposed 846 

boundary successions are older, and likely Changhsingian in age around 253.2 ±0.15Ma (Fig. 9). This 847 

may relate to difficulties in defining the Permian-Triassic boundary based on tetrapods alone (Lucas, 848 

2006). However, there are serious disagreements about the polarity in the upper part of the Balfour Fm, 849 

which either indicate problems with local hiatus (Gastaldo et al. 2015), or issues in the palaeomagnetic 850 

data from Old Lootsberg Pass, in distinguishing the present day overprints from the normal polarity 851 

Permian directions, which are similar to modern field directions (De Kock & Kirschvink 2004). It is not 852 

clear how these magnetic polarity datasets relate to each other, but there is not sufficiently strong 853 

evidence to invalidate the original interpretations of Ward et al. (2005). 854 

 855 

There have been many magnetostratigraphic studies on the Siberian Traps  (Gurevitch et al. 2004; 856 

Fetisova et al. 2014), and several attempts at a synthesis (Steiner 2006; Fetisova et al. 2014; Burgess and 857 

Bowring 2015). The successions indicate a simple pattern of magnetic polarity changes, dominated by 858 

normal polarity in the Noril’sk region, but with reverse magnetozones in the Kotui River region and at 859 

the base of the successions in the Ivaninsky and Khardakh formations (Fig. 9). Inadequately described 860 
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fossil spores, pollen and brachiopod remains, constrain the succession into an older Permian and younger 861 

Triassic set of units (Fetisova et al. 2014). Based on the combination of biostratigraphic data, radiometric 862 

dating evidence and palaeomagnetic data, Fetisova et al. (2014) suggest the oldest units, the Ivakinsk (at 863 

Noril’sk) and Khardakh formations, are late Permian. The overlying, predominantly normal polarity 864 

basalts at Noril’sk likely correspond to LT1n.1n (Fig. 9). The Syverma to Nadezhda suites of the Noril’sk 865 

succession record the transitional geomagnetic field behaviour, across the boundary of the LP3r and 866 

LT1n.1n magnetochrons (Gurevitch et al. 2004), implying these units have a rapid (6-20 m/kyrs) 867 

accumulation rate. This transitional field interval is not shown in the Motui River sections, suggesting 868 

there may be a hiatus (or poorly sampled interval) at the base of the Ary-Dzhang Fm (Fetisova et al. 869 

2014; Kamo et al. 2003). Radiometric data have consistently indicated the brief duration of the Siberian 870 

traps, which are constrained by dates from perovskite  of 252.2±0.2 Ma from the Khardakh basal flows 871 

(Kamo et al. 2003) to 251.4±0.29Ma for the Daldykansky intrusion which cuts the lava flows in the 872 

Noril’sk region. Burgess & Bowring (2015) argue that the lava eruptions were ca. 0.8 Ma in duration 873 

with some 2/3rds of the volume erupted in the 0.3 Ma prior to the end-Permian extinction. The Permian-874 

Triassic boundary is therefore within the mid to upper parts of the flood basalt succession at Noril’sk 875 

(Burgess & Bowring 2015). 876 

A calibrated Permian geomagnetic polarity timescale 877 

To generate a Permian geomagnetic polarity pattern in a million year scale, we firstly utilise the section 878 

compositing method proposed by Hounslow (2016). This first produces a magnetic polarity composite 879 

using numerical optimisation, in a composite scaled to relative height (Fig. 10b,e). This is in effect a 880 

numerical version of the hand drawn composites, produced by syntheses such as Opdyke (1995), Steiner 881 

(2006) and Hounslow & Muttoni (2010). The optimised composite utilises the proxy for time embedded 882 

in the relative height of magnetozones in the data from the source sections, and so smooth’s the between-883 

section sedimentation rate changes, by averaging magnetozone boundary positions across sections (Fig. 884 

10b,e). This requires simple choices about relative sedimentation rates in the sections.  885 

 886 

Secondly, the resulting optimised composite is scaled to million years, using appropriate radiometric data 887 

(i.e. an age model is applied to the optimised scale), from which an age estimate of the magnetochron 888 

bases is determined (Table 2; Figs. 10c, 11). To construct the age model we use the Bayesian-based 889 

approach of Haslett & Parnell (2008), Parnell et al. (2008) as implemented in the Bchron functions in R 890 

(Chambers 1998). This constructs an age model based on piecemeal linear segments constructed by 891 

simulating the sedimentation process by small increments random in both duration and sedimentation 892 
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rate. The method handles radiometric date uncertainties (as normally distributed values) and uses the 893 

procedure of Christen & Perez (2009) to deal with radiometric date outliers, which flags the dates with a 894 

probability of being an outlier (Pout in Table 2). Uncertainties in placing the radiometric date onto the 895 

optimised polarity composite are handled as a defined range (‘sample depth’ range in Parnell et al. 2008) 896 

in the composite scale, in which the date occurs ( ±es; Table 2), and treated as coming from a uniform 897 

distribution. Stratigraphic (es; Hounslow 2016) and radiometric uncertainties (σR) on the dates are listed 898 

in Table 2 and Supplementary Table 2 of Hounslow (2016). 899 

 900 

Confidence intervals on the magnetochron ages are obtained from the Monto Carlo simulations used in 901 

Bchron, using the limits of the 95% highest posterior density region (HPD) from the age model (Haslett 902 

& Parnell, 2008; Fig. 10c). Although, confidence intervals derived from Bchron may be overly 903 

pessimistic in intervals without age control points (Blaauw & Christen 2011).  In the age models the 904 

measure of uncertainty (i.e. σT; Hounslow, 2016; Table 3) in the position of the magnetochrons in the 905 

optimised composite scale, is also included (Fig. 10a,d), as the ‘uniform range’ (dmax-dmin of Parnell et al. 906 

2008), corresponding to ±σT. The method therefore takes account of all the major uncertainties in the 907 

GPTS. The Permian optimised composite (Table 3) is scaled to age in two segments, because no sections 908 

span the CI1r.1n to CI2n interval.  909 

Gzhelian-Asselian age scaling 910 

The Gzhelian-Asselian magnetozone optimised composite, used the Karachatyr, Nikolskyi and 911 

Aidaralash sections. These can be tied together since they have a well defined fusulinid zonation, which 912 

is also utilised in the scaling (Fig. 10b). Linear rate scaling for the sections (Hounslow 2016) was used in 913 

the optimised composite. The Kapp Schoultz section from Svalbard was unused, since the relationships 914 

between the biostratigraphy and the magnetostratigraphy are not sufficiently well-defined to accurately 915 

identify positions of either biozones or stage boundaries with respect to the polarity, or to the biozones in 916 

the Uralian sections. The ID-TIMS U-Pb radiometric ages from the Usolka section were used (Table 2), 917 

directly related to the Urals foraminifera zones, via the conodont ranges in the Usolka section, and the 918 

conodont-foraminiferal biozonal correlations in Schmitz & Davydov (2012). The optimised composite 919 

scale was when related to the radiometric ages using Bchron (Fig. 10c). None of the radiometric dates 920 

were flagged as potential outliers (Table 2). The 95% HPD regions from Bchron show bowing and 921 

pinching related to the distribution of age control points, expressing the greater uncertainty between the 922 

more widely spaced dates (Fig. 10c), which is also expressed in the chron uncertainty (C95, Table 3). 923 

 924 
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Kungurian- earliest Induan age scaling 925 

A Kungurian-Capitanian optimised magnetozone composite (CI2n to GU3n) was constructed using the 926 

Paganzo, Ouberg Pass (Long GU1r option), Adz’va (Fig. 1), Kapp Wijk/Trygghamna (Fig. 2), the W. 927 

Texas (Fig. 6), the Taiyuan sections (Fig. 4) along with the Russian Khei-yaga, Muygino, Monastrski, 928 

Tetyushi and Cherumuska sections (Figs. 3, 10e). The optimisation tends to ‘compress’ the composite 929 

scale in the CI3r.1n to GU2n interval, due to the higher number of data points and magnetozones in this 930 

interval. Scale compression was controlled by expressing the minimised value Etot  ( Hounslow, 2016) as 931 

Etot/ divided by the median chron duration. Linear rate scaling (Hounslow 2016) was used for all but the 932 

Monastrski, Tetyushi and Cherumuska sections in which transgressive rate functions were used. 933 

Transgressive rate functions account for the apparently condensed GU1n (Fig. 3). Overall the optimised 934 

component produces a poorer model (large Ds) than the Gzhelian-Asselian model, due to the widely 935 

varying relative durations of chrons in the Wordian, which is shown as larger σT and Dj values (Fig. 936 

10d,e).  937 

 938 

The Cisuralian part of this range is sparse in radiometric dates. One ID-TIMS date from  an ash in the 939 

base of the La Colina Fm was used (Gulbranson et al. 2010; Table 2), together with the Kungurian-940 

Roadian boundary age from Henderson et al. (2012), inferred to coincide with the brachiopod extinction, 941 

and δ13C excursion in the Hovtinden Mb on Spitsbergen (Figs. 2, 10f). The Artinskian-Kungurian 942 

boundary has an array of dates (Henderson et al. 2012), but cannot be clearly related to the polarity in 943 

any section. To constrain the Cisuralian, the Artinksian-Kungurian boundary age from Henderson et al. 944 

(2012) was used for the base of the Kungurian in the mid part of the Svenkegga Mb at Kapp 945 

Wijk/Trygghamna (Fig. 2). In the Wordian-Capitanian, zircon SHRIMP dates from the Abrahamskaal 946 

Fm are supplemented by additional radiometric, dates from the Texas sections of Nicklen (2011) and 947 

Bowring et al. (1998). These radiometric dates have been placed onto the magnetostratigraphy (Table 2; 948 

Fig. 11b), using the magnetic polarity data of Burov et al. (2002) and stratigraphic relationships 949 

discussed by Nicklen (2011).  950 

 951 

The late Capitanian to earliest Triassic optimised composite (GU3n- LT1n.2n) is that derived by 952 

Hounslow (2016). This uses the magnetozone data from the Khei-yaga, Murygino, Monastyrki, 953 

Boyevaya Gora, Tuyembetka, Sambullak, Tetyushi, Cheremushka, Sukhona, Pizhma, Oparino, W.Texas, 954 

Linsui, Wulong, Shangsi, Taiyuan, Nammal Gorge and Abadeh sections to construct the optimised 955 

composite. This optimised composite is joined to that from the CI2n to GU3n interval at the base of 956 

GU3n (Fig. 11). This compound optimised composite is then scaled to age with Bchron using 28 dates 957 
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(upper 11 ones in Table 2), plus the 17 ID-TIMS listed in Supplementary Table 2 of Hounslow (2016). 958 

Bchron identified two probable outliers in the age model at 252.1 Ma and 253.47 Ma (Pout of 0.992 and 959 

0.998 respectively; Fig. 11). 960 

 961 

Two intervals giving possibly unrealistic age estimates are the LP0r-LP1r and LP2n.2r-LP2n.3n 962 

intervals, since the Bchron age scaling does not match well the relative durations of section chrons in 963 

these two intervals. The former interval is strongly influence by the late Wuchiapingian date at 257.79 964 

Ma from the Shangsi section (Figs. 5, 11), that gives a probable too-brief LP0r chron. This date may be 965 

incorrectly located with respect to the polarity stratigraphy. Attempts at correcting the later ‘unrealistic’ 966 

interval by excluding the possible outlier at 253.47 Ma, failed to produce much improvement, since the 967 

age model from Bchron already accounts for its outlier status.  968 

Chron and stage ages and relationship to biozones 969 

The earliest Permian age model (Figs. 10c, 12) gives an age for the base of fusulinid zone 10 (correlated 970 

base Asselian) of 298.41±0.36 Ma, similar to the 298.9±0.15 Ma proposed by Schmitz & Davydov 971 

(2012). The age differences likely relate to assumptions of conformity of fusulinid and conodont zonal 972 

boundaries (Schmitz & Davydov 2012), the different means of scale compositing (range top and bottom 973 

scaling in CONOP) and the method of scaling the composite to age. The derived Ma dates of the 974 

magnetochrons (Table 3) are broadly what would be expected based on the biozonal-stage-Ma age 975 

relationships proposed by Henderson et al. (2012). This is not surprising considering we largely use the 976 

same sets of controlling radiometric dates, and we have pinned the base Roadian and base Kungurian to 977 

that inferred by Henderson et al. (2012). However, our age control through the Wordian is considerably 978 

improved over the 2012 timescale, and we estimate the base Wordian at c. 266.7Ma and base Capitanian at 979 

c. 263.5 Ma, significantly displaced from the 2012 timescale by c. 2 Ma (Table 3). The base of the Lopingian 980 

stages and the Induan are similar to those inferred in the 2012 timescale, since there are many radiometric 981 

dates in this interval. Like the Asselian, the small differences likely relate to the different methods used. 982 

 983 

The relationships between the stage-biozones and the magnetochrons have a variable amount of precision 984 

through the Permian. In the earliest part of the Cisuralian, the relationships between CI1r.1n and the 985 

Urals foraminifera biozones is fairly well defined (Fig. 12), but becomes much less precise for CI2n and 986 

CI3n, where relationships to conodonts zones seem to hold the best future promise for refinement (Figs. 987 

1, 2). For the mid Permian there is a slightly more refined biozone-magnetochron relationship. The 988 

Lopingian has a comparatively well defined conodont biozone to magnetochron relationship (Figs. 4, 12).  989 
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 990 

Chron duration uncertainties 991 

Apparent magnetozone durations (and zonal intervals in Ma) in the sections can be ‘back-calculated’ 992 

from the relationship between optimised composite chron duration and age. If the duration (in Ma) of a 993 

magnetochron (or chron interval) is Cm in the GPTS, and the pseudo-height in the composite of this 994 

interval is Ym, then the apparent duration (CS in Ma) of the equivalent magnetozone (or zonal interval) in 995 

the section can be estimated by Cs= Cm *(Ys/Ym) .  Ys is the pseudo-height of the magnetozone (or 996 

interval) in the section in the units of the optimised composite. Linear scaling is appropriate, since the 997 

segment age-models are approximately linear at a time-scale comparable to the magnetochron intervals 998 

used. This gives a cloud of points (Fig. 13a), which expresses the apparent age duration of chrons in the 999 

sections, visually showing the scatter in the original data, which for each chron is also expressed by σT.   1000 

 1001 

Uncertainties on the chron durations can also be determined by the 95% HPD intervals derived directly 1002 

from the differences in the simulated age-determinations for each chron (‘events’ in Bchron;  Parnell et 1003 

al. 2008; Fig. 13a). However, these Bchron 95% HPD estimates more express a prediction interval than a 1004 

confidence interval on the ‘mean’ age-model, since they only consider the simulated data from a single 1005 

magnetochron duration (rather than the whole age model; Dybowski & Roberts 2001). This can be seen 1006 

in that the HPD bands largely encompass the cloud of points from the section estimates (Fig. 13a). 1007 

 1008 

One estimate of the confidence intervals (D95) on the durations (i.e. on Cm) can be determined from a 1009 

conventional regression of Cs versus Cm (a ‘section-estimate’; Fig. 13a). This approach is conceptually 1010 

similar to that used by Agterberg (2004) for estimating confidence intervals on stage ages, since the 1011 

estimated magnetozone duration in the section (Cs)  is an independent estimate compared to that 1012 

‘average’ derived from the optimised chron scale. Statistically it is preferable to utilise a log-log 1013 

regression for this ‘section-estimate’, since durations are typically exponentially distributed (Lowrie & 1014 

Kent 2004). For shorter chron durations the percentage uncertainty increases (Fig. 13b), because there is  1015 

proportionally a larger impact of changes in deposition rates in sedimentary systems (Sadler & Strauss, 1016 

1990; Talling and Burbank, 1993) and sampling density (i.e. fluctuations in the sedimentation rate and 1017 

palaeomagnetic sampling density section, introduces additional variance in the section chrons duration). 1018 

However, for longer chrons the log-log regression produces unrealistically large confidence intervals, 1019 

because of the spreading of the confidence bands at the tails (Fig. 13b), and a linear Cs- Cm relationship is 1020 

probably more appropriate (shown as linear model in Fig. 13b). Uncertainty on longer chrons is more 1021 
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impacted by the uncertainty in the age model from the radiometric dates (σR in Table 2) and their 1022 

uncertainty of position with respect to the magnetochrons (i.e. es in Table 2). However, neither of these 1023 

‘section-estimates’ (i.e. log or linear models in Fig. 13b) takes account of uncertainty in the age model. 1024 

 1025 

Agterberg (2004) proposed an estimate of D95 can be obtained from the confidence interval on a 1026 

regression of calculated radiometric age versus actual radiometric age derived from the age model. A 1027 

‘sample point distribution’ correction factor should also be applied to correct for the Ma range of the age 1028 

model (Agterberg, 2004). We determined this ‘Agterberg estimate’ using the data for the Wordian-early 1029 

Triassic (i.e. data in Fig. 11, from 269-251 Ma) interval, since the larger number of dates in this interval 1030 

probably best expresses the uncertainty in the age model. This estimate gives values for %D95 similar to 1031 

the linear-model ‘section-estimates’ at chron durations >1 Ma (Fig. 13b).  The final confidence interval 1032 

on durations  is a joint model (Fig. 13b; %D95 in Table 3) which adds the ‘Agterberg estimate’ (for the 1033 

age model uncertainty) to the log and linear model ‘section-estimates’ for chron durations (Fig. 12b). 1034 

This gives a balanced estimate that includes both uncertainty from the optimised polarity and from 1035 

uncertainty in the age model.  1036 

Conclusions 1037 

A robust geomagnetic polarity timescale is constructed through the Permian, with no major intervals with 1038 

missing polarity data (Fig. 12). The statistical compositing method of Hounslow (2016) allows 1039 

construction of a numerical magnetochron composite using data from many sections. This composite is 1040 

calibrated against radiometric dates, using Bayesian principles applied in the program Bchron, using two 1041 

segments, one for the Carboniferous-Permian boundary and a Kungurian-earliest Triassic interval. The 1042 

Artinskian, Kungurian and Roadian interval are the least well constrained in terms of controlling 1043 

radiometric dates, so two previous estimates of stage boundary age are utilised for this interval. Estimates 1044 

of the 95% confidence intervals on the chron-base ages and chron durations are derived.  1045 

 1046 

 In spite of a long held belief, by many, that the early Permian contains no substantiated normal polarity 1047 

intervals, there is good evidence the Cisuralian contains at least two, probably four brief normal 1048 

magnetochrons, and a further normal in the latest Carboniferous (latest Gzhelian). The Asselian 1049 

magnetochron CI1r.1n (base at 297.94±0.33 Ma), and CI3r.1n (base at 269.54±0.70 Ma) are least well 1050 

validated of these, whereas CI2n (base at 281.24±2.3 Ma) and CI3n (base at 275.86±2.0 Ma) in the 1051 

Artinskian and Kungurian are rather better identified in more studies. The age-calibration of these clearly 1052 

shows these magnetochrons are brief (ca. 81 ka - 506 ka) in duration, which has added to their difficulty 1053 
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in detection in the dominantly reverse polarity Kiaman Superchron. The presence of these magnetochrons 1054 

holds promise as high-resolution time markers in the Cisuralian. 1055 

 1056 

The start of the mixed polarity Illawarra Superchron is at 266.7±0.76 Ma in the early Wordian, long 1057 

known to be a major chronostratigraphic marker in the mid Permian. The European Russian upper 1058 

Tatarian (Vyatkian) magnetostratigraphic data appear incomplete in comparison to the better dated 1059 

marine successions, indicating a part of the Changhsingian is missing from the European Russian 1060 

sections. Magnetostratigraphic data from the European Upper Rotliegend and Zechstein clearly indicate 1061 

the presence of the Guadalupian and Lopingian in these non-marine basins. However, 1062 

magnetostratigraphic correlations suggest the Zechstein represents a much shorter age interval than 1063 

conventionally inferred, occupying only the mid to late Changhsingian. The magnetic polarity with 1064 

respect to the many high-resolution stratigraphic studies across the Permian-Triassic boundary is well 1065 

defined and the best expressions of the linked polarity to faunal changes are in the Shangsi section in 1066 

China. Radiometric and magnetostratigraphic data suggest the voluminous Siberian traps where erupted 1067 

rapidly, starting in the latest Permian magnetochron LP3r, into and through the earliest Triassic normal 1068 

chron LT1n.  1069 

Key uncertainties and future refinements of the Permian GPTS needed are: 1070 

1) Sub-magnetochrons CI1r.1n (early Asselian) and chron CI3r.1n (early Roadian) are the least well 1071 

defined of the Permian chrons in the Kiaman Superchron, and need further work to consolidate 1072 

understanding of these. Permian sections on Svalbard or in the Urals may hold the best promise 1073 

for better calibration of these against biostratigraphy. High resolution studies of North American 1074 

sections through the Laborcita Fm may aid investigations of chrons at the Carboniferous- Permian 1075 

boundary. 1076 

2) Other Permian chrons in the Kiaman Superchron, CI2n and CI3n, are magnetically well-defined, 1077 

but not well calibrated to biostratigraphy or radiometric dates. The arctic Permian sections seem 1078 

to hold the best promise for a better intercalibration of magnetochrons and biochronology. 1079 

3) Detail of the polarity through Wordian which includes GU1 and GU2 have two alternative 1080 

scenarios, firstly a long GU1r model (the one preferred here), based on fragmentary marine, and 1081 

non-marine sections in the Beaufort Grp from South African.  Secondly, a brief- GU1r model 1082 

with more normal-polarity dominance, largely defined by the datasets from European Russian 1083 

sections. The later scenario depends on the reliability of normal magnetozones in the Russian 1084 

NRP mixed-polarity magnetozone and how to correlate marine and non-marine 1085 



Permian GPTS. 35

 

 

 

magnetostratigraphies in the Wordian. Detailed magnetostratigraphic data from the back reef 1086 

facies in the type region of the Guadalupian would help in this uncertainty. 1087 

4) The interval LP1n to LP2n.3n (late Wuchiapingian- mid Changhsingian) is normal polarity 1088 

dominated in many sections, but the relative duration of reverse polarity magnetozones in this 1089 

interval vary greatly between sections, particularly for LP1r. Better integration of regional 1090 

sedimentological, cyclostratigraphic, radiometric and magnetostratigraphic studies in both marine 1091 

and non-marine would help refine an improved polarity timescale through this interval. 1092 

5) Radiometric date control points for age scaling of the GPTS, appear to severely distort the 1093 

relationship between apparent relative duration of chrons in the sections in the early 1094 

Wuchiapingian and mid Changhsingian.  Acquisition of more dates, and/or re-assessment of 1095 

either the radiometric dates, or their position with respect to the composite magnetostratigraphy is 1096 

needed to unravel the apparent conflict. 1097 

 1098 
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Figure Captions 1786 

Fig. 1. Lower Permian magnetic polarity data from Russia, Asia, South America and Africa. Ticks on the 1787 

columns are sample positions. Data sources for magnetostratigraphy and supporting stratigraphic 1788 

details: Tarim Basin Sharps et al. (1989), Li et al. (2011), Wang & Yang (1993) and Xu et al. 1789 

(2014). South Ferghana composite from Davydov & Khramov (1991), with equivalent numbered 1790 

foraminifera zones from the Urals successions, mapped using their Fig. 5 (See Table 2). Ouberg 1791 

Pass, South Africa and SHRIMP dates from Lanci et al. (2013) and Modie & Le Hérissé (2009). 1792 

Nikolskyi, Chernaja Rechka and Aidaralash from Khramov & Davydov (1984, 1994), Davydov et 1793 

al. (1998) and Davydov & Leven (2003), with numbered foraminifera zones as indicated in Table 1794 

2.  Paganzo Basin magnetostratigraphy and radiometric date from Valencio et al. (1977), Césari 1795 

& Gutiérrez (2000) and Césari et al. (2011). SE Tatarstan composite, Kotlovka and Elabuga from 1796 

Burov et al. (1998), Silantiev et al. (2015c). Khei-yaga River section from Iosifidi & Khramov 1797 

(2009). Adz’va River section data from Balabanov (1998), with additional stratigraphy from 1798 
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Rasnitsyn et al. (2005),  Lozovsky et al. (2009) and Kotylar (2015). Stage base ages are those of 1799 

Henderson et al. (2012). 1800 

Fig. 2. Lower Permian magnetic polarity data from Europe and North America. Ticks on the columns are 1801 

sample positions. Data sources used are: Svalbard (Norway), magnetostratigraphy from Nawrocki 1802 

& Grabowski (2000) and Hounslow & Nawrocki (2008), with additional stratigraphic details 1803 

from Nakrem et al. (1992), Nilsson & Davydov (1997), Bond et al. (2015) and Ehrenberg et al. 1804 

(2010). Lower Rotliegend (Germany), magnetostratigraphy from  Menning (1987) and Menning 1805 

et al. (1988), and additional stratigraphy from Schneider et al. (2013). Moab (Utah, USA) 1806 

magnetostratigraphy from Gose & Helsely (1972), with additional age constraints from Soreghan 1807 

et al. (2002), Condon (1997) and Lucas (2006). Dunkard Group (W. Virginia, USA) 1808 

magnetostratigraphy from Helsley (1965) and Gose & Helsley (1972), with additional 1809 

stratigraphy from Di Michael et al. (2013) and Lucas (2013). Red Sandstone Creek (Colorado, 1810 

USA) magnetostratigraphy from Miller & Opdyke (1985), with additional stratigraphy from 1811 

Johnson et al. (1990).  Squaw Creek (Colorado, USA) magnetostratigraphy from Miller & 1812 

Opdyke (1985). Foraminifera zone names on Svalbard column modified by Davydov et al. 1813 

(2001), from Nilsson & Davydov (1997), stuck.=Rauserites stuckenbergi, jigul.=Jugulites 1814 

jigulensis, sokensis=Daixina sokensis, robusta=Schwagerina robusta, furnishi=Zigarella furnishi, 1815 

princeps=Sch. princeps, spherical=Sch. sphaerica, paralin=Eoparafusulina paralinearis. G.k= 1816 

Gerkeina komiensis, F.d=Frondicularia bajcurica foraminifera assemblage zones. Stage base 1817 

ages from Henderson et al. (2012). 1818 

Fig. 3. Summary of the mid and late Permian magnetostratigraphy from the Russian East European Basin 1819 

successions west of the Urals (modified from Hounslow 2016). Boyevaya Gora, Tuyembetka and 1820 

Sambullak sections are near Orenburg and are from Taylor et al. (2009). Murygino, Tetyushi, 1821 

Cheremushka, Putyatino, Pizhma, Oparino sections are near the Kama, Volga and Vyatka Rivers 1822 

(SW Tataria, Kazan region; Silantiev et al. 2015a, 2015b), some ~700 km NE of Orenburg area 1823 

and are from Burov et al. (1998). Monastyrski (Volga River) section (Mouraview et al. 2015), 1824 

from the Kazan region based on Gialanella et al. (1997), Burov et al.  (1998),  Balabanov (2014) 1825 

and Westfhal et al. (2005). Sukhona River section from NE Russian, ~600 km North of Kazan is 1826 

from Khramov et al. (2006). Khei-Yaga River section as in Fig. 2. Each section has a thickness 1827 

scale in metres. Composite magnetochrons are also labelled with the Russian naming convention 1828 

(Molostovsky, 1996; Molostovsky et al.  1998), and the Russian regional stratigraphy (Kotlyar & 1829 

Pronina-Nestell, 2005). BH= borehole number.  1830 
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Fig. 4. Summary of the mid and late Permian magnetostratigraphy from marine and non-marine sections 1831 

(modified from Hounslow 2016).  Meishan magnetic polarity composite from Fig. 8. Kyushu 1832 

section magnetostratigraphy and fusulinid zones from Kirschvink et al. (2015). Linshui section 1833 

magnetostratigraphy from Heller et al. (1995), other stratigraphy modified from that originally 1834 

published (see text for details). Emeishan basalt magnetostratigraphy from Ali et al. (2002),  1835 

Zheng et al. (2010), Liu et al. (2013) and Zhang et al. (2014) and associated stratigraphy from He 1836 

et al. (2008) and Sun et al. (2010). The biostratigraphy of the Wulong section (Jin et al.  2000) is 1837 

inadequately documented, but the magnetostratigraphy (Chen et al.  1994; Heller et al.  1995), 1838 

appears to range into the lower Capitanian. The Shangsi magnetostratigraphy composite is from 1839 

Fig. 5. The Taiyuan (a non-marine section) magnetostratigraphy is from Embleton et al. (1996), 1840 

with additional stratigraphic details from Menning & Jin (1998) and Stevens et al. (2011). The 1841 

Nammal Gorge section magnetostratigraphy is from Hagg and Heller (1991), with conodont 1842 

ranges projected from nearby sections based on Wardlaw & Pogue (1995), Wardlaw & Mei 1843 

(1999) and Waterhouse (2010).  Abedah section magnetostratigraphy from Gallet et al. (2000) 1844 

and Szurlies (2013) and its associated conodont biostratigraphy from Shen & Mei (2010). 1845 

Fusulinids: Ps= Palaeofusulina spp., Nm= Neoschwagerina margaritae (Jin et al.  2000). 1846 

Conodont zones: G2=J. asserata (base Wordian), G3=J. postserrata (base Capitianian), G5= 1847 

J.altudaensis (mid Capitanian), G7= J. xuanhanensis (upper Capitanian). L1 to L12 are the 1848 

standard Lopingian conodont zones from Shen et al. (2010).  1849 

Fig. 5. Summary of magnetic polarity data for the Shangsi section. The composite magnetostratigraphy 1850 

on the right is derived from three magnetostratigraphic studies of Heller et al. (1988), Steiner et 1851 

al. (1989) and Glen et al. (2009). Radiometric dates from the section are from Mundil et al. 1852 

(2004) and Shen et al. (2010). Biostratigraphy is from Lai et al. (1996), Jin et al. (2000) and Sun 1853 

et al. (2008). There are inconsistencies in the thickness of units between the three studies, but 1854 

generally the datasets can be related using the bed number stratigraphy. Many of the uncertain 1855 

(grey) intervals from the study of Glen et al. (2009) represent sample levels that yielded no 1856 

polarity information. The cyclostratigraphy and conodont zonal boundaries are from Wu et al. 1857 

(2013). Key as in Fig. 4. Ammonoid zones: T-S = Tapashanites - Shevyrevites assemblage Zone; 1858 

P-P = Pseudotirolites - Pleuronodoceras assemblage Zone.  1859 

Fig. 6. Magnetic polarity data from North American and South African sections through the Middle 1860 

Permian. West Texas/New Mexico data is a composite from several studies discussed in Steiner 1861 

(2006), with the partly unpublished Guadalupian data from the backreef facies of the Guadalupe 1862 

Mountains. The Guadalupe basinal facies (Apache Mts and Guadalupe Mts sections) from Burov 1863 



Permian GPTS. 59

 

 

 

et al. (2002). Additional stratigraphic details from Lambert et al. (2007), Olszewski & Erwin 1864 

(2009) and Rush & Kerans (2010). Radiometric dates from Bowring et al. (1998) and Nicklen 1865 

(2011), related to the lithostratigraphy via sequence correlation of Rush & Kerans (2010). 1866 

Rebecca K Bounds core magnetostratigraphy from Soreghan et al. (2015), and additional details 1867 

from Sawin et al. (2008). Buffels River composite (South Africa) from Tohver et al. (2015) in 1868 

which the grey (uncertain) intervals represent sampled intervals which yielded no polarity data. 1869 

Individual section height scales on each section. The two options for correlation of the 1870 

Abrahamskraal Fm data are discussed in the text. 1871 

Fig. 7. Magnetostratigraphic data from Upper Rotleigend- Zechstein equivalent, Permian age sections in 1872 

Europe. Czaplinek, Piła and Jaworzna IG-1 well magnetostratigraphy composite derived from 1873 

Nawrocki (1997) with additional stratigraphic details from Słowakiewicz et al. (2009). Mirow 1874 

well 1/1a/74 from Menning et al. (1988) and Langereis et al. (2010). Obernsees well composite 1875 

polarity re-interpretation is from Szurlies (2013). Schlierbachswald-4 and Everdingen 1 wells 1876 

from Szurlies et al. (2003), Szurlies (2013). Southern North Sea data for the Leman Sandstone 1877 

Fm from Turner et al. (1999) and Lawton & Robertson (2003). SW England coast section data 1878 

from Hounslow et al. (2016). 1879 

Fig. 8. Summary of the Meishan section magnetic polarity data. The composite magnetic polarity is 1880 

derived from the three published studies of the Meishan section from Li & Wang (1989), Liu et 1881 

al. (1999) in Yuan et al. (2014) & Meng et al. (2000). Associated radiometric dates and 1882 

biostratigraphy from Mundil et al. (2010), Shen et al. (2010),  Jin et al. (2006a) and Burgess et al. 1883 

(2014). The data for the polarity composite shown in Yin et al. (2001) has never been published. 1884 

There is some ambiguity about how to relate these datasets, since thicknesses vary, and bed 1885 

numbers are not shown in Li & Wang (1989) and Meng et al. (2000). Data relationships were 1886 

attempted using the shale beds in the section logs. 1887 

Fig. 9. Geomagnetic polarity datasets for non-marine sections which span the Changhsingian-Induan 1888 

boundary, compared to the data from the Shangsi section (which shows the clearest relationship 1889 

between the magnetostratigraphy and a precise bio- and geochronology). Section data from Old 1890 

Lootsberg and E-W Lootsberg from Gastaldo et al. (2015) and Ward et al. (2005) respectively- 1891 

these are drawn using the same vertical scale. Polarity data for the Siberian traps using the 1892 

composites in Fetisova et al. (2014), supported by magnetic and geochronologic data in Gurevitch 1893 

et al. (2004) and Burgess & Bowring (2015). The Shangsi section data from Fig. 5. 1894 

Cyclostratigraphic age on the base of LT1r from Li et al. (2016). 1895 
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Fig. 10. Optimised composites (a, b, d,e) and age model for the Cisuralian ( c) and early Guadalupian.. 1896 

Optimised composites based on methodology in Hounslow (2016). A) and D) show the standard 1897 

deviation (σT) for the levels used in the optimised scaling procedure (scaled to Ma, using the final 1898 

age model). This is a measure of the correlated level misfit. The correlated levels are shown in b) 1899 

and e). No σT values for a corresponding level shown in b) and e) indicate the level was not used 1900 

to constrain the optimised model, but simply scaled with the section. B) and E) are the original 1901 

section data shown on the y-axis (in a relative height scale), along with the final composite 1902 

position of the levels on the x-axis. Scatter in the y-axis relates to the degree of between section 1903 

mis-fit shown in the overlying panel as σT. Numbers in brackets next to section names are the Dj 1904 

values of Hounslow (2016), which express the mis-fit of the section data to the optimised 1905 

composite. i.e. the Karachtyr data has a mean residual of 14% per average ‘chron width’, for the 1906 

optimised model. Ds is the average of the Dj values across all sections. C)  The Bchron age model 1907 

for the Carboniferous-Permian boundary, showing the scaling of optimised position to Ma, using 1908 

the radiometric dates (magnetochrons in scale of optimised composite shown at the bottom). F) 1909 

the radiometric dates used to scale the optimised composite scale. In c) and f) error bars on the y-1910 

axis and x-axis are the radiometric (σR) and stratigraphic (es) uncertainty values in Table 2. 1911 

Fig. 11. Bchron age model for the Kungurian to earliest Triassic. The optimised composite position scale 1912 

that in  Figure 10f ranging from the radiometric date at 296.1 Ma to GU2r, joined to that from 1913 

GU2r to LT1n.2n from Hounslow (2016).  1914 

Fig. 12. Summary Permian geomagnetic polarity timescale. Chron scale in Ma derived from Bchron 1915 

models in Fig. 10c and 11. Numbered fusulinid zones in the earliest Permian are those in Fig. 1 1916 

and detailed in Table 2. Standard conodont zones L2 to L12 from Shen et al. (2010), derived from 1917 

data in Fig. 4. Selected other key biochronology from Figs. 2 & 4. Radiometric ages of stages 1918 

indicated in Table 3. 1919 

Fig. 13. Confidence interval data for chron durations. A) Estimated magnetozone durations (and zone 1920 

intervals) from each of the sections (blue triangles) used in the optimised composites (y-axis), 1921 

versus the duration of the equivalent chron. Data for 173 magnetozones and zone intervals are 1922 

shown. The 95% confidence intervals on the linear regression relationship using the ln-model 1923 

(solid line). The 95% HPD limits, from Bchron for each of the Permian chrons are shown (as 1924 

diamonds), along with a lines (dashed) expressing this variation with duration. B) Estimates of the 1925 

95% confidence intervals using uncertainty in the age model (gray line), using the approach of 1926 

Agterberg (2004) and symmetrical 95% confidence intervals using the section magnetozone data 1927 

(dashed lines) shown in a). The final 95% confidence interval model (black line) adds the 1928 
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Agterberg estimates to the linear-model when chron duration >0.7 Ma and ln-model added to the 1929 

Agterberg estimate when durations <0.5 Ma (that 0.5- 0.7 Ma is linearly interpolated). Regression 1930 

and confidence intervals used the linear model routines in R, version 3.2.4 (Becker et al. 1988). 1931 

 1932 



Location/ Age Lithology, Lithostratigraphy NS. 
[NMZ]

Dm/FT/
S

h.MZ 
 (m) 

Reference sources

Arizona, USA/mid Kungurian Clastic red-beds, Schnebly Hill Fm 30[1?] 0/0/PP ? Graham 1955.
Spitsbergen, Norway/ Kungurian Cherts, spiculitic shales, Kapp 

Starostin Fm 
4 [1] 1/0/MS ~12 Nawrocki & Grabowski 2000, Nawrocki 1999 

Ellesmere Island, Canada/  early to 
mid Kungurian 

Basaltic lavas, Esayoo Volcanics 5 [1] 1/0/PP ~10-30 Wynne et al. 1983, Morris 2013, LePage et al. 2003.

Prince Edward Island, Canada 
/Late Artkinskian 

Red-beds, Pictou Group, Orby Head 
Fm. 

9 [2] 2/0/PP ? Symons 1990, Ziegler et al. 2002.

Oklahoma, USA/ mid Artkinskian Red Sandstone, Garber Sandstone 7 [1] 2/0/PP ? Peterson & Nairn 1971, Giles et al. 2013.
Spitsbergen, Norway/ late 
Artkinskian 

Cherts, spiculitic shales, Kapp 
Starostin Fm 

3 [1] 1/0/MS ~18 Nawrocki & Grabowski 2000; Nawrocki 1999

Paganzo Basin, Argentina/ 
Artinskian 

Red beds, La Colina Fm 8[1] 2/0/MS ~15 Valencio et al. 1977, Valencio (1980, Césari et al. 2011, 
Césari & Gutiérrez 2000

British Columbia/ late Sakmarian – 
early Artinskian 

Tuffs, Asitka Group 15[1?] 2/0/PP ? Irving & Monger 1987, MacIntyre et al. 2001.

W. Virginia, USA/ Asselian Dunkard Group, Washington Fm 2[1] 2/0/PP ? Helsley 1965, Gose & Helsley 1972, Schneider et al. 
2013.

Karachatyr, Tajikistan/ Asselian Marine limestones and clastics >=2?[1] 2/F+/M
S

<200 Davydov & Khramov 1991.

Aidaralash, Kazakhstan/early 
Asselian 

Marine limestones and clastics 2[1] 2/0/MS 10 Khramov & Davydov 1984,1993.

Saar-Nahe Basin, Germany/           
300-290 Ma (Sak.- Ass.) 

Nohfelden & Donnersberg rhyolites 11[1?] 1/0/PP ? Berthold et al. 1975, Schmidberger & Hegner 1999.

Thuringia, Germany/ Gzhelian? Grey, coal bearing ssts, Manebach 
Fm 

5[?] 2/0/MS ? Menning 1987, Menning et al. 1988.

Aidaralash, Urals/late Gzhelian Marine limestones and clastics 2[1?] 2/0/MS <15 Khramov & Davydov 1984,1993.
Nikolskyi, Urals/late Gzhelian Marine limestones and clastics 2?[2] 2/0/MS <~20 Khramov & Davydov 1984,1993.
Spitsbergen, Norway/ late Gzhelian  Limestones, dolomites Tyrrellfjellet 

Mbr 
2[1] 1/0/MS ~8 Nawrocki & Grabowski 2000, Nawrocki 1999. 

Fergana, Tajikistan/ Gzhelian Marine limestones and clastics ~6[3] 2/F+/M
S

~3 to 
<300 

Davydov & Khramov 1991.

Donets Basin, Suhoj-Jaz, Ukraine/ 
late Gzhelian 

Red beds/ Kartamysh Suite 17[1] 0/F+/PP <100 Khramov 1963b, Khramov & Davydov 1984, Davydov & 
Leven 2003, Iosifidi et al. 2010.

Table 1. Studies showing reliable normal polarity data in the early Permian and latest Carboniferous. Ns=Number of specimens with normal polarity. N.MZ= 
number of normal magnetozones. hMZ= normal magnetozone height, ?=unknown. Dm/FT/S= demagnetisation method/fold test/study type.  Dm=1, if full 
demagnetisation applied to all samples, with principle component or great circle extraction, Dm=2, pilot demagnetisations of simple magnetisation behaviour, 
with stable point averaging, or single step. Dm=0, no demagnetisation. F+= fold test positive (or demonstrate pre-folding magnetisation), F-= fold test 
negative,F=0, no fold test. S=PP or MS for palaeopole or magnetostratigraphic study respectively. 
  



 
1.Code, age (Ma) 2. 

±2σR 
(Ma) 

3. ±es  4. Location [estimated position] 5.Biostratigraphy, stratigraphy  {position 
in biozone } 

6. 
Pout 

7. References 

SH03, 260.74 0.9 10% of GU3n 36.3 m above base Wujiaping Fm, 
Shangsi, bed 8 

Base Lopingian {base of LP0r} 0.12 Mundil et al. 2004, Zhong et al. 
2014, Schmitz 2012. 

JW1, 259.1  0.5+ 10% of GU3n Emeishan basalts, Zhaotong ~100 m below top of unit III {95% into 
GU3n} 

0.45 Zhong et al. 2014. 

GM-20, 262.58 0.45 100% of GU2r 20 m above Rader Limestone 
(Patterson Hills) 

Within Polydiexodina fusulinid Zone, (i.e. ~ 
J. postserrata zone) {95% into GU2n} 

0.03 Nicklen 2011. 

OPA483, 264.6* 1.9 10% of GU1r 484 m above base of Abrahamskraal 
Fm, Ouberg Pass. S. Africa 

Within mid Eodicynodon assemblage 
{75.4% into GU2r} 

0.01 Lanci et al. 2013. 

OPA292, 265.9* 1.4 5% of GU1n 195 m above base of Abrahamskraal 
Fm, Ouberg Pass. S. Africa 

Within base Eodicynodon assemblage 
{86.7% into GU1n} 

0.01 Lanci et al. 2013. 

NH, 265.35 0.5 100% of 
GU1r.1n 

Nipple Hill, Guadalupian Mts 37.2 m below base Capitanian, 2 m above 
top of the Hegler Member {base GU1r.1n} 

0.04 Bowring et al. 1998, Nicklen 2011, 
(Fig. 1.8) 

OPA230, 266.4* 1.8 5% of GU1n 132 m above base of Abrahamskraal 
Fm, Ouberg Pass. S. Africa 

Within base Eodicynodon assemblage 
{97.4% into CI3r.2r} 

0.01 Lanci et al. 2013. 

GM-29, 266.50 0.24 100% of GU1r below South Wells Limestone 
(“Monolith Canyon”) 

Within J. asserrata Zone {10% into MP1r} 0.17 Nicklen 2011. 

OPA160, 267.1* 1.7 10% of CI3r.2r 62 m above base of Abrahamskraal 
Fm, Ouberg Pass. S. Africa 

Within base Eodicynodon assemblage 
{69.1% into CI3r.2r} 

0.00 Lanci et al. 2013. 

OPA151, 268.5* 3.5 10% of CI3r.2r 52 m above base of Abrahamskraal 
Fm, Ouberg Pass. S. Africa 

Within base Eodicynodon assemblage 
{65.0% into CI3r.2r} 

0.01 Lanci et al. 2013. 

PPAsh-1 296.09 0.35 300% of CI2n La Colina Fm, Pagenzo basin, 
Argentina. [10’s m above basalt 
flow/sill] 

Pagenzo Group, Fusacolpites fusus–
Vitattina subsaccata Interval Biozone 

0.01 Gulbranson et al. 2010,  
Césari et al. 2011. 

01DES212, 296.69 0.37 400% of 
CI1r.1n 

Usolka section, Russia Mid Asselian, {54% into zone 11} 0.01 Schmitz & Davydov 2012. 

01DES202, 298.05 0.54 100% of 
CI1r.1n 

Usolka section, Russia Early Asselian, {83% into zone 10} 0.01 Ramezani et al. 2007. 

01DES194, 298.49  0.34 100% of 
CI1r.1n 

Usolka section, Russia Earliest Asselian, {21% into zone 10} 0.01 Ramezani et al. 2007. 

01DES144, 299.22 0.34 400% of CI1n Usolka section, Russia latest Gzhelian, {63% into zones 8 & 9} 0.01 Ramezani et al. 2007. 

97USO-23.3, 300.22 0.35 30% of Zone 5 Usolka section, Russia Mid Gzhelian, {83% into zone 5} 0.01 Schmitz & Davydov 2012. 

01DES121, 301.29 0.36 30% of Zone 5 Usolka section, Russia Mid Gzhelian, {61% into zone 5} 0.01 Schmitz & Davydov 2012. 

01DES112, 301.82 0.36 30% of Zone 5 Usolka section, Russia Mid Gzhelian, {26% into zone 5} 0.01 Schmitz & Davydov 2012. 

01DES63, 303.10 0.36 30% of Zone 3 Usolka section, Russia Basal Gzhelian, {40% into zone 3} 0.01 Schmitz & Davydov 2012. 

97USO-2.7,303.54 0.39 30% of Zone 3 Usolka section, Russia Basal Gzhelian, {10% into zone 3} 0.01 Schmitz & Davydov 2012. 

 



Table 2. Permian radiometric dates used. Column 1: Analysis code and date (in Ma). Column 2: ±2σR = two-sigma error on age.  Column 3: ±es= estimated stratigraphic error in placing the 
date onto the magnetostratigraphy in units of magnetochron or  foraminifera zone widths. Column 4: section name, location. Column 5: Stratigraphic age or location, {..}= correlated position 
of date from base of chron, zone or interval. Column 6: Pout, probability (0 to 1.0) the date is an outlier (from Bchron); bigger values suggest more likely. For those dates not displayed here, 
but in supplementary Table 2 in Hounslow (2016), all have Pout <0.2 except those at 253.47 Ma, 251.1 Ma  and 252.85  Ma giving Pout of 0.998, 0.992 and 0.207 respectively.   Column 7: 
source reference for the radiometric and age information. Foraminifera zone numbers in Columns 3 and 5, based on Khramov & Davydov (1993), Davydov & Leven (2003), Schmitz & 
Davydov (2012): 2= Rauserites quasiarcticus, 3=Daixina fragilis, 4=D. crispa, 5=D. ruzhenzevi, 6 &7=D. sokensis, 8&9= Ultradaixina bosbytauensis, 10=Sphaeroschwagerina aktjubensis to 
Sp. fusiformis, zone 11= Schwagerina nux to Pseudoschwagerina robusta, 12=Sp. gigas, 13=S. moelleri, 14=S. verneulli, 15= Ps. pilicatissima- Ps. urdalensis. Nicklen (2011) used hand 
picked acicular, clear zircons, annealed at 900oC for 48 hrs then chemically abraded and spiked with EARTH time tracer solution. GM-20 has 100 crystals picked, with the weighted mean 
using 2 multi-crystal and 2 single crystal analyses combined. GM-29 had 100 crystals separated, which produced a weighted mean using 8 concordant single crystals. *= Monto Carlo 
simulation of best fit SHRIMP ages and associated uncertainties.



Chron Age (Ma) Chron 
duration 

(Ma) 

c95 (Ma) σΤ 
(ka) 

%D95 Chron Age (Ma) Chron 
duration 

(Ma) 

c95 

(Ma) 

σΤ 
(ka) 

%D95

LT1n.2n 251.444  0.28 -        
LT1n.1r 251.634 0.190 0.23 - 19.1 GU3n.an 262.129 2.297 0.89 - 9.6 
LT1n.1n 252.242 0.608 0.23 40 15.1 GU3n.ar 262.160 0.031 0.87 - 31.4 
LP3r.ar 252.54 0.298 0.17 - 16.8 GU3n 262.592 0.432 0.57 38 15.7 
LP3r.an 252.571 0.031 0.17 - 31.4 GU2r 262.740 0.148 0.55 78 20.5 
LP3r 252.668 0.097 0.19 28 23.2 GU2n.2n 263.134 0.394 0.84 73 15.9 
LP3n 252.796 0.128 0.23 166 21.4 GU2n.1r 263.446 0.312 0.90 280 16.6 
LP2r 253.196 0.400 0.34 99 15.9 GU2n.1n 264.375 0.929 0.95 346 12.5 
LP2n.3n 253.242 0.046 0.37 20 28.7 GU1r 265.746 1.371 0.69 394 10.4 
LP2n.2r 253.802 0.560 0.43 164 15.3 GU1n.3n 266.274 0.528 0.73 94 15.4 
LP2n.2n 254.194 0.392 0.40 229 15.9 GU1n.2r 266.374 0.100 0.76 251 23.0 
LP2n.1r 254.637 0.443 0.66 400 15.6 GU1n.2n 266.496 0.122 0.70 110 21.7 
LP2n.an 254.876 0.239 0.88 - 17.8 GU1n.1r 266.566 0.070 0.70 77 25.6 
LP2n.ar 255.106 0.230 0.99 - 18.0 GU1n 266.659 0.093 0.76 220 23.5
LP2n.1n 255.922 0.816 1.12 286 13.5 CI3r.2r 269.240 2.581 1.59 254 9.6
LP1r 257.584 1.662 0.75 424 9.9 CI3r.1n 269.542 0.302 1.61 355 16.7 
LP1n.2n 258.002 0.418 0.58 177 15.8 CI3r.1r 275.386 5.844 2.02 132 9.6 
LP1n.1r 258.072 0.070 0.58 111 25.6 CI3n 275.862 0.476 1.99 45 15.4 
LP1n 258.214 0.142 0.66 115 20.8 CI2r 280.736 4.874 1.97 210 9.6 
LP0r.ar 258.683 0.469 0.86 - 15.8 CI2n 281.242 0.506 2.26 184 15.5
LP0r.an 258.731 0.048 0.89 - 28.4 CI1r.2r 297.835 16.593 0.34 - 9.6
LP0r.3r 258.842 0.111 0.94 21 22.3 CI1r.1n 297.938 0.103 0.33 - 22.8 
LP0r.2n 258.922 0.080 0.96 127 24.6 CI1r.1r 298.694 0.733 0.37 123 14.4 
LP0r.2r 259.316 0.394 1.08 - 15.9 CI1n 298.774 0.081 0.37 140 24.5 
LP0r.1n 259.396 0.080 1.10 - 24.6       
LP0r.1r 259.832 0.436 1.13 32 15.7  
Table 3.  Permian chron base ages and durations. C95 : 95% Highest posterior density intervals on the age of the chron, estimated using Bchron in two age segments (shown in 
Fig. 10c and 11). σΤ : standard deviation of the chron position in the sections for the chron (from the optimisation method), scaled by the duration of the optimised chron. σΤ  
is a measure of the uncertainty in defining the chron position in the optimised GPTS. %D95 is the 95% confidence interval on the duration (expressed as the percent of the 
chron duration; Fig. 13). The age models define the base of the stages at the following: Gzhelian, 303.79 Ma; Asselian, 298.41 Ma; Sakmarian, 295.5 Ma; Artinskian, 290.1 
Ma; Kungurian, 279.3 Ma; Roadian, 272.13 Ma; Wordian, c. 266.7Ma; Capitanian, c. 263.5 Ma; Wuchiapingian, 259.7 Ma; Changhsingian,  255.4 Ma; Induan 252.1 
±0.23Ma from which the relative position of the chrons in the stages can be determined. Age of some tentative subchrons designated were estimated using relative locations 
within the main chrons at the Monastyrski (for GU3n.ar), Wulong (for LP0r.1n), Linshui (for LP0r.an) and Everdingen (for LP3r.an) sections. The differing Wordian-
Changhsingian age model and method to Hounslow (2016) gives slightly different age and uncertainty values for most of the data here. 
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