Willingale, L. and Nagel, S. R. and Thomas, A. G. R. and Bellei, C. and Clarke, R. J. and Dangor, A. E. and Heathcote, R. and Kaluza, M. C. and Kamperidis, C. and Kneip, S. and Krushelnick, K. and Lopes, N. and Mangles, S. P. D. and Nazarov, W. and Nilson, P. M. and Najmudin, Z. (2015) Characterization of laser-driven proton beams from near-critical density targets using copper activation. Journal of Plasma Physics, 81: 365810102. ISSN 0022-3778
Full text not available from this repository.Abstract
Copper activation was used to characterize high-energy proton beam acceleration from near-critical density plasma targets. An enhancement was observed when decreasing the target density, which is indicative for an increased laser-accelerated hot electron density at the rear target-vacuum boundary. This is due to channel formation and collimation of the hot electrons inside the target. Particle-in-cell simulations support the experimental observations and show the correlation between channel depth and longitudinal electric field strength is directly correlated with the proton acceleration.