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Abstract

Landslide mapping (LM) is essential for hazard prevention, mitigation, and vulnerability assessment. Despite

the great efforts over the past few years, there is room for improvement in its accuracy and efficiency. Existing

LM is primarily achieved using field surveys or visual interpretation of remote sensing images. However, such

methods are highly labor-intensive and time-consuming, particularly over large areas. Thus, in this paper

a change detection-based Markov random field (CDMRF) method is proposed for near-automatic LM from

aerial orthophotos. The proposed CDMRF is applied to a landslide-prone site with an area of approximately

40 km2 on Lantau Island, Hong Kong. Compared with the existing region-based level set evolution (RLSE),

it has three main advantages: 1) it employs a more robust threshold method to generate the training

samples; 2) it can identify landslides more accurately as it takes advantages of both the spectral and spatial

contextual information of landslides; and 3) it needs little parameter tuning. Quantitative evaluation shows

that it outperforms RLSE in the whole study area by almost 5.5% in correctness and by 4% in quality. To

our knowledge, it is the first time CDMRF is used to LM from bitemporal aerial photographs. It is highly

generic and has great potential for operational LM applications in large areas and also can be adapted for

other sources of imagery data.

Keywords: Aerial photographs, change detection, landslide mapping (LM), Markov random field (MRF),

region-based level set evolution (RLSE)

1. Introduction1

Landslide hazards cause annual economic losses of nearly US$ 4 billion in Italy, over US$ 3 billion in2

Japan, more than US$ 1 billion in China (Klose et al., 2016), and at least US$ 2 billion in the United3

States (http://landslides.usgs.gov/). In Hong Kong, there are more than 100000 landslides on natural4

terrain, with almost 500 people killed in the past six decades (Choi and Cheung, 2013). The annual average5

expenditure over the last decade incurred by landslide prevention measures was about US$ 124 million6

(Choi and Cheung, 2013). Thus, landslide mapping (LM), including the date, spatial distribution, size,7

number, type, and morphological features of landslides, is essential for hazard prevention, mitigation, and8
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vulnerability assessment. In recent years, the progress of LM has been considerably facilitated by the9

development of remote sensing techniques (Metternicht et al., 2005; Ardizzone et al., 2007; Guzzetti et al.,10

2012; Tofani et al., 2013; Scaioni et al., 2014; Ciampalini et al., 2015). To date, numerous LM methods using11

optical remote sensing images have been developed and they are briefly reviewed in the following subsection.12

1.1. Prior work13

Prior LM methods can be roughly classified into five groups: visual interpretation-based, feature-based,14

change detection-based, topographic model-based, and machine learning-based methods. Related review15

articles can be referred to Guzzetti et al. (2012); Corominas et al. (2014). The studies of LM using synthetic16

aperture radar (SAR) data are not included in this section.17

1.1.1. Visual interpretation-based methods18

In Sato et al. (2007); Saba et al. (2010); Xu et al. (2015), earthquake-triggered landslides were visually19

interpreted from high resolution satellite images. Three different LM techniques using visual interpretation20

of aerial photos were compared in Galli et al. (2008). Similar comparisons can be found in Xu et al. (2014).21

Nearly 60000 landslide scarps were mapped from remote sensing images via visual interpretation in Gorum22

et al. (2011). In Ghosh et al. (2012), three types of landslides, i.e., shallow translational rockslides, shallow23

translational debris slides and deep-seated rockslides, were mapped by human interpretation of multitemporal24

remote sensing images. In Althuwaynee et al. (2015), a 12-year rainfall-induced landslide inventory map in25

the metropolitan area was visually delineated from aerial photos and SPOT-5 images. In Borrelli et al. (2014),26

rainfall-triggered landslides were mapped from aerial photos using visual interpretation which is aided by27

field surveys. In a different context Brunetti et al. (2014), landslides on Mars were visually interpreted from28

optical images. In Murillo-Garćıa et al. (2015), visual analysis of stereo pairs of GeoEye-1 images was applied29

to map rainfall-triggered landslides. A recent study found that visual interpretation of aerial photos is still30

the widely used LM method (Pellicani and Spilotro, 2015). In practice, however, visual interpretation is31

often labor-intensive and time-consuming.32

1.1.2. Feature-based methods33

Generally, the spectral, textural, morphological and topographic features are combined for LM. For ex-34

ample, landslides were mapped using the spectral, spatial contextual information and morphometric features35

in Martha et al. (2010); Lahousse et al. (2011); Aksoy and Ercanoglu (2012); Rau et al. (2014). In Lu et al.36

(2011); Martha et al. (2012), object-oriented change detection methods were developed for LM from mul-37

titemporal satellite images. In Martha et al. (2011), optimal segments generated by object-based image38

analysis (OBIA) and terrain curvature derived from DTM were combined for landslide detection and classi-39

fication in mountainous areas. In van Den Eeckhaut et al. (2012), landslides in forested areas were identified40

by using multiple types of features derived from LiDAR data. Results in Moosavi et al. (2014) showed that41

OBIA outperforms pixel-based methods in LM from high resolution remote sensing images. In a recent42

study (Pradhan et al., 2015), landslides in a tropical urban area were detected using OBIA which combines43

airborne LiDAR data and Quickbird images.44
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1.1.3. Change detection-based methods45

In some studies, landslides were mapped by differencing co-registered images or digital elevation models46

(DEMs) acquired over the same geographical position at different times. In van Westen and Getahun (2003),47

landslide evolution maps in Tessina, Italy were obtained via multitemporal aerial photographs interpretation48

and landslide volumetric changes were estimated by multitemporal DEMs analysis. In Hervás et al. (2003),49

landslides in the same area were mapped using bitemporal change detection of aerial photographs. In Tsut-50

sui et al. (2007), multitemporal DEMs derived from SPOT-5 imagery were used to detect earthquake- and51

typhoon-triggered mountainous landslides and estimate their volumes. The similar application can be found52

in Pesci et al. (2011). In Yang and Chen (2010), LM was converted into the change analysis of the multitem-53

poral normalized difference vegetation index (NDVI) from Landsat TM image and Advanced Spaceborne54

Thermal Emission and Reflection Radiometer image. In Mondini et al. (2011b,a), four different types of55

change detection techniques, i.e., dNDVI, spectral angle, principal component analysis, and independent56

component analysis, were combined to map shallow landslides from 8 m bitemporal satellite images. In57

Ventura et al. (2011), multitemporal LiDAR-derived digital terrain models (DTMs) were used to track the58

evolution of active rock landslides. More recently, change vector analysis (CVA) and level set method were59

integrated to map shallow debris flows from bitemporal aerial photos in Hong Kong (Li et al., 2016). Results60

indicated that region-based level set evolution (RLSE) outperforms edge-based LSE in LM.61

1.1.4. Topographic model-based methods62

In recent years, digital topographic models have been widely used for LM as they can provide detailed63

geomorphological features. In McKean and Roering (2004); Glenn et al. (2006); Trevisani et al. (2012); Tarolli64

et al. (2012); Razak et al. (2013); Giordan et al. (2013), DEM derived from LiDAR was used to analyze65

the landslide surface geomorphological features. In Bichler et al. (2004), DTM derived from remote sensing66

images was used to map 3D landslides on a plateau in Canada. LiDAR-derived DEMs were used to identify67

rainfall-induced landslides in a hilly area (Ardizzone et al., 2007) and forested landslides in a mountainous68

area (Chen et al., 2014). In Booth et al. (2009), LiDAR-derived DEM combining signal processing techniques69

was exploited to map deep-seated landslides. In Kurtz et al. (2014), landslide morphological features (e.g.,70

slope and curvature) derived from DTM were utilized for mapping shallow and slow-moving landslides. The71

application of LiDAR-derived DEM for LM has been comprehensively reviewed in Jaboyedoff et al. (2012);72

Tarolli (2014).73

1.1.5. Machine learning-based methods74

In Borghuis et al. (2007), maximum likelihood classifier was used to map typhoon-triggered landslides in75

rugged area from 10 m SPOT-5 images. In Chang et al. (2007), a generalized positive Boolean function-based76

classifier was trained using spectral and morphological features for landslide classification. Probabilistic latent77

semantic analysis was applied to LM in semi-arid regions from GeoEye-1 images in Cheng et al. (2013). In78

Mondini et al. (2013), the inventory maps of rainfall-induced shallow landslides were produced using Bayesian79

inference. In Chen et al. (2014), random forest was trained using features derived from DTM to identify80
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forested landslides. Support vector machine trained using backscatter and texture features was applied to81

detect slough slides along earthen levees in Mahrooghy et al. (2015).82

The above brief review suggests that LM, despite the past efforts, remains a challenging task. There83

is significant demand for improvement in the accuracy and the degree of automation of LM (van Westen84

et al., 2006; Guzzetti et al., 2012). Although field surveys and visual interpretation of remote sensing images85

generally can provide reliable results, they are highly labor-intensive, time-consuming (Galli et al., 2008), and86

sometimes impractical. Thus, this paper attempts to propose a more accurate and automated LM method.87

1.2. Our work88

This paper is a further development of our previous work (Li et al., 2016), in which landslides were89

mapped from bitemporal aerial photos using LSE. Despite the decent performance of LSE, it has constraints90

regarding accuracy, automation and robustness considering large-area LM applications. In particular, LSE91

only utilizes the spectral information of landslides, which is sometimes not adequate to obtain reliable results.92

In addition, there are many free parameters in LSE that need to be tuned in practical applications, and93

however, it is not easy to obtain the optimal parameter values. Therefore, in this paper we propose a new94

change detection-based Markov random field (CDMRF) for near-automatic LM. Compared with the existing95

LM methods, CDMRF has the following attractive characteristics: 1) it takes into account both the spectral96

and spatial contextual information of landslides; 2) it has a great level of automation; and 3) it requires little97

parameter tuning.98

2. Study area and dataset99

The study area, with a total land area of approximately 40 km2, is located on western Lantau Island,100

Hong Kong (Fig. 1). It is characterized by steep terrain, 40% of which is steeper than 25◦. The highest101

point in the study area is Ling Wui Shan with a height of 490 m. There are mainly two land cover types:102

subtropical vegetation (grasslands, shrublands, and woodlands) and developed infrastructures (human set-103

tlements, roads, temples, and reservoirs). More detailed vegetation information can be retrieved at Hong104

Kong Herbarium (http://herbarium.gov.hk/). Most peaks are grassy and lower slopes are often covered with105

shrubs and forests. The study area is underlain primarily by Upper Jurassic silicic volcanic tuffs and lavas106

(Sewell et al., 2015). Most peaks in the study area are formed by the highly weathered tuffs and lavas, which107

produce loose materials. Although the internal friction and cohesion of the materials on steep slopes resist108

gravitational collapse, the infiltration of rain fills spaces between loose soil and rock, which potentially leads109

to unstable slopes (Owen and Shaw, 2007). The main landslide type in the study area is debris flow, which110

is a combination of soil, rock, organic matter, air, and water that flows under gravity.111

The average annual precipitation in this area is nearly 2400 mm due to the humid subtropical climate.112

On 7 June 2008, Lantau Island was affected by an extreme rainstorm in an unprecedented manner. The total113

rainfall reached 307 mm within 24 h. More than 2400 landslides were triggered and they were mainly shallow114

debris flows involving highly mobile top-soil, bouldery colluvium, and weathered rock. Most of them traveled115

long distances, posing great threats to life and property. For LM in the study area, the pre- and post-event116
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Fig. 1. Study area with sub-areas A to D highlighted on Lantau Island, Hong Kong.

RGB aerial photos [Fig. 2(a) and (b)] with a spatial resolution of 0.5 m and a size of 11843 × 13397 pixels117

(about 40 km2) are used. They were acquired by Zeiss RMK TOP 15 Aerial Survey Camera System at a118

flying height of approximately 2400 m in December 2005 and on November 20, 2008, respectively. As can be119

seen in Fig. 2(b), there are numerous landslides with different sizes, shapes, and spatial distributions. Most120

of them occurred in shrublands and grasslands. They are often spectrally heterogeneous due to the mixed121

materials such as weathered volcanic tuffs, soils, and grasses. Thus, in some areas the landslide boundaries122

are blurry, which often pose great challenges to edge-based methods (Li et al., 2016). In addition, there123

are numerous spectrally similar volcanic tuffs and lavas surrounding landslides in some areas, which also124

complicate LM substantially.125

The proposed CDMRF in this paper will be applied to LM in the study area and four sub-areas A to D126

(Fig. 1) will be examined in detail. For accuracy evaluation, the results will be compared with the manually127

digitized reference map truth which is shown in Fig. 2(d).128

3. Methodology129

The proposed CDMRF is composed of the following four principal steps (Fig. 3). First, the pre-processing130

including geometric correction, radiometric correction, and masking is applied to the original bitemporal131

aerial photos. Then, the difference image (DI) is automatically generated using change vector analysis132

(CVA). Next, the training samples of landslides and non-landslides are generated from the post-event aerial133

orthophoto using a multi-threshold method. Finally, LM is achieved using MRF.134
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Fig. 2. Datasets. (a) and (b) Pre- and post-event aerial orthophotos. (c) Masked post-event orthophoto. (d) Reference map.

3.1. Pre-processing135

The pre-processing includes geometric correction, radiometric correction, and masking. A more detailed136

description can be found in Li et al. (2016). For geometric correction, photo distortions and topographic relief137

were rectified. The relief displacement was removed using Hong Kong DTM, which was also used for ortho-138

rectification. For radiometric correction, absolute radiometric correction was not applied to the bitemporal139

aerial orthophotos because there is no in situ atmospheric data available at the time of sensor overpasses.140

For bitemporal change analysis, relative radiometric correction is generally used to make bitemporal images141
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Fig. 3. Flowchart of the proposed landslide mapping method.

appear as if they are acquired under similar atmospheric and illumination conditions. However, it may142

lead to inaccurate change analysis in real applications as it often substantially reduces the magnitude of143

spectral differences, which has been identified in Yang and Lo (2002). Thus, radiometric adjustment and144

color balancing were applied to the bitemporal orthophotos. The former can effectively compensate for visual145

effects such as hot spots, lens vignetting, and color variations. The latter can adjust adjacent aerial photos146

to match in color and brightness. Finally, the seamless and color-balanced orthophoto mosaic with a scale147

of 1:5000 was produced. In addition, the developed infrastructures (e.g., human settlements, roads, temples,148

and reservoirs) often cause errors in multitemporal change analysis. To eliminate the potential errors, they149

were masked in post-event aerial orthophoto using digital topographic maps which were provided by Lands150

Department, Hong Kong [Fig. 2(c)].151

3.2. The generation of difference image152

Like the work in Li et al. (2016), DI is automatically generated using CVA (Lambin and Strahler, 1994).

CVA is defined as follows:

ρ(I) =

[
n∑

b=1

(It1 − It2)
2
b

]1/2
(1)
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Fig. 4. Difference image (DI), the initial zero-level set (ZLS), and training sample masks. (a) DI generated by CVA. (b) The

initial ZLS (white for landslides and black for non-landslides) generated by the single threshold method in Li et al. (2016) with

α = 1.5. (c) Training sample masks (red, green, and black for landslides, non-landslides, and uncertain areas) generated by the

multi-threshold method in Eq. (2) with T = 1 and ∆T = 1.5. (d) - (g) Initial ZLSs in sub-areas A to D. (h) - (k) Training

sample masks in sub-areas A to D.

in which It1 and It2 are pixel values of the pixel I at the times t1 and t2, b is the band number, ρ(I) is153

the magnitude of the change vector of the pixel I. The pixels with greater values of ρ(I) in DI generally154

correspond to candidate landslides, as shown in Fig. 4(a). However, they are often not homogeneous as155

landslides are generally spectrally heterogeneous. In addition, there are often other errors in DI caused by156

phenology variations or illumination differences. Thus, using DI alone cannot discriminate landslides from157

8



non-landslides accurately. To address this challenge, LM is achieved using MRF in this paper. Traditionally,158

MRF is an interactive object segmentation method which requires human interaction to provide the training159

samples. However, human interaction is highly labor-intensive in real applications. To reduce the load on160

users, the training samples of landslides and non-landslides in this paper are generated from the post-event161

aerial orthophoto using an effective multi-threshold method.162

3.3. The generation of training samples163

Generally, the brightest and darkest pixels in DI represent landslides and non-landslides, respectively.

Thus, the training sample masks of landslides and non-landslides can be generated by the following multi-

threshold method (Chuvieco et al., 2002):

IDI =


landslide, if ρ(I) ≥ µ+ (T + ∆T ) ∗ σDI

uncertain area, if µ+ (T + ∆T ) ∗ σDI > ρ(I) > µ+ T ∗ σDI

non− landslide, if ρ(I) ≤ µ+ T ∗ σDI

(2)

where IDI = ρ(I) is the intensity value of the pixel I in DI, T ∈ Z+ and ∆T ∈ R+ are parameters, µ is164

the mean of DI, and σDI is the standard deviation of DI. In Eq. (2), the pixels in DI with intensity values165

less than or equal to (µ+ T ∗ σDI) are classed as non-landslides; whereas the pixels with intensity values166

greater than or equal to [µ+ (T + ∆T ) ∗ σDI ] are regarded as landslides; and those falling into this interval167

are considered to be uncertain areas.168

According to the multi-threshold method Eq. (2), the training sample masks for the whole study area can169

be generated. As illustrated in Fig. 4(c), red, green, and black areas represent landslides, non-landslides, and170

uncertain areas, respectively. The training sample masks for the four sub-areas A to D are presented in Fig.171

4(h) to (k). The final training samples are obtained by superimposing the training sample masks onto the172

post-event aerial orthophoto and collecting the corresponding RGB values of the landslide and non-landslide173

pixels. Then, the next step is to map landslides using MRF.174

3.4. Markov random field175

Once the training samples are determined, landslides can be mapped using MRF (Fig. 5). MRF can

assign each pixel in the uncertain areas a label (1 for landslides or 0 for non-landslides), which forms a label

set that minimizes the following energy function (Szeliski et al., 2008):

E(L) = Eu(L) + λ · Ep(L)

L̂ = argminLE(L)
(3)

where Eu(L) and Ep(L) are the unary potential and pairwise potential, respectively. They are balanced by176

a weighting coefficient λ. L = (l1, l2, ..., ln) is a label set, li ∈ {0, 1} is the label of the ith pixel Ii, and n is177

the pixel number in DI. L̂ is the minimum of the energy function E(L).178
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3.4.1. The unary potential179

The unary potential Eu(L) can ensure that the label set L is consistent with the training samples, and

it is defined as

Eu(L) =
∑
i∈C1

Vi(li) (4)

where C1 is the single-site clique. Vi(li) is often defined as follows

Vi(li) =

− log (p(O|Ii)) , if li = 1

− log (p(B|Ii)) , if li = 0

(5)

in which p(O|Ii) is the posterior probability of the uncertain pixel Ii belonging to the object O (i.e., landslide).180

The similar annotation p(B|Ii) is used for the background B (i.e., non-landslide). Vi(li) is often modeled as181

two Gaussian mixture models (GMMs) (Rother et al., 2004): one for landslide and the other for non-landslide182

(Fig. 5).183

A GMM is generally defined as a weighted linear combination of M Gaussian components:

p (x|Θ) =

M∑
i=1

ωig (x|µi,Σi) (6)

where x ∈ Rd is the data vector (i.e., RGB values), ωi are scalar weights and
∑M

i=1 ωi = 1, and g (x|µi,Σi)

is the ith Gaussian component:

g (x|µi,Σi) =
1√

(2π)d det Σi

exp

[
−1

2
(x− µi)

ᵀΣi
−1(x− µi)

]
(7)

in which µi and Σi are the mean and covariance, and Θ = {ωi,µi,Σi} , i = 1, ...,M is the set of parameters.184

Two GMMs need to be trained from the training samples: one for landslide (i.e., GMM 1) and the other185

for non-landslide (i.e., GMM 2), as presented in Fig. 5. In each GMM, 5 Gaussian components are used and186

each component represents a spectral (color) class. Too many components may lead to overfitting. In this187

paper, the parameters of the two GMMs (i.e., ωi, µi and Σi) are separately estimated using a hierarchical188

clustering algorithm called TSVQ (Gersho and Gray, 2012). Its efficiency has been identified in Carlotto189

(2005) and its principle is briefly described as follows.190

The basic idea behind TSVQ is that the original training samples (either landslide or non-landslide)191

are viewed as a single cluster, which is further grouped into M clusters (here M = 5) and each cluster192

corresponds to a Gaussian component. More specifically, the mean and covariance matrices of the original193

cluster are first computed (Li et al., 2014). Then, the eigenvalue and eigenvector of the covariance matrix194

can be obtained. The eigenvector corresponding to the greatest eigenvalue points in the direction of the195

greatest cluster variation. The initial cluster is then split into two parts by a vector that is perpendicular196

to that eigenvector while passing through the mean. Next, the new mean and covariance matrices of the197

sub-clusters are computed. The splitting repeats M − 1 times until M Gaussian components are obtained.198

In each final component, the pixels are assigned with the same label and counted. Thus, the mean µi and199

covariance Σi of the ith component can be readily obtained, and their weights ωi are in proportion to their200

pixel numbers. In this way, GMM 1 and GMM 2 can be determined.201
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neighboring pixels (4-neighborhood system). They are employed to calculate the pairwise potential in Eq. (3). The larger the

weights, the thicker the edges. The separations of the weak edges will automatically partition landslides from non-landslides.

Once GMMs are obtained, the posterior probabilities of the uncertain pixels can be computed by using

Bayes’ theorem:

p(O|Ii) =
p(Ii|O)p(O)

p(Ii|O)p(O) + p(Ii|B)p(B)
(8)

where p(O|Ii) is the posterior probability that the uncertain pixel Ii belongs to the class of landslide O.202

p(Ii|O) is the likelihood of the landslide pixel. Here, p(Ii|O) = GMM 1. Analogous notations are used for203

the class of non-landslide B, and there are p(B|Ii) = 1− p(O|Ii) and p(Ii|B) = GMM 2. p(O) and p(B) are204

prior probabilities of the landslide and non-landslide, respectively, and p(O) = p(B) = 1
2 .205

3.4.2. The pairwise potential206

The pairwise potential Ep(L) takes account of the similarity of neighboring pixels, which makes it able

to ensure the spatial smoothness of the final labels. It is defined as

Ep(L) =
∑

(i,j)∈C2

Vij(li, lj) (9)

in which C2 is the pair-site clique(i.e., 4-connected neighborhood). Vij(li, lj) = exp
(
−β(Ii − Ij)2

)
·δ(li, lj), in

which the term (Ii−Ij)2 is used to capture the spatial contextual information of landslides or non-landslides

by measuring the spectral differences among the 4-neighborhood pixels. When the spectral difference between

the two neighboring pixels is very small, they will be assigned with the same labels; otherwise, they will be

assigned with different labels. β =
(
2〈(Ii − Ij)2〉

)−1
, where 〈·〉 is the expectation operator over the entire

image. β acts as a contrast adjuster. When the image contrast is low (i.e., the value of (Ii − Ij) is small), it
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becomes great; otherwise, it becomes small. δ(li, lj) is defined as follows:

δ(li, lj) =

0, if li = lj

1, if li 6= lj

(10)

3.4.3. Energy minimization207

The minimization of the energy function Eq. (3) is implemented via the st-mincut algorithm (Boykov208

and Kolmogorov, 2004). Specifically, the pixels and their 4-neighborhood links are regarded as vertices V209

and edges E in a graph G = 〈V,E〉. Generally, two additional vertices called source S and sink T are used210

as label sets, i.e., 1 for landslide and 0 for non-landslide. They correspond to the GMM 1 and GMM 2,211

respectively (Fig. 5). Each edge between the neighboring pixels has a weight that measures the degree of212

similarity. All the pixels also connect with S and T . The edge weights are defined by the probabilities213

that the pixels belong to the landslide or non-landslide. The greater the weights are, the stronger the edges214

become, as shown in Fig. 5.215

In a graph G = 〈V,E〉, a cut is defined as a partition that separate the vertices V into two disjoint sets216

VO and VB = V \ VO. For LM, it corresponds to the weak edges that connect landslide vertices VO and217

non-landslide vertices VB . The partitions of these edges will lead to the automatic separation of the landslide218

from the non-landslide. These weak edges are called mincut due to the minimal sum of weights, as shown219

in Fig. 5. Thus, LM is essentially equivalent to finding the mincut. In computer vision, mincut has been a220

well studied energy minimization algorithm. In this paper, the implementation of the mincut employs the221

algorithm proposed in Boykov and Kolmogorov (2004). For more details, please visit the helpful websites at222

http://vision.csd.uwo.ca/code/ and http://vision.middlebury.edu/MRF/.223

The program in this paper is run under MATLAB R2013a 64 b in Windows 7 OS with a Lenovo work-224

station of Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, 16 GB RAM. The source code is available upon225

request.226

4. Experimental results227

4.1. Experimental setup228

To verify the advantages of the proposed CDMRF in LM, it is compared with RLSE used in Li et al.229

(2016) recently. For visual evaluation, both CDMRF and RLSE are applied to the whole study area where230

four sub-areas are examined in detail (Fig. 1). For quantitative evaluation, the results of CDMRF and231

RLSE are compared with the manually digitized reference maps. Three quantitative evaluation indices are232

used: Completeness = Plm/Pr , Correctness = Plm/Pl, and Quality = Plm/(Pl + Prum), where Plm is the233

total pixel number of the identified landslides that are matched with the reference maps, Pr is the total pixel234

number of the reference maps, Pl is the total pixel number of the identified landslides, and Prum is the total235

pixel number of the reference maps that are unmatched with the identified landslides.236

The parameter values used for CDMRF are as follows: T = 1.0, ∆T = 1.5, and λ = 50. The values of237

T and ∆T are determined via trial and error. The parameter values used for RLSE in this paper are as238
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Fig. 6. LM results of RLSE and the proposed CDMRF in the whole study area. (a) and (b) Results of RLSE and CDMRF

overlaid on the post-event aerial orthophoto, respectively. (c) and (d) The corresponding binary results of RLSE and CDMRF.

follows: α = 1.5, c0 = 1.0, the standard deviation of the Gaussian filter σ is fixed at 1.0, the template size239

of the Gaussian filter is 9 × 9, and time step ∆t = 5.0. The use of a relatively small value of ∆t for RLSE240

is to relieve over-detection or boundary leakage.241
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4.2. Visual evaluation242

4.2.1. The whole study area243

The pre- and post-event aerial orthophotos for the whole study area are shown in Fig. 2(a) and (b). The244

reference map is presented in Fig. 2(d). The LM results of RLSE and CDMRF are shown in Fig. 6(a) and245

(b), respectively. The corresponding binary results are presented in Fig. 6(c) and (d).246

As shown in Fig. 6(a) and (c), RLSE can identify the elongated landslides well due to the use of the247

regional statistics. However, it often results in over-detection and incomplete detection of some landslides.248

The primary causes are threefold. First, although Gaussian filter used in the numerical implementation249

of RLSE can smooth the ZLCs, it often leads to inaccurate boundary detection (Perona and Malik, 1990)250

or even boundary leakage. Second, the initial ZLCs generated using the single-threshold method for the251

whole study area in Li et al. (2016) are not accurate in some local areas. As can be seen in Fig. 4(b)252

and (d) to (g), some of them fall into the nearby non-landslide areas. In practice, it is difficult to obtain253

an appropriate threshold that can accurately discriminate landslides from non-landslides over large areas.254

Third, although RLSE takes advantage of regional intensity means, it is essentially a two-phase segmentation255

method, namely, it can only handle bright or dark objects at a time. Thus, it sometimes cannot identify the256

spectral heterogeneous landslides completely.257

In contrast, the proposed CDMRF performs much better. As shown in Fig. 6(b) and (d), CDMRF258

can effectively identify blurry, elongated, and even spectrally heterogeneous landslides. To sum up, it has259

the following two appealing advantages over RLSE: 1) to generate more reliable training samples [see Fig.260

4(c) and (h) to (k)], it exploits a more robust multi-threshold method rather than the vulnerable single261

thresholding used in RLSE; 2) in addition to the spectral information, it also takes into account the spatial262

contextual information of landslides to determine the uncertain areas. Thus, it takes full advantage of the263

similarity of the neighboring pixels, which makes it able to map landslides more completely and accurately.264

For further detailed comparisons between RLSE and CDMRF, their LM results in four sub-areas covered265

with different land use types are further examined in the following subsections.266

4.2.2. Sub-area A267

The LM results of RLSE and CDMRF in sub-area A are presented in Fig. 7. The pre- and post-event268

aerial orthophotos are shown in Fig. 7(a) and (b). As can be seen, this sub-area is covered with dense269

grasslands and there are phenological variations between the two photos. The reference map is given in270

Fig. 7(c). Fig. 7(d) to (f) show the RLSE results, while Fig. 7(g) to (i) present the CDMRF results.271

Two sub-areas indicated by red and green arrows in Fig. 7(d) are examined in detail. As can be seen,272

the red-arrow indicated area is erroneously identified as the landslide by RLSE due to the inaccurate initial273

ZLC generated by the single threshold method in Li et al. (2016) [Fig. 4(d)]. Although the initial ZLC is274

accurate in the green-arrow indicated area, RLSE cannot detect the elongated and spectrally heterogeneous275

landslide completely. This is mainly because RLSE is essentially a two-phase object segmentation method,276

which makes it only effective to extract either the brighter objects or the darker objects at a time. However,277

with the similar training samples [see Fig. 4(h)], CDMRF can achieve better performance. Using both the278
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Fig. 7. LM results in sub-area A. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference map. (d)-(f) Results of

RLSE: zero-level curve (ZLC) in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of CDMRF: landslide boundaries

in (g), landslides in (h), and the binary results in (i). See main text for detailed explanations of the arrows in (d).

spectral and spatial contextual information of landslides, it is able to estimate the red-arrow indicated area279

as the non-landslide accurately while identifying the elongated landslide more completely than RLSE.280

4.2.3. Sub-area B281

The LM results in sub-area B are shown in Fig. 8. The pre- and post-event orthophotos are presented282

in Fig. 8(a) and (b). The reference map is shown in Fig. 8(c). This area is covered with dense grasslands283

on upper slopes and dense woodlands on lower slopes. Landslides in this area are spectrally relatively284

homogeneous. The results of RLSE are shown in Fig. 8(d) to (f). As can be seen in areas indicated by the285

green arrow in Fig. 8(d), the ZLCs of RLSE pass through blurry landslide boundaries and the non-landslides286

are erroneously identified as landslides, leading to serious over-detection. The main reason is that the initial287

ZLCs in these areas are not accurate enough. As can be seen in Fig. 4(e), most of them fall into the non-288

landslide areas due to the inaccurate threshold generated by the single threshold method in Li et al. (2016).289
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Fig. 8. LM results in sub-area B. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference map. (d)-(f) Results of

RLSE: ZLC in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of CDMRF: landslide boundaries in (g), landslides

in (h), and the binary results in (i). See main text for detailed explanations of the arrow in (d).
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In contrast, CDMRF performs much better than RLSE in this example. As presented in Fig. 8(g) to (i), it290

is able to identify the landslide boundaries accurately. Due to the use of the spatial contextual information291

of landslides, it can effectively avoid the over-detection of landslide boundaries.292

4.2.4. Sub-area C293

Fig. 9 shows the LM results of sub-area C. The pre- and post-event orthophotos are presented in Fig.294

9(a) and (b). The reference map is shown in Fig. 9(c). This area is partly covered with sparse grasslands and295

partly with shrublands. There are some outcrops of volcanic tuffs and lavas surrounding the landslides. Due296

to the similar spectral signatures, they are identified as landslides by RLSE, as indicated by the green arrows297

in Fig. 9(d). Thus, they result in the over-detection of landslides in the result of RLSE. However, CDMRF298

can identify landslides accurately. The multi-threshold method can effectively eliminate the spectrally similar299

surroundings. Thus, there is no over-detection arising in the results of CDMRF, as shown in Fig. 9(g) to300

(i). In addition, almost all the landslides in this area are elongated. Some of them are shaded by shrubs,301

which make them spectrally heterogeneous and discontinuous. Both RLSE and CDMRF cannot handle the302

shadowed landslides well and thus they cannot obtain the complete landslides in this example.303

4.2.5. Sub-area D304

Fig. 10 presents the LM results of sub-area D. The pre- and post-event orthophotos are shown in Fig.305

10(a) and (b). The reference map is shown in Fig. 10(c). As can be seen, this area is mainly covered with306

dense grasslands on upper slopes and sparse woodlands on lower slopes. Most landslides in this area are307

mixed with grasses and thus they are spectrally heterogeneous, especially the elongated landslide branches308

indicated by red arrows in Fig. 10(d). Both RLSE and CDMRF cannot detect them well, thus leading309

to incomplete detection of landslides. Overall, however, they can obtain favorable results in this example.310

Compared with RLSE, CDMRF clearly performs better in the following two sub-areas. First, RLSE can311

only extract small part of the spectrally heterogeneous landslide indicated by the cyan arrow in Fig. 10(d).312

However, CDMRF can identify this landslide more completely, as presented in Fig. 10(g) to (i). Second,313

there is incomplete detection of landslide in the results of RLSE. As indicated by the green arrow in Fig.314

10(d), RLSE cannot detect the small and spectral heterogeneous landslide branch completely. However,315

CDMRF can identify it effectively.316

4.3. Quantitative evaluation317

For quantitative evaluation, the LM results of RLSE and the proposed CDMRF are compared with the318

manually digitized reference maps [Fig. 2(d)] using the previously mentioned indices, i.e., Completeness,319

Correctness, and Quality. The numerical results are presented in Table 1 and the corresponding bar chart320

is illustrated in Fig. 11.321

As shown in Fig. 11(a), CDMRF can extract more complete landslides than RLSE in sub-areas A and322

B. That is mainly due to the fact that it takes advantage of both the spectral and contextual information of323

landslides. In contrast to CDMRF, RLSE has better performance in the whole study area, sub-areas C and324

D. RLSE can effectively extract the elongated landslides using regional intensity means. The single threshold325
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Fig. 9. LM results in sub-area C. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference map. (d)-(f) Results of

RLSE: ZLC in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of CDMRF: landslide boundaries in (g), landslides

in (h), and the binary results in (i). See main text for detailed explanations of the arrows in (d).
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Fig. 10. LM results in sub-area D. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference map. (d)-(f) Results of

RLSE: ZLC in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of CDMRF: landslide boundaries in (g), landslides

in (h), and the binary results in (i). See main text for detailed explanations of the arrows in (d).

method used in RLSE often leads to the over-detection of landslides, which, however, makes RLSE able to326

extract more complete landslides.327

From the perspective of correctness, CDMRF overwhelmingly excels RLSE in all the experiments, as328

can be seen in Fig. 11(b). In the whole study area, CDMRF outperforms RLSE by almost 5.5%, as can329

be seen in Table 1. The Gaussian filter enables RLSE to obtain smooth landslide boundaries. However, it330

sometimes results in over-detection of landslides, thus degrading the correctness of RLSE. Compared with331

RLSE, CDMRF performs better, especially in the sub-areas B and C. It takes full advantage of the similarity332
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Table 1.

Quantitative evaluation of LM. Red values indicate the better performance

New 2‐3‐2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New 4‐5‐2016        5‐5 ‐2016    This is better ! 

 

Study areas Methods 
Evaluation indices (%) 

Completeness Correctness Quality 

The whole 
RLSE 75.4 88.5 63.1 

CDMRF 73.6 93.8 67.1 

Sub-area A 
RLSE 75.5 95.9 70.9 

CDMRF 78.7 96.7 74.7 

Sub-area B 
RLSE 85.4 76.5 56.0 

CDMRF 85.6 86.6 67.6 

Sub-area C 
RLSE 81.2 74.7 52.4 

CDMRF 70.9 89.3 60.6 

Sub-area D 
RLSE 80.7 95.7 75.3 

CDMRF 79.7 96.9 75.8 

 

 

 

 

 

 

 

 

 

Study areas Methods 
Evaluation indices (%) 

Completeness Correctness Quality 

The whole 
ELSE 73.4 84.9 60.5 
RLSE 75.4 88.5 62.1 

CDMRF 73.6 93.8 67.1 

Sub-area A 
ELSE 85.0 81.7 61.5 
RLSE 83.9 89.6 71.7 

CDMRF 82.7 93.3 73.9 

Sub-area B 
ELSE 78.0 93.3 70.1 
RLSE 87.3 90.4 73.6 

CDMRF 75.0 95.2 69.8 

Sub-area C 
ELSE 83.0 91.5 71.9 
RLSE 79.4 89.2 66.6 

CDMRF 79.3 94.9 73.1 

Sub-area D 
ELSE 81.7 93.3 75.2 
RLSE 83.3 94.2 76.5 

CDMRF 82.0 96.7 78.1 
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Fig. 11. Quantitative evaluation of the proposed CDMRF for LM in the whole study area and four sub-areas A to D. (a).

Completeness. (b) Correctness. (c) Quality.

of neighboring pixels and thus landslides can be identified more accurately.333

In terms of the overall quality, CDMRF clearly outperforms RLSE in all the experiments, as shown in334

Fig. 11(c). In particular, CDMRF surpasses RLSE in the whole study area by 4%, as shown in Table 1. The335

main reason for the decent performance is that it takes into account both the spectral and spatial contextual336

information of landslides. Due to the over-detection or boundary leakage, the qualities of RLSE in sub-areas337

B and C are less than 60%.338

To sum up, the quantitative evaluation clearly shows that CDMRF has competitive advantages over339

RLSE.340

5. Discussion341

5.1. The advantages of the proposed method342

The effectiveness of the proposed CDMRF has been verified visually and quantitatively. Compared with343

the existing RLSE, it has the following appealing advantages.344

1. It is a near-automatic LM method. It combines change detection technique and MRF effectively. It345

exploits change vector analysis (CVA) and a multi-threshold method to generate the training samples346

of landslides and non-landslides for MRF. Thus, it can reduce the load on users substantially.347

20



2. In addition to the spectral information, it also takes into account the spatial contextual information of348

landslides, which makes it capable of detecting landslides more accurately.349

3. It requires little parameter tuning. As previously mentioned, there are 5 and 3 free parameters that350

need to be tuned in RLSE and CDMRF, respectively. Thus, this would make it more operational in351

real applications.352

4. Although it is just applied to LM from bitemporal aerial photos on Lantau Island, Hong Kong, it is353

actually a generic land cover change detection method. It can be definitely used to other types of354

remote sensing images (e.g., high-resolution multispectral images) and other study areas.355

5.2. Parameter analysis356

Compared with RLSE, the proposed CDMRF only has three parameters, as mentioned before. Thus, it357

needs much less parameter tuning. The first one is T in Eq. (2). It determines the lower threshold that is358

used to generate the training samples of non-landslides. Its value is generally related to the brightness of359

DI. The brighter the DI, the greater its value. In this paper, it is fixed at 1.0 for the whole study area via360

trial and error. The second parameter is ∆T in Eq. (2). Together with T , it determines the upper threshold361

that is used to generate the training samples of landslides. In the meantime, it determines the range of the362

interval between the upper and lower thresholds. The pixels in DI with intensity values falling in this interval363

are classed as uncertain pixels, which are finally determined using MRF. Thus, ∆T can impact the quality of364

LM. In this paper, it is fixed at 1.5 for the whole study area via trial and error. The third parameter is λ in365

Eq. (3). It balances the unary potential and pairwise potential. It is fixed at 50 throughout the experiments366

according to the recommendations in Rother et al. (2004); Szeliski et al. (2008).367

5.3. Future work368

The proposed CDMRF consists of two main steps: change detection-based training samples generation369

and MRF-based LM. It is generic to be applied to other types of remote sensing data. For instance, it370

can be readily used to the pansharpened and co-registered bitemporal WorldView-3 satellite imagery which371

has 30 cm spatial resolution and 8 multispectral bands for LM with higher spatial resolution. Also, for the372

capabilities of the SAR sensors to penetrate clouds, the applications of CDMRF to SAR data for real-time373

or near real-time LM will be investigated.374

CDMRF was tested to map rainfall-triggered shallow landslides in this paper. For deep-seated or transla-375

tional landslides, they can be mapped by CDMRF as long as the spectral differences between landslides and376

the surroundings are distinct enough in the used aerial images. However, if the differences are too subtle to377

be reflected in aerial images, they cannot be effectively detected; in this case, the remotely-sensed imageries378

with higher spatial or temporal resolutions are needed. CDMRF also has difficulty in detecting the covered379

landslides such as those located under forest, which are not visible in optical images, and this requires the380

usage of the sensors that can penetrate tree crowns, such as LiDAR (Eeckhaut et al., 2007; Razak et al.,381

2011; van Den Eeckhaut et al., 2012; Chen et al., 2014).382
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3D LM would be more useful and popular in real applications. This paper only focused on 2D LM from383

aerial photos. DTM or other related features are not taken into account in the proposed CDMRF. Thus,384

the future work can be directed at 3D LM using DTM.385

In recent years, extreme rainstorms are becoming increasingly frequent due to the global climate change.386

A recent study has pointed out that landslide activity in Hong Kong may increase due to the global warming387

(Sewell et al., 2015). Thus, it would be interesting to extend the research from LM to exploring the rela-388

tionship between landslide activity and local climate (Wood et al., 2015), especially the extreme rainstorm.389

6. Conclusion390

A new and near-automatic landslide mapping (LM) method, termed as change detection-based Markov391

random field (CDMRF), has been presented in this paper. First, the difference image (DI) was automatically392

generated from pre- and post-event aerial orthophotos using change vector analysis (CVA). Then, the training393

samples of landslide and non-landslides were generated from the post-event aerial orthophoto using a multi-394

threshold method. Finally, LM was achieved using MRF.395

The proposed CDMRF has been applied to a landslide site with an area of approximately 40 km2 on396

Lantau Island, Hong Kong. The LM results have been compared with the reference maps and those of RLSE397

visually and quantitatively. Quantitative evaluation has shown that it outperforms RLSE in the whole study398

area by almost 5.5% in correctness and by 4% in quality. Experiments have demonstrated its appealing399

characteristics: 1) it can achieve LM in a near-automatic manner; 2) it takes into account both the spectral400

and spatial contextual information of landslides, thus obtaining more accurate results; 3) it requires little401

parameter tuning; and 4) it is highly generic and has strong potential to be adapted for other remote sensing402

data sources and other landslide-prone sites. Given its efficiency and accuracy, it could be applied to rapid403

responses and emergency managements of natural hazards.404
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Fig. 1. Study area with sub-areas A to D highlighted on Lantau Island, Hong Kong.605

Fig. 2. Datasets. (a) and (b) Pre- and post-event aerial orthophotos. (c) Masked post-event orthophoto.606

(d) Reference map.607

Fig. 3. Flowchart of the proposed landslide mapping method.608

Fig. 4. Difference image (DI), the initial zero-level set (ZLS), and training sample masks. (a) DI609

generated by CVA. (b) The initial ZLS (white for landslides and black for non-landslides) generated by the610

single threshold method in Li et al., (2016) with α = 1.5. (c) Training sample masks (red, green, and black611
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for landslides, non-landslides, and uncertain areas) generated by the multi-threshold method in Eq. (2) with612

T = 1 and ∆T = 1.5. (d) - (g) Initial ZLSs in sub-areas A to D. (h) - (k) Training sample masks in sub-areas613

A to D.614

Fig. 5. Diagram of MRF. Color i is the ith Gaussian component Gi, i = 1, ..., n. n is fixed at 5 in615

this paper. Each GMM consists of 5 Gaussian components. GMM 1 and GMM 2 are the likelihood of616

landslide and non-landslide pixels, respectively. They are used to calculate the unary potential in Eq. (3).617

Gray and green nodes represent the landslide and non-landslide pixels, respectively. S and T correspond618

to the GMM 1 and GMM 2. The edge weights measure the degree of similarity of neighboring pixels (4-619

neighborhood system). They are employed to calculate the pairwise potential in Eq. (3). The larger the620

weights, the thicker the edges. The separations of the weak edges will automatically partition landslides621

from non-landslides.622

Fig. 6. LM results of RLSE and the proposed CDMRF in the whole study area. (a) and (b) Results of623

RLSE and CDMRF overlaid on the post-event aerial orthophoto, respectively. (c) and (d) The corresponding624

binary results of RLSE and CDMRF.625

Fig. 7. LM results in sub-area A. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference map.626

(d)-(f) Results of RLSE: zero-level curve (ZLC) in (d), ZLS in (e), and the binary results in (f). (g)-(i)627

Result of CDMRF: landslide boundaries in (g), landslides in (h), and the binary results in (i). See main text628

for detailed explanations of the arrows in (d).629

Fig. 8. LM results in sub-area B. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference630

map. (d)-(f) Results of RLSE: ZLC in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of631

CDMRF: landslide boundaries in (g), landslides in (h), and the binary results in (i). See main text for632

detailed explanation of the arrow in (d).633

Fig. 9. LM results in sub-area C. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference634

map. (d)-(f) Results of RLSE: ZLC in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of635

CDMRF: landslide boundaries in (g), landslides in (h), and the binary results in (i). See main text for636

detailed explanations of the arrows in (d).637

Fig. 10. LM results in sub-area D. (a) and (b) Pre- and post-event aerial orthophotos. (c) reference638

map. (d)-(f) Results of RLSE: ZLC in (d), ZLS in (e), and the binary results in (f). (g)-(i) Result of639

CDMRF: landslide boundaries in (g), landslides in (h), and the binary results in (i). See main text for640

detailed explanations of the arrows in (d).641

Fig. 11. Quantitative evaluation of the proposed CDMRF for LM in the whole study area and four642

sub-areas A to D. (a). Completeness. (b) Correctness. (c) Quality.643
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