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Abstract 18 

In this study, we developed a stable and temporally dynamic model for predicting 19 

tsetse (Glossina pallidipes) habitat distribution based on a remotely sensed 20 

Normalised Difference Vegetation Index (NDVI), an indicator of vegetation 21 

greenness, and topographic variables, specifically, elevation and topographic 22 

position index (TPI). We also investigated the effect of drainage networks on habitat 23 

suitability of tsetse as well as factors that may influence changes in area of suitable 24 

tsetse habitat. We used data on tsetse presence collected in North western 25 

Zimbabwe during 1998 to develop a habitat prediction model using Maxent (Training 26 

AUC=0.751, test AU=0.752). Results of the Maxent model showed that the 27 

probability of occurrence of G. pallidipes decreased as TPI increased while an 28 

increase in elevation beyond 800 m resulted in a decrease in the probability of 29 

occurrence.  High probabilities (>50%) of occurrence of G. pallidipes were 30 

associated with NDVI between high 0.3 and 0.6. Based on the good predictive ability 31 

of the model, we fitted this model to environmental data of six different years, 1986, 32 

1991, 1993, 2002, 2007 and 2008 to predict the spatial distribution of tsetse 33 

presence in those years and to quantify any trends or changes in the tsetse 34 

distribution, which may be a function of changes in suitable tsetse habitat. The 35 

results showed that the amount of suitable G. pallidipes habitat significantly 36 

decreased (r2 0.799, p=0.007) for the period 1986 and 2008 due to the changes in 37 

the amount of vegetation cover as measured by NDVI over time in years. Using 38 

binary logistic regression, the probability of occurrence of suitable tsetse habitat 39 

decreased with increased distance from drainage lines. Overall, results of this study 40 

suggest that temporal changes in vegetation cover captured by using NDVI can aptly 41 

capture variations in habitat suitability of tsetse over time. Thus integration of 42 

remotely sensed data and other landscape variables enhances assessment of 43 

temporal changes in habitat suitability of tsetse which is crucial in the management 44 

and control of tsetse.  45 

 46 
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1.1 Introduction 49 

The tsetse fly (Glossina spp.) is a vector that transmits the trypanosomes that are 50 

responsible for Human African Trypanosomiasis (HAT) in Humans, also known as 51 

sleeping sickness and African Animal Trypanosomiasis (AAT) in animals, which is 52 

often termed Nagana in cattle. The tsetse fly causes rural poverty across large areas 53 

of sub-Saharan Africa where the keeping of livestock is curtailed or prevented 54 

(Holmes, 2013, Matawa et al., 2013). It is therefore important to understand the 55 

spatial-temporal dynamics of the tsetse flies in order to effectively apply vector 56 

control and eradication measures in order to improve rural livelihoods. The 57 

distribution of tsetse is often linked to specific habitat types, particularly those places 58 

with vegetation cover including thickets and riverine woodlands that provide ample 59 

shade and reduce the chances of dehydration (Adam et al., 2012, Batchelor et al., 60 

2009, Odulaja and Mohamed-Ahmed, 2001, Van den Bossche et al., 2010). Such 61 

habitats are also home to wildlife species that provide the requisite blood meals for 62 

the tsetse fly (Ducheyne et al., 2009, Van den Bossche et al., 2010). Thus, any 63 

landscape change that results in thicket reduction could affect not only the wildlife 64 

species but also affect the tsetse population both directly and indirectly (Kitron et al., 65 

1996, Munang’andu et al., 2012). We therefore assert that characterisation of 66 

landscape changes is critical to understanding changes in the tsetse population and 67 

its distribution. Such characterisation also has potential to provide insights into the 68 

temporal and spatial dynamics of AAT in domestic animals and HAT in humans 69 

within ecosystems that are home to the tsetse fly. 70 

Although an understanding of the spatial dynamics of key ecosystems is critical in 71 

characterising the dynamics of Trypanosomiasis, studies on ecosystem change and 72 

its effect on tsetse habitat dynamics have remained limited. Of the few studies on 73 

ecosystem change, the focus has mainly been on agricultural and human settlement 74 

expansion following the suppression of tsetse (Baudron et al., 2010, Sibanda and 75 

Murwira, 2012a) and the consequent wildlife habitat changes. Understanding 76 

ecosystem change in relation to tsetse habitat could provide improved insights into 77 

how these changes alter the interactions between the host, vector and parasite 78 

(DeVisser et al., 2010, Van den Bossche et al., 2010). However, in order to track fine 79 

scale environmental changes, as well as, link these changes to tsetse fly presence 80 

or abundance there is need for the development of spatially explicit models at a fine 81 
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spatial resolution (Rogers et al., 1996) that incorporate dynamic variables that are 82 

able to capture changes in landscape condition.  83 

The distribution of tsetse has been widely linked to vegetation cover as it influences 84 

micro-climate and availability of hosts (Cecchi et al., 2008, DeVisser et al., 2010, 85 

Hay et al., 1997, Welburn et al., 2006). Vegetation cover inherently changes over 86 

time and hence could be a useful dynamic variable that can be included in habitat 87 

suitability models. However, traditional approaches of quantifying vegetation cover 88 

have often been tedious, time consuming and limited to small areas. To this end, 89 

objective measures of quantifying vegetation cover over large spatial extents are 90 

thus important.  91 

The advent of remotely sensed data has allowed objective measures of vegetation 92 

cover to be developed. For example, remotely sensed indices such as Ratio 93 

vegetation index (RVI), the Transformed vegetation index (TVI) and the Normalised 94 

Difference Vegetation Index (NDVI) have been developed to estimate vegetation 95 

cover across landscapes. Among these indices, NDVI has been widely used for 96 

characterizing vegetation cover, vegetation biomass and vegetation greenness 97 

(DeVisser et al., 2010, Dicko et al., 2014, Robinson et al., 1997, Rogers et al., 2000). 98 

For example, NDVI in combination with temperature and rainfall were used to explain 99 

the distribution of tsetse flies in West Africa based on the discriminant analysis 100 

approach (Rogers et al., 1996). Although these studies have provided insights into 101 

factors influencing the distribution of tsetse, the studies failed to take into account 102 

temporal variation in tsetse habitat.  103 

Furthermore, the remotely sensed data used in these studies particularly NDVI was 104 

derived from low resolution satellite data which tend to over-generalise tsetse 105 

habitat. It is well known that tsetse populations can be maintained in small patches of 106 

suitable habitat particularly micro-habitats provided by land cover types that contain 107 

woody vegetation (DeVisser et al., 2010). Thus habitat suitability models developed 108 

using low resolution NDVI data derived from 250 m MODIS and 1 km NOAA-AVHRR 109 

sensors may fail to capture patches of suitable habitat smaller than 250 m spatial 110 

resolution (DeVisser et al., 2010). Furthermore, use of low spatial resolution imagery 111 

may compromise the results of epidemiological analyses (Atkinson and Graham, 112 

2006).  In this regard, inclusion of remotely sensed estimates of vegetation cover at 113 
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a fine resolution is imperative in enhancing the accuracy and usefulness of tsetse 114 

distribution models in tsetse eradication campaigns.  115 

In this study, our main objective was to assess temporal changes in G. pallidipes 116 

habitat based on a habitat model developed using dynamic and stable environmental 117 

variables. We hypothesised that ecosystem changes resulting from changes in 118 

landcover reduce the amount of suitable tsetse habitat. Specifically, we tested 119 

whether G. pallidipes habitat can be predicted based on three variables namely 30 m 120 

resolution Landsat TM based Normalised Difference Vegetation Index (NDVI) 121 

(temporally dynamic variable) as well as elevation and Topographic Position Index 122 

(TPI) (temporally stable variables). We then tested the ability of the model to predict 123 

tsetse suitable habitat for 1986, 1991, 1993, 2002, 2007 and 2008 in order to 124 

characterise the spatial dynamics of tsetse habitat over time. We also tested whether 125 

suitable tsetse habitat varied temporally due to reduction in vegetation cover. We 126 

explained the relationship between spatial temporal variation in suitable habitat and 127 

rainfall as well as burnt area and assessed whether there are net gains or losses in 128 

suitable habitat between successive years. 129 

We considered topographic variables such as elevation and TPI due to the fact that 130 

Tsetse is mostly found in low-lying areas as they are associated with high 131 

temperatures (DeVisser et al., 2010, Matawa et al., 2013, Terblanche et al., 2008). 132 

TPI measures slope position and landform category i.e. identifies hilltops, ridges, 133 

valleys and flat areas (Pittiglio et al., 2012). However, elevation and TPI may fail to 134 

capture the spatial-temporal dynamics in tsetse fly occurrence as they are largely 135 

temporally stable. Thus their integration with remotely sensed vegetation cover could 136 

provide a spatially and temporally dynamic model that can allow modelling of 137 

changes in tsetse suitable habitat over time.  138 

1.2 Materials and Methods 139 

1.2.1 Study Area 140 

The study area is located in north western Zimbabwe at 16˚ south and 29˚ east 141 

(Figure 1). The study was conducted in an area straddling protected areas (including 142 

safari areas) and settled areas comprising large and small scale farming areas and 143 

the communal lands of the Zambezi Valley. Communal lands are areas 144 
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characterised by community land ownership and are subdivided into administrative 145 

units called wards (Sibanda and Murwira, 2012a).  146 

 147 

Figure 1: Location of the study area in Zimbabwe 

The area has a dry tropical climate, characterised by low and variable annual rainfall 148 

averaging between 450 and 650 mm per year and a mean annual temperature of 149 

25°C  (Baudron et al., 2010, Sibanda and Murwira, 2012a). The rainfall patterns 150 

based on mean monthly precipitation calculated using data recorded at the three 151 

closest whether stations namely Karoi, Makuti and Rekomitje (Rukomichi) show that 152 

the 1985/1986 rainfall season had higher rainfall as compared to all the other rainfall 153 

seasons under consideration (Figure 2Error! Reference source not found.). The 154 

area has two clearly defined seasons: a wet season from December to March and a 155 

long dry season from April to November (Baudron et al., 2010). The climatic 156 

conditions, thus, make the study area a suitable habitat for tsetse. The natural 157 

vegetation is mainly deciduous dry savannah, that includes Colophospermum 158 

mopane (Baudron et al., 2010, Sibanda and Murwira, 2012a), Combretum 159 

woodlands and riparian vegetation. The elevation of the study area ranges from 340 160 
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m to 1400 m (SRTM-DEM). Areas below 1100 m are climatically suitable for tsetse 161 

(Pender et al., 1997).  162 

 163 

Figure 2: Rainfall patterns based on Karoi, Makuti and Rukomichi weather stations (Source: 

Meteorological Services Department). 

The major economic activity is dryland farming of cotton (Gossypium hirsutum), 164 

maize (Zea mays) and sorghum (Sorghum bicolor) (Baudron et al., 2010) as well as 165 

tobacco. There have been initiatives by government since 1960 to eradicate tsetse in 166 

the study region and this has resulted in the tsetse front progressively receding 167 

towards the Zambezi River (Shereni, 1990).  168 

1.2.2 Species Occurrence Data 169 

Data on tsetse occurrence were extracted from tsetse fly trapping records for the 170 

period 1994 to 2012. We used the 1998 dataset for training the model because it had 171 

a better spread and more presence records (50). The tsetse fly trap records were 172 

collected by the Zimbabwe Department of Veterinary Services and Livestock 173 

Production, Tsetse Control Division in Harare. The tsetse distribution data were 174 

however collected by marking the tsetse sightings on 1:250 000 scale maps. In order 175 

to allow the data to be integrated with other spatial data sets we first scanned the 176 

maps and georeferenced them in a GIS (RMSE=0.000033). Next, we digitized the 177 

tsetse sighting locations (Figure 1).  178 
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1.2.3 Environmental variables  179 

We downloaded cloud-free (less than 10% cloud) 30m spatial resolution Landsat TM 180 

satellite sensor data made available at the USGS EROS Data Centre 181 

(http://lpdaac.usgs.gov/) in order to estimate vegetation greenness. Satellite sensor 182 

data collected were for the period April to early-July (day 110 to day 199) for the 183 

years 1986, 1991, 1993, 1998, 2002, 2007 and 2008. We focused on the period from 184 

end-April to early-July (post-harvest period) as all trees in the study area are still in 185 

full leaf while grass and crops would be in the senesce stages (Sibanda and 186 

Murwira, 2012b) thereby making it easier to explain the impact of land use/ 187 

landcover change. The Landsat TM and ETM data were already georeferenced to 188 

the Universal Transverse Mercator (UTM) Zone 35 South based on the WGS84 189 

spheroid. However, we checked for the accuracy of the georeferencing based on 20 190 

ground control points (i.e. river intersections) from georeferenced 1:50 000 191 

topographic maps of the study area. Vegetation greenness was estimated using the 192 

Normalised Difference Vegetation Index (NDVI) as follows: 193 

 194 

where NIR is the reflectance in the near infrared wavelength while R is reflectance in 195 

the red wavelength of the electromagnetic spectrum. We used NDVI as it is a good 196 

estimator of vegetation greenness, vegetation cover and vegetation biomass (Huete 197 

et al., 2002). We calculated average NDVI based on available Landsat TM and ETM 198 

imagery between day 110 and day 199 of each year. We selected years with at least 199 

two or more images for the analysis. We masked out clouds to reduce their influence 200 

on the average NDVI values and outcome of the model. We then calculated the 201 

average NDVI for each year based on the period end-April to early-July.  202 

 203 

Next, we used the Shuttle Radar Topography Mission (SRTM) Digital Elevation 204 

Model (DEM) at a spatial resolution of 90 meters (www.usgs.gov) and then 205 

resampled to 30m spatial resolution to estimate topographical variables, i.e. 206 

elevation and topographic position index in a GIS. 207 

 208 

We also acquired and processed readily available MODIS burnt area data for 2002, 209 

2007 and 2008 in order to measure the burnt area coinciding with the Landsat TM 210 

http://lpdaac.usgs.gov/
http://www.usgs.gov/
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data (modis-fire.umd.edu). The burnt area data for 1986, 1991, 1993, and 1998 was 211 

not readily available. Therefore we could not fit a regression model between burnt 212 

area and suitable habitat. We used this data to explain the link between variations in 213 

burnt area and the fluctuations in area of suitable tsetse habitat using a graphical 214 

plot. 215 

 216 

We acquired rainfall data for Karoi, Makuti and Rukomichi weather stations for the 217 

1985/ 86, 1990/91, 1992/1993, 1997/98 and 2001/2002 rainfall seasons to explain 218 

the suitable habitat for 1986, 1991, 1993, 1998 and 2002 respectively and calculated 219 

an average seasonal total from the 3 stations. The rainfall data for 2006/07 and 220 

2007/08 was not readily available to be used to explain the suitable habitat for 2007 221 

and 2008 respectively. Therefore out of the 7 years under consideration we only 222 

analysed the relationship between suitable habitat and rainfall for only five years. 223 

1.2.4 Modelling tsetse habitat using the Maximum Entropy method 224 

We used the Maximum entropy (Maxent) modelling approach (Phillips et al., 2006, 225 

Phillips and Dudik, 2004) to predict the spatial distribution of tsetse in the study area 226 

as a function of elevation, topographic position index (TPI) and NDVI. Maxent utilises 227 

presence only data to model habitat suitability as a function of environmental 228 

variables. In this study, we used presence only data because tsetse presence data 229 

are generally more meaningful than absence data as all known traps have a very low 230 

efficiency with respect to trapping rates and therefore there are chances of 231 

generating false absence data (Dicko et al., 2014, Rogers et al., 1996). We treated 232 

tsetse trap records as presence only data that could be used to model tsetse habitat 233 

suitability as a function of NDVI, TPI and elevation.  234 

For the modelling process, tsetse occurrence data (n =50) (Figure 1) for the year 235 

1998 were randomly partitioned into a 70% training subsample and a 30% test 236 

subsample (Matawa et al., 2012). We used the 1998 tsetse location data to build the 237 

initial model because it had more data points than the other years in the Tsetse 238 

Control Division database as well are more than one image for the post-harvest 239 

period. In order to evaluate the accuracy of the model we used the area under curve 240 

(AUC) of the receiver operating characteristics (ROC) (Phillips et al., 2006, Phillips 241 

and Dudik, 2004). AUC values range from 0 to 1 where values between 0 and 0.5 242 
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reflect that the model fails to establish habitat suitability for the tsetse while values 243 

closer to 1 indicate that the model successfully establishes the suitable habitat. In 244 

fact, AUC values between 0.7 and 0.80 are classified as average in terms of model 245 

accuracy while AUC values between 0.6 and 0.70 are classified as poor (Parolo et 246 

al., 2008).  247 

The Maxent model determined using the 1998 data was then used to predict tsetse 248 

habitat suitability in 1986, 1991, 1993, 2002, 2007 and 2008 using appropriate 249 

covariate images. We then converted the probability maps into binary maps (i.e. 250 

suitable (1) and unsuitable (0)) using the 'equal training sensitivity and specificity' 251 

threshold rule in Maxent  (Phillips et al., 2006).  252 

1.2.5 Assessment of the spatial temporal dynamics of G. pallidipes habitat 253 

In order to understand the variations in suitable and unsuitable habitat between land 254 

cover/ use types, we extracted suitable and unsuitable areas within communal lands 255 

and protected areas using overlay analysis in the Integrated Land and Water 256 

Information System (ILWIS) geographic information system software 257 

(www.52North.org). The same procedure was also followed for riverine and non-258 

riverine areas. We then calculated the area of suitable and unsuitable tsetse habitat 259 

that fell within the land cover/ use types using the area calculation function in ILWIS. 260 

The riparian/ riverine forest was delineated by creating a 500 m buffer along the 261 

stream network similar to the one used by (Guerrini et al., 2008) whilst the non-262 

riparian forest was the area beyond 500 m from river courses. We compared the 263 

proportion of suitable riparian habitat to the proportion of suitable non-riparian habitat 264 

in the communal lands using the Z-score test in the R software (https://cran.r-265 

project.org/package). The test for proportion (Z-score test) is formulated as follows:  266 

 267 

 is the sample proportion, and n is the sample population (Agresti and Coull, 1998). 268 

http://www.52north.org/
https://cran.r-project.org/package
https://cran.r-project.org/package
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We also tested whether or not the proportion of suitable habitat is significantly 269 

different to the proportion of unsuitable habitat in the communal lands where there is 270 

dense human activity. We used the Z-score test to test for differences between 271 

proportions.  272 

In order to determine whether there was a general trend over time in habitat 273 

suitability we related the area of suitable habitat with time in years to confirm the 274 

trend of decrease in suitable habitat over time using the exponential model. We also 275 

calculated the net loss and gains in tsetse habitat for the study period by accounting 276 

for changes in area of suitable habitat between the current year and the previous 277 

(base) year, i.e., between 1986 and 1991, 1991 and 1993, 1993 and 1998, 2002 and 278 

2007 and 2007 and 2008 as well as between 1986 and 2008. 279 

1.2.6 Influence of drainage network on habitat suitability 280 

We used binary logistic regression (Pearce and Ferrier, 2000) to investigate the 281 

relationship between the drainage network and the distribution of suitable and 282 

unsuitable of tsetse habitat of 1986, 1991, 1993, 1998, 2002, 2007 and 2008. We 283 

generated 1000 random points for the whole study area using the random points 284 

option in QGIS (www.qgis.org). We then used these points to extract binary data 285 

from the model outputs of all the years under consideration and distance from the 286 

main drainage network of the study area using the overlay function in a GIS. The 287 

distance from the main drainage network was calculated based on the Euclidian 288 

distance from the drainage network in ILWIS (Matawa et al., 2012). We then related 289 

the binary data for each year with distance from the drainage network. Binary logistic 290 

regression is formulated as follows:  291 

  P=  292 

P is the probability of the outcome occurring β0 is the constant, β1 is the gradient and 293 

X1 is the independent variable of the equation.  Model performance was evaluated 294 

by considering the area under the Receiver Operator Characteristic curve (ROC). 295 

http://www.qgis.org/
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1.2.7 Factors explaining the changes in habitat suitability 296 

To explain the fluctuations in the changes in suitable habitat across time, we 297 

analysed the relationship between suitable habitat and average seasonal rainfall 298 

based on Kariba, Makuti and Rukomichi weather stations using linear regression in 299 

the Statistical Package for Social Scientists (SPSS) from 1998 to 2002. This was 300 

based on the assumption that fluctuations in suitable tsetse habitat derived from 301 

NDVI data can be explained by rainfall variability. Prior to analysis we tested whether 302 

the data followed a normal distribution using Kolmogorov-Smirnov test. Results 303 

showed that data did not deviate from a normal distribution (p=0.2). In addition, we 304 

calculated and compared the proportions of burnt area for 2002, 2007 and 2008 as 305 

well as generating plots of the burnt area in order to allow visual comparison with the 306 

modelled suitable tsetse habitat. .  307 

1.3 Results 308 

1.3.1 Species Distribution Model 309 

The AUC values obtained for the 1998 model as a function of elevation, TPI and 310 

NDVI are greater than 0.5 showing a significant departure from randomness (Table 311 

1).  312 

Table 1: AUC values for the individual variables and the overall Maxent model 

Variable AUC-

value 

AUC for training 

data (70%) 

AUC for test data 

(30%) 

Elevation 0.663   

Topographic position index(TPI) 0.659   

NDVI 0.739   

Overall Maxent model  0.751 0.752 

Based on the model results, the probability of occurrence of G. pallidipes decreases 313 

with an increase in TPI as high TPI is associated with elevated areas such as hilltops 314 

and low TPI values are associated with valleys (Figure 3a). Figure 3b shows that the 315 

probability of G. pallidipes decreases sharply when elevation exceeds 1100 m. The 316 

probabilities of 50% and above are associated with NDVI values of between 0.4 and 317 

0.6 (Figure 3c). 318 
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 319 

Figure 3: Relationship between (a) TPI, (b) Elevation and (c) NDVI and probability of 

presence of G. pallidipes. 

Using the 1998 model to predict tsetse habitat suitability for the period 1986, 1991, 320 

1993, 2002, 2007 and 2008 it can be observed that there are marked spatial shifts in 321 

the suitable habitat for G. pallidipes from 1986 to 2008 in the communal lands 322 

(Figure 4a-g). We observe that the smallest patch of suitable habitat identified by our 323 

model is 900 m2. Figure 4 also illustrates that the suitable habitat is also 324 

concentrated along riverine areas, for example the Mushangizhi and Mukwichi 325 

Rivers. 326 
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 327 

Figure 4: Spatial-temporal variation in the distribution of suitable and unsuitable Glossina 

pallidipes habitat from a) 1986, b) 1991, c) 1993, d) 1998, e) 2002, f) 2007 and g) 2008 

based on changes in vegetation cover. The area bounded by the black dashed box 

illustrates a settled area where human activity is intense and shows changes in suitable 

habitat between 1986 and 2008 and is zoomed in 4(h). 
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The location of post 2010 homesteads in the study area is coinciding mostly with 328 

unsuitable G. pallidipes habitat (Figure 4h). This is also the area where agricultural 329 

activity is intense in the study area. Some areas that were suitable in 1986 were now 330 

unsuitable habitat in 2008 (Figure 4).  331 

1.3.2 Assessment of the spatial temporal dynamics of G. pallidipes habitat in 332 

the communal lands 333 

Tsetse habitat receded between 1986 and 2002, and then it increased slightly 334 

between 2002 and 2008 in the communal lands. However, the proportion of suitable 335 

habitat modelled for 2008 is significantly lower than the 1986 proportion of suitable 336 

habitat (p= 0.00001). For the period 1986 to 1993 the proportion of suitable habitat 337 

was significantly higher (p<0.05) than the proportion of unsuitable habitat whilst the 338 

period 1998 to 2008 the proportion of unsuitable habitat was significantly higher 339 

(p<0.05) than the proportion of suitable habitat between 1998 and 2008 (Table 2).  340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 
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Table 2: Comparison of the proportions of suitable habitat and unsuitable habitat in the 

communal lands characterised by dense human activity using the Z-test at the 95% 

Confidence Interval. (The values in brackets in the second and third columns are 

proportions) 

Year Suitable 

Habitat (ha) 

Unsuitable 

Habitat (ha) 

Standard 

Error (S.E.) 

Lower 

Bound  

Upper 

Bound  

Z-score p-value 

1986 213694 

(0.7179854) 

83936 

(0.2820145) 

0.000008 

 

0.7179686 0.7180010 336.365 0.00001 

1991 165829 

(0.5571649) 

131801 

(0.4428351) 

0.000009 0.5571468 0.5571825 88.209 0.00001 

1993 164281 

(0.5519638) 

133349 

(0.4480362) 

0.000009 0.5519463 0.5519820 80.1834 0.00001 

1998 122575 

(0.4118368) 

175055 

(0.5881632) 

0.000902 0.4118185 0.4118539 -136.04 0.00001 

2002 104227 

(0.3501898) 

193403 

(0.6498102) 

0.000874 0.3501738 0.3502081 -231.17 0.00001 

2007 107969 

(0.3627625) 

189661 

(0.6372375) 

0.000881 0.3627446 0.3627791 -211.77 0.00001 

2008 116858 

(0.3926284) 

180772 

(0.6073716) 

0.000895 0.3926112 0.3926463 -165.68 0.00001 

 354 

The model shows that, for the whole study area, there was a net decrease of 355 

suitable habitat by 84,562 ha between 1986 and 1991; 109,142 ha between 1991 356 

and 1993; 48,417 ha between 1993 and 1998 as well as a net gain of 12,467 ha 357 

between 2002 and 2007 and 39,700 ha between 2007 and 2008. Overall, the model 358 

shows a net loss of 199,955 ha between 1986 and 2008. 359 

We found a significant negative exponential relationship between modelled suitable 360 

tsetse habitat and time in years (r2 =0.799, p=0.007) (Figure 5). 361 
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 362 

Figure 5: Relationship between suitable habitat and time in years 

1.3.3 Influence of drainage network on habitat suitability 363 

We observed that the proportion of suitable riverine habitat is relatively higher than 364 

the proportion of suitable non-riverine habitat in the communal lands (Table 3).  365 

Table 3: Comparison of proportions of suitable riverine and suitable non-riverine habitat in 

the communal lands using the Z-test at 95% Confidence Interval. 

Year Suitable riverine habitat Suitable non-riverine habitat Z-score P-value 

1986 0.760 0.702 33.3941 0.00001 

1991 0.612 0.534 40.4002 0.00001 

1993 0.606 0.529 40.0483 0.00001 

1998 0.487 0.385 52.9044 0.00001 

2002 0.558 0.318 125.484 0.00001 

2007 0.682 0.334 179.3278 0.00001 

2008 0.563 0.360 104.9968 0.00001 
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We observed that the probability of occurrence of suitable habitat decreases with an 366 

increase in distance from the drainage network in the study area (Table 4). For 1998 367 

and 2002 the relationship is statistically significant (p<0.05) (Table 4). Although for 368 

1986, 1991, 1993, 2007 and 2008 the relationship is not statistically significant, all 369 

models show a trend of decrease of the probability of occurrence of suitable with an 370 

increase in the distance from the drainage network except for 1991. All models, 371 

except for the 1991 model, performed better than random and have AUC values 372 

between 0.5 and 0.6 (Table 4). 373 

Table 4: Relationship between suitable habitat and distance from the drainage network. The 

standard error is shown in brackets. 

Year 1986 1991 1993 1998 2002 2007 2008 

Intercept 1.067** 

(0.127) 

0.329** 

(0.111) 

0.388** 

(0.112) 

-0.407** 

(0.114) 

-0.548** 

(0.120) 

-0.726** 

(0.122) 

-0.450** 

(0.115) 

p-value 0.0000 0.0032 0.0005 0.0004 0.00001 0.00000 0.0001 

Stream 

Distance 

-0.00003 

(0.00012) 

0.00002 

(0.0001) 

-0.00003 

(0.0001 ) 

-0.00024** 

(0.00011) 

-0.00046** 

(0.00012)  
-0.00015 

(0.00012) 

-0.00011 

(0.00011) 

p-value 0.78842 0.85287 0.80537 0.02208 0.00009 0.18264 0.28924 

AUC 0.513 0.494 0.513 0.538 0.572 0.524 0.530 

**Significant at 95% confidence interval 374 

1.3.4 Factors explaining the changes in habitat suitability 375 

Our results show that the seasonal variation of rainfall can positively explain 376 

fluctuations in NDVI derived suitable habitat change (r2=0.977, r2 adjusted =0.972, 377 

p=0.000192). In addition, the results show that the proportion of burnt area of 2002 is 378 

significantly higher than the proportion of burnt area in 2007 (z=65.0156, p=0.00001) 379 

and significantly higher than the proportion of burnt area in 2008 (z=111.09, 380 

p=0.0000). The proportion of burnt area for 2007 is significantly higher than the 381 

proportion of burnt area in 2008 (z=46.7473, p=0.00001). In addition, Figure 6a 382 

shows that the amount of suitable habitat was increasing between 2002 and 2008 as 383 

the amount of burnt area was decreasing. 384 
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 385 

Figure 6: Relationship between (a) burnt area and amount of suitable habitat and (b) rainfall 

and amount of suitable habitat 

1.4 Discussion 386 

Results of this study indicate that spatial and temporal variability in vegetation cover 387 

affect the distribution of suitable tsetse habitat. The results indicate that changes in 388 

tsetse habitat are not uniform and unidirectional. Significant spatial changes 389 

(contraction and expansion) in suitable tsetse habitat were noted throughout the 390 

study period (1986-2008). There was however a general decline in suitable habitat of 391 

tsetse between 1986 and 2008. Our results are consistent with our hypothesis that 392 

changes in landcover which lead to ecosystem changes reduce the amount of 393 

suitable tsetse habitat. This study uses data covering seven years spanning a period 394 

of 12 years to understand the spatial and temporal dynamics of G. pallidipes habitat 395 

in response to landcover change. Although other studies focused on the 396 

fragmentation of the riparian habitat and its effect on tsetse distribution (Guerrini et 397 

al., 2008), the data used was not multi-temporal. We therefore assert that inclusion 398 

of both stable and dynamic variables in spatially explicit habitat models improves the 399 

detection of habitat suitability changes in response to changing environment.  400 

Results of this study indicate that NDVI in addition to topographical variables such as 401 

elevation and topographic position index can successfully predict changes in G. 402 

pallidipes habitat over time. The combination of these variables enabled a dynamic 403 

approach to modelling changes in habitat suitability of tsetse in response to changes 404 

in habitat condition. NDVI provides the dynamic part of the model while the TPI and 405 

elevation provide the stable part of the model. Our results are consistent with other 406 

findings in the Zambezi valley which showed that NDVI and elevation significantly 407 

predict tsetse habitat (Matawa et al., 2013). However, unlike previous studies, this 408 
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study focused on producing a temporal dynamic model for demonstrating how 409 

changes in landcover and associated ecosystem can trigger changes in habitat 410 

suitability of G. pallidipes at 30m spatial resolution.  411 

The response curves for G. pallidipes probabilities are consistent with results of 412 

earlier studies. For example, DeVisser et al., 2010, Matawa et al., 2013 and 413 

Terblanche et al., 2008 found that the tsetse is mostly found in low-lying areas as 414 

they are associated with high temperatures. The importance of vegetation cover on 415 

tsetse distribution due to its provision of shade and its influence on availability of 416 

hosts has been alluded to (Cecchi et al., 2008, DeVisser et al., 2010, Hay et al., 417 

1997, Welburn et al., 2006). To the best of our knowledge TPI has not been applied 418 

to model tsetse distribution. TPI helps determine whether or not the species prefer 419 

valleys to hilltops as suitable habitat. Our study was able to demonstrate that TPI 420 

can explain tsetse habitat preference as well as that G. pallidipes prefers valleys to 421 

hilltops. 422 

Our results show that unsuitable G. pallidipes habitat is coinciding with areas were 423 

human activity is intense as represented by homesteads digitised from high 424 

resolution Google and Bing based satellite imagery of post 2010 (Figure 4). This 425 

shows that the settlement of people and subsequent expansion of agriculture 426 

induced landcover changes and fragmentation of woodland areas (Sibanda and 427 

Murwira, 2012a). The loss of landcover in the post suppression period reduces the 428 

chance of re-invasion by tsetse flies as the ecological factors that support tsetse 429 

survival particularly presence of tree canopy cover were altered. Thus landuse, 430 

particularly intensification of agriculture, has a negative impact on the spatial 431 

distribution of G. pallidipes. This is consistent with Van den Bossche, 2010 who 432 

observed that intensification of human activity reduced the amount of suitable habitat 433 

for tsetse in Zambia. Population growth occurring in rural areas, may lead to 434 

reduction of tsetse habitat and a reduction in sleeping sickness risk due to alteration 435 

of landcover (Welburn et al., 2006). Thus human activities such as practising arable 436 

agriculture can induce landcover changes that can reduce or eliminate tsetse habitat.  437 

Changes in suitable habitat could be explained by variations in rainfall from year to 438 

year and fire scars (Figure 6) that have a direct impact on the amount of vegetation 439 

cover as shown by trends in relationship between rainfall and the trends in the 440 
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proportion of burnt area in the study area. For example, the smallest area of suitable 441 

habitat was estimated in 2002 and the annual total rainfall was low and the monthly 442 

rainfall was erratic based on data from the 3 nearest weather stations (Figure 2). 443 

Vegetation cover as measured by NDVI is dependent on amount of rainfall as much 444 

as it is dependent on changes in landuse patterns from time to time. The suitable 445 

habitat in the communal lands where human activity is intense is mostly suitable 446 

along the riverine areas (Figure 4) and this was also confirmed using binary logistic 447 

regression. Unsuitable habitat is related to cultivation and grassland classes (FAO, 448 

1996). This suggests that alteration of vegetation cover due to cultivation and other 449 

human activities can reduce the suitable habitat of G. pallidipes. 450 

We were able to demonstrate that landcover change in the study area, particularly in 451 

the communal lands, has impacted more on the non-riverine habitat. The suitable 452 

habitat is mostly around riverine areas and valleys. The vegetation cover of these 453 

areas is less disturbed as compared to the non-riverine areas. This could be as a 454 

result of the location of agricultural fields away from major river channels. The 455 

difference between the proportion of suitable riverine habitat and the proportion of 456 

suitable non-riverine habitat in the communal lands in the study area can be 457 

explained by settlement and associated human activities concentrated on the 458 

plateau area avoiding rivers and valleys. Thus landuse change and associated 459 

landcover change has altered the habitat of tsetse flies in the post-suppression 460 

period such that it may be difficult for tsetse flies to re-establish critical populations in 461 

the settled parts of the study area. 462 

This study differs from other studies in evaluating how landcover change over time 463 

influences the amount of suitable habitat available to G. pallidipes thereby 464 

developing an understanding of the tsetse habitat dynamics and the utility of the 465 

spatial temporal approach to characterising tsetse distribution. We were able to trace 466 

the changes in tsetse distribution from the 1980s, i.e. the early days of human 467 

immigration (Baudron et al., 2010) to the post 2000 period. Although the Landsat TM 468 

and ETM data we used in this study suffers from low temporal fidelity compared to 469 

other sensors e.g. MODIS it offers a better spatial resolution which may improve the 470 

identification of isolated suitable tsetse habitats as small as 900m2. This is similar to 471 

the smallest patch of suitable habitat that we identified in this study. This helps in 472 

enhancing the monitoring of tsetse prevalence, planning tsetse eradication and 473 
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monitoring the effectiveness of tsetse eradication programmes. Overall, the model 474 

developed in this study allows environmental changes to be linked with changes in 475 

tsetse fly occurrence.  476 

Conclusion 477 

We conclude that ecosystem changes induced by landcover changes as measured 478 

by the remotely sensed normalised difference vegetation index (NDVI) can be used 479 

to track changes in tsetse habitat change on a spatial-temporal scale. The spatial 480 

heterogeneity in landcover as measured by remotely sensed NDVI can explain the 481 

spatial temporal dynamics of tsetse habitat. We were able to track the expansion and 482 

contraction of tsetse as NDVI varied with each rainfall season. Therefore landcover 483 

change has a significant impact on change in suitable tsetse habitat.  484 

We conclude that our model can be used to track spatial-temporal changes in 485 

suitable tsetse habitat. This shows that G. pallidipes habitat varies from place to 486 

place and time to time due to changes in the amount of vegetation cover as 487 

measured by the normalized difference vegetation index (NDVI). We also conclude 488 

that loss of vegetation cover has reduced the amount of suitable G. pallidipes habitat 489 

in the Zambezi Valley of Zimbabwe. 490 
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