
On the Estimation of Zero-Inefficiency Stochastic Frontier Models

with Endogenous Regressors

Kien C. Tran∗

Department of Economics

University of Lethbridge

4401 University Drive W

Lethbridge, AB

T1K 3M4 Canada

and

Mike G. Tsionas

Department of Economics

Lancaster University Management School

LA1 4YX U.K &

Athens University of Economics and Business, Greece

Abstract

In this paper, we investigate endogeneity issues in the zero-inefficiency stochastic frontier (ZISF) models
by mean of simultaneous equation setting. Specifically, we allow for one or more regressors to be correlated
with the statistical noise. A modified limited information maximum likelihood (LIML) approach is used to
estimate the parameters of the model. Moreover, the firm specific inefficiency score is also provided. Limited
Monte Carlo simulations show that the proposed estimators perform well in finite sample.
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1 Introduction

The so-called “zero-inefficiency stochastic frontier” (ZISF) model proposed by Kumbhakar, Parmeter and
Tsionas (2012) and Rho and Schmidt (2015) allows for some firms in a typical sample to be fully efficient with
a certain probability, a fact that we cannot preclude priori. Under standard assumptions on the composed
errors, they suggest a maximum likelihood (ML) estimation procedure of the model’s parameters as well as
how to predict firm specific inefficiency. However, in their models, they assumed that all the regressors (or
inputs, in the production frontier setting) are exogenous with respect to the statistical noise and inefficiency.
In practice, this assumption might not be valid in some situations and consequently, invalidate the consistency
of ML estimator and the estimates of firm specific inefficiency can be misleading. In this paper, we will relax
this assumption and allow for one or more regressors to be correlated with the statistical noise in the
composed error term; that is, we will investigate the case that one more of the regressors is endogenous, in
the sense of simultaneous equation context.

In the standard stochastic frontier setting, the issues of endogeneity have recently been addressed by
Amsler, Prokhorov and Schmidt (2016a, b), Tran and Tsionas (2013, 2105) and Kutlu (2010). However,
to the best of our knowledge, it does not appear that the endogeneity problem has been considered in the
ZISF setting. The plan of the paper is as follows. Section 2 introduces the ZISF model with endogeneity
and discusses various assumptions as well as identification issues. Section 3 derives the limited information
maximum likelihood (LIML) procedure as well as firm specific inefficiency predictor. Limited Monte Carlo
simulations are presented in Section 4 to examine the finite sample performance of the proposed methods.
Section 5 extends the model to allow for one or more inputs to be correlated with both statistical noise and
inefficiency. Section 6 concludes the paper.

2 The Model

Consider the following Zero-Inefficiency Stochastic Frontier model with endogenous inputs:

yi =

{
z

′

1iα+ x
′

iβ + vi with probablity p(wi)

z
′

1iα+ x
′

iβ + vi − ui with probablilty 1− p(wi)
(1)

and
xi = Z2iδ + ei, (2)

where yi is a scalar representing output of firm i, zi is a q1 × 1 vector of exogenous inputs, xi is a d × 1
vector of endogenous inputs, vi is random noise, ui is one-sided random variable representing technical
inefficiency, p(.) is a known function representing the proportion of firms that are fully efficient and wi is a
k × 1 vector of covariates which influence whether a firm is inefficient or not; Z2i = Id ⊗ z

′

2i where z2i is a
q2 × 1 vector of exogenous instrument variables, and ei is a d × 1 vector of two-sided random error terms
which we assume that ei ∼ N(0,Ωee) where Ωee is a d× d covariance matrix. Following standard practice,
we assume vi ∼ N(0, σ2

v), ui ∼
∣∣N(0, σ2

u)
∣∣, ui is independent of ηi = (vi, ei)

′
and condition on Zi = (z1i, z2i)

′
,

ηi ∼ N(0,Ω) where Ω =

[
σ2
v Ωve

Ωev Ωee

]
, so that the endogeneity is due to the correlation between vi and

ei. For more general case where ei is allowed to be correlated with both vi and ui, see Section 4 below.

Also, to ensure that p(wi) ∈ [0, 1], we assume p(wi) takes a logistic function, p(wi) =
exp(w

′
iγ)

1+exp(w
′
i
γ)

. Finally, for

identification purpose, we assume that σ2
u > 0 and q2 ≥ d (so that there are at least as many instruments as

x’s).

3 LIML Procedure

To obtain the likelihood function, we follow density decomposition of Amsler, Prokhorov and Schmidt (2015a)
approach, albeit one can also use Cholesky’s decomposition approach as suggested in Kutlu (2010) and Tran
and Tsionas (2013). Let εi = vi−ui = yi−z

′

1iα−x
′

iβ, ε̃i = εi−µci where µci = ΩveΩ
−1
ee ei with ei = xi−Ziδ
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and σ2
c = σ2

v − ΩveΩ
−1
ee Ωev. Next, since ui is independent of vi and ei, we have:

fu,v,e(u, v, e) = p(w)fv,e(v, e) + {1− p(w)}fu(u)fv,e(v, e)

= p(w)fv|e(v)fe(e) + {1− p(w)}fu(u)fv|e(v)fe(e)

= fe(e){p(w)fv|e(v) + (1− p(w))fu(u)fv|e(v)},

(3)

where fe(e) = const× |Ωee|−1 × exp(− 1
2e

′
Ω−1ee e) and the distribution of v|e is N(µc, σ

2
c ). Consequently,

fε,e(ε, e) =

∞̂

0

fu,v,e(u, ε+ u, e)du = fe(e)

∞̂

0

fv|e(ε+ u)du. (4)

By making use of change in variables, ε̃ = ε− µcand using the result in Aigner, Lovell and Schmidt (1977),
the density of ε̃|e can be shown to be

fε̃|e(ε̃) =
2

σ
φ(
ε̃

σ
)Φ(
−λε̃
σ

), (5)

where σ2 = σ2
u +σ2

c = σ2
u +σ2

v −ΩveΩ
−1
ee Ωev, λ = σu

σc
and φ(.) and Φ(.) are respectively the standard normal

density and cdf. Thus, by writing ε = ε̃+ µc, we obtain:

fε,e(ε, e) = {p(w)(2πσ2
c )−1/2 exp(− 1

2σ2
c
(v − µc)2) + (1− p(w))σ−1φ( ε−µc

σc
)Φ(−λ(ε−µc)

σc
)}×

(2π)−1Ω
−1/2
ee exp(− 1

2e
′
Ω−1ee e).

(6)

Then the log-likelihood function is:
lnL = lnL1 + lnL2 (7)

where

lnL1 =
n∑
i=1

ln{p(wi)(2πσ2
c )−1/2 exp(− 1

2σ2
c
(yi − z

′

1iα− x
′

iβ − µic)2)+

[1− p(wi)]σ−1φ(
yi−z

′
1iα−x

′
iβ−µic

σc
)Φ(

−λ(yi−z
′
1iα−x

′
iβ−µic)

σc
)}

(8)

and

lnL2 = −n
2

ln |Ωee| −
1

2

n∑
i=1

(xi − Z2iδ)
′
Ω−1ee (xi − Z2iδ). (9)

Note that, in a special case where p(.) = 0, (7) reduces to the log-likelihood function of the standard SF
models with endogenous regressors (e.g., Kutlu (2010), Tran and Tsionas (2013) and Amsler, Prokhorov and
Schmidt (2016a)). On the other hand, when p(.) = 1, it reduces to the log-likelihood function of simultaneous
regression models. Finally, when there are no endogenous regressors, (i.e., Ωve = 0) it reduces to the case of
ZISF models of Kumbhakar, Parmeter and Tsionas (2012) and Rho and Schmidt (2015).

Now by maximizing the log-likelihood function in (7) directly with respect to the parameters θ =
(α, β, σ2

v , σ
2
u, δ,Ωve,Ωee, γ), we can obtain the LIML estimates. Or alternatively, we can use Generalized

Method of Moment (GMM) approach of Tran and Tsionas (2013) which uses the moment conditions that
are based on the score of the log-likelihood function. This GMM procedure is similar to the direct MLE.
Finally, a control function type two-step procedure suggested by Kutlu (2010) can also be used. To construct
a two-step procedure, let θ1 = (α, β, σ2

v , σ
2
u,Ωve, γ) and θ2 = (δ,Ωee). Then in the first step, we maximize

(9) with respect to θ2, and this is essentially the least square estimation of x on Z from the reduced form

equations to obtain δ̂ and Ω̂ee = n−1
n∑
i=1

(Xi − Z
′

i δ̂)(Xi − Z
′

i δ̂)
′
. In the second step, given the estimates of

θ̂2, we maximize (8) to obtain the remaining parameters θ1. Note that, unlike the direct MLE or GMM
procedure, this two-step procedure is generally inefficient because it ignores the information about θ2 in (8)
and treating as though it is known. Consequently, a practical implication is that the conventional estimated
standard errors from step 2 are not correct, and they need to be adjusted to reflect the fact that θ2 have been
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estimated. One simple way to mitigate this problem is to use bootstrapping procedure. Or alternatively,
one could follow Wooldridge (2010, Section 12.4.2) to construct the correct standard errors analytically.

Prediction of Firm Specific Inefficiency:
Once the parameters of the model have been estimated, we can use Jondrow et al. (1982) procedure

to construct the estimate for E(ui|εi, ei). Note that, we include ei as part of the conditional expectation
because ei is informative about ui since ei is correlated with vi, albeit ei is independent of ui. Consequently,
the conditional expectation E(ui|εi, ei)can be rewritten asE(ui|εi, ei) = E(ui|ε̃i, ei) = E(ui|ε̃ii) where ε̃i is
defined as before. Thus, it is straightforward to show that the conditional density of u given ε̃ is

f(ui|ε̃i) =

{
0 with probability p(wi)

N+(µ∗i, σ
2
∗) with probability (1− p(wi))

,

where N+(.) denotes the truncated normal, µ∗i = −ε̃iσ2
u/σ

2 and σ2
∗ = σ2

uσ
2
c/σ

2 where σ2 and σ2
c are defined

previously. Then, the conditional mean of ui given ε̃i is:

E(ui|ε̃i) = (1− p(wi))σ∗
[

φ(λε̃i/σ)

1− Φ(λε̃i/σ)
− λε̃i

σ

]
, (10)

A point estimator of individual specific inefficiency score ûi = Ê(ui|ε̃i) can be obtained by replacing the
unknown parameters in (10) by their estimates using one of the approaches discussed above and ε̃i by
ˆ̃εi. In addition, one can also construct the posterior estimates of inefficiency score ũi by calculating ũi =
(1− π̂(wi)) ûi where

π̂(wi) =
(p̂(wi)/σ̂v)φ(ˆ̃εiλ̂/σ̂v)

(p̂(wi)/σ̂v)φ(ˆ̃εiλ̂/σ̂v) + (1− p̂(wi))(2/σ̂)φ(ˆ̃εiλ̂/σ̂) Φ(−ˆ̃εiλ̂/σ̂)
,

is the posterior estimate of the probability of being fully efficient.
We make the following remarks. First, it is important to recognize that the validity of the above proposed

procedures hinges upon the conditions that both the frontier function and the reduced form are correctly
specified as discussed in Amsler, Prokhorov and Schmidt (2016a). Second, the above procedure can be easily
modified to accommodate other exogenous environmental variables that appear in the distribution of ui
without conceptual estimation issues. Finally, a practical implication of the proposed approach is that one
can easily test the null hypothesis of exogeneity of xi (i.e., H0 : Ωve = 0) using standard likelihood ratio
statistics.

4 Monte Carlo Simulations

In this section, we conduct some simulations to examine the finite sample performance of the proposed
estimators. To this end, we consider the following data generating process (DGP):

yi =

{
1 + αz1i + βxi + vi with probablity p(wi)

1 + αz1i + βxi + vi − ui with probablilty 1− p(wi)
,

xi = 1 + δz2i + εi, εi ∼ N(0, σ2
ε)

p(wi) =
exp(γwi)

1 + exp(γwi)
,

where the one-sided error ui is generated as
∣∣N(0, σ2

u)
∣∣ and the vector of random variables (z1i, z2i, wi)

′

is generated as N(0, I3). The vector of random errors, (vi, εi)
′

is generated from N(02,Ω) where Ω =(
σ2
v ρσvσε

ρσvσε σ2
ε

)
For all of our simulations, we set {α, β, δ, γ} = [1.0, 1.0, 0.75, 0.5}, σ2

v = σ2
ε = 1, σu ∈

{1.0, 2.5, 5.0} and ρ = {0.0, 0.5, 0.8} which corresponds to strong heterogeneity. We consider n = 2000 and
for each experimental design and 5,000 replications are performed. We report the root means square errors
(RMSE) of three estimators: direct MLE, GMM and two-step MLE. The results are displayed in Table 1.
For conservation of space, we only report the results for the case where ρ = 0.8. The results for other cases
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are very similar and they are available from the authors upon request. Overall, our simulation results show
that all three procedures are performed very well in finite sample regardless the values of ρ and σ2

u. Also, as
expected, the RMSEs of the direct MLE and GMM estimators are very similar and that the RMSEs of the
two-step estimator are slightly higher in almost all cases.

5



Table 1. RMSE of Direct MLE, GMM and Two-Step MLE

α β γ δ
ρ = 0.8, σu = 1
Direct MLE 0.008 0.007 0.008 0.005
GMM 0.009 0.008 0.009 0.007
Two-step MLE 0.014 0.016 0.015 0.015
ρ = 0.8, σu = 2.5
Direct MLE 0.005 0.004 0.004 0.004
GMM 0.007 0.005 0.006 0.006
Two-step MLE 0.012 0.013 0.011 0.010
ρ = 0.8, σu = 5
Direct MLE 0.004 0.003 0.003 0.004
GMM 0.005 0.003 0.003 0.005
Two-step MLE 0.010 0.008 0.009 0.008

5 Extension: ei,viand uiare all potentially correlated

In this section, we consider the more general case where we allow for ei,vi and ui are all potentially correlated
since in practice, it is unknown (and cannot be tested) whether endogeneity is caused by the correlation with
the statistical noise or the inefficiency term1. First, rewrite (4) as:

fu,v,e(u, v, e) = p(w)fv,e(v, e) + {1− p(w)}fu,v,e(u, v, e)

= p(w)fv|e(v)fe(e) + {1− p(w)}fu,v,e(u, ε+ u, e),
(11)

and from (11) it is clear that we need to determine a joint distribution fu,v,e(u, v, e) in such way that the

marginal distributions of ui and ηi = (vi, e
′

i)
′

are half-normal and multivariate normal, respectively, and
ui and ηi are correlated in some sensible manners. One possible and convenient method is to use Copula
approach to model the dependency between ui and ηi as suggested in Amsler, Prokhorov and Schmidt
(2016a). Let h(ui, ηi) denote the joint density of (ui, η

′

i)
′
, and suppose that the marginal density and cdf of

ui and ηi are f(ui), f(ηi) and F (ui), F (ηi), respectively. Then by Sklar’s Theorem (see Nelsen (2016)), we
can write:

h(ui, ηi) = c(F (ui), F (ηi)) · f(ui)f(ηi), (12)

where c(., .) is the copula density and its arguments are uniform random variables. Thus from (12), it is clear
that the joint distribution h(., .) can be determined if we specify the marginal densities and the copula c(., .).
Under our maintained assumptions of half-normal marginal for ui and normal marginal for the elements of
ηi = (vi, e

′

i)
′
, then an obvious and convenient choice for the copula is Gaussian copula because it implies that

the distribution of ηi is multivariate normal which is what we want to achieve. Under these specifications,
the joint density of h(ui, ηi) can be obtained from (12), and let f̃u,v,e(u, ε + u, e) denote this joint density.
To derive the likelihood function, we need the joint density of εi and ei so we need to integrate out ui from
fu,v,e(u, v, e) in (11). However, this integral may not be analytically tractable, and one possible solution is

1We would like to thank an anonymous referee for suggesting this extension.
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to evaluate it by numerical method. To do this, integrating out ui from (11) yields

fε,e(ε, e) =
∞́

0

[
p(w)fv|e(v)fe(e) + {1− p(w)}f̃u,v,e(u, ε+ u, e)

]
du

=
∞́

0

[
p(w)fv|e(v)fe(e)+{1−p(w)}f̃u,v,e(u,ε+u,e)

fu(u)

]
fu(u)du

= Eu

[
p(w)fv|e(v)fe(e)

fu(u)

]
+ Eu

[
{1−p(w)}f̃u,v,e(u,ε+u,e)

fu(u)

]
,

(13)

where Eu denotes the expectation over the distribution of u. Thus, we can approximate (13) by drawing
us, s = 1, ..., S from the distribution of u and taking average over these draws to give the simulated value
of fε,e(ε, e):

f̂ε,e(ε, e) =
1

S

S∑
s=1

[
p(w)fv|e(v)fe(e)

fu(us)

]
+

1

S

S∑
s=1

[
{1− p(w)}f̃u,v,e(u, ε+ us, e)

fu(us)

]
, (14)

and the simulated log-likelihood is given by:

ln L̂ =

n∑
i=1

ln f̂ε,e(εi, ei). (15)

The simulated maximum likelihood estimator (SMLE) can be obtained by maximizing (15) with respect to
all the parameters including those that appear in the copula. Under certain regularity conditions, standard
results of Gourieroux and Monfort (1993) show that the SMLE is consistent and has the same asymptotic
distribution as MLE based on fε,e(εi, ei) provided that n → ∞, S → ∞ and S√

n
→ ∞. Finally, the

inefficiency term ũi = E(ui|εi, ei) can be predicted using similar approach as in Amsler, Prokhorov and
Schmidt (2014).

Last but not least, another possible extension is to also allow for one or more covariates wi in the
probability of efficient firm and all of other environmental variables (if any) to be correlated with both the
statistical noise and inefficiency term, and this case would provide the most general framework of the model.
However, identification of the model may be an issue and it is beyond the scope of this paper, and we will
leave it for future research.

6 Conclusion

In this paper, we investigate the endogeneity issues in the ZISF framework by mean of simultaneous equation
setting. Specifically, we allow for one or more regressors to be correlated with the statistical noise in the
composed error. We modify the LIML procedure to estimate all the parameters of the model and construct
the prediction of firm specific inefficiency score. Small Monte Carlo simulations reveal that the proposed
estimators perform well in finite sample in term of RMSE. We also extend the model to allow for all potential
correlations among the errors and suggest a simulated maximum likelihood procedure to estimate the model
parameters as well as the inefficiency scores.
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