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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a dynamic four-dimensional imaging modal-

ity. However, in almost all fMRI analyses, the time series elements of this data are assumed to be

second order stationary. In this paper, we examine, using time series spectral methods, whether

such stationary assumptions can be made and whether estimates of non-stationarity can be used

to gain understanding into fMRI experiments. A non-stationary version of replicated stationary

time series analysis is proposed that takes into account the replicated time series that are available
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from nearby voxels in a region of interest (ROI). These are used to investigate non-stationarities

in both the ROI itself and the variations within the ROI. The proposed techniques are applied to

simulated data and to an anxiety inducing fMRI experiment.

Keywords: Locally stationary; replicate; random effects; wavelet processes; fMRI;

1 Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging methodology which has revolution-

ized the study of the brain, allowing researchers to understand neurological function and processes

in the living brain. fMRI is a dynamic imaging technique, in that it generates not only spatial infor-

mation about activity in brain locations, but does this rapidly (approx every 2 secs) over time. This

yields a large number of time series of data associated with the experimental response. Typically

these time series are complex to model, and can contain non-stationarities. However, one advantage

of fMRI is that the spatial resolution is high, and therefore many voxels (volume elements, typically

small regions of the order of 2-3 mm in each direction of the brain) are associated with a single

anatomical region of interest (ROI) within the brain, leading to effective replication of the time se-

ries of interest. In this paper, we proposed a methodology for analyzing replicated time series which

may or may not be non-stationary. Specifically we consider the challenge of identifying voxel and

ROI specific features of the time series through a spectral time series approach. In this setting the

notion of replicates pertains to the time series recorded at different voxels in space. In particular we

consider the mean trend-removed time series from each voxel, and seek to identify the common struc-

ture across all voxels. Whilst this is a non-standard application of the term “replicate time series”,

it can be both a useful expression of the concepts and framework for carrying out the analyses.

Spectral analysis is a widely used technique in the analysis of time series. Estimating the sample

spectrum for a single time series has been considered greatly for both stationary and non-stationary

2



data, see for example [1] and [2] for stationary data and [3] and [4] for examples of non-stationary

spectral analysis. Indeed, it has been considered previously for biomedical and neuroimaging time

series [5]. However, there has been limited consideration given to spectral analysis in the situation

where replicates of time series from multiple sources (in this case voxels) exist. More widely considered

in the literature is the problem of estimating the population trend, which would in this case be

associated with an ROI, from replicated time series. An overview of the field is given by [6].

For the case of spectral analysis, we wish to consider mean zero (or detrended) time series where

interest lies in the form of the underlying second order structure of the series. As we are dealing

with time series from multiple voxels in the same ROI, we assume that they are all formed from the

same underlying process with each series having additional variation from this population effect. We

are then interested in estimating both the population effect and the variability between voxels. This

will allow understanding of how the dynamics of fMRI time series operate on a whole and also the

types of variability that might be seen across an ROI.

We are by no means the first to consider this problem for general time series data. In their work,

based in a second order stationary setting, [7] assume some population spectral structure common

to all time series. Each series is then assumed to have some specific random effect that leads to a

specific spectral structure from which the observed time series is assumed to be a realisation. They

propose fitting a parametric model to estimate the population spectrum and the additional between

series variability. This approach was then reconsidered by [8] who proposed fitting a semiparametric

model, making model fitting more efficient. A non-parametric approach was considered by [9]. They

made use of tree-structured wavelet methods to estimate both the population spectrum and the

between series variability, again in a stationary setting.

A common requirement of these methods is that the observed time series are assumed to be

stationary. In all three cases the spectrum being estimated is the second order stationary (Fourier)
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spectrum. Our objective in this paper is to extend the random effects model to estimating the

spectral structure of locally stationary time series. Locally stationary replicated time series have

been considered by [10]. In their work they considered factor analysis of locally stationary replicated

data whereas our interest is in the population spectral structure of such data. The approach we

take assumes that our series fit the locally stationary wavelet (LSW) process model of [4], and as

such we consider estimating the population evolutionary wavelet spectrum. Wavelets have been

extensively used in the analysis of fMRI time series, see for example [11], and they naturally allow

for non-stationarity to be included in the method.

Throughout we assume that we have a LSW process {Xm
t,T , t = 1, . . . , T} for each voxel m, where

m = 1, . . . ,M . Following the existing methods we assume that voxels are independent but share some

true underlying spectral structure, Sj(ν), for j = 1, . . . , J . While this is likely to be a deviation from

the truth, given the spatial bluring present in fMRI data, it is a good starting point, and common to

all analysis where ROIs are typically just averaged over the individual voxel time series within the

region. Our aim is to estimate this structure from the estimates of the voxel specific spectra, Smj (ν)

for m = 1, . . . ,M and j = 1, . . . , J , along with estimates of the between voxel variability.

This paper is organised as follows: in Section 2 we provide background to the LSW framework

and extend the definitions to the replicated data setting. Section 3 outlines the random effects model

for our setting. The approach we take for estimating the population spectrum is given in Section 4.

In Section 5 we give the results of a simulation study and in Section 6, we consider the method for

the analysis of an anxiety inducing fMRI experiment.

2 LSW processes and extension to replicated data

The approach we take for estimating the spectral structure of a replicated non-stationary time series

is based upon the spectral structure of locally stationary wavelet processes as defined by [4]. Here we
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give an overview of the LSW process, extending it to the case of replicated data. For an introduction

to wavelets and wavelet transforms see [12] or [13].

Before we define an LSW process we first recap discrete wavelets, upon which an LSW process is

built. We begin by recalling the low and high pass quadrature mirror filters, {hk}k∈Z and {gk}k∈Z,

used in the construction of Daubechies compactly supported wavelets [14]. Then we define discrete

wavelets, ψj = (ψj0, . . . , ψj(Nj−1)), following [4] such that

ψ1n =
∑
k

gn−2kδ0k = gn,

ψ(j−1)n =
∑
k

hn−2kψjk,

for n = 0, . . . , Nj−1 − 1, and where δ0k is the Kronecker delta function. From this definition we also

have NJ = (2j − 1)(Nh − 1) + 1, where Nh is the number of non-zero elements of {hk}.

With the above notation in place we may consider the definition of a LSW processes. LSW

processes are time series process representations built upon discrete non-decimated wavelets, ψj,k(t),

as defined above. More formally following [4] we define a voxel specific LSW process as follows:

Definition 1 Assume we have m = 1, . . . ,M voxels. For T = 2J , the voxel specific LSW process

{Xm
t,T , t = 1, . . . , T}, has the following representation (in the mean square sense),

Xm
t,T =

∑
j,k

wmj,k;Tψj,k(t)ξ
m
j,k.

Here ξmj,k is a voxel specific orthonormal random increment sequence, ψj,k(t) is a discrete non-

decimated wavelet and wmj,k;T is a voxel specific amplitude. Henceforth we will omit the indexing

of the process by T, although it naturally will still be assumed.

We assume that the LSW process model given by equation 1 comes from some underlying two

stage process, an example of which is illustrated in Figure 1. In the first stage of this process the voxel

specific amplitude function, wmj,k, is defined according to the random effect applied to the population
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amplitude. Figure 1(a) and (b) show amplitude functions for each time and scale of a process. In

Figure 1(a) we have a population amplitude function which, as can be seen in Figure 1(b), has then

had a random effect applied to give a voxel specific amplitude function. In the second stage of this

model forming process the voxel specific LSW process is obtained from the voxel specific amplitude

with the random increment sequence. Figure 1 shows an LSW process simulated from the voxel

specific spectral structure in the second plot. By construction these two stages are independent and

therefore the two random processes can be treated as independent.

It is the independence of the two random processes that means that replicate data of this kind

may be considered in the LSW framework and that the properties required of a LSW process are

satisfied. That is, as defined by [4] the above LSW process satisfies the following properties;

(a) E(ξmjk) = 0 therefore due to the independence of the random processes, E(Xm
jk) = 0.

(b) cov(ξmjk, ξ
m
ln) = δjlδkn

(c) For each scale j there exists a Lipschitz continuous function Wm
j (k/T ) such that,

sup
k

∣∣∣∣wmj,k −Wm
j

(
k

T

)∣∣∣∣ ≤ Cj/T,
where the {Cj} are a sequence of constants.

Note that the random increment sequence is considered to be the stochastic variation within a

voxel, i.e. the variation that would be expected by repeating, for example, the same experiment at

the same voxel. The random effect, zmj,k is therefore the between voxel variation, or the variability we

would expect from the true population effect relating to a specific voxel. This may be considered as

being conditionally fixed as we assume that this effect would be the same for a voxel if the experiment

were to be repeated whereas the within voxel variation would change with each repetition.
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Figure 1: Illustration of the two stage process allowing the independence assumption. The process

starts with the population amplitude function (a) from which the voxel specific amplitude (b) is

obtained. Finally observed sequence (c), determined by the stochastic within voxel variation.
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2.1 Estimating the voxel specific evolutionary wavelet spectrum

As in [4], a measure of the local contribution to power of an LSW process can be obtained from the

evolutionary wavelet spectrum.

Definition 2 For a voxel, m = 1, . . . ,M , the evolutionary wavelet spectrum is defined as,

Smj (ν) = limT→∞
(
|wmj,νT |2

)
.

The voxel-specific specific evolutionary wavelet spectrum (EWS) is given by the local wavelet pe-

riodogram (LWP) as defined by [4]. Consequently, for a LSW process, Xm
t , for t = 0, . . . , T − 1

and for voxels m = 1, . . . ,M this can be estimated as follows. First we define the empirical wavelet

coefficients of this process as,

dmj,k =
∑
t

Xm
t ψj,k(t).

The local wavelet periodogram, Imj,k, which forms an estimate of the voxel specific EWS, is then

obtained by taking the square of the empirical wavelet coefficients. So we have,

Imj,k = |dmj,k|2. (1)

[4] showed that this is in fact a biased and inconsistent estimator of the EWS. Specifically

E(Imj,k) =
∑
`

Aj,`S
m
` (k/T ) +O(T−1), (2)

and

Var(Imj,k) = 2

{∑
`

Aj,`S
m
` (k/T )

}2

+O(2−j/T ), (3)

where we define an inner product matrix of autocorrelation wavelets,

Aj,` = 〈ΨjΨ`〉 =
∑
τ

Ψj(τ)Ψ`(τ). (4)

Fortunately an unbiased estimator is easily obtained by multiplication of the raw wavelet periodogram

with the inverse of the inner product matrix. So, letting Imk be a vector of all scales of the periodogram
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at location k, i.e. Imk = (Im1,k, I
m
2,k, . . . , I

m
J,k) then we define the corrected estimate of the EWS to be,

Lmk = A−1J Imk . (5)

3 A random effects model for the wavelet spectrum

In this section, we develop a random effects model to identify both the voxels specific and population

spectra. This is somewhat related to the random effects model for spectra given in [15], but here

applied to non-stationary spectra.

In order to be able to separate and estimate both the local spectral structure and the between

voxel variability we need to consider the log-periodogram. To this end, let Ym
k = log Lmk so that we

may write our mixed effects model in the additive form as follows,

Ym
k = log (S(ν)) + Zm(ν) + εm. (6)

We now have a voxel specific random effect Zm(ν), such that E[Zm(ν)] = 0 and following [9] we

express the variance of this random effect as V (ν) = Var[Zm(ν)]. We also have εm = logEm.

With our mixed effects model in the form given by equation 6, the question of interest is whether

we are able to use the voxel specific spectra to estimate the population spectrum and the between

voxel variability, in the form of the variance function, V (ν). As we shall see, in practice the voxel

specific spectrum often contains zero, or close to zero, values. This causes problems given the need

to use a log transformation to separate the effects of population and between voxel variability. Such

problems also occur with the methods proposed by [7] and [9]. In the next section we describe one

approach to dealing with this important issue.
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4 Estimating the population spectral structure

4.1 Methodology

We now describe the stages of the method we adopt for estimating the population wavelet spectrum

in the case of fMRI data.

Step 1: Estimate the voxel specific spectra Assume that we have data of the form, {Xm
t , t =

1, . . . , T} for T = 2J , J ∈ Z and for voxels m = 1, . . . ,M . From this data we first of all wish to

estimate the corrected voxel specific periodogram, Lmk , as outlined in Section 2.1.

Step 2: Estimate the voxel specific log-spectra In Section 3 we showed that we are required

to work with the log-periodogram in order to seperate the fixed and random effects. As such we must

estimate the log-spectrum for each voxel. When trying to estimate the log we have to consider the

subtle, but important point, of how to deal with scale and location pairs where the spectrum may

take the value zero. We outline in Section 4.2 an approach to dealing with the issue of spectral zeros.

However, in the case where spectral zeros are present, the log-spectrum will be given the value NA

at this point.

Step 3: Estimate the population spectrum With estimates of the voxel specific spectra we are

now able to obtain population estimates by averaging the voxel specific log-spectra. This is possible

in this case, due to the balanced design of the fMRI experiment. That is we have,

S̃j(ν) = log
{
Ŝj(ν)

}
=

1

M

M∑
m=1

L̃mj,k

For locations where all voxels have been set to NA we also define the average log-spectrum to be

NA. That is for j, k such that L̃mj,k = NA for all m = 1, . . . ,M then S̃j(ν) = NA. The estimate of

the spectrum Ŝj(ν) is found by inverting the logarithm operation, giving the value zero to coefficients
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defined as NA. That is,

Ŝj(ν) =


exp

{
S̃j(ν)

}
if S̃j(ν) 6= NA

0 if S̃j(ν) = NA

Step 4: Estimate the variance functions Finally, we may estimate the variance functions,

Vj(ν), from the voxel specific log-spectra. Here we simply estimate the variance across the log-

spectra of all voxels. So we have,

V̂j(ν) = Var(L̃1
j,k, . . . , L̃

M
j,k)

Note that due to the form of the mixed effects model (equation 6) we do not need to invert the

logarithmic transform to estimate the variance function. Additionally, if required, voxel specific

random effect estimates can also be computed at this point.

It should also be recalled that for locations where the population spectrum is equal to zero the

variance function will also take the value zero. This is due to the fact that it is not possible to

estimate the between voxel variability at these locations as there is no power in the voxel spectra.

So if L̃1
j,k = L̃2

j,k = . . . = L̃mj,k = NA then V̂j(ν) = 0.

4.2 Modelling Considerations: Spectral Zeros

This is an issue which commonly occurs when dealing with log spectra, but has, so far, received little

attention in the literature. Suppose that we have the case where the true value of the population

spectrum is equal to zero. As an illustration consider Figure 2. If, at a particular scale, the population

spectrum were to be of the form shown on the left of Figure 2, then the voxel specific spectra would

take the form shown on the right. At the locations where the population spectrum is equal to zero the

voxel specific spectra are equal to zero for all voxels. It is clear that there is no detectable variability

between voxels at these locations.

Clearly attempting to take logarithms of these values would not be informative. We therefore
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Figure 2: Example of the effect of a zero population spectrum. On the left we have the true

population spectrum for a single scale that is equal to zero where t = 257, . . . , 512. On the right,

the voxel specific spectra, all of which are zero at the same locations that the population spectrum

is zero.

leave these values as being equal to zero and introduce a threshold, λ, above which we estimate the

log-spectrum, below which we treat as being zero. In practice, to avoid confusion with the case that

Lmj,k = 1 (and therefore logLmj,k = 0) we define values below the threshold for particular scale and

location pairs as having no defined value, ie NA to use programming parlance. More formally we

estimate the voxel specific log-spectrum as,

L̃mj,k =


logLmj,k if Lmj,k > λ

NA if Lmj,k ≤ λ

where L̃mj,k is an estimate of the log-spectrum Y m
j,k for j, k such that L̃mj,k 6= 0.

The choice of threshold, λ, is clearly important.We consider the case where the innovation process

underlying the LSW process is Gaussian. In this case it is well known that the wavelet periodogram
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has a (correlated) χ2 structure. Hence we draw on the work of [16], [17] and [4] who consider

thresholding data with a χ2 structure and adopt a cut-off value of the form λ = σ log(T ). In all

cases considered to date this yields good results for both the population spectrum and the variance

function.

Whilst this appears to solve the problem it is also possible that the voxel specific process, Zmj,k,

from which zmj,k is a realisation, leads to a voxel specific amplitude function wmj,k <
√
λ. In this case

the process described above would lead to the voxel specific spectrum at this scale and location, j, k,

being set to zero, or as defined above, in practice NA. However, in reality the spectrum at this

location and scale is not equal to zero. If this were to happen for a number of voxels at a specific

time point then we may question whether the population spectrum were in fact zero. Therefore

we introduce an additional parameter, β, that relates to the probability that the value of the true

population spectrum is zero. If the proportion of voxels whose spectrum at this location is greater

than β we set all voxels to be zero at that location, which should be the case when the population

is zero as described above. If the proportion is less than β then we assume that the zeros are simply

due to the voxel specific effect.

More formally we have,

L̃mj,k =


L̃mj,k if 1

M

∑M
m=1 I(L̃mj,k = NA) < β

NA if 1
M

∑M
m=1 I(L̃mj,k = NA) ≥ β

We suggest that values for β in the range 0.9 to 0.95 would be a sensible choice, akin to a 10 or

5% critical value in a hypothesis testing framework. Of course, this can be adjusted for knowledge

of a specific application.
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5 Application to simulated data

We now consider simulated examples to determine how well the method performs in a variety of

settings. We report the results for a number of different population spectra and variance functions

and assess the performance based upon the squared bias. Specifically, we consider the performance of

the method for both stationary and non-stationary data as well as for varying complexity of structure

of the population spectrum and variance function. For all of the simulation results given we simulated

100 sets of replicated data with various combinations of numbers of voxels, M , and lengths of series,

T . For all examples we set β = 0.95.

Although the primary aim of this method is to provide a means for estimating the spectral

structure of non-stationary data, our first example (Simulation 1) aims to determine how well our

approach deals with stationary data. The next two cases simulate a population spectrum in the form

of the Haar MA example of [4] with smaller (Simulation 2) and larger (Simulation 3) amounts of

between voxel variability. We then consider a case where the amount of between voxel variability

changes across a single scale in the spectral structure (Simulation 4) and a case where power exists

in the population spectrum at multiple scales at a given location (Simulation 5). Finally we consider

an example where the population spectrum takes a more complex form (Simulation 6). For the exact

form of the population spectrum and variance function for each simulation see the appendix.

Values for the squared bias and variance when estimating the population spectrum for each of

the simulation cases are shown in Table 1. In general as the number of voxels increases the bias

decreases, though the variance is greater for larger numbers of voxels.

Simulation 1, in general, has a much higher bias than any of the other simulations, with the

exception of Simulation 6. This would suggest that whilst the method is able to deal with stationary

data it is more suited to non-stationary data, though struggles as the complexity of the spectral

structure is increased.
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Figure 3: Plots showing the true value of the population spectrum (grey) with the mean estimated

value (black) and 95% confidence intervals (light grey) overlaid. Plot (a) shows the estimates for

simulation 2 and plot (b) shows estimates for simulation 3.

Some interesting results can be seen in Simulations 2 and 3 where in the middle levels (2 and 3)

the bias increases by a considerable amount. Figure 3 shows, for Simulations 2 and 3, plots of the

true population spectral structure with the mean estimated spectrum and 95% confidence intervals

overlaid. In both cases the estimates are quite reasonable at the points where power exists. It is

also clear that there is some leakage of power across scales, which is most pronounced at levels 2

and 3. This may explain the reason for the much larger bias in these levels for Simulations 2 and 3.

As power is leaking across scales and there is power in the levels at either side of levels 2 and 3 the

leakage is most pronounced here. It is also interesting to note here that the bias changes very little

despite the increase in between voxel variability from Simulation 2 to 3.

Clearly the greater complexity in structure in Simulations 4 and 5 has had some impact with
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larger bias than the simpler structures.

From all of the results it seems that the method is able to estimate the population spectrum well,

although struggles more with the more complex structures as would be expected and performs less

well for stationary data.

Table 2 shows the squared bias and variance for estimating the variance functions associated

with each of the simulations discussed above. As with the population spectrum the bias, in general,

decreases as the number of voxels is increased. In this case the variance is also lower for larger

numbers of voxels.

Clearly the stationary spectral structure has impacted the estimation of the variance, with Sim-

ulation 1 giving some of the larger bias values. It is interesting to note that, in fact the largest

values for bias are found to come from Simulation 4, where the between voxel variability had a more

complex form, changing in value across a single scale. In this case the method hasn’t estimated the

spectrum as well as in other cases.

Again all of the simulations show that the method performs well and is able to obtain reasonable

estimates of the variance function for both the simple and more complex cases. The method is able to

estimate the variance function when the population structure is both stationary and non-stationary.

6 fMRI data from an anxiety inducing experiment

In this application we consider data obtained from an experiment to induce anxiety. Functional

magnetic resonance imaging (fMRI) relies on the observation of relative changes in blood oxygen

levels in the brain. This is a result of the properties of deoxy-hemoglobin (hemoglobin not carrying

oxygen) and oxy-hemoglobin (hemoglobin carrying oxygen). Deoxy-hemoglobin has the ability to

suppress a magnetic signal whilst oxy-hemoglobin does not, due to their para- and di- magnetic

properties respectively. Thus changes in oxygenation are observable over time from a sequence of
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brain images obtained by measuring fluctuations in magnetic properties in a strong magnetic field.

More details of fMRI data and statistical analysis of such data can be found in [18].

Typical fMRI analysis proceeds on a voxel-by-voxel basis, with correction at the end for multiple

comparision [19]. However, there is a growing literature of using within and between ROI time series

as models for the analysis of fMRI [20, 21, 5]. These works also include analysis of the within and

between ROI dependency structures. It could be seen that our approach is using a mixture of these

approaches along with notions of random effect models akin to those in [15], where a mixed effect view

of spectral analysis is presented, although we do not specifically account for the spatial dependency

in our analysis.

The data consider here was previously analysed by [22] and concerns an anxiety inducing experi-

ment. Subjects firstly viewed a fixation cross for two minutes to obtain a resting baseline. They then

viewed an instruction slide giving the topic of a speech they had been previously told they would

have two minutes to prepare. Prior to scanning they had been told they would have two minutes

to prepare a seven minute speech that they would have to give to a panel of expert judges, though

there was a small chance they would not have to give the speech. After those two minutes a further

slide was shown informing them they did not have to give the speech. This was followed by a further

two minutes resting baseline. This induced both anxiety and relaxation states within the subjects.

For full details see [22] or [23] who demonstrate evidence of temporal nonstationarity for this specific

data set, thus further highlighting the need for statistical methods which can account for temporal

nonstationarity.

Data was collected every two seconds for a total of 215 observations. More specifically T2∗

fMRI images were acquired in a 3.12mm ×3.12mm ×3mm array, with associated anatomical image

for spatial normalisation to a template. Clustering was performed based on functional localisation

using k-means clustering [22] and then associated with anatomical regions. The data we consider here
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comes from two regions of the brain of interest in this experiment. The first is from the rostral medial

pre-frontal cortex (RMPFC), which is known to be associated with anxiety. This area contains 11

voxels. As each voxel is observed in the same area of the brain they may be assumed to have the

same underlying population spectral structure. The second area is the visual cortex (VC), which is

associated with task related instructions. This cluster contains 25 voxels. As a first approximation,

the voxels were assumed to be spatially independent. Spatial dependence in fMRI is present, but

it is fairly weak so this is unlikely to be a strong assumption for spectral estimation (as opposed to

hypothesis testing, for example). We proceed here with the analysis of a single subject’s data.

It is common to assume that data arising from fMRI experiments are (second order) stationary

with analysis following from this assumption. We wish to consider here whether this is a reasonable

assumption based on the population spectral structure. Prior to our analysis we de-trended the data

[19] to satisfy the required condition of our process having a zero mean and added zeros at each end

to obtain the required 2J length. As the start and end of these series are resting states this padding

is reasonable and will have limited impact on our results.

In Figure 4 we can see the results of application of our method to the RMPFC data. In Figure

4(a) we have the population spectrum and in Figure 4(b) the estimate of the variance function by

level. Recall that the variance function will only be estimated at locations where the population

spectrum is non-zero, something which may occur naturally here due to the preprocessing of the

data to remove effects such as cardiac and respiratory cycles etc.

In Figure 4(a) we can see that we have power in the spectrum in the first five levels. Of most

interest is the level five data. We can see here that the spectrum takes the value zero until approxi-

mately time 50 to 60 where power appears for a short time before taking the value zero again. Power

reappears at this scale again at around time 120, also for a short time before returning to zero. This

corresponds roughly to the time point at which the first instruction, to prepare a speech, was given
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Figure 4: Results for RMPFC data. The estimate of the population spectrum is shown in plot (a)

and the estimate of the variance function, by level, is shown in plot (b).

and the second slide was shown telling them they did not have to give the speech which were given

at two minutes and at four minutes 15 respectively. These results would suggest that in this case

the second order structure of the population effect is not stationary. This could imply change points

(which is likely given the previous analysis by [22]), as well as other non-stationary variance effects,

are present, as even mean changes will affect the second order structure if not properly accounted for.

This adds additional information to that gleaned from the data by [22], where only mean stationarity

was investigated. If the mean were of interest, then our analysis could proceed on a two-stage basis,

mean analysis first, then second order analysis.

Figure 5 shows the results after applying our approach to the VC data. Again the population

spectrum is given in plot (a) and the variance function by level is given in plot (b).

First of all consider Figure 5(a). As with the RMPFC data, we see that the power at level five
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Figure 5: Results for VC data. The estimate of the population spectrum is shown in plot (a) and

the estimate of the variance function, by level, is shown in plot (b).

first appears at around the time of the first visual instruction and appears again around the time

of the second visual instruction. This effect is also visible for VC data at level four. We also see

an interesting effect at level three with, in addition to peaks at around times 60 and 120, peaks

appearing at the start and the end of the time points.

As with RMPFC, these peaks appearing in the spectrum would suggest that the VC data is not

second order stationary and that possible change points are present.

7 Concluding remarks

This paper has has shown how a random effects model for the spectral structure of replicated time

series, such as that proposed by [7], may be extended to the locally stationary setting, which has

particular relevance to fMRI. We have shown that it is possible to estimate the population locally
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stationary wavelet spectrum for replicated time series as well as being able to obtain a measure of the

between voxel variability at each scale of the spectrum. Unlike the existing methods we focus on an

approach that allows us to account for local changes in the spectral structure, as non-stationarities

are known to be present in fMRI.

Our approach has been applied to simulated examples as well as fMRI data. The simulation

results obtained show that the approach performs well in a variety of situations, although performs

less accurately as the complexity of the population spectral structure increases, although this would

be expected. When applied to fMRI data we can see that data that may have been treated as

stationary in previous analysis would seem to exhibit features suggesting that it is in fact non-

stationary. Indeed, given the nature of the anxiety experiment analyzed, it is highly improbable

that the data would be stationary, and indeed the positions of change in the spectral powers appear

to coincide with the experimental setup. The analysis was predicated on the choice of ROIs in the

fMRI study. One interesting possible extension of the methodology would be to use determination of

non-stationarities to attempt to verify whether the ROI definition is consistent with the assumption

of homogeneity.

It should be noted that our methodology here has been predicated on independence between the

replicates, which is a major simplification for fMRI data. However, some preliminary simulation

results (data not shown) seem to indicate that for spatial correlation levels approximately similar to

that of unsmoothed fMRI data, variances of the estimates are not substantially affected but biases are

increased with increasing correlation. The data in the experiment was subjected to a small smoothing

kernel, much smaller than the heavy smoothing often seen in fMRI analysis, and so it is likely that

equivalent results hold here. Incorporating spatial dependencies into spectral estimates would be

a useful and challenging future research topic both from a theoretical and methodological point of

view. In addition, our approach at present is a single subject approach - this could be extended by
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adding another layer of hierarchy to the random effects model. However, non-stationarities are likely

to be specific to an individual so a single subject approach is possibly most suitable here.

Finally we turn to a philosophical point. Within this article we have focussed on the develop-

ment of a non-stationary wavelet framework, however one could equally seek to identify the popu-

lation spectral structure within a locally stationary Fourier framework. Naturally this would give

a frequency-specific analysis, as opposed to the time-frequency band decomposition afforded by the

proposed wavelet framework. The development of this methodology, together with a comparison of

the two approaches is left as an interesting avenue for future research.
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A Appendix

Simulation 1: Stationary data We show here an example of the performance of our method

when the data is stationary. In this case we have a spectrum such that w1,k = 1 for all locations k

and wj,k = 0 for all j 6= 1 and all k. The variance function is defined so that Vj(ν) = (0.4)2 for all

scales and locations where wj,k 6= 0.
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Simulation 2: Haar MA process. For this case we simulate a population spectrum to take the

form of the Haar MA example of [4]. To this end we define the amplitude function such that,

wj,k =



1 if j = 1 and k ∈ {1, . . . , n/4}

1 if j = 2 and k ∈ {n/4 + 1, . . . , n/2}

1 if j = 3 and k ∈ {n/2 + 1, . . . , 3n/4}

1 if j = 4 and k ∈ {3n/4 + 1, . . . , n}

0 otherwise

(7)

Additionally we have, Vj(ν) = (0.2)2 for all j, k such that wj,k 6= 0, where ν = k/T .

Simulation 3: Haar MA process with greater between voxel variability. Here we retain

the same population spectrum as in the previous simulation, as defined by 7 above. However, we

increase the amount of between voxel variability, to determine the performance of the method when

the variability is larger.

So for this simulation we define the variance function to take the form, Vj(ν) = (0.4)2 for all j, k

such that wj,k 6= 0.

Simulation 4: Changing between voxel variability Here we consider our approach perfor-

mance when the amount of between voxel variability is location dependent, increasing at some loca-

tions across a given scale. We define the population spectrum to take a reasonably simple structure,

with power only at two scales:

wj,k =



1 if j = 1 and k ∈ {1, . . . , n/2}

1 if j = 2 and k ∈ {n/2 + 1, . . . , n}

0 otherwise.

(8)
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We then define our variance function as follows,

V1,k =



(0.2)2 if k ∈ {1, . . . , n/4}

(0.6)2 if k ∈ {n/4 + 1, . . . , n/2}

0 otherwise

(9)

V2,k =



(0.6)2 if k ∈ {n/2 + 1, . . . , 3n/4}

(0.2)2 if k ∈ {3n/4 + 1, . . . , n}

0 otherwise.

(10)

For all other scale the variance will not be estimated as the population spectrum is zero, so for

simplicity we set Vj,k = 0 for j 6= 1, 2.

Simulation 5: Overlapping population power For this simulation we consider how the method

performs when there is power in the population spectrum at more than one scale, j, at the same

locations k.

For this example we define the population amplitude function as,

wj,k =



1 if j = 1 and k ∈ {1, . . . , 5n/8}

1 if j = 2 and k ∈ {3n/8 + 1, . . . , n}

0 otherwise.

(11)

We define the variance function so that Vj(ν) = (0.4)2 for all scales and locations where wj,k 6= 0.

Simulation 6: Non blocky spectral structure Our final non-stationary example considers the

performance in a more complex structure where the power changes in value across the same level.

We define the population amplitude function as follows:

wj,k =



1
2 exp

(
3nk
256

)
if j = 2,

1
2 exp

(
3(nk−64)

256

)
if j = 4,

0 otherwise.

(12)
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where nk ≡ k mod 128. As for simulation 4 we set the variance function to be Vj(ν) = (0.4)2 for all

scales and locations where wj,k 6= 0.
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