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Abstract: This paper introduces a class of Monte Carlo algorithms which
are based upon simulating a Markov process whose quasi-stationary distri-
bution coincides with a distribution of interest. This differs fundamentally
from, say, current Markov chain Monte Carlo methods which simulate a
Markov chain whose stationary distribution is the target. We show how
to approximate distributions of interest by carefully combining sequential
Monte Carlo methods with methodology for the exact simulation of diffu-
sions. The methodology introduced here is particularly promising in that
it is applicable to the same class of problems as gradient based Markov
chain Monte Carlo algorithms but entirely circumvents the need to con-
duct Metropolis-Hastings type accept/reject steps whilst retaining exact-
ness: the paper gives theoretical guarantees ensuring the algorithm has
the correct limiting target distribution. Furthermore, this methodology is
highly amenable to big data problems. By employing a modification to ex-
isting naive sub-sampling and control variate techniques it is possible to
obtain an algorithm which is still exact but has sub-linear iterative cost as
a function of data size.

Keywords and phrases: Control variates, Importance sampling, Killed
Brownian motion, Langevin diffusion, Markov chain Monte Carlo, Quasi-
stationarity, Sequential Monte Carlo.

1. Introduction

Advances in methodology for the collection and storage of data have led to
scientific challenges and opportunities in a wide array of disciplines. This is
particularly the case in Statistics as the complexity of appropriate statistical
models often increases with data size. Many current state-of-the-art statistical
methodologies have algorithmic cost that scales poorly with increasing volumes
of data. As noted by [39], ‘many statistical procedures either have unknown
runtimes or runtimes that render the procedure unusable on large-scale data’
and has resulted in a proliferation in the literature of methods ‘... which may
provide no statistical guarantees and which in fact may have poor or even dis-
astrous statistical properties’.

This is particularly keenly felt in computational and Bayesian statistics, in which
the standard computational tools are Markov chain Monte Carlo (MCMC), Se-
quential Monte Carlo (SMC) and their many variants (see for example [58]).
MCMC methods are exact in the (weak) sense that they construct Markov
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chains which have the correct limiting distribution. Although MCMC methodol-
ogy has had considerable success in being applied to a wide variety of substantive
areas, they are not well-suited to this new era of ‘big data’ as their computa-
tional cost will increase at least linearly with the number of data points. For
example, each iteration of the Metropolis-Hastings algorithm requires evaluat-
ing the likelihood, the calculation of which, in general, scales linearly with the
number of data points. The motivation behind the work presented in this pa-
per is on developing Monte Carlo methods that are exact, in the same sense
as MCMC, but that have a have a computational cost per effective sample size
that is sub-linear in the number of data points.

To date the success of methods that aim to adapt MCMC so as to reduce
its algorithmic cost has been mixed, and has invariably led to a compromise on
exactness — such methodologies generally construct a stochastic process with
limiting distribution which is (at least hopefully) close to the desired target dis-
tribution. Broadly speaking these methods can be divided into three classes of
approach: ‘Divide-and-conquer’ methods; ‘Exact Sub-sampling’ methods; and,
‘Approximate Sub-sampling’ methods. Each of these approaches has its own
strengths and weaknesses which will be briefly reviewed in the following para-
graphs.

Divide-and-conquer methods (for instance, |50} |66 |60} [48]) begin by splitting
the data set into a large number of smaller data sets (which may or may not
overlap). Inference is then conducted on these smaller data sets and resulting
estimates are combined in some appropriate manner. A clear advantage of such
an approach is that inference on each small data set can be conducted indepen-
dently, and in parallel, and so if one had access to a large cluster of computing
cores then the computational cost could be significantly reduced. The primary
weakness of these methods is that the recombination of the separately con-
ducted inferences is inexact. All current theory is asymptotic in the number of
data points, n [50] 44]. For these asymptotic regimes the posterior will tend to
a Gaussian distribution [38], and it is questionable whether divide-and-conquer
methods offer an advantage over simple approaches such as a Laplace approx-
imation to the posterior [6]. Most results on convergence rates (e.g. [61]) have
rates that are of the O(m~'/2), where m is the number of data-points in each
sub-set. As such they are no stronger than convergence rates for analysing just
a single batch. One exception is in [44], where convergence rates of O(n~1/?)
are obtained, albeit under strong conditions. However, these results only relate
to estimating marginal posterior distributions, rather than the full posterior.

Sub-sampling methods are designed so that each iteration requires access to
only a subset of the data. Exact approaches in this vein typically require sub-
sets of the data of random size at each iteration. One approach is to construct
unbiased estimators of point-wise evaluations of the target density using subsets
of the data, which could then be embedded within the pseudo-marginal MCMC
framework recently developed by [2|. Unfortunately, the construction of such
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positive unbiased estimators is not possible in general [35] and such methods
often require both bounds on, and good analytical approximations of, the like-
lihood [46].

More promising practical results have been obtained by approximate sub-sampling
approaches. These methods use subsamples of the data to estimate quantities
such as acceptance probabilities [52] [43] [5], or the gradient of the posterior,
that are used within MCMC algorithms. These estimates are then used in place
of the true quantities. Whilst this can lead to increases in computational effi-
ciency, the resulting algorithms no longer target the true posterior. The most
popular of these algorithms is the stochastic gradient Langevin dynamics algo-
rithm of [67]. This approximately samples a Langevin diffusion which has the
posterior as its stationary distribution. To do this requires first approximating
the continuous-time diffusion by a discrete-time Markov process, and then using
sub-sampling estimates of the gradient of the posterior within the dynamics of
this discrete-time process. This idea has been extended to approximations of
other continuous-time dynamics that target the posterior [1]17,[45].

Within these sub-sampling methods it is possible to tune the subsample size,
and sometimes the algorithm’s step-size, so as to control the level of approxi-
mation. This leads to a trade-off, whereby increasing the computational cost of
the algorithm can lead to samplers that target a closer approximation to the
the true posterior. There is also substantial theory quantifying the bias in, say,
estimates of posterior means, that arise from these methods |64} [65, [16]/34} 21|,
and how this depends on the subsample size and step-size. However, whilst they
often work well in practice it can be hard to know just how accurate the results
are for any given application. Furthermore, many of these algorithms still have
a computational cost that increases linearly with data size [6][49] [4].

The approach to the problem of big data proposed is a significant departure from
the current literature. Rather than building our methodology upon the station-
arity of appropriately constructed Markov chains, a novel approach based on
the quasi-limiting distribution of suitably constructed stochastically weighted
diffusion processes is developed. A quasi-stationary distribution for a Markov
process X with respect to a Markov stopping time ( is the limit of the distribu-
tion of Xy | ¢ > t as t — oo [20], and is completely unrelated to the popular area
of Quasi-Monte Carlo. These Quasi-Stationary Monte Carlo (QSMC) methods
developed can be used for a broad range of Bayesian problems (of a similar type
to MCMC) and exhibit interesting and differing algorithmic properties. The
QSMC methods developed are exact in the same (weak) sense of MCMC, in
that they give the correct (quasi-)limiting distribution. There are a number of
different possible implementations of the theory which open up interesting av-
enues for future research, in terms of branching processes, by means of stochastic
approximation methods, or (as outlined in this paper) SMC methods. We note
that the use of continuous-time SMC and related algorithms to obtain approx-
imations of large time limiting distributions of processes conditioned to remain
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alive has also been explored in settings in which a quantity of interest admits a
natural representation of this form (see [26][59], and related work in the physics
literature, such as [32] and references therein); a substantial difference between
these and the present work is that the QSMC methods described here construct
a process for which a quite general distribution of interest is the quasi-stationary
distribution and entirely avoid time-discretisation errors. One particularly in-
teresting difference between our class of Monte Carlo algorithms and MCMC is
that QSMC methods allow us to circumvent entirely the Metropolis-Hastings
type accept/reject steps, while still retaining theoretical guarantees that the cor-
rect limiting target distribution is recovered. In the case of big data problems,
this removes one of the fundamental O(n) bottlenecks in computation.

Quasi-Stationary Monte Carlo methods can be applied in big data contexts
by using a novel sub-sampling approach. We call the resulting algorithm the
Scalable Langevin Exact Algorithm (ScaLE). The name refers to the ‘Langevin’
diffusion which is used in the mathematical construction of the algorithm, al-
though it should be emphasised that it is not explicitly used in the algorithm
itself. As shown in the approach to sub-sampling adopted here can
potentially decrease the computational complexity of each iteration of QSMC to
be O(1). Furthermore, for a rejection sampler implementation of QSMC, the use
of sub-sampling introduces no additional error — as the rejection sampler will
sample from the same stochastic process, a killed Brownian motion, regardless
of whether sub-sampling is used or not. There can be a computational cost of
using sub-sampling, as the number of iterations needed to simulate the killed
Brownian motion for a given time interval will increase. However, this paper will
show that by using control variates [6] to reduce the variability of sub-sampling
estimators of features of the posterior, the ongoing algorithm computational
cost will be O(1). Constructing the control variates involves a pre-processing
step whose cost is O(n) (at least in the case of posterior contraction at rate
n~Y 2) but after this pre-processing step the resulting cost of ScaLE per effec-
tive sample size can be O(1). The importance of using control variates to get a
computational cost that is sub-linear in n is consistent with other recent work
on scalable Monte Carlo methods |34 [10 (56|30} |49]|4].

The next section presents the main result that motivates development of quasi-
stationary Monte Carlo. The following sections then provide detail on how to
implement QSMC algorithms in practice, and how and why they are amenable
to use with sub-sampling ideas. For clarity of presentation, much of the tech-
nical and algorithmic detail have been suppressed, but can be found in the
appendices.

2. Quasi-stationary Monte Carlo

Given a target density 7 on RY, traditional (i.e. Metropolis-Hastings type)
MCMC proposes at each iteration from Markov dynamics with proposal density
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q(x,y), ‘correcting’ its trajectory by either accepting the move with probability
m(y)a(y. x) }
m(x)a(x,y) J’

or rejecting the move and remaining at state x. In quasi-stationary Monte Carlo,
rather than rejecting a move and staying at x, the algorithm kills the trajectory
entirely, according to probabilities which relate to the target density.

alx,y) = mm{L (1)

Simulation of a Markov process with killing inevitably leads to death of the
process. Thus it is natural to describe the long-term behaviour of the process
through its conditional distribution given that the process is still alive. The limit
of this distribution is called the quasi-stationary distribution (see, for example,
[20]). The idea of quasi-stationary Monte Carlo is to construct a Markov pro-
cess whose quasi-stationary distribution is the distribution, 7(x), from which
the user wishes to sample from. Simulations from such a process can then be
used to approximate moments of 7(x) just as in MCMC.

Although in principle QSMC can be used with any Markov process, this pa-
per will work exclusively with killed Brownian motion as it has a number of
convenient properties that can be exploited. Therefore let {X;,¢ > 0} denote
d-dimensional Brownian motion initialised at Xy = x¢. Suppose £(x) denotes a
non-negative hazard rate at which the Brownian motion is killed when it is in
state x, and let ¢ be the killing time itself. Finally define

ue(dx) :=P(X; €dx | ¢ > 1), (2)

the distribution of X; given that it has not yet been killed. The limit of this
distribution as t — oo is the quasi-stationary distribution of the killed Brownian
motion.

The aim will be to choose « in such a way that u; converges to m, and with this
in mind, we introduce the function ¢ : R = R

[Vlegn(x)||? + Alogm(x) Am

¢(X) = 9 = %7 (3)

where || - || denotes the usual Euclidean norm and A the Laplacian. By further

imposing the condition

Condition 1 (®). There exists a constant ® > —oo such that ® < ¢(u) Yu €
R4,

the following result can be proved:

Theorem 1. Under the regularity conditions and @) in |Appendiz Aj
suppose thatholds and set

r(x) := ¢(x) = ® >0, (4)

then it follows that p, converges in L' and pointwise to .
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Proof. See [Sppemdi ] =

Note that the regularity conditions inare largely technical smooth-
ness and other weak regularity conditions common in stochastic calculus. On
the other hand Egondition 1]is necessary for us to be able to construct quasi-
stationary Monte Carlo methods. However, since non-pathological densities on
R? are generally in fact convex in the tails, by using the second identity in ,

[Condition I]is almost always satisfied in real examples.

can be exploited for statistical purposes by noting that for some
sufficiently large t*, p; ~ m for ¢ > t*. Thus, given samples from u; for ¢ > t*,

one would have an (approximate) sample from 7. This is analogous to MCMC,
with ¢* being the burn-in period; the only difference being the need to simulate
from the distribution of the process conditional upon it not having died.

The next two sections describe how to simulate from pu;. Firstly a description
of how to simulate killed Brownian motion process exactly in continuous-time
is provided. A nailve approach to sample from p, is to simulate independent
realisations of this killed Brownian motion, and use the values at time ¢ of those
processes which have not yet died by time ¢. In practice this is impracticable,
as the probability of survival will, in general, decay exponentially with ¢. To
overcome this sequential Monte Carlo methods are employed.

Both these two steps introduce additional challenges not present within stan-
dard MCMC. Thus a natural question is: why use quasi-stationary Monte Carlo
at all? This is addressed this in Where it is shown that simulating
the killing events can be carried out using just subsamples of data. In fact sub-
samples of size 2 can be used without introducing any approximation into the
dynamics of the killed Brownian motion.

3. Implementing QSMC
3.1. Simulating Killed Brownian Motion

relates a target distribution of interest to the quasi-stationary distri-
bution of an appropriate killed Brownian motion. To be able to simulate from
this quasi-stationary distribution it is necessary to be able to simulate from
killed Brownian motion.

To help get across the main ideas, first consider the case where the killing rate,
k(x), is bounded above by some constant, K say. In this case it is possible to
use thinning (see, for example, [41]) to simulate the time at which the process
will die. This involves simulating the Brownian motion independently of a Pois-
son process with rate K. Each event of the Poisson process is a potential death
event, and an appropriate Bernoulli variable then determines whether or not the
death occurs. For an event at time £ the probability that death occurs depends
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on the state of the Brownian motion at time £, and is equal to x(x¢)/K. Thus
to simulate the killed Brownian motion to time ¢ the first step is to simulate all
events in the Poisson process up to time t. Then by considering the events in
time-order, it is straightforward to simulate the Brownian motion at the first
event-time and as a result determine whether death occurs. If death does not
occur, the next event-time can be considered. This is repeated until either the
process dies or the process has survived the last potential death event in [0, ¢].
If the latter occurs, Brownian motion can be simulated at time ¢ without any
further conditions.

This can be viewed as a rejection sampler to simulate from pu:(x), the distribu-
tion of the Brownian motion at time ¢ conditional on it surviving to time ¢. Any
realisation that has been killed is ‘rejected’ and a realisation that is not killed is
a draw from p¢(x). It is easy to construct an importance sampling version of this
rejection sampler. Assume there are k events in the Poisson process before time
t, and these occur at times &, ...,&. The Brownian motion path is simulated
at each event time and at time ¢. The output of the importance sampler is the
realisation at time ¢, x;, together with an importance sampling weight that is
equal to the probability of the path surviving each potential death event,

k

K — H(Xg.)
T |
i=1 K

Given a positive lower bound on the killing rate, x(x) > K* for all x, then
it is possible to improve the computational efficiency of the rejection sampler
by splitting the death process into a death process of rate K+ and one of rate
k(x)—K*. Actual death occurs at the first event in either of these processes. The
advantage of this construction is that the former death process is independent
of the Brownian motion. Thus it is possible to first simulate whether or not
death occurs in this process. If it does not we can then simulate, using thinning
as above, a killed Brownian motion with rate #(x) — K*. The latter will have a
lower intensity and thus be quicker to simulate. Using the importance sampling
version instead, events in a Poisson process of rate K — KV, £, ..., &, say, are
simulated, and our realisation at time ¢ is assigned a weight

k
K — k(xe,
W, = exp{—Kit} H ——" (Ki)
i=1

This is particularly effective as the exp{—K*t} is a constant which will cancel
upon normalisation of the importance sampling weights.

3.2. Simulating Killed Brownian Motion using Local Bounds

The approach in|Section 3.1|is not applicable in the absence of an upper bound
on the killing rate. Even in situations where a global upper bound does exist,
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the resulting algorithm may be inefficient if this bound is large. Both of these
issues can be overcome using local bounds on the rate. For this section we will

work with the specific form of the killing rate in|/Theorem 1| namely ¢(x) — ®.

The bounds used will be expressed in terms of bounds on ¢(x).

Given an initial value for the Brownian motion, xg, define a hypercube which
contains xg. In practice this cube is defined to be centred on xo with a user-
chosen side length (which may depend on xp). Denote the hypercube by Hi,
and assume that upper and lower bounds, U)(g ) and L;) respectively, can be
found for ¢(x) with x € #H;. The thinning idea of the previous section can be
used to simulate the killed Brownian motion whilst the process stays within ;.
Furthermore it is possible to simulate the time at which the Brownian motion

first leaves H; and the value of the process when this happens (see|Appendix|
. Thus our approach is to use our local bounds on ¢(x), and hence on the

killing rate, to simulate the killing process while x remains in H;. If the process
leaves H; before t it is then necessary to define a new hypercube, H2 say, obtain
new local bounds on ¢(x) for x € Hy and repeat simulating the killing process
using these new bounds until the process either first leaves the hypercube or
time ¢ is reached.

The details of this approach are now given, describing the importance sampling
version which is used later — though a rejection sampler can be obtained using
similar ideas. The first step is to calculate the hypercube, H;, and the bounds
Lg), U,((1 ). We then simulate the time and position at which x first leaves H;.
We call this the layer information, and denote it as Rgé) = (71, %, ). The notion
of a layer for diffusions was formalised in |55, and we refer the interested reader
there for further details. Next the possible killing events on [0,¢ A 71] are gener-
ated by simulating events of a Poisson process of rate Ug) — Lg): &,..., & say.
The next step involves simulating the values of the Brownian motion at these

event times (the simulation of which is conditional on Rgé) — see|Appendix C.2

and [Algorithm 5|for a description of how this can be done). An incremental

importance sampling weight for this segment of time is given as

ko)
W .= exp {— <L§) — <I>> (A 7'1)} H 7U;(1> ¢f((f)) (5)
i=1 Ux  —Lx

If 71 < t this process is repeated with a hypercube centred on x, until sim-
ulation to time t has been achieved. This gives successive iterated weights
W@ W) . A simulated value for the Brownian motion at time ¢ is given,
again simulated conditional on the layer information for the current segment of
time, and an importance sampling weight that is the product of the incremen-
tal weights associated with each segment of time. At time ¢, J(¢) incremental
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weights have been simulated leading to the cumulative weight

J(t)
W, =[[w". (6)
j=1

Full algorithmic detail of the description above are given in |Algorithm 1| In
practice every sample X; will have an importance weight that shares a common

constant of exp{®t} in @ As such it is omitted from |Algorithm 1| and the

weights are asterisked to denote this. It is straightforward to prove that this
approach gives valid importance sampling weights in the following sense.

Theorem 2. For eacht <T
E[W,; | X[0,T]] = e~ Jo ¢(X2)ds

Proof. First note that by direct calculation of its Doob-Meyer decomposition
conditional on X[0, 77, Wiedo ¢(Xs)ds jg martingale, see for example [57]. There-
fore E[W,;|X[0, T]]efo #(X<)ds — 1 and the result follows. O

Algorithm 1 Importance Sampling Killed Brownian Motion (IS-KBM) Algo-
rithm

1. Initialise: Input initial value X, and time interval length ¢t. Set i = 1, j = 0, 70 = 0,
we = 1.
0

2. R: Choose hypercube H; and calculate Lg?, U)((U. Simulate layer information Rg? ~R
as per [Appendix C| obtaining 7, xr;.

3. E: Simulate FE ~ Exp(U)(? — Lg?).

4. §:Set j=j+1and §; = (fj,1+E)/\Ti/\t.

5. wgJ: Set wg] = w} »exp{—L;)[gj —&i-1]}

i1

6. Xg,: Simulate Xg, ~ MVN(Xe, ., (& — &-1))|RY as per [Appendix C.2|and [Algo-
Eiima “ A

7. 7 If £ =t then output x; and wf. Otherwise, if {; = 7;, set i = 4 + 1, and return to
Elso set ng =wg - (U)({l) - ¢(X§_7.))/(U)(é) - Lgé)) and return to

J

3.3. Simulating from the Quasi-stationary Distribution

In theory we can use our ability to simulate from pu:(x), using either rejection
sampling to simulate from the quasi-stationary distribution of our killed Brown-
ian motion, or importance sampling to approximate this distribution. We would
need to specify a ‘burn-in’ period of length ¢* say, as in MCMC, and then simu-
late from g« (x). If t* is chosen appropriately these samples would be draws from
the quasi-stationary distribution. Furthermore we can propagate these samples
forward in time to obtain samples from p;(x) for ¢t > t*, and again these would,
marginally, be draws from the quasi-stationary distribution.
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However, in practice this simple idea is unlikely to work. We can see this most
clearly with the rejection sampler, as the probability of survival will decrease
exponentially with ¢ — and thus the rejection probability will often be pro-
hibitively large.

There have been a number of suggested approaches to overcome the inefficiency
of this naive approach to simulating from a quasi-stationary distribution (see for
example [22 33|, and the recent rebirth methodology of [11]). Our approach is
to use ideas from sequential Monte Carlo. In particular, we will discretise time
into m intervals of length T'/m for some chosen T and m. Defining ¢; := iT/m
for ¢ = 1,...,m, we use our importance sampler to obtain an N-sample ap-
proximation of g, (x); this will give us N particles, that is realisations of x;,,
and their associated importance sampling weights. We normalise the importance
sampling weights, and calculate the variance of these normalised weights at time
t1. If this is sufficiently large we resample the particles, by simulating N times
from the empirical distribution defined by the current set of weighted particles.
If we resample, we assign each of the new particles a weight 1/N.

The set of weighted particles at time ¢; is then propagated to obtain a set
of N weighted particles at time t5. The new importance sampling weights are
just the weights at time ¢, prior to propagation, multiplied by the (incremental)
importance sample weight calculated when propagating the particle from time
t1 to to. The above resampling procedure is applied, and this whole iteration
is repeated until we have weighted particles at time 7'. This approach is pre-
sented as the Quasi-Stationary Monte Carlo (QSMC) algorithm in
in which Neg is the effective sample size of the weights [42], a standard way of
monitoring the variance of the importance sampling weights within sequential
Monte Carlo, and Ny, is a user chosen threshold which determines whether or
not to resample. The algorithm outputs the weighted particles at the end of
each iteration.

Given the output frorn the target distribution 7 can be estimated
as follows. After choosing a burn-in time, t*(€ (to,...,tn)), sufficiently large
to provide reasonable confidence that quasi-stationarity has been reached. The
approximation to the law of the killed process is then simply the weighted occu-
pation measures of the particle trajectories in the interval [t*, T]. More precisely,
using the output of the QSMC algorithm,

m N
~ a(dx) — 1 (k) .
nldx) & A () = ) (th*)/T;wti b (%) (7)
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Algorithm 2 Quasi-Stationary Monte Carlo Algorithm (QSMC) Algorithm.
1. Initialisation Step (i = 0)

(a) Input: Starting distribution, fx,, number of particles, N, and set of m times t1.pm,.
(b) XE)'): For k in 1 to N simulate Xg(l):N) ~ fxo and set wt((l]:N) =1/N.

2. Iterative Update Steps (i =i+ 1 while i < m)
(a) Neg: If Nogg < Nyp, then for k in 1 to N resample Xile ~ 7?5\1771, the empirical
distribution defined by the current set of weighted particles, and set wt(fjl =1/N.
(b) For kin 1 to N,

i. XEL) Simulate Xﬁf)\xifjl along with un-normalised weight increment

wyf, _y, , as per[Algorithm 1
1(k) (k) "
t

ii. w;(i'): Calculate un-normalised weights, w}. ™" = wy,;” ~wy _, .
(c) wi;): For k in 1 to N set wgf) = wégk)/zljil w;El).

~ ~ k
(d) Wf\i’: Set ﬂ{\i’(dx) = ZkN:1 wil) ~6X£5>(dx).

For concreteness, for a suitable L*(7) function g the Monte Carlo estimator can
simply be set to,

pEry ey, D DI SLUARFIE S0} ®)

i=m(T—t*)/T k=1
The general (g-specific) theoretical effective sample size (ESS) is just given b
Var m(g)/Var m(g). Practical approximation of ESS is discussed in
4. Sub-sampling

We now return to the problem of sampling from the posterior in a big data
setting and will assume we can write the target posterior as

(%) (= m(x) o< [T filx), 9)
i=0

where fo(x) is the prior and fi(x),..., fn(x) are likelihood terms. Note that
to be consistent with our earlier notation x refers to the parameters in our
model. The assumption of this factorisation is quite weak and includes many
classes of models exhibiting various types of conditional independence structure.

It is possible to sample from this posterior using [Algorithm 2| by choosing ¢(x),

and hence k(x), which determines the death rate of the killed Brownian motion,
as defined in (3) and respectively. In practice this will be computationally

12 Errol Street, London, EC1Y 8LX, UK



ONOULTDh WN =

Journal of the Royal Statistical Society

M. Pollock et al./Quasi-stationary Monte Carlo 12

prohibitive as at every potential death event we determine acceptance by eval-
uating ¢(x), which involves calculating derivatives of the log-posterior, and so
requires accessing the full data set of size n. However, it is easy to estimate ¢(x)
unbiasedly using sub-samples of the data as the log-posterior is a sum over the
different data-points. Here we show that we can use such an unbiased estimator
of ¢(x) whilst still simulating the underlying killed Brownian motion exactly.

4.1. Stmulating Killed Brownian Motion with an Unbiased Estimate
of the Killing Rate

To introduce the proposed approach we begin by assuming we can simulate an
auxiliary random variable A ~ A, and (without loss of generality) construct a
positive unbiased estimator, £ 4(-), such that

Ex[ra()] = (). (10)

The approach relies on the following simple result which is stated in a general
way as it is of independent interest for simulating from events of probability
which are expensive to compute, but that admit a straightforward unbiased
estimator. Its proof is trivial and will be omitted.

Proposition 1. Let 0 < p < 1, and suppose that P is a random variable with
E(P) = p and 0 < P < 1 almost surely. Then if u ~ U0,1], the event
{u < P} has probability p.

We now adapt this result to our setting, noting that the randomness obtained by

direct simulation of a p-coin, and that using|Proposition 1} is indistinguishable.

Recall that in in order to simulate a Poisson process of rate k,
Poisson thinning can be used. The initial step is to first find for the Brownian
motion trajectory constrained to the hypercube #H, a constant Kx € Ry such
that Vx € H, k(x) < Kx holds. Then a dominating Poisson process of rate Kx
is simulated to obtain potential death events, and then in sequence accept or
reject each potential death event. Considering a single such event, occurring at
time & say, then this will be accepted as a death with probability x(x¢)/Kx.

An equivalent formulation would simulate a Poisson process of rate k using
a dominating Poisson process of higher rate Kx > Kx. This is achieved by
simply substituting Kx for Kx in the argument above. However, the penalty
for doing this is an increase in the expected computational cost by a factor of
Kx /Kx — therefore it is reasonable to expect to have a larger number of po-
tential death events, each of which will have a smaller acceptance probability.

Now, suppose for our unbiased estimator %, it is possible to identify some

Kx € Ry such that YA ~ A,x € H, 0 < &(x) < Kx. Noting from that we
have an unbiased [0, 1] estimator of the probability of a death event in the above
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argument (i.e. E4[74(x)/K] = k(x)/K), and by appealing to[Proposition 1} an-
other (entirely equivalent) formulation of the Poisson thinning argument above
is to use a dominating Poisson process of rate f(x, and determine acceptance
or rejection of each potential death event by simulating A ~ A and accepting
with probability &4 (x¢)/K (instead of x(x¢)/K).

In the remainder of this section we exploit this extended construction of Pois-
son thinning (using an auxiliary random variable and unbiased estimator), to
develop a scalable alternative to the QSMC approach introduced in
The key idea in doing so is to find an auxiliary random variable and unbi-
ased estimator which can be simulated and evaluated without fully accessing
the data set, while ensuring the increased number of evaluations necessitated
by the ratio f(x/Kx > 1 does not grow too severely.

4.2. Constructing a scalable replacement estimator

Noting from and that the selection of x(x) required to sample from
a posterior 7(x) is determined by ¢(x), in this section we focus on finding a
practical construction of a scalable unbiased estimator for ¢(x). Recall that,

¢(x) = ([|Vlogm(x)||* + Alog7(x))/2, (11)
and that as per [Algorithm 2| whilst staying within our hypercube H;, it is

possible to find constants Ly’ and U)((i) such that Lg? < o(x) < U)(é). Now, as
motivated by [Section 4.1] it is then possible to construct an auxiliary random
variable A ~ A, an unbiased estimator ¢4 such that

Efpa()] = (), (12)

and determine constants U)((z) > UQ and Eg? < Lg? such that within the same

hypercube we have ig? < dalx) < U)(é). Further note that to ensure the validity
of our QSMC approach, as justified by [Theorem 1|in [Section 3.3| it is necessary

to substitute [Condition 1|with the following (similarly weak) condition:

Condition 2 (®). There exists a constant ® > —oc such that ® < $a(u) for
A-almost every A, Yu € R<.

To ensure practicality and scalability it is crucial to focus on ensuring that the
ratio

A9y .
X g0 (13)
X X

where \ := 17)((’) ,ig? does not grow too severely with the size of the data set (as
this determines the factor increase in the rate, and hence increased inefficiency,

of the dominating Poisson process required within[Algorithm 2)). To do this, our
approach develops a tailored control variate, of a similar type to that which has
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since been successfully used within the concurrent work of two of the authors
on MCMC (see [10]).

To implement the control variate estimator, it is first necessary to find a point
close to a mode of the posterior distribution 7, denoted by %. In fact for the
scaling arguments to hold, % should be within O(n~'/2) of the true mode, and
achieving this is a less demanding task than actually locating the mode. More-
over we note that this operation is only required to be done once, and not at
each iteration, and so can be done fully in parallel. In practice it would be pos-
sible to use a stochastic gradient optimisation algorithm to find a value close
to the posterior mode, and we recommend then starting the simulation of our
killed Brownian motion from this value, or from some suitably chosen distribu-
tion centred at this value. Doing this substantially reduces the burn-in time of
our algorithm. In the following section we describe a simpler method applicable
when two passes of the full data set can be tolerated in the algorithm’s initiali-
sation.

Addressing scalability for multi-modal posteriors is a more challenging prob-
lem, and goes beyond what is addressed in this paper, but of significant in-
terest for future work. We do, however, make the following remarks. In the
presence of multi-modality, stochastic gradient optimisation schemes may con-
verge to the wrong mode. On the other hand, this is still good enough as long
as possible modes are separated by a distance which is O(nfl/ 2), which will
frequently be the case under posterior contraction at rate @(n~='/?) (i.e. when
{nV2(X" — x0),n = 1,2,...}, where X,, ~ 7, is tight). On the other hand,
when separate modes exist which are separated by more than O(n~'/2), then
an interesting option would be to adopt multiple control variates.

Remembering that logm(x) = > log fi(x) and letting A be the law of I ~

U{0,...,n}, our control variate estimator is constructed thus
E4[(n+1)-[Vlog fr(x) — Vlog f1(x)] | = Vlegn(x) — Vleg7(x). (14)
=:a7(x) =:a(x)

As such, ¢(x) can be re-expressed as

b(x) = (a(x)T (2Vlog (%) + a(x)) + diva(x))/2 + C, (15)
where C := ||Vlog7(%)|? is a constant. Letting A now be the law of I, J S
U{0,...,n} the following unbiased estimator of ¢ can be constructed,
Ea[ (ar(x)" (2Vlogm(%) + vy (x)) + divas(x))/2 + C| = ¢(x). (16)
=:6a(x)

The estimators G (x) and ¢4 (x) are nothing more than classical control variate
estimators, albeit in a fairly elaborate setting, and henceforth we shall refer to
these accordingly.
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6

7 The construction of the estimator requires evaluation of the constants V log 7 (%)
8 and Alog w(%). Although both are O(n) evaluations they only have to be com-
9 puted once, and furthermore, as mentioned above, can be calculated entirely in
10 parallel.

1 -

12 The unbiased estimators a;(x) and ¢4(x) use (respectively) single and dou-
13 ble draws from {1,...,n} although it is possible to replace these by averaging
14 over multiple draws (sampled with replacement), although this is not studied
15 theoretically in the present paper.

16

17 Embedding our sub-sampling estimator described above within the QSMC al-
18 gorithm of results in termed the Scalable Langevin
19 Ezact algorithm (ScaLE). A similar modification could be made to the rejection
20 sampling version, R-QSMC, which was discussed in and detailed
21 in This variant is termed the Rejection Scalable Langevin Ezact
92 algorithm (R-ScaLE) and full algorithmic details are provided in|Appendix G
23

24 Algorithm 3 The ScaLE Algorithm (as per|Algorithm 2|unless stated other-
25 Wise).

26 0. Choose % and compute Vlog (%), Alogm(X).

27 2(b)i] On calling[Algorithm 1]

28 o S

29 (a) Replace Lgé), U)(é) inwith L;?, U)((l).

30 (b) Replace with: 7;: If § = 74, set ¢ = i+ 1, and return to Else
31 simulate A; = (I;,J;), with I, J; g U{0,...,n}, and set wg = w} - (U)((l) —

J
32 ba, (X ))/(U)((l) —Eg?) (where ¢~>A7 is defined as in 1| and return to
ﬁ tep 3 !

34

35

36

37 4.3. Implementation Details

gg In this section we detail some simple choices of the various algorithmic param-
40 eters which lead to a concrete implementation of the ScaLE algorithm. These
41 choices have been made on the bases of parsimony and convenience and are
42 certainly not optimal.

43

44 In practice, we are likely to want to employ a suitable preconditioning transfor-
45 mation: X’ = A~'X before applying the algorithm in order to roughly equate
46 scales for different components. If we did not do this, it is likely that some
47 components would mix particularly slowly. Obtaining a suitable X and A is im-
48 portant. One concrete approach, and that used throughout our empirical study
49 except where otherwise stated, is as follows. Divide a data set into a number
50 of batches which are small enough to be processed using standard maximum
51 likelihood estimation approaches and estimate the MLE and observed Fisher
50 information for each batch; X can then be chosen to be the mean of these MLEs
53

54

55

56

57

58

59

60 12 Errol Street, London, EC1Y 8LX, UK



ONOULTDh WN =

Journal of the Royal Statistical Society

M. Pollock et al./Quasi-stationary Monte Carlo 16

and A to be a diagonal matrix with elements equal to the square root of the sum
of the diagonal elements of the estimated information matrices. Better perfor-
mance would generally be obtained using a non-diagonal matrix, but this serves
to illustrate a degree of robustness to the specification of these parameters. The
constants required within the control variate can then be evaluated. For a given
hypercube, H, a bound, Kx, on the dominating Poisson process intensity can
then be obtained by simple analytic arguments facilitated by extending that
hypercube to include x and obtaining bounds on the modulus of continuity of
¢ 4. In total, two passes of the full dataset are required to obtain the necessary
algorithmic parameters and to fully specify the control variate.

As discussed in it is necessary to choose an execution time, 7T,
for the algorithm and an auxiliary mesh (¢ := 0,¢1,...,¢, := T) on which to
evaluate g in the computation of the QSMC estimator . Note that within the
algorithm the particle set is evolving according to killed Brownian motion with
a preconditioning matrix A chosen to approximately match the square root of
the information matrix of the target posterior. As such, T" should be chosen to
match the time taken for preconditioned Brownian motion to explore such a
space, which in the examples considered in this paper ranged from T = 10 to
T =~ 100. The number of temporal mesh points, m was chosen with computa-
tional considerations in mind — increasing m increases the cost of evaluating
the estimator and leads to greater correlation between the particle set at con-
secutive mesh points, but ensures when running the algorithm on a multiple
user cluster that the simulation is periodically saved and reduces the variance
of the estimator. As the computational cost of the algorithm is entirely deter-
mined by the bounds on the discussed modulus of continuity of quA, in each
of the examples we later consider our mesh size was loosely determined by the
inverse of this quantity and ranged from (t; —t;_1) ~ 1072 to (t; —t;_1) ~ 107.

The initial distribution fx, is not too critical, provided that it is concentrated
reasonably close (within a neighbourhood of size O(n~'/2)) to the mode of the
distribution. The stability properties of the SMC implementation ensure that
the initial conditions will be forgotten (see [23] Chapter 7] for a detailed dis-
cussion). The empirical results presented below were obtained by choosing as
fx, either a singular distribution concentrated at Xy or a normal distribution
centred at that location with a covariance matrix matching AAT; results were
found to be insensitive to the particular choice.

5. Complexity of ScaLE

The computational cost of ScaLE will be determined by two factors: the speed
at which u; approaches m and the computational cost of running the algorithm
per unit algorithm time. Throughout the exposition of this paper, the proposal
process is simple Brownian motion. Due to posterior contraction, as n grows
this proposal Brownian motion moves increasingly rapidly through the support
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of . On the other hand, as n grows, killing rates will grow. In this subsection
we shall explore in detail how the computational cost of ScaLE varies with n
(its complexity) while bringing out explicitly the delicate link to the rate of
posterior contraction and the effect of the choice of x.

We start by examining the speed of convergence of y; and in particular its
dependence on posterior contraction. Being more explicit about posterior con-
traction, we say that {m,} are O(n~"/2) or have contraction rate n/2 for some
n > 0 to a limit xg if for all € > 0 there exists K > 0 such that when X,, ~ 7m,,
P(|X,, — xo| > Kn~"/?) < e. It is necessary to extend the definition of y; to a
setting where n increases, hence define

i (dx) = P(X; € dx | ¢ > t, X0 = x0 + n~"u). (17)

Since we are dealing with Markov processes that are essentially never uniformly
ergodic, it is impossible to control convergence times uniformly. The specification
of the initial value as Xo = x¢ + n~"/2u, which, as n increases, remains close
to the centre of the posterior as specified through the contraction rate, goes as
far as we can before incurring additional computational costs for bad starting
values.

Set

Tnu,e = inf{t > 05 [ = || < €}

where || - || represents total variation distance. It will be necessary to make the
following technical assumption. For all ¢, K > 0

limsup sup n"7y y,e < 00 (18)
n—oo |ul<K

At first sight, assumption may seem remarkably strong, but it is very
natural and is satisfied in reasonable situations. For example suppose we have
a contraction scaling limit: m,(dz) ~ h (’;;j?). (A special case of this is the
Bernstein von-Mises theorem with n = 1 and h being Gaussian, but our set up
is far broader.) If {X}'} denotes ScaLE on m,, then by simple scaling and time
change properties of Brownian motion it is easily checked that if Y; = X,,—n;
then Y is (approximately) ScaLE on h which is clearly independent of n. Thus
to obtain a process which converges in O(1) we need to slow down X by a time
factor of n. Similar arguments have been used for scaling arguments of other
Monte Carlo algorithms that use similar control variates, see for instance the
concurrent work [10].

While posterior contraction has a positive effect on computational cost, it is
also the case that for large n the rate at which a likelihood subsample needs
to be calculated, as measured by 5\, needs to increase. Since A depends on the
current location in the state space, where we need to be precise we shall set
S\n,K to be an available bound which applies uniformly for |x — xg| < Kn~n/2,

The following notion of convergence cost will be required: setting

Citer = Citer(na K,e) = Th K AnK
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ScalLE is said to have iteration compexity n® or, equivalently, is O(n%) if
C(n,K,e¢) is O(n®) for all K,e > 0.

Therefore to understand iteration complexity of ScalE it is necessary to
understand the rate at which ;\,,,, x grows with n. A general way to do this is to
use global, or local, bounds on the second-derivatives of the log-likelihood for
each datum. To simplify the following exposition a global bound is assumed, so
that

p(V2log f1(x)) < P, (19)

for some P, > 0, where p(-) represents the spectral radius and V2 is the Hessian
matrix. For smooth densities with Gaussian and heavier tails, the Hessian of the
log-likelihood is typically uniformly bounded (in both data and parameter). In
such cases such a global bound would be expected, and in fact P, would be
constant in n.

Recalling the layer construction of for a single trajectory of killed
Brownian motion, we can ensure that over any finite time interval we have

x € H, some hypercube. Let the centre of the hypercube be x*.

In this section, eventually the assumption that the posterior contracts at a
rate n~"/2 will be made, i.e. that {n"/?(x — x¢),n = 1,2,...} is tight. The so-
called regular case corresponds to the case where n = 1, although there is no
need to make any explicit assumptions about normality in the following. The
practitioner has complete freedom to choose H, and it makes sense to choose
this so that ||x — x*|| < C*n="/2 for some C* > 0 and for all x € H.

It is possible to bound ¢ 4 (x) both above and below if we can bound |pa(x)| over
A-almost all possible realisations of A. To bound |¢4(x)|, the approach here is
to first consider the elementary estimator in . By imposing the condition in
(19) we can then obtain

ma. arx)| < (n+1)- P, max|x — x|. 20
XEH,IG{)O(,MJL}| I( )l 7( ) xE?'?[(H ” ( )

Thus it is possible to bound the estimator in as follows

. IV o ()2 <
2 dmax | [oa(x) — [[Viegr ()] <

(n+1)P, max Ix —x|| |12V log 7(%)| + P,(n + 1) max [lx = %||| + Pud(n+1)
xE xe
(21)

We can use the fact that maxyey ||[x — X|| < ||x* — %|| + C*n~"/2 to bound the
terms in this expression.

We now directly consider the iteration complexity of ScalLLE. Assuming n < 1,
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and using the bound on |¢4(x) — C| for the hypercube centred on x*, we have
that whilst we remain within the hypercube,

1 - .
A= O(Pnnl‘B”/2(Pnn1_”/2 + |V10g7r(x)|)). (22)

Here the assumption has been made that at stationarity x* will be a draw
from the support of the posterior, so that under the assumption of posterior
contraction at the n="/2 rate, then ||x* — %|| = O,(n~"/2). This discussion is
summarised in the following result.

Theorem 3. Suppose that and @) hold, posterior contraction occurs at
rate n="? for n < 1, P, is O(1) and that |Vlogm(X)| = O(n*) for some
t > 0. Then the iteration complexity of ScaLE is O(n™) where

w:=max(l —n/2,t) +1—3n/2.

In particular, where « <1—1n/2, w=2—2n. If n =1, then @w = 0 follows
and that the iterative complexity of ScaLE is O(1).

This result also illuminates the role played by |V log w(X)| in the efficiency of the
algorithm. In the following discussion it is assumed that n = 1. It is worth noting
that while a completely arbitrary starting value for X might make |V log 7 (X)|
an O(n) quantity leading to an iterative complexity of the algorithm which
is O(n'/?). To obtain O(1) it is simply required that |V logm(%)| be O(n'/?)
which gives considerable leeway for any initial explorative algorithm to find a
good value for X.

Note that given bounds on the third derivatives, can be improved by lin-
earising the divergence term in (16). This idea is exploited later in a logistic

regression example (see Sections .

In the absence of a global bound on the second derivatives, it is possible to
replace P, in the above arguments by any constant that bounds the second-
derivatives for all x such that ||[x — X|| < maxxey [|x — X||. In this case, the
most extreme rate at which A can grow is logarithmically with n, for instance
for light-tailed models where the data really comes from the model being used.
Where the tails are mis-specified and light-tailed models are being used, the
algorithmic complexity can be considerably worse. There is considerable scope
for more detailed analyses of these issues in future work.

The above arguments give insight into the impact of our choice of x. It af-
fects the bound on ), and hence the computational efficiency of ScaLE, through
the terms ||x* — X||. Furthermore the main term in the order of A is the square
of this distance. If x is the posterior mean, then the square of this distance
will, on average, be the posterior variance. By comparison, if X is k posterior
standard deviations away from the posterior mean, then on average the square
distance will be k2 + a times the posterior variance (for some constant a), and
the computational cost of ScaLE will be increased by a factor of roughly k% + a.
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TABLE 1
Complexity of algorithms for big data. This is split into the complexity of initiation, C;pit,
and the cost of the iterative algorithm, C;4e. Here n denotes sample size, t denotes
algorithm time, and w and n are as given in Theorem@

Cinit | Citer ¢
MCMC 0 tn tn
Laplace approximation n 0 n
ScaLE n tn® n+tn®
ScaLE when n =1 n t n+t

5.1. Overall complexity

Here we will briefly discuss the overall complexity of ScaLLE. The general setup of
Theoremdescribes the iteration complexity of ScaLE on the assumption that
|V log m(x)| grows no worse than O(n'). However there is a substantial initial
computational cost in locating x and calculating V log 7(%) which is likely to be
O(n) as there are n terms in the calculation of the latter. Therefore the overall
complexity of ScaLE can be described as

C = Cipit + Citer = O(n) + O(n*t)

where ¢ represents algorithm time. This is in contrast to an MCMC algorithm for
which iteration cost would be O(n) leading to overall complexity ¢n. A Laplace
approximation will involve an initial cost that is (at very least) O(n) but no
further computation.

Since they both involve full likelihood calculations, finding the posterior mode
and finding & are both likely to be O(n) calculations. This can be shown to
be the case for strongly log-concave posterior densities [51], though the cost
may be higher if the log-posterior is not concave. On the other hand, the above
discussion shows that in order to achieve O(1) scaling with data we typically
only need to find & within @(n~1/2) of the posterior model. Thus finding & is
certainly no harder than finding the posterior mode, as we can use the same
mode-finding algorithm, e.g. [121[511 [36], but have the option of stopping earlier.

If n is sufficiently large that the initialisation cost dominates the iteration
cost, ScaLE will computationally be no more expensive to implement than the
Laplace approximation. In this case we obtain an exact approximate algorithm
(ScaLE) for at most the computational complexity of an approximate method
(Laplace). These complexity considerations are summarised in Table

6. Theoretical Properties

SMC algorithms in both discrete and continuous time have been studied exten-
sively in the literature (for related theory for approximating a fixed-point dis-
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tribution, including for algorithms with resampling implemented in continuous-
time, see [59]; a discrete-time algorithm to approximate a fixed-point
distribution in a different context was considered by [68]). In order to avoid
a lengthy technical diversion, we restrict ourselves here to studying a slightly
simplified version of the problem in order to obtain the simplest and most inter-
pretable possible form of results. The technical details of this construction are
deferred to and give here only a qualitative description intended
to guide intuition and the key result: that the resulting estimator satisfies a
Gaussian central limit theorem with the usual Monte Carlo rate.

Consider a variant of the algorithm in which (multinomial) resampling occurs
at times kh for £ € N where h is a time step resolution specified in advance
and consider the behaviour of estimates obtained at these times. Extension to
resampling at a random subset of these resampling times would be possible us-
ing the approach of [24], considering precisely the QSMC algorithm presented
in and the ScaLE algorithm in would require addi-
tional technical work somewhat beyond the scope of this paper; no substantial
difference in behaviour was observed.

In order to employ standard results for SMC algorithms it is convenient to
consider a discrete time embedding of the algorithms described. We consider an
abstract formalism in which between the specified resampling times the trajec-
tory of the Brownian motion is sampled, together with such auxiliary random
variables as are required in any particular variant of the algorithm. Provided
the potential function employed to weight each particle prior to resampling has
conditional expectation (given the path) proportional to the exact killing rate
integrated over these discrete time intervals a valid version of the ScaLE algo-
rithm is recovered.

This discrete time formalism allows for results on more standard SMC algo-
rithms to be applied directly to the ScalLE algorithm. We provide in the fol-
lowing proposition a straightforward corollary to [23] Chapter 9], which demon-
strates that estimates obtained from a single algorithmic time slice of the ScaLE
algorithm satisfy a central limit theorem.

Proposition 2 (Central Limit Theorem). In the context described, under mild
reqularity conditions (see references given in|Appendiz H)):

N

Zw(X;ik) — Bk, [e(Xi0)]| = onl9)Z

1
lim VN |—
N—o00 N
where, p : R* — R, Z is a standard normal random variable, = denotes
convergence in distribution, and ok () depends upon the precise choice of

sub-sampling scheme as well as the test function of interest and is specified

in|Appendix
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7. Examples

In this section we present five example applications of the methodology devel-
oped in this paper, each highlighting a different aspect of ScaLLE and contrasted
with appropriate competing algorithms. In particular: in we con-
sider a simple and pedagogical example which has a skewed target distribution,
contrasted with MCMC; considers the performance of a logistic re-
gression model in which significantly less information is available from the data
about one of the covariates than the others; in we apply both ScalLE
and SGLD to a regression problem based upon the ASA Data Expo Airline
On-time Performance data, which is of moderately large size (= 108);
considers ScaLLE applied to a very large logistic regression problem, with a
data set of size n = 23% ~ 10'%-2, along with consideration of scalability with
respect to data size; Finally, in[Section 7.5 parameter inference for a contam-
inated regression example is given, motivated by a big data application with
n = 227 ~ 108!, and illustrating the potential of an approximate implementa-
tion of ScaLLE even when mis-initialised.

All simulations were conducted in R on an Xeon X5660 CPU running at 2.8
GHz. Note that for the purposes of presenting the ScaLE methodology as cleanly
as possible, in each example no prior has been specified. In practice, a prior can

be simply included within the methodology as described in

The reference implementation of the software used to produce these results can
be obtained from https://github.com/mpoll/scale|l The raw data sets, along
with both the pre-processing steps and algorithmic specification of the raw data
sets can be obtained from http://www.warwick.ac.uk/mpollock/scale|

7.1. Skewed Target Distribution

In order to illustrate ScaLLE applied to a simple non-Gaussian target distribution,
we constructed a small data set of size n = 10, to which we applied a logistic
regression model

T
1 with probability M,
yi = 1 +exp{x{ 3} (23)

0 otherwise.

The data was chosen to induce a skewed target, with y* = (1,1,0,...,0) and

x! = (1,(=1)"/i).

We used the glm R package to obtain the MLE (8* ~ (—1.5598,—1.3971))
and observed Fisher information, in order to (mis-)initialise the particles in
the ScaLE algorithm. In total N = 210 particles were used, along with a sub-
sampling mechanism of size 2 and a control variate computed as inby
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setting x = 8*. For comparison we ran random walk Metropolis on the same ex-
ample initialised at 8* using the MCMClogit function provided by MCMCpack
[47], computed the posterior marginals based on 1,000,000 iterations thinned to
100,000 and after discarding a burn-in of 10,000 iterations, and overlaid them
with together with those estimated by ScaLE in These are accompa-
nied by the glm fit used to mis-initialise ScaL.E.

It is clear from that the posterior obtained by simulating ScalLE
matches that of MCMC, and both identify the skew which would be over-
looked by a simple normal approximation. The particle set in ScaLLE quickly
recovers from its mis-initialisation, and only a modest amount of burn-in dis-
card is required. In practice, we would of course not advocate using ScaL.E for
such a small data setting — the computational and implementational complexity
of ScaLLE does not compete with MCMC in this example. However, as indicated
in and the subsequent examples, ScaLE is robust to increasing data
size whereas simple MCMC will scale at best linearly.

7.2. Heterogeneous Logistic Regression

For this example a synthetic data set of size n = 107 was produced from the
logistic regression model in . Fach record contained three covariates, in
addition to an intercept. The covariates were simulated independently from
a three-dimensional normal distribution with identity covariance truncated to
[—0.001,0.001] x [-1,+1] x [—1,+1], and with the true 8 = (0,2, —2,2) (where
the first coordinate corresponds to the intercept). The specification of this data
set is such that significantly less information is available from the data about
the second covariate than the others. Data was then generated from using
the simulated covariates.

As before, the glm R package was used to obtain the MLE and observed Fisher
information, which was used within ScaLE to set * = % ~ (2.3581 x 1074,
2.3407, —2.0009, 1.9995) and A ~ diag(7.6238 x 10~%,1.3202, 1.5137 x 1073,
1.5138 x 10~3) respectively. For the control variate V log (%) ~ (2.0287 x 1072,
2.2681 x 1079, —2.3809 x 1076, —2.3808 x 10~°) was calculated using the full
data set, and as expected (and required for computational considerations) is

critically extremely small, along with Alogm(X).

ScaLE was then applied to this example using N = 2'° particles initialised
using a normal approximation given by the computed x and A, and a sub-
sampling mechanism of size 2. The simulation was run for 20 hours, in which
time 84,935,484 individual records of the data set were accessed (equivalent to
roughly 8.5 full data evaluations). Trace plots for the simulation can be found in

[Figure 2| along with posterior marginals given by the output (after discarding

as burn-in a tenth of the simulation). The posterior marginals are overlaid with
the normal approximation given by the R glm fit.
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The estimated means and standard deviations for the regression parameters
were X ~ (—2.3194 x 107%,2.3197, —2.0009, 1.9995), and o, ~ (7.6703 x 1074,
1.3296, 1.6386 x 10~*,1.6217 x 10~%) respectively. This is in contrast with 8* and
standard deviations of ~ (7.6238 x 107%,1.3203,1.6237 x 1074,1.6233 x 10~%)
from the glm output.

To assess the quality of the output we adopted a standard method for esti-
mating effective sample size (ESS) for a single parameter. In particular, we first
estimated a marginal ESS associated with the particles from ScaLE at a single
time-point, with this defined as the average of the ratio of the variance of the
estimator of the parameter using these particles to the posterior variance of the
parameter [15]. To calculate the overall ESS, the dependence of these estimators
over-time is accounted for by modelling this dependence as an AR(1) process.
Full details of this approach are given in Appendix The resulting average ESS
per parameter using this approach was found to be 352.

The ScaLLE output is highly stable and demonstrates that despite the hetero-
geneity in the information for different parameters, the Bernstein von-Mises
limit (Laplace approximation) proves here to be an excellent fit. Although the
GLM fit is therefore excellent in this case), scale can be effectively used to verify
this. This is in contrast to the example in Section 7.1 where scale demonstrates
that the GLM-Laplace approximation is a poor approximation of the posterior
distribution.

7.83. Airline Dataset

To demonstrate our methodology applied to a real (and moderately large)
dataset we consider the ‘Airline on-time performance’ dataset which was used
for the 2009 American Statistical Association (ASA) Data Expo, and can be ob-
tained from http://stat-computing.org/dataexpo/2009/. The ‘Airline’ data
set consists in its entirety of a record of all flight arrival and departure details
for all commercial flights within the USA from October 1987 to April 2008. In
total the data set comprises 123,534,969 such flights together with 29 covariates.

For the purposes of this example we selected a number of covariates to in-
vestigate what affect (if any) they may have on whether a flight is delayed. The
Federal Aviation Administration (FAA) considers an arriving flight to be late
if it arrives more than 15 minutes later than its scheduled arrival time. As such
we take the flight arrival delay as our observed data (given by ArrDelay in
the Airline data) and treat it as a binary taking a value of one for any flight
delayed in excess of the FAA definition.

In addition to an intercept, we determine three further covariates which may
reasonably affect flight arrival: a weekend covariate, which we obtain by treating
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DayOfWeek as a binary taking a value of one if the flight operated on a Sat-
urday or Sunday; a night flight covariate, which we obtain by taking DepTime
(Departure Time) and treating it as a binary taking a value of one if the depar-
ture is between 8pm and 5am; and flight distance, which we obtain by taking
Distance and normalising by subtracting the minimum distance and dividing
by the range.

The resulting data set obtained by the above process contained a number of
missing entries, and so all such flights were omitted from the data set (in total
2,786,730 rows), leaving n =120,748,238 rows. We performed logistic regression
on the flight arrival delay variable, treating all other variables as covariates.

To allow computation of x and A as required by ScaLLE the data was first divided
into 13 subsets each of size 9,288,326 and the MLE and observed information
matrix for each was obtained using the R glm package. It should be noted that
the Airline data set is highly structured, and so for robustness the order of the
flight records was first permuted before applying glm to the data subsets. An
estimate for the MLE and observed information matrix for the full data set was
obtained by simply taking the mean for each coefficient of the subset MLE fits,
and summing the subset information matrices. X ~ (—1.5609, —0.1698,0.2823,
0.9865) was chosen to be the computed MLE fit, and for simplicity A~! was
chosen to be the square root of the diagonal of the computed information ma-
trix (= (2.309470 x 107%,4.632830 x 107%,6.484359 x 107%,1.2231 x 107%)).
As before, and as detailed in we use the full data set in order to
compute V log (%) =~ (0.00249,0.0018,0.0021,0.0029) (which again is small as
suggested by the theory, and required for efficient implementation of ScaLE)
and Alog 7 (%) ~ —3.999.

The ScaLE algorithm was initialised using the normal approximation available
from the glm fit. In total N = 2'2 were used in the simulation, and for the
purposes of computing the unbiased estimator cz~5 4(x) we used a sub-sample of
size 2. The algorithm was executed so that n individual records of the data set
were accessed (i.e. a single access to the full data set), which took 36 hours of
computational time. The first tenth of the simulation trajectories were discarded
as burn-in, and the remainder used to estimate the posterior density. The trace
plots and posterior densities for each marginal for the simulation can be found

in g 7

For comparison, we also ran stochastic gradient Langevin diffusion (SGLD)
[67]. This algorithm approximately simulates from a Langevin diffusion which
has the posterior distribution as its stationary distribution. The approximation
comes from both simulating an Euler discretised version of the Langevin dif-
fusion and from approximating gradients of the log posterior at each iteration.
The approximation error can be controlled by tuning the step-size of the Euler
discretisation — with smaller step-sizes meaning less approximation but slower
mixing. We implemented SGLD using a decreasing step-size, as recommended
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by the theoretical results of [64]; and used pilot runs to choose the smallest
scale for the step-size schedule which still led to a well-mixing algorithm. As
such, the pre-processing expenditure matched that of ScalLE. The accuracy of
the estimate of the gradient is also crucial to the performance of SGLD [21],
and we used an estimator that used control variates (similar to that developed
in ScaLE) and a mini-batch size of 1000, following the guidance of [4] [49] [13].
For comparable results we ensured that SGLD had the same number of log-
likelihood evaluations as ScaLE (i.e. equivalent to one single access to the full
data set), and initiated SGLD from the centering value used for the control
variates. In total the SGLD simulation took 4 hours to execute. The first tenth
was discarded as burn-in and the remainder was used to estimate the marginal
posteriors, which are overlaid with those estimated by ScaLE in

As can be seen in[Figure 3] SGLD estimates seem to be unstable here, with the
algorithm struggling to mix effectively under the decreasing step size constraint,
particularly for the fourth covariate. Indeed, the marginal posteriors should be
convex and SGLD deviates strongly from this. This unstable behaviour was
confirmed in replicate SGLD runs, and indeed it would be difficult to separate
out bias from Monte Carlo error for SGLD without much longer runs. This is
in contrast with ScaLE which produces far more stable output in this example.

7.4. Large Data Scenario

In this subsection we consider an application of ScaLE to a 5 dimensional logistic
regression model, considering data sets of up to size n = 23* x 10'°-2. Logistic
regression is a model frequently employed within big data settings [60], and here
the scalability of ScaLE is illustrated for this canonical model. In this example,
we generate a data set of size 23* from this model by first constructing a
design matrix in which the i entry x; := [1, Cily-e-s Ci,4]T, where (1 1,...,Cna
are ii.d. truncated normal random variables with support [—1,1]. In the big
data setting it is natural to assume such control on the extreme entries of the
design matrix, either through construction or physical limitation. Upon simu-
lating the design matrix, binary observations are obtained by simulation using
the parameters 8 = [1,1,—1,2,—2]7. Due to the extreme size of the data we
realised observations only as they were required to avoid storing the entire data
set; see code provided for implementation details.

First considering the data set of size n = 23%, then following the approach
outlined in % and A were chosen by breaking the data into a large
number of subsets, fitting the R glm package to each subset, then appropriately
pooling the fitted MLE and observed Fisher information matrices. In total the
full data set was broken into 2! subsets of size 22!, and the glm fitting and pool-
ing was conducted entirely in parallel on a network of 100 cores. Consequently,
x = f* &~ (0.9999943,0.9999501, —0.9999813,1.999987, —1.999982) and A =

12 Errol Street, London, EC1Y 8LX, UK
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diag(1.9710 x 107?,3.6921 x 1075,3.6910 x 1075,3.8339 x 107%,3.8311 x 10~%).
Upon computing % an additional pass of the 2!3 subsets of the data of size 22!
was conducted in parallel in order to compute V log w(%X) ~ (—0.0735, —0.0408,
0.0428, —0.09495, 0.0987) and Alogn(X) ~ —5.006 for construction of the con-
trol variate. Utilising fully the 100 cores available the full suite of pre-processing
steps required for executing scale took 27 hours of wall-clock time (i.e. the com-
putation of both the glm fit and control variate).

ScaLE was applied to this example using N = 2! particles initialised using a
normal approximation given by the available glm fit, and a subsampling mech-
anism of size 2. The simulation was run for 70 hours, in which time 49,665,450
individual records of the data set were accessed (equivalent to roughly 0.0029
full data evaluations). Trace plots for the simulation can be found in
[ The first tenth of the simulation trajectories were discarded as burn-in, and
the remainder used to estimate the posterior density of each marginal. These
can also be found in together with the normal approximation to the
posterior marginals given by the R glm fit, is again very accurate here, agreeing
closely with the scale output. Using the ESS approach described in
and Appendix the average ESS per parameter was found to be 553.

To investigate scaling with data size for this example, we considered the same
model using the same process as outlined above with data sets varying in size
by a factor of 2 from n = 22! to n = 233. Computing explicitly the dominating
intensity S\,L, x over the support of the density the relative cost of ScaLE for
each data set with respect to the data set of size n = 234 can be inferred. This

is shown in|Figure 5
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FIGURE 5. Comparison of the bounding intensities and comparative cost for executing Scale

for increasing data set sizes in the large data example o,

7.5. Contaminated Mixture

In this subsection we consider parameter inference for a contaminated mixture
model. This is motivated by big data sets obtained from internet applications,
in which the large data sets are readily available, but the data is of low quality
and corrupted with noisy observations. In particular, in our example each da-
tum comprises two features and a model is fitted in which the likelihood of an
individual observation (y;) is,

1—p 1 2 P 1 5
ii= —-5 (a-z; “Ti2 —Yi 5o (-
F 5 2exp{ 22(a i1+ B T2 y)}—l— 5 = exp 22y

(24)

In this model p represents the level of corruption and ¢ the variance of the
corruption. A common approach uses MCMC with data augmentation [63].
However, for large data sets this is not feasible as the dimensionality of the
auxiliary variable vector will be O(n). For convenience a transformation of the
likelihood was made so that each transformed parameter is on R. The details are
omitted, and the results presented are given under the original parameterisation.

A data set of size n = 227 ~ 103! was generated from the model with pa-

rameters p = [a, B,0,¢,p] = [2,5,1,10,0.05]. To illustrate a natural future
direction for the ScaLE methodology, in this example we instead implemented
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an approximate version of ScaLE (as opposed to the exact version illustrated in
the other examples of . In particular, the primary implementational
and computational bottleneck in ScalLE is the formal ‘localization procedure’ to
obtain almost sure bounds on the killing rate by constraining Brownian motion
to a hypercube (as fully detailed in [Section 3.2|and [Appendix C). Removing
the localization procedure results in the Brownian motion trajectories being un-
constrained, and the resulting dominating intensity A being infinite. However,
in practice the probability of such an excursion by Brownian motion outside a
suitably chosen hypercube can be made vanishingly small (along with the con-
sequent impact on the Monte Carlo output) by simply adjusting the temporal
resolution at which the ergodic average is obtained from the algorithm (noting
Brownian motion scaling is O(v/t), and inflating the bounds on the Hessian for
computing the intensity. The resulting ‘approximate’ algorithm is approximate
in a different (more controllable and monitorable) sense than for instance SGLD,
but results in substantial (10x-50x) computational speed-ups over the available
(but expensive) ‘exact’ ScaLE.

In contrast with the other examples of rather fitting an approxi-
mate model in order to initialise the algorithm, instead in this example a single
point mass to initialise the algorithm was chosen (u = [2.00045, 5.00025, 0.99875,
10.050.499675]), and this was also used as the point to compute our control
variate (described in. The pre-processing for executing ScalLLE took
approximately 6 hours of computational time (and is broadly indicative of the
length of time a single iteration of an alternative MCMC scheme such as MALA
would require). Note that as discussed in this ‘mis-initialisation’ im-
pacts the efficiency of the algorithm by a constant factor, but is however rep-
resentative of what one in practice may conceivably be able to do (i.e. find by
means of an optimisation scheme a point within the support of the target poste-
rior close to some mode, and conduct a single O(n) calculation). The forgetting

of this initialisation is shown in

Applying ScaLE for this application we used a particle set of size N = 211,
and run the algorithm for diffusion time of T = 200, with observations of each
trajectory at a resolution of ¢; —t;_1 = 0.1. Again, the choice of N was made as
in as it provided the required stability. The choice of T" was made
as it corresponded approximately to a computational budget of one week.

Each particle trajectory at each time ¢ € [0, T] was associated with a sub-sample
of the full data set of size 32. As in 32 was chosen as it provided
balance with other components of the algorithm, but allowed stabilisation of
the importance weights for the approximate algorithm. In total the entire run
required accessing 500 million individual data points, which corresponds to ap-
proximately 4 full evaluations of the data set.

An example of a typical run can be found in [Figure 6| A burn-in period of
100 was chosen, and alongside the trace plots in |[Figure 6| an estimate of the
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marginal density of the parameters is provided using the occupation measure of
the trajectories in the interval ¢ € [100, 200].

To assess the quality of the simulation, the same batch mean method is em-
ployed to estimate the marginal ESS for the run post burn-in as detailed in
Section 7.4| The mean ESS per dimension for this run was around 930. An anal-
ysis of MALA (for a necessarily much smaller run), indicated it is possible to
achieve an ESS of around 7'/3, where T' corresponds to the run length subse-
quent to burn-in. As indicated above, and neglecting burn-in, this would mean
an achievable ESS for a comparable computational budget for MALA would be
around 10-15.

8. Conclusions

In this paper we have introduced a new class of Quasi-Stationary Monte Carlo
(QSMC) methods which are genuinely continuous-time algorithms for simulat-
ing from complex target distributions. We have emphasised its particular effec-
tiveness in the context of big data by developing novel sub-sampling approaches
and the Scalable Langevin Ezact (ScaLlE) algorithm. Unlike its immediate com-
petitors, our sub-sampling approach within ScaLLE is essentially computation-
ally free and does not result in any approximation to the target distribution.
Our methodology is embedded within an SMC framework, supported by un-
derpinning theoretical results. In addition, examples to which ScaLLE is applied
demonstrate its robust scaling properties for large data sets.

We show through theory and examples that computational cost of ScaLE is
more stable to data set size than gold standard MCMC approaches. Moreover
we have seen it substantially outperform other approaches such as SGLD which
are designed to be robust to data-size at the cost of bias and serial correlation.
ScaLLE can both confirm that simpler approaches such as Laplace approximation
are accurate, and identify when such approximations are poor (as we see in the
examples). We see this as a first step in a fruitful new direction for Computa-
tional Statistics. Many ideas for variations and extensions to our implementation
exist and will stimulate further investigation.

Firstly, the need to simulate a quasi-stationary distribution creates particular
challenges. Although quasi-stationarity is underpinned by an elegant mathe-
matical theory, the development of numerical methods for quasi-stationarity is
understudied. We have presented an SMC methodology for this problem, but
alternatives exist. For instance, [11] suggest alternative approaches.

Even within an SMC framework for extracting the quasi-stationary distribu-
tion, there are interesting alternatives we have not explored. For example, by
a modification of our re-weighting mechanism it is possible to relate the target
distribution of interest to the limiting smoothing distribution of the process, as
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opposed to the filtering distribution as we do here. Within the quasi-stationary
literature this is often termed the type II quasi-stationary distribution. As such,
the rich SMC literature offers many other variations on the procedures adopted
here.

Using SMC benefits from the rich theory it possesses. However the use of quasi-
stationary Monte Carlo actually demands new questions of SMC.
gives convergence as T — 0o, while gives a precise description
of the limit as the number of particles N increases. There are theoretical and
practical questions associated with letting both NV and T tend to oo together.
Within the examples in this paper ad hoc rules to assign computational effort
to certain values of N and T. However the general question of how to choose
these parameters seems completely open.

Throughout the paper, we have concentrated on so-called exact approximate
quasi-stationary Monte Carlo methods. Of course in many cases good approxi-
mations are good enough and frequently computationally less demanding. How-
ever, for many approximate methods it will be difficult to quantify the system-
atic error being created by the approximation. Moreover, we emphasise that
there are different strategies for creating effective approximations that emanate
directly from exact approximate methods, and where the approximation error
can be well-understood. We have given an example of this in but other op-
tions are possible also.

There are interesting options for parallel implementation of SMC algorithms
in conjunction with ScaLE. For instance an appealing option would be to im-
plement the island particle filter [27] which could have substantial effects on the
efficiency of our algorithms where large numbers of particles are required. Al-
ternatively one could attempt to embed our scheme in other divide and conquer
schemes as described in the introduction.

The approach in this paper has concentrated solely on killed (or re-weighted)
Brownian motion, and this strategy has been demonstrated to possess robust
convergence properties. However, given existing methodology for the exact sim-
ulation of diffusions in [9][7] (8] 53] [55] [54], there is scope to develop methods
which use proposal measures which much better mimic the shape of the poste-
rior distribution.

The sub-sampling and control variate approaches developed here offer dramatic
computational savings for tall data as we see from the examples and from the
theory of results like Theorem |3] We have not presented the ScaLE algorithm
as a method for high-dimensional inference, and the problem of large n and d
will inevitably lead to additional challenges. However there may be scope to ex-
tend the ideas of ScaLLE still further in this direction. For instance, it might be
possible to sub-sample dimensions and thus reduce the dimensional complexity
for implementing each iteration.
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We conclude by noting that as a byproduct, the theory behind our methodology
offers new insights into problems concerning the existence of quasi-stationary
distributions for diffusions killed according to a state-dependent hazard rate,
complementing and extending current state-of-the-art literature [62].
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Appendix A: Proof of[Theorem 1|

Here we present a proof of However, we first formally state the
required regularity conditions. We suppose that

v(z) := ©'/?(z) is Lebesgue integrable, (25)
and that

. Av(x)  AlIVr(x)|?

gt <m+1/2(x) " ey ) 70 (26)

where A represents the Laplacian.

Proof (Theorem . Consider the diffusion with generator given by
1 1
Af(x) = SAF(x) + 5 VIogu(x) - Vf(x).

As v is bounded, we assume without loss of generality that its upper bound
is 1. Our proof shall proceed by checking the conditions of Corollary 6 of [31],
which establishes the result. In particular, we need to check that the following
are satisfied:

1. For all § > 0, the discrete time chain {X,5,n =0,1,2,...} is irreducible;
2. All closed bounded sets are petite;
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3. We can find a drift function V(x) = v(x)~" for some v > 0, that satisfies
the condition

AV (x) < —c, V(x)T° (27)

for x outside some bounded set, for each n € [a, 1] with associated positive
constant c;, and where o = 1 — (2v)~%.

The first condition holds for any regular diffusion since the diffusion possesses
positive continuous transition densities over time intervals ¢ > 0; and positivity
and continuity of the density also implies the second condition. For the final
condition we require that

. AV (x)
s =aiey < (28)
Now by direct calculation
AV (x) = %V(X)*”"*2 [ IVr(x)|? = v(x)Av(x)] (29)
so that
M(x v(x)"3/2—7
W0 ) T e - vxdv] . (30)

V(x)n—e 2

Therefore li will hold whenever ll is true since we have the constraint
that n < 1 and ||Vv(x)||? is clearly non-negative. As such the result holds as
required. O

Note that the condition in is essentially a condition on the tail of v. This
will hold even for heavy-tailed distributions, and we show this is the case for a

class of 1-dimension target densities in

Appendix B: Polynomial tails

In this appendix we examine condition which we use within

This is essentially a condition on the tail of v, and so we examine the critical
case in which the tails of v are heavy. More precisely, we demonstrate that for
polynomial tailed densities in one-dimension that essentially amounts to
requiring that v1/2 is integrable. Recall that by construction »!/2 will be inte-
grable as we have chosen v'/2 = 7.
For simplicity, suppose that v is a density on [1,00) such that v(z) = z~P.
In this case we can easily compute that for p > 1,

Vu(z) = —pz™P!
Av(z) = p(p + 1)z 72
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from which we can easily compute the quantity whose limit is taken in as
2022 p(p 4 1) — yp?].
As such, we have that condition holds if and only if
p+1l—4p>0 (31)
and
p(y—1/2) -2 >0. (32)

Now we shall demonstrate that we can find such « for all p > 2. For instance,
suppose that p = 2 + €. The case € > 2 can be handled by just setting v = 1, so
suppose otherwise and set v = 3/2—¢/4. In this case, just gives €/2—¢2 /4 >
0. Moreover the expression in becomes 3¢/2 + € > 0, completing our
argument.

Appendix C: Simulation of a Path-Space Layer and Intermediate
Points

In this appendix we present the methodology and algorithms required for simu-
lating an individual proposal trajectory of (layered) killed multivariate Brownian
motion, which is what is required in Our exposition is as follows: In
we present the work of [29], in which a highly efficient rejection
sampler is developed (based on the earlier work of [14]) for simulating the first
passage time for univariate standard Brownian motion for a given symmetric
boundary, extending it to consider the case of the univariate first passage times
of d-dimensional standard Brownian motion with non-symmetric boundaries.
This construction allows us to determine an interval (given by the first, first
passage time) and layer (a hypercube inscribed by the user specified univariate
boundaries) in which the sample path is almost-surely constrained, and by ap-
plication of the strong Markov property can be applied iteratively to find for
any interval of time a layer (a concatenation of hypercubes) which almost-surely
constrains the sample path; In we present a rejection sampler en-
abling the simulation of constrained univariate standard Brownian motion as
developed in[Section C.1] at any desired intermediate point. As motivated in
Section 3|these intermediate points may be at some random time (correspond-
ing to a proposed killing point of the proposed sample path), or a deterministic
time (in which the sample path is extracted for inclusion within the desired
Monte Carlo estimator of QSMC ); Finally, inwe present the
full methodology required in Sectionsandin which we simulate multivariate
Brownian motion at any desired time marginal, with d-dimensional hypercubes
inscribing intervals of the state space in which the sample path almost surely
lies.
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C.1. Simulating the first passage times of univariate and
multivariate standard Brownian motion

To begin with we restrict our attention to the (i*") dimension of multivariate
standard Brownian motion initialised at 0, and the first passage time of the level
9 (which is specified by the user). In particular we denote,

@ = inf{t € R+ : (W — W] > 00}, (33)

Recalling the self similarity properties of Brownian motion (|40} Section 2.9]),
we can further restrict our attention to the simulation of the first passage time

of univariate Brownian motion of the level 1, noting that 7(* L (H(i))2 T where,
7 :=inf{t € R+ : |W; — Wy| > 1}, (34)

noting that at this level,
1
PW,=Wy+1)=PW,=Wy—1) = 5 (35)

Denoting by fr the density of 7 (which cannot be evaluated point-wise), then
the approach outlined in [29| for drawing random samples from fr is a series
sampler. In particular, an accessible dominating density of f; is found (denoted
g7) from which exact proposals can be made, then upper and lower monoton-
ically convergent bounding functions are constructed (lim,_, . f;n — f7 and
lim,, 00 f#ﬂn — f7 such that for any ¢t € Ry and € > 0 In*(t) such that
Vn > n*(t) we have f;n(t) — fi”n(t) <€), and then evaluated to sufficient pre-
cision such that acceptance or rejection can be made while retaining exactness.
A minor complication arises in that no single dominating density is uniformly
efficient on R, and furthermore no single representation of the bounding func-
tions monotonically converge to the target density point-wise on Ry. As such,
the strategy deployed by [29] is to exploit a dual representation of f; given by
[19] in order to construct a hybrid series sampler, using one representation of
f# for the construction of a series sampler on the interval (0,¢;] and the other
representation for the interval [t2,00) (fortunately we have ¢; > to, and so we
have freedom to choose a threshold t* € [t2,t1] in which to splice the series
samplers). In particular, as shown in [19] f-(t) = 7Y (—1)*ax(t) where,

(2) wrpeo{ o). o

Tt

ak(t) = (36)

(4 ) exp { =50+ Hreve | @)

and so by consequence upper and lower bounding sequences can be constructed
by simply taking either representation and truncating the infinite sum to have
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an odd or even number of terms respectively. More precisely,

2n+1 2n+1
) = ( 3 <—1>kak<t>) = { 3 <—1>kak<t>} A onlt).
+

k=0 k=0
(37)

As shown in [29] Lemma 1], the bounding sequences based on the representation
of fz(t) in (36]1) are monotonically converging for t € (0,4/log(3)], and for
2) monotonically converging for ¢ € [log(3)/72, 00). After choosing a suitable
threshold t* € [4/1og(3),log(3)/n?] for which to splice the series samplers, then
by simply taking the first term in each representation of f7(t) a dominating
density can be constructed as follows,

2 1 s 2t
f7(t) < g=(t) Wexp{*ﬂ} i<y + 5 exp {*?} Lz (38)

ocgsf_l) (t) 0‘97(*—2) (t)

[29] empirically optimises the choice of t* = 0.64 so as to minimise the normal-
ising constant of (38). With this choice My := [ gt () dt ~ 0.422599 (to 6 d.p.)
and My := fgg)(t) dt =~ 0.578103 (to 6 d.p.), and so we have a normalising
constant M = M; + M> ~ 1.000702 (to 6 d.p.) which equates to the expected
number of proposal random samples drawn from g; before one would expect
an accepted draw (the algorithmic ‘outer loop’). Now considering the iterative
algorithmic ‘inner loop’ — in which the bounding sequences are evaluated to
precision sufficient to determine acceptance or rejection — as shown in [29], the
exponential convergence of the sequences ensures that in expectation this is uni-
formly bounded by 3.

Simulation from gz is possible by either simulating 7 ~ gg) with probabil-

ity My/M, else 7 ~ gg). Simulating 7 ~ gg) can be achieved by noting
t 248X /m2, where X ~ Exp(1). Simulating 7 ~ gg) can be achieved by not-
ing that as outlined in [28) TX.1.2] # 2 £*/(1+4*X)?, where X := inf, {{X,},
Exp(1) : (X;)? <2X,1/t%, (i —1)/2 € Z}.

A summary of the above for simulating jointly the first passage time and lo-
cation of the 7*" dimension of Brownian motion of the threshold level 8() is

provided in

Note that generalising to the case where we are interested in the first pas-
sage time of Brownian motion of a non-symmetric barrier, in particular for
(@ @ e Ry,

70 = inf{t € R+ : Wt(i) — Woi) ¢ (Wo(i) — Z(i)7 Wéi) =+ U(i))}, (39)

is trivial algorithmically. In particular, using the strong Markov property we
can iteratively apply|Algorithm 4|setting 8 := min(¢®, v()) and simulating
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Algorithm 4 Simulating (7, WT(i))7 where 7 := inf{t € R+ : \Wt(i) - Wéi)| >
0@} [29).
1. Input Wéi) and 6(9),
2. gz: Simulate u ~ U[0, 1],
(a) gg): If w < My /M, then simulate X ~ Exp(1) and set 7 := t* + 8X/m2.
(b) gg): If w > Mi/M, then set X := infi{{X;};2, id Exp(l) : (X;)? <

2X;41/t*, (i —1)/2 € Z} and set 7 :=t* /(1 + t*X)2.
3. w: Simulate u ~ U[0, 1] and set n = 0.
4. fr,: While u - gz(7) € (f,%n(f'),f;’n(i'))7 set n=n+ 1.

5. frilfu-g=(7) < f;{n(?) accept, else reject and return to

6. 7: Set T := (6(9)27.

7. WiD: With probability 1/2 set W = W 4 00, else set W = W — (0.
8. Return (7, W.ﬁ”)

intermediate first passage times of lesser barriers, halting whenever the desired
barrier is attained. We suppress this (desirable) flexibility in the remainder of
the paper to avoid the resulting notational complexity.

C.2. Simulating intermediate points of multivariate standard
Brownian motion conditioned on univariate first passage times

Clearly in addition to being able to simulate the first passage times of a single
dimension of Brownian motion, we want to be able simulate the remainder of
the dimensions of Brownian motion at that time, or indeed the sample path at
times other than its first passage times. As the dimensions of Brownian motion
are independent (and so Brownian motion can be composed by considering each
dimension separately), we can restrict our attention to simulating a single di-
mension of the sample path for an intermediate time ¢ € [s, 7] given Wy, the
extremal value W, and constrained such that Vu € [s, 7], W,, € [Ws—0, W, +6)].
Furthermore, as we are only interested in the forward simulation of Brownian
motion, then by application of the strong Markov property we need only consider
the simulation of a single intermediate point (although note by application of
[55), Section 7] simulation at times conditional on future information is possible).

To proceed, note that (as outlined in [3] Prop. 2]) the law of a univariate
Brownian motion sample path in the interval [s,7] (where s < 7) initialised
at (s, W) and constrained to attain its extremal value at (7, W), is simply the
law of a three dimensional Bessel bridge. We require the additional constraint
that Yu € [s,7], W, € [Ws — 6, W, + 6], which can be imposed in simulation
by deploying a rejection sampling scheme in which a Bessel bridge sample path
is simulated at a single required point (as above) and accepted if it meets the
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imposed constraint at either side of the simulated point, and rejected otherwise.

As presented in [7, [53], the law of a Bessel bridge sample path (parametrised
as above) coincides with that of an appropriate time rescaling of three indepen-
dent Brownian bridge sample paths of unit length conditioned to start and end
at the origin (denoted by {b?}3_,). Supposing we require the realisation of a
Bessel bridge sample path at some time g € [s, 7], then by simply realising three
independent Brownian bridge sample paths at that time marginal ({b((;’)}f:l),
we have,

0(r —q)

2
Wo =W, + (1)< (7 — ) {((T —pz Tt bé”) + (072 + (bé‘”)ﬂ :

(40)

The method by which the proposed Bessel bridge intermediate point is ac-
cepted or rejected (recall, to impose the constraint that Yu € [s,7],W, €
[Ws — 0, Wy + 6]) is non-trivial as there does not exist a closed form repre-
sentation of the required probability (which we will denote in this appendix
by p). Instead, as shown in lTheorem 4] a representation for p can be found as
the product of two infinite series, which as a consequence of this form can not
be evaluated directly in order to make the typical acceptance-rejection com-
parison (i.e. determining whether u < p or uw > p, where u ~ UJ0,1]). The
strategy we deploy to retain exactness and accept with the correct probability
p is that of a retrospective Bernoulli sampler 55, Sec. 6.0]. In particular, in
We construct monotonically convergent upper and lower bounding
probabilities (p); and p} respectively) with the property that lim, . p! — p
and lim,,_, p}, — p such that for any u € [0,1] and € > 0 In*(¢) such that
Vn > n*(t) we have p], —p} < ¢, which are then evaluated to sufficient precision
to make the acceptance-rejection decision, taking almost surely finite computa-
tional time.

Theorem 4. The probability that a three dimensional Bessel bridge sample path
W~ WZE/;*WT | (W-,Wy) for s < q < T attaining its boundary value at
(1, W), remains in the interval [Wy — 6, Wy + 6], can be represented by
the following product of infinite series (where we denote by m := L(W, >
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W) — LW, < Wy)),

P (W[S,T] € [W§_07W9+9]‘WG7W(]7WT)
N <1 - Z]Oi1 [§q73(j; W, — Wq7 9) - ‘qus(]’; W, — Wqﬂg)} )

1 —exp {=20[m(W, — Wy) +6]/(q — )}

=r1

1+ [hr—g(5; Wy = Wr, 0,m) + X7 (G Wy = Wr, 6,m)] |,

j=1
=:p2
(41)
where,
202(2j5 — 1)2 2(25 — 1)86
sal4;6,0) :zQ-exp{—%}mosh (7( ]A ) ), (42)
. 86252 4067

©a(7;0,0) ::2~exp{— Aj }'COSh{T}7 (43)

. . 407 + mo 4604
Ya(d;0,0,m) == xa(4; 9,0, —m) := (407 + md) - exp {—J

s A (29j+m5)}.
(44)

Proof. Begin by noting that that the strong Markov property allows us to de-
compose our required probability as follows,

P (W[S,T] € [Ws -0, W, + 9]|Ws7 un WT)

=P (Wisq € Wy — 6, W, + 0]|[Wy, W,) - P (Wiyr) € Wy — 6, W, +6][W,y, W) .

p1 p2

(45)

Relating the decomposition to the statement of the theorem, p; follows directly
from the parametrisation given and the representation in [53] Thm. 6.1.2] of the
result in [8] Prop. 3]. p2 similarly follows from the representation found in [55]
Thm. 5].

Corollary 1. Letting p := TP (W[S,T] € [W,—0, WS—O—G]), monotonically conver-
gent upper and lower bounding probabilities (p] and p}, respectively) with
the property that lim,, . p} — p and lim,, o, p¥ — p can be found (where
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no = [/(7 —q) +462/461),

L <1 = Yy s (G W = Wy, 0) + 32071 oo Wi — Wq,0)>

p =
1 —exp {=20[m(W, — W) +0]/(¢ — s)}
no+n no+n—1
L Y g Wy = Wefm) + Y xr—g(G: Wy = Wr0.m)] |
Jj=1 j=1
(46)
ol e 1= 320y Sqms (55 W = Wa, 0) + 32701 g (5; W — Wy, 0)
ne 1 —exp{—=20[m(Ws; —W,) +6]/(qg—s)}
no+n no+n
1+ Z 1/%7(1(]‘; Wq - WT7 9,771) + Z X-rfq(‘ﬁ Wq - WT7 07m)]
j=1 j=1
(47)
Furthermore we have
T 9 ¥
PP, < (0,1), (48)
Pn—1—Pn-1

and so,

gk

oo
K=Y "Ipl —pf|= (0] —pp) +
=1

ﬁrjgirizlir<oo. (49)
=0

=2

2

[|
o

Proof. The summations in the left hand brackets of the sequences and
follows from and [8, Prop. 3]. The summations in the right hand
brackets of the sequences and , and the necessary condition on ng,
follows from [55], Corollary 5]. The validity of the product form of and
follows from Corollary 1]. The bound on the ratio of subsequent bound
ranges of p in (48) follows from the exponential decay in n of ¢(n), p(n), ¥(n)
and x(n) of [Theorem 4l and as shown in the proof of Thm. 6.1.1] and
Corollary 6.1.3]. follows directly from . O

Having established [Theorem 4fand|Corollary 1| we can now construct a (retro-
spective) rejection sampler in which we simulate W, (as per the law of a Bessel
bridge) and, by means of an algorithmic loop in which the bounding sequences
of the acceptance probability are evaluated to sufficient precision, we make the
determination of acceptance or rejection. This is summarised in
further noting that although the embedded loop is of undetermined length, by
We know that it halts in finite expected time (K can be interpreted as
the expected computational cost of the nested loop, noting that E[iterations] :=
Yoo, iP(halt at step 1) = > o, P(halt at step i or later) = K).
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Algorithm 5 Simulating W, ~ WK/TS’W’KWS,WT,@), given ¢ € [s,7], the
end points (Ws and the extremal value W), and constrained such that Vu €
[57 T}? Wu € [Ws - 07 WS + 0]

1. {63 Simulate b{", 6%, 5% X N (0, %)

o(r —
2. Wi Set Wy := Wrt(=1)1Wr<We) | (7 — ) <7(T 9
(r —s)3/2
. u: Simulate u ~ U[0,1] and set n = 1.
p,i,p,?: While u ¢ [pt,pjl], set n =n+ 1.

.plfu< pi accept, else reject and return to|Step 1

. Return (q, Wy).

o v~ w

C.3. Simulation of a single trajectory of constrained Brownian
motion

We now have the constituent elements for in which we simulate mul-
tivariate Brownian motion at any desired time marginal, with d-dimensional
hypercubes inscribing intervals of the state space in which the sample path al-
most surely lies (layers, more formally defined in [55]). Recall from
that the killing times are determined by a random variable whose distribution
depends upon the inscribed layers, and so the presentation of ne-
cessitates a loop in which the determination of whether the stopping time occurs
in the interval is required.

In the preceding subsections of we require the user-specified vec-
tor 0 in order to determine the default hypercube inscription size. Note that in

practice, as with other MCMC methods, we might often apply a preconditioning
matrix to the state space before applying the algorithm.

Further note that due to the strong Markov property it is user preference as to
whether this algorithm is run in its entirety for every required time marginal, or
whether it resets layer information once one component breaches its boundary,
re-initialises from that time on according to[Algorithm 6 Step 4b}

Appendix D: Path-space Rejection Sampler (PRS) for pr

A path-space rejection sampler for pup can therefore be constructed by drawing
from Brownian motion measure, X ~ WX, accepting with probability P(X)
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Algorithm 6 Simulating constrained Brownian motion at a desired time
marginal (¢, W;).
1. Input Wy and 6.
:For i€ {1,...,d}, simulate (7(9), W.SZ)) as per
:Set 7 :=inf; {7V}, set j:= {i € {1,...,d} : 7() = 7}.
If required, simulate ¢ as outlined in|Section 3
Ift ¢ [s, 7],

(a) (7, W,,E')): For i € {1,...,d}\ j, simulate (7, W,,El)) as per|Algorithm 5|
(b) (r9), W,gj)): Simulate (7(), Wﬁj)) as per

(c) s: Set s:= 7, and return to Step

5. (t,Wt(')): For ¢ € {1,...,d}, simulate (¢, Wt(i)) as per |Algorithm 5|

6. Return (¢, We).

w
ST A

given by
ngr ] nR T NT i
P(X) = exp {CDT - Z Lg? (A T)—Til]} H |:exp {—/ (qb(Xs)—Lg?) ds}:|
=1 i=1 Ti—1
=P (X)€[0,1] —:P(0)(X)
(50)
ngr ) T NT .
= H |:exp {(@ — Lg?) (T A T)—Ti,l]} -exp {—/ ((j)(Xs)—Lg?) ds} } .
i=1 Tio1
=:P(11)(X)€[0,1] gy
(51)

The algorithmic pseudo-code for this approach is thus presented in|Algorithm 7.

Crucially, determination of acceptance is made using only a path skeleton (as
introduced in [55], a path skeleton is a finite dimensional realisation of the sam-
ple path, including a layer constraining the sample path, sufficient to recover
the sample path at any other finite collection of time points without error as
desired). The PRS for ur outputs the skeleton composed of all intermediate
simulations,

. Ki S\ MR
SPRS (X) = {X07 ((g(l)7X§(7)) . 7R§é)) } ) (52)
7 /=1 i=1

which is sufficient to simulate any finite-dimensional subset of the remainder of
the sample path (denoted by X'*™) as desired without error (as outlined in [55]

§3.1] and [Appendix C).

rem n Ki X[f(l_) 15“)] 7
0,1) ™~ ®;5 <®J’:1W§<ijj,gt”] Rg() : (53)
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Algorithm 7 Path-space Rejection Sampler (PRS) for pp Algorithm

1. Input: Xp.

2. R: Simulate layer information R ~ R as per|Appendix C|

3. P(): With probability 1 — exp{®T — > "%, L;? - [(7s ANT)—73-1]} reject and return to

4. ng:Foriin 1 — npg,

(a) UW: Set j = 0, ki = 0, & := 71 and B ~ Exp(UY) — L)), While
3 B < [(ri AT)=7im1],

i €7 Set j=j+1and e =¢Y 4+ B
ii. X_(;): Simulate X_;) ~ MVN(X, ;) , (€7 —¢D )R
3 3 e TS

iii, P(2::9); With probability 1 — [U}((iL(;b(X{(i))] JIUL —LY), reject path and
3

return to
iv. Eﬁgl: Simulate Ej(il ~ EXp(U)(é) - Lg?).

() Xy, n7: Simulate Xo,ar ~ MVN (X (o, [(1: AT) — 5§“])|R§? )
J

Appendix E: Killed Brownian Motion (KBM)

In|Algorithm 4] we detailed an approach to simulate the killing time and lo-

cation, (7,X5), for killed Brownian motion. To avoid unnecessary algorithmic

complexity, note that we can recover the pair (7,X;) by a simple modification
of [Algorithm 7|in which we set Vi Lg? := & and return the first rejection time.
Q)
X

This is presented in |Algorithm 8l A variant in which Ly’ is incorporated would
achieve greater efficiency, but is omitted for notational clarity.

Algorithm 8 Killed Brownian Motion (KBM) Algorithm

1. Initialise: Set ¢ =1, j = 0, 10 = 0. Input initial value Xg.

2. R: Simulate layer information R;é) ~ R as per obtaining 7;, U;é).
E: Simulate E ~ Exp(U$) — ®).
&:Set j=j+1land & = (§—1+ E) A7

oW

X¢,: Simulate X¢, ~ MVN(Xe, ,, (& — &-1))|RY .
72 If €5 = 74, set i =i+ 1 and return to

P: With probability [U) —¢(Xe,)]/[Us — @] return to
(7, X5): Return (7,X3) = (fj,ng), ir =1, jr = J.

© N o o

As in the PRS for ur presented in [Appendix D] in KBM (Algorithm 8) we

can recover in the interval [0,7) the remainder of the sample path as desired
without error as follows (where for clarity we have suppressed full notation, but
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can be conducted as described in|Appendix C),
SKBM (X) = {X07 (fjv XEJ' );;17 (R;))fﬂ} ) ES?’}‘) ~ W|SKBM~ (54)

Appendix F: Rejection Sampling based QSMC Algorithm

In we considered the embedding of IS-KBM of within
SMC. A similar embedding for the rejection sampling variant (KBM) of
gorithm 8| is considered here as the probability of the killed Brownian motion
trajectory of|Algorithm 8|remaining alive becomes arbitrarily small as diffusion
time increases. As such, if one wanted to approximate the law of the process
conditioned to remain alive until large 7" it would have prohibitive computa-
tional cost.

Considering the KBM algorithm presented in in which we simu-
late trajectories of killed Brownian motion, the most natural embedding of this
within an SMC framework is to assign each particle constant un-normalised
weight while alive, and zero weight when killed. Resampling in this framework
simply consists of sampling killed particles uniformly at random from the re-
maining alive particle set. The manner in which we have constructed[Algorithm]
allows us to conduct this resampling in continuous time, and so we avoid
the possibility of at any time having an alive particle set of size zero. We term
this approach (Continuous Time) Rejection Quasi-Stationary Monte Carlo (R-
QSMC), and present it in|[Algorithm 9| In|Algorithm 9| we denote by m(k) as a
count of the number of killing events of particle trajectory k in the time elapsed
until the m' iteration of the algorithm.

Algorithm 9 (Continuous Time) Rejection Quasi-Stationary Monte Carlo Al-
gorithm (R-QSMC) Algorithm.

1. Initialisation Step (m = 0)

(a) Input: Starting value, X, number of particles, N.

(b) X{): For kin1to N set X{1™) = % and wi} ™ = 1/N.

¢) 7 For kin 1 to N, simulate ‘T'(k),X(—k) t(k>,X(k) as per|Algorithm 8
1 1 T1 0 to

2. Iterative Update Steps (m =m+1)

= = . _(k 7 = _(k

(a) Tm: Set Tm = 1nf{{77<n()k)};’:7:1}7 kE:={k:Tm = T5n(>k)}.

(b) K: Simulate K ~ U{{1,...,n}\ k}.

(c) X%l: Simulate st_i) ~ WV|SI(<II<3)M as given by » and as per |Algorithm 5
) ") ) (‘T’m, Xg)) as per|Algorithm 8

(d) Tmm+1: Simulate (Tm(fc)+1’ PRy

Iterating the R-QSMC algorithm beyond some time ¢* at which point we believe
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we have obtained convergence, and halting at time T > t*, we can approximate
the law of the killed process by the weighted occupation measures of the trajec-
tories (where V¢ wf) =1/N),

m(dx) = 7(dx) := / Zwt : X(k) x) d. (55)

_t*

In some instances the tractable nature of Brownian motion will admit an explicit
representation of . If not, one can simply sample the trajectories exactly at
equally spaced points to find an unbiased approximation of 7 by means
detailed in|Appendix C.2| and [Algorithm 4} In particular, if we let tg := 0 <
t;1 < ... <ty :=T such that t;, — t;_y := T/m, then we can approximate the

law of the killed process as we did in ii where wg%’ ) =1/N.

Appendix G: Rejection sampling Scalable Langevin Exact
(R-ScaLE) algorithm

In we noted that the survival probability of a proposal Brownian
motion sample path was related to the estimator P(X) of and in
(4.2) where we develop a replacement estimator. The construction of control
variates in allows us to construct the replacement estimator such
that it has good scalability properties. In a similar fashion to the embedding
of this estimator within QSMC resulting in ScaLE
3), we can embed this estimator with the rejection sampling variant R-QSMC
(Algorithm 9) resulting in the Rejection Scalable Langevin Ezact algorithm (R-

ScaLF) which we present in|Algorithm 10

Note as presented in[Algorithm 10| we may also be concerned with the absolute
growth of @ (relative to @) as a function of n in order to study its computational

complexity. Note however, as remarked upon in[Appendix E| if this growth is
not favourable one can modify [Algorithm 8|to incorporate the additional path-
space bound L ) for each layer. Details of this modification are omitted for
notational clamty

Appendix H: Discrete Time Sequential Monte Carlo Construction

Considering the discrete time system with state space Ej, = (C(h(k—1), hk], Z)
at discrete time k, with the process denoted Xy = (X(n(k—1),hk]> I%) in which
the auxiliary variables 3; take values in some space Zj.

The ScaLE Algorithm, with resampling conducted deterministically at times
h,2h, ... coincides exactly with the mean field particle approximation of a dis-
crete time Feynman-Kac flow, in the sense and notation of [23], with transition
kernel

X
Mip(Xp—1,dXk) = W, 5550 (dX (o108 Que (X (-1, 18], d31)
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Algorithm 10 The R-ScaLE Algorithm (as per|Algorithm 9|unless stated oth-
erwise).

0. Choose x and compute Vlog (%), Alogn(Xk). .
On calling|Algorithm 8

(a) Replace ® with .
(b) Replace U)(é) inwith U)(é)
(c) Replace With: Simulate I, J iid U{0,...,n}, and with probability [U)@ —
q;(Xgi)]/[le — @] return to
As Step

and a potential function G (X}), which is left intentionally unspecified to allow
a broad range of variants of the algorithm to be included, the property which
it must possess to lead to a valid form of ScaLE Algorithm is specified below.
Allowing

k
Wonk(X1:) = WO (dXo.ne) [ [ Qi(Xnii-1),n1- d3:)
i=1

and specifying an extended version of the killed process via

The validity of such a ScaLE Algorithm depends upon the following identity
holding:
dKG i

k
——(Xo:nk) o< Eyye Gi(%:)
dWO,hk 0,hk 11;[1

XO:hk:| .

It is convenient to define some simplifying notation. We define the law of a
discrete time process (in which is embedded a continuous time process taking
values in C[0, 00)):

— — > —X 1
W (dX) = Wg,h(dxl) H Wh(}lbc(il),)hk(dxk‘)
k=1

and of a family of processes indexed by k, Kz, again incorporating a continuous
time process taking values in C0,00), via:

K,

With a slight abuse of notation, we use the same symbol to refer to the associated
finite dimensional distributions, with the intended distribution being indicated
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by the argument. We also define the marginal laws, W* and K, via:
W7 (dX) =W (dX x (932, 2,))
Ki (dX) =Ky (dX x (852, 2,).

Proposition 3. Under mild regularity conditions (cf. [23,[18]), for any ¢ :
R? — R, any algorithm within the framework described admits a central
limit in that:

N —o0

lim [ ZSO Xip) — (th))] = ora(p)Z

where, Z is a standard normal random variable, = denotes convergence in
distribution, and:

, G (X0 [T, G(X0)|%1]
oi () =Ew
W ([T, G(x)

) EK%[(@(th)*Kz(@(th)))Z‘Xh] +

S W (TP Gx) 2 I
EK”" —G wa G th EK% th _K Xk
PZZZ o [( W ([T G(%1)) Llll ) k[(@( ) — KE(0(Xk)))
W2 () ’ L, )
Eg= —G Xk X)) — R (o(Xnk
K I ) )> (P(Xnn) = R (io( )))]

Proof Outline. It follows by a direct application of the argument underlying
the Proposition of [37] (which itself follows from simple but lengthy algebraic
manipulations from the results of [23}[18]) that for any test function, ¢ : R — R
satisfying mild regularity conditions (cf. [23][18]) that

N—o0

lim [ Z‘P Xhy) — (th))] = ok,c(p)Z

where, Z is a standard normal random variable, = denotes convergence in
distribution, and:

——1

7il?) =Ew (3&5%"”’31)) Eg; {(w(xhk)—Ki(souhk)))Q 71} ;
k—1 9 B .
2 s, ( (0@],31:,,)) Eme’(th)fKi(so(Xk))) fp} +

2

Eg, | (dﬁj_l (X(0,nk)> B1: k)) (@(th) — Kz(gp(th)))
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with {F,},>0 being the natural filtration associated with W".

This can be straightforwardly simplified to:

2
Ok

(G&(xlm [T aela |
() =Ew

- W (ITE, G(x:) ) Exp [(@(th) *Ki(go(th)))Q‘Xh] "

)N Xnp

i=p+1
x

S W (1=, G(%:)) )
Z; [( (M ot {H o
W

O [(mas e o) o )
Egs_ KWL(H”)G )G(xk)> (o(Xnk) Kk(@(th)))]

O

We conclude with the following corollary, showing that the particular combina-
tion of sub-sampling scheme and path space sampler fits into this framework
and providing its particular asymptotic variance expression.

Corollary 2. Such a CLT is satisfied in particular:

(a) If no sub-sampling is used and one evaluates the exact (intractable) killing

rate (as described in|Algorithm 2)).

(b) If sub-sampling is employed within the construct of the layered path-space
rejection sampler (as described in|Algorithm 3)).

Proof. Both claims follow directly by the above argument with the appropriate
identifications.
(a) is established by setting:

2, =0 Gr(Xk) =G(X{n(k—1),nk])

Xh(k—1)
AR, - l;hk

Xn(k—1)
AW, 21y ke

(X(h(k=1):hk])

(b) is established by setting (where be denote by ¢ the size of the subsampled
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data):

Zk = Upy=1 @ R(Thp—1, Th p)
R(s,t) = U {k} x (5,4]" x {1,...,n}>"

3k =(rk1s s Thomy)
Thp =(Kk,ps Ekop 1y -+ 3 Ehporsps Sy 111205+ + + 5 Skyposig p,1:2¢)
my
Gr(Xy) =exp (_ Z Lo(Xry p—1)(Thp — Tk,p1)>
p=1
ﬁ Klk_[p m P 1 - QS(ngyp’] y Skﬁp,j,1:2c)
p=1j=1 T’C p— 1) LG(XTk,pfl)
mp

Qk (X(h(k—l),hk],d?)k) = H [PP(dfk,p,l:nk,p; (UQ(XTk,p_l) - LQ(XTk,p_l))y [Tk,p—lv Tk,pD

H H n}(dsk,j,1))

where PP(-; A, [a,b]) denotes the law of a homogeneous Poisson process of rate
X over interval [a,b], 0y, n) denotes the counting measure over the first n
natural numbers and a number of variables which correspond to deterministic
transformations of the X process have been defined to lighten notation:

(k—=1h p=0
Thyp = inf{t:|X; - X7 .| > 0y p=1,...,mp—1
kh p=mg

and my is the number of distinct layer pairs employed in interval k of the
discrete time embedding of the algorithm (i.e. it is the number of first passage
times simulated within the continuous time algorithm after time (k — 1)h until
one of them exceeds kh; as detailed in Appendices and. O

Appendix I: Estimation of Effective Sample Size

Assume QSMC (or ScaLE) has been run for an execution (diffusion) time of
length 7', and that the weighted particle set (of size N) is to be used at the
following auxiliary mesh times t*,...,t,, := T (recalling from that
t* € (to,...,tm) is a user selected quasi-stationary burn-in time) for computa-
tion of the Monte Carlo estimators .

The posterior mean for the parameters at time ¢; € [t*,T] is simply estimated
using the particle set by Xt Zk LW <k) X(k An overall estimate of the
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posterior mean and variance can be computed as follows:

ONOULTDh WN =

m

_ 1 .
9 X=X, (56)
10 m(T =t)/T e r

5 L SN B (x® %)
13 % m(T —t*)/T > Dow (Xn —X)» (57)

i=m(T—t*)/T k=1

15 The marginal ESS for particles at a single time point can be estimated as the
16 ratio of the variance of X; to the estimate of the posterior variance,

18 m -1

1 . N2
19 ESSy =6% | ———— X, - X ) 58
M ox m(T _ t*)/T . (Tz;t*)/T ( t; ) ( )

22 Although in total we have (m(T —t*)/T) sets of particles (after burn-in), these
23 will be correlated. This is accounted for using the lag-1 auto correlation of
24 X+, ..., X7, which we denote p. Our overall estimated ESS is,

2 ESS 1= (m(T — t)/T) - ~—— . ESS,,. (59)
27 1+p
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