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Abstract 

Hospital acquired Staphylococcus aureus bacteraemia presents a serious health risk to 

inpatients, due to the high risk of transmission and high mortality rates, which is in part is 

due to the emergence of multiple drug resistant strains of S. aureus. Therefore, the prompt 

diagnosis and treatment of S. aureus bacteraemia is of paramount importance in the 

Intensive Care department. 

Staphylococcal Protein A (SpA) is an immunoglobulin-binding surface protein, expressed by 

more than 98.9% of S. aureus strains, with a primary function of aiding S. aureus in the 

colonisation of the host. While many Staphylococcal toxins are excreted by the kidneys, the 

method of SpA processing and removal by the body has not been confirmed. If SpA is 

present in urine, it could provide a key marker of S. aureus infection. 

The aim of this research was to develop techniques for the detection of SpA in samples, and 

evaluate the surface protein as a target for S. aureus urinary antigen testing. This was to be 

assessed in a sample population of 45 Intensive Care patients, each providing up to 8 

samples over a 48 hour inpatient stay. 

An effective and specific Western Blot was developed for the detection of commercial SpA 

in both buffer and control urine; however, this method failed to detect any SpA bands in 

patient urine samples. Subsequently, an optimised ELISA displayed increased sensitivity, 

being able to detect lower levels of SpA down to 0.78ng/ml. Using this technique, we 

detected an increased absorbance in 25% of patient samples tested, implying the presence 

of SpA. However, these samples did not display the same characteristics as commercial SpA, 

lacking the heat-resistance of the purified protein when ELISA samples were subject to 

boiling. Additionally, the application of mass spectrometry to analysing the SpA ELISA 

positive samples did not identify SpA. Furthermore, positive ELISA results were significantly 

associated with renal failure, but not with markers of infection. 

This research represents a comprehensive analysis of immunoblotting and immunoassay 

methods for detecting SpA in urine samples. Further work is required to fully assess the 

route of excretion of SpA, and the techniques developed could prove useful in the testing of 

other clinical samples, such as serum, for SpA. 
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1 Introduction 
 

1.1 Staphylococcus aureus 

Staphylococcus aureus is a gram-positive bacterium, found commonly as a commensal 

organism in humans. It is capable of causing life-threatening illnesses, such as major, multi-

system infection and sepsis from contamination of wounds, or from invasive medical 

procedures. The organism possesses an extensive armoury of toxins and surface proteins, 

which help it to avoid eradication by the host defences. With the discovery and widespread 

use of antibiotics, the physicians became able to halt the progression from local S. aureus 

infection to widespread dissemination throughout the body. However, almost as soon as 

treatment through antibiotics became available, S. aureus began to evolve mechanisms of 

evading eradication by antibiotics.1 Through the evolution of these various antibiotic 

resistant strains, S. aureus remains capable of causing severe, and sometimes fatal, 

infections, and poses a significant challenge for medical professionals, particularly in the 

intensive care setting.2 

1.2 Staphylococcus aureus Microbiology 

S. aureus is a facultative anaerobic coccal bacterium, capable of both aerobic and anaerobic 

respiration.3 Most strains of S. aureus are positive for catalase, a digestive enzyme which 

characterises this particularly virulent species of Staphylococcus, though catalase-negative 

strains can also cause human disease.4 Observed through the microscope, S. aureus are 

small, round bacteria, which resembles a ‘bunch of grapes’ due to their lack of separation 

following asexual reproduction.5 Macroscopically, S. aureus forms large, circular golden-

coloured colonies; hence the alternative name for the bacterium, ‘Golden Staph’.4 

Many genetic variants (or strains) of S. aureus exist, of which 13 have been fully gene 

sequenced.6 While the majority of the genome consists of a highly conserved core-region of 

genes, up to 20% of genetic elements display high variability, capable of expressing a wide 

variety of differing virulent protein products.7, 8 This confers on S. aureus a significant 

adaptability to develop antibiotic resistance and aid pathogenesis. 
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1.3 Staphylococcal Cell Wall Morphology 

All Gram-positive bacteria, including Staphylococci, are encased in a thick, homogenous, cell 

wall formed primarily from cross-linked peptidoglycan molecules.9 In gram-positive bacteria 

such as S. aureus, these cross-links are glycosidic covalent bonds connecting glycan strands 

of the peptidoglycan molecules (glycine interbridges).5 A strongly cross-linked cell wall 

serves two important purposes for S. aureus; it provides a rigid casing to prevent osmotic 

lysis of the cell,10 and it provides anchorage for surface proteins.11 Peptidoglycan makes up 

approximately 50% of the cell wall mass, with the other largest component, teichoic acid, 

making up around 40%.12 Teichoic acids, including cell membrane associated lipoteichoic 

acid,  extend from the peptidoglycan layer and confer a negative charge on the S. aureus cell 

wall (Figure 1).12, 13 

 

Figure 1- Schematic representation of the S. aureus cell wall, with the solid horizontal lines representing cross-

linked peptidoglycan, and the wavy vertical lines representing teichoic acids projecting through the cell wall. 

Image adapted from Umeda et al.
13

 Permission for use allowed by American Society of Microbiology. 

 

The remainder of the cell wall components include surface proteins and receptors. As well 

as a rigid cell wall, over 90% of S. aureus strains posses an external polysaccharide capsule,14 

which has been shown to reduce opsonisation and phagocytosis by shielding antibody 

binding sites (such as immunogenic teichoic acids), from the immune system.15 
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1.4 Staphylococcus aureus Infection 

1.5 Staphylococcus aureus Pathogenesis 

S. aureus is human pathogen responsible for infection at a wide-range of sites, in 

particularly infections of the skin and soft tissues, bones and the bloodstream.16 It is the 

presence of S. aureus in the bloodstream (bacteraemia) which disseminates the organism to 

sites of infection, and also leads to the most serious and life-threatening sequelae of S. 

aureus infection: endocarditis and sepsis.17 

S. aureus bacteraemia results from invasion from the external environment, either due to 

breaks in the skin or from the presence of foreign bodies.3 Evidence shows that the risk of S. 

aureus infection increases in the presence of foreign material, which in the community takes 

the form of contaminated dirt or clothing, and in the healthcare setting can result from 

sutures, intravascular devices or urinary catheters.18, 19 Whether this initial colonisation of S. 

aureus progresses from local to metastatic infection is dependent on interactions between 

the host endothelial cells and the bacterium.17 In a review of S. aureus infection 

pathogenesis by Archer et al, the progression of S. aureus infection is summarised in 5 

stages: colonisation, local infection, systemic dissemination/sepsis, metastatic infection, and 

finally, toxinosis, the system-wide spread of toxins.20  

1.6 Intracellular S. aureus infection 

S. aureus was traditionally described as a wholly extra-cellular organism, causing local and 

systemic infection through adherence to endothelial cells and the release of exotoxin.4, 21 A 

study investigating S. aureus in aortic endothelial cells showed that S. aureus has the ability 

to propagate and prolong infection through the intercellular route.22 These findings led to 

the description of the primary mechanism of S. aureus cellular invasion, which involves the 

adhesion of S. aureus  to endothelial cells through the activity of fibronectin-binding surface 

proteins FnbpA and FnbpB.23  

As well as active invasion of endothelial cells, S. aureus has also been shown to survive in 

specialised immune phagocytes, such as monocytes.24 The mechanism by which the 

bacterium survives phagocytosis once inside the cell is not fully understood, but is 

understood to involve both shielding by the polysaccharide capsule (if present), and the 
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release of virulence factors which can break down endosomes.16 The clinical implications of 

S. aureus internalisation have yet to be clearly defined, with some studies suggesting that 

the virulence of a strain is increased by its ability to internalise, and ultimately kill, host 

cells,25 while others suggest a link between recurrent S. aureus infection and intracellular 

survival.26  

1.6.1 Staphylococcal Nasal Carriage 

The most common site of colonisation of S. aureus, a natural commensal organism of 

humans, is the nose (nasal carriage).27 The epidemiology of S. aureus nasal carriers has been 

categorised into permanent carriers (10-35%), who exhibit constant nasal carriage, transient 

carriers (20-75%), who only exhibit temporary carriage, and finally, permanent non-carriers 

(5-50%).28 This means that at any one time, in a population of healthy individuals, around 

35% of the population will harbour S. aureus in the nasal passage, either permanently or 

temporarily.29 The nasal carriage of S. aureus is clinically important due to its effects on 

propagating and initiating S. aureus infection; it has been demonstrated to significantly 

increase hand carriage of the organism, and the risk of subsequent S. aureus infection 

following surgery is increased in patients known to be nasal carriers.29 Persistent nasal 

carriers and the general population tend to demonstrate differing S. aureus colonisation 

sites (Figure 2).30 
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Figure 2- Sites and frequency of S. aureus colonisation of the general population and persistent nasal carriers. 

Image from Dancer at al.30 Permission for use in MSc thesis granted by Elsevier (License number 

3956002030720) 

 

Due to the increased risk of exposure, antibodies to staphylococcal toxins have been found 

in significantly higher levels in permanent carriers of S. aureus,31 and it has been suggested 

that this leads to the, paradoxically, improved infection prognosis in this group.32 

1.6.2 S. aureus Bacteraemia 

S. aureus is a common blood-stream pathogen, and bacteraemia is one of the most well 

recognised sequelae of S. aureus infection.33 The annual reported rate of S. aureus 

bacteraemia in the UK was 9,533 in 2013, 34 and despite increased awareness of antibiotic 

resistant S. aureus, and widespread application of transmission prevention schemes, the 

mortality rate for this condition remains high. In a large US study of 6,697 patients with 

blood-stream infection, S. aureus accounted for the highest crude mortality rate (22.5%) of 

all bacterial causes of septicaemia.35 In the UK, mortality amongst patients with diagnosed S. 

aureus bacteraemia is equally high (29% 30 day mortality), and higher still in those with 

identified MRSA infection (34% 30 day mortality).36  

The most considerable risk to ICU patients is from S. aureus sepsis, the stage of infection 

beyond bacteraemia, where the disseminated organism provokes a damaging immune 

response, and, in the case of severe sepsis, causes end-organ damage through ischemia.37 
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Effective recognition, diagnosis and treatment of S. aureus bacteraemia are essential for 

reducing the burden of this disease. 

1.6.3 Risk factors for S. aureus Bacteraemia 

Traditionally, S. aureus bacteraemia has been an inpatient-based (particularly intensive 

care) complication. patients are at high risk of bacteraemia due to a combination of existing 

susceptibility (i.e. immunosuppression) and high risk of exposure from other patients.38 

Additionally, invasive procedures, all of which are capable of introducing organisms into the 

bloodstream, are commonly performed in ICU wards. The endogenous route of infection, 

i.e. from the patient’s own flora, is thought to be responsible, (at least in part) for 80% of 

cases of Staphylococcal bacteraemia.39 A large study of non-surgical patients found the 

relative risk of developing Staphylococcal bacteraemia was 3.0 in persistent nasal carriers 

compared to non-carriers.40  

Recently, it has been identified that community antibiotic-resistance is on the rise, which is 

a worrying finding as it presents a reservoir for antibiotic-resistant organisms.41 There is 

potential for the transmission of such organisms from the community to the hospital 

setting.  

The primary infection which most commonly lead to S. aureus bacteraemia include 

pneumonia, osteoarticular infection, skin and soft tissue infection, infective endocarditis 

and intravenous catheter infection.33, 42 Therefore, patients at risk of S. aureus bacteraemia 

include those with compromised immunity, such as HIV positive patients,43 and those 

undergoing recurrent IV access, such as IV drug users or haemodialysis patients.44 45 

Additionally, these patients are among those particularly susceptible to community-

acquired bacteraemia.  

Considering Urinary Tract Infection (UTI) as a source of bacteraemia, S. aureus is rarely a 

direct pathogen of the urinary tract; in a study of urine samples from patients with 

symptomatic UTI, S. aureus only accounted for 0.5% of isolates.46 However, multiple studies 

have demonstrated that the asymptomatic presence of S. aureus in the urinary tract 

(bacteriuria) can lead to the development of S. aureus bacteraemia.47 48  
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The reverse case, where an S. aureus bacteraemia causes a subsequent bacteriuria, does 

appear to occur in cases where the initial site of infection is not the urinary tract.49 Studies 

demonstrate that concomitant S. aureus bacteriuria in patients with bacteraemia is 

associated with higher incidence of early complications from bacteraemia,50 and a higher 

incidence of admission to ICU.51 

Complicating the assessment  of S. aureus bacteriuria on ICU wards is the fact that S. aureus 

urinary tract colonisation can be viewed as a common consequence of urinary 

catheterisation, especially from long-term indwelling catheters.33 In one study of 127 

confirmed S. aureus bacteriuria cases, 73% were associated with catheterisation or internal 

urinary tract procedures.52 Therefore, it would be difficult to determine whether the 

bacterinuria is a direct result of presence of S. aureus in the bloodstream, or simply due to 

contamination from urinary tract intervention. 

1.6.4 S. aureus antibiotic resistance 

Antibiotic-resistant strains of S. aureus identified in ICU departments between 1996 and 

2009 suggest that a rate of 12.7 new cases of MRSA bacteraemia arise every 1000 days 

spent on ICU.53 In recent years, antibiotic resistance has become the single most important 

issue affecting S. aureus infection in ICU departments. 

Antibiotics, in the form of penicillin, dramatically decreased mortality rates from 

Staphylococcal bacteraemia when they were first introduced in the early 1940s.54 However, 

within 2 years, penicillin-resistant strains of S. aureus were discovered.1 These were found 

to be caused by a Staphylococcal enzyme (β-lactamase) capable of breaking open the β-

lactam ring of the penicillin molecule.55 Widespread use of penicillin has eventually led to a 

resistance rate of over 90% in human isolates, effectively rendering the drug ineffective in 

treating S. aureus infection. The β-lactamase-resistant antibiotic methicillin was introduced 

in 1959, and the first reports of Methicillin-Resistant Staphylococcus aureus (MRSA) were 

published 2 years later.56 The mechanism of methicillin-resistance in MRSA occurs through 

the action of an independent penicillin-binding protein (PBP),57  which provides MRSA with 

resistance to all β-lactamase antibiotics, including cephalosporins and carbapenems. There 

is longitudinal and meta-analysis evidence that increased use of these antibiotics is 

associated with increased incidence of MRSA in the hospital setting.58, 59 In the UK at the 
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turn of the 21st century, almost half of S. aureus strains causing bacteraemia were β-lactam 

antibiotic resistant.60  

 

The clinical impact of this broad antibiotic resistance is of particular importance in hospital-

acquired S. aureus infection; invasive medical devices are the most common source of MRSA 

infection in UK tertiary centres,42 and infection with a resistant form of S. aureus increases 

length of stay in hospital and mortality rates.61 In UK ICU units, MRSA accounts for 58-60% 

of all S. aureus strains isolated.62 MRSA currently remains susceptible to glycoprotein 

antibiotics, such as vancomycin, and the use of vancomycin rapidly increased from 1980 

onwards in order to deal with such resistant infections.63 However, such selective pressure 

has led to the emergence of further resistant forms of S. aureus, including Vancomycin-

resistant Staphylococcus aureus (VRSA),64 indicating increasing difficulty in the 

pharmacological management of nocosomial S. aureus infection. 

1.6.5 Treatment of S. aureus bacteraemia 

Protocols for the initial management of S. aureus bacteraemia on ICU wards call for 

adequate and thorough clinical examination, followed by demonstrating direct evidence of 

bacteraemia with positive blood cultures.65 Alongside blood cultures, transoesophagael 

ultrasound is recommended in order to assess heart valves for vegetations, or for other 

primary sites of endocarditis.65 

Optimum treatment combines both medical management, in the form of antibiotics, and 

surgical removal of infectious loci, if identified.66 Although 10-40% of patients do not have 

an identifiable loci of infection, such as prosthetic heart valves or joints,67 early surgical 

intervention is proven to improve outcomes in appropriate patients.66 This further 

emphasises the need for quick diagnosis of infection, in order to assess if surgical 

intervention is required. In terms of antibiotic treatment, current UK recommendations in 

the UK suggest a combination antibiotic therapy, using a glycoprotein, and either linezolid or 

daptomycin, intravenously, for at least 2 weeks.68 However, best outcomes, with fewer 

recurrences of infection, are achieved with 4 or more weeks of antibiotic therapy, especially 

if there is concurrent endocarditis.66 
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1.6.6 Diagnosis of S. aureus infection 

The gold standard of S. aureus bacteraemia diagnosis is blood cultures, of at least two 

samples taken from two different sites of venous access. With 2 samples, this technique has 

80% sensitivity for detecting pathogenic organisms; to achieve >99% sensitivity, 4 or more 

samples should be taken, over a 24 hour period.69  

As well as confirming S. aureus infection, blood cultures also provide useful prognostic 

information. Positive blood cultures for S. aureus, taken more than 3 days after starting 

optimal antibiotic therapy, is the strongest indicator of complicated bacteraemia, even more 

so than the antibiotic resistance status of the organism.70  

1.7 Urinary Antigen testing 

The clinical practice of testing for urinary antigens in order to diagnose infective disease is 

well established. Current examples include the immunochromatographic membrane test 

(ICT) for Streptococcus pneumoniae cell wall glycoprotein antigen,71 and the indirect 

immunofluoresence test for Legionella pneumophila serogroup 1 antigen.72 With S. 

pneumoniae antigen testing, both the sensitivity and specificity is high of antigen detection, 

at 90% and 94% respectively.73 The alternative, sputum cultures, like blood cultures, can 

take more than 24 hours to provide diagnostic information, and organisms may be 

undetected in cultures following antibiotic use.74 An additional benefit is that urine testing is 

non-invasive, which is important in avoiding the risk of nocosomial bloodstream infection. 

However, in these conditions, it has been suggested that urinary antigen tests should be 

used in conjunction with blood or sputum cultures, which can provide antibiotic sensitivity 

information and can exclude other infectious agents.73 

Antigen testing for S. aureus infection has not currently been developed as a clinical test, 

despite the array of potential excreted and surface antigens that have been identified. In 

the literature, attempts to identify S. aureus virulence factors have been focused on 

detecting antigens in serum samples.75, 76 Using ELISA techniques, Azuma et al found 

staphylococcal superantigens in the serum of 42% of patients with confirmed sepsis on an 

ICU ward (n=78),76 providing evidence for the concurrent presence of S. aureus virulence 

factors and bloodstream infection. However, these have not progressed to clinical trials to 

put these tests into practice.  
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Similar techniques have been used to sensitively detect exogenously added Staphylococcal 

Enterotoxins in buffer and control urine, proving ELISA techniques capable of detecting 

small amounts of Staphylococcal toxin in urine.77, 78 Testing patient urine for endogenous 

Staphylococcal toxins has been achieved by Harrison et al, who identified the presence of 

superantigens Toxin Shock Syndrome Toxin 1 (TSST-1), Staphylococcal Enterotoxin B (SEB), 

Staphylococcal Enterotoxin C (SEC) and Alpha-haemolysin (AH) in 9/101 infant urine 

samples, again using an ELISA technique.79  

Based on the work by Harrison et al, this laboratory developed ELISA and protein 

immunoblotting (Western Blot) methods for detecting Staphylococcal toxins in ICU patient 

urine. Frances Price (MSc 2013) recruited urine samples from 45 inpatients in an ICU 

department and tested for four Staphylococcal toxins: TSST-1, SEB, SEC and AH.80 The 

results of Western Blots found high proportions of patient samples contained AH (72%), 

with lower levels of other toxins SEB (21%), SEC (7.5%) and TSST (5.9%). These positive 

samples correlated with clinical indicators of infection; patients positive for AH had higher 

levels of serum white blood cells, increased temperature and a higher chance of having an 

infective diagnosis. These data provide evidence of S. aureus toxin presence in urine, as well 

as a foundation for the testing of ICU patient urine for other potential antigens. 

1.8 Staphylococcus aureus- Virulence Factors 

Aiding S. aureus in its survival and propagation in the human host, both extra- and 

intracellularly, are a suite of pathogenic molecules, known as virulence factors.81 These aid 

S. aureus in killing or invading cells, anchoring to connective tissue or endothelial cells, and 

evading the complex human immune system, all of which are vital functions if any 

microorganism is to thrive within host tissues. Virulence factors are secreted from the cell, 

in the form of enzymes or exotoxins, or exist as surface proteins which allow S. aureus to 

directly interact with the host via the cell wall of the bacterium. 

1.8.1 Enzymes 

The most basic, though directly damaging, virulence factors utilized by S. aureus are 

digestive enzymes, of which this particular pathogen has a large variety, including catalase, 

proteases,  nucleases, lipases, hyaluronate lyase and staphylokinase.20 These are used to 

directly invade host tissue, or predispose conditions for bacterial growth; e.g. provide 



SID: 33007675                                                                                                                        Christopher Varley 

21 
 

nutrients or trigger clotting of blood around invading organisms, in order to shield them 

from the immune system.4 These basic functions are vital for microorganism survival, and 

are also secreted by a variety of other pathogenic bacteria. However, the production of 

catalase is useful for distinguishing between Staphylococci and Streptococci, which is 

catalase-negative, and another commonly isolated Gram-positive bacteria.82  

1.8.2 Exotoxins 

Exotoxins are a family of extracellular proteins produced by S. aureus, as well as many other 

Gram-positive bacteria, which are known to have both deleterious effects on the host 

immune system and biological effects promoting the propagation of the bacterium.83 As 

opposed to endotoxin (lipopolysaccharides), which are primarily found within Gram-

negative bacteria and are released on cell lysis, exotoxin in actively secreted by bacteria.84 

There are 2 major functional groups of exotoxin, cytotoxic molecules and toxic 

superantigens: 

1.8.2.1   Cytotoxic molecules 

This functional group includes molecules capable of killing host cells; the haemolysins 

(alpha, beta, gamma and delta) and Panton-Valentine Leukocidin (PVL). The previously 

mentioned Alpha-haemolysin (AH), also known as alpha-toxin, was the first exotoxin with 

cell membrane pore-forming qualities discovered.85 It binds to the membranes of a variety 

of host cells, including erythrocytes, monocytes and endothelial cells, and creates a 1-2nm 

wide hole in the membrane through the formation of a heptameric pore.86 Pore-formation 

is directly damaging to the cell membrane, and disrupts the osmotic balance of the cell. In 

sufficient quantities (>1µg/ml), AH-pore formation can cause cell death very rapidly, 

especially in blood cells such as macrophages and erythrocytes.85  

PVL is an S. aureus exotoxin responsible for leukocyte destruction and tissue necrosis.87 

Although the gene for PVL was found to be expressed in <5% of S. aureus strains, 88 it was 

found in 93% of strains isolated from primary necrotizing infections of the skin (such as 

furuncles).87 This demonstrates a particularly specialised role for this virulence factor in skin 

and soft-tissue infection; the gene encoding PVL is rarely, if at all, located in S. aureus strains 

causing deep-seated infections such as pneumonia or sepsis.89 This clearly demonstrates the 
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ability of S. aureus to vary its genetic ‘loadout’ in order to suit the challenges of surviving in 

different body tissues. 

1.8.2.2 Toxic Superantigens 

Toxic Superantigens (TSAgs) are a group of Staphylococcal exotoxins, which share a common 

set of biological functions, although separately they cause distinct clinical syndromes, 

without the need for overt S. aureus infection. Included in this group is the protein 

responsible for Toxic Shock Syndrome, TSST-1, and the Staphylococcal Enterotoxins (SE), 

which cause emesis and gastroenteritis.90 There are up to 19 different variants of SE, though 

commonly studied examples include SEA, SEB, SEC, SEE, SEH.91  

Despite their varied clinical effects, TSAgs are named after the superantigen effect which is 

common to this group; this is defined as the ability to bind to T-cell receptors regardless of 

antigen specificity. 92 The result of this superantigenic binding is to activate large numbers of 

T-cells in the host, and promote clonal proliferation of those cells.93 In certain cases, TSAg 

stimulation of T cells causes a ‘cytokine storm’, defined as sustained over-production of 

interleukin-1, interleukin-2 and tissue necrosis factor.94 This is the pathological basis for 

toxic shock syndrome, a potentially fatal complication arising from the presence of S. aureus 

growth in areas such as the genitourinary tract, or surgical sites. 

The exact reason for deliberately activating adaptive immune system cells is so far 

unknown; subsequent T-cell anergy following clonal proliferation was long proposed as a 

potential pathogenic effect, following the observation of T-cell unresponsiveness in-vitro 

when subjected to SEB. 95 However, in a recent study of T-cells in active toxic shock 

syndrome, patient T-cells displayed as much activation in response to further exposure to 

TSST-1 as disease-free controls.96 This suggests that host T-cells do not become fully anergic 

during active superantigen toxicity, as they are able to respond to further challenge by 

superantigens. 

1.8.3 Surface proteins 

Surface proteins, covalently bonded to the peptidoglycan of the cell wall of S. aureus, play a 

significant role in the pathogenesis of bacteraemia and sepsis, in particular by evading the 

immune system in the bloodstream.97 All S. aureus cell-wall anchored (CWA) proteins share 

similar basic features allowing their incorporation into the cell wall; at the amino terminal 
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are secretary signal peptides which bind to the cell membrane secretory apparatus, and are 

subsequently removed during secretion.98 At the carboxyl terminal, each CWA protein has a 

sorting signal which facilitates the adherence of the molecule to cell wall peptidoglycan.99 

The predominant family of CWA proteins is the microbial surface components recognizing 

adhesive matrix molecules (MSCRAMM), which contains virulence factors Clumping factor A 

and B (ClfA, ClfB), Fibronectin-Binding Proteins A and B (FnBPA, FnBPB) and collagen adhesin 

(Cna) (Table 1). 98, 100 101 These proteins, as the group name suggests, have primary roles in 

binding to host extra-cellular matrix (ECM) molecules, an important step in the pathogenesis 

of S. aureus soft tissue and blood stream infection.100 Other groups include Near Iron-

transporter (NEAT) motif proteins, which are proteins involved in the capture of iron from 

haemoglobin.102 The sole three-helical bundle CWA protein, Protein A, which is also not an 

MSCRAMM, is described further in chapters below.  
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CWA Protein CWA Group Ligand Function 

Clumping factor A 

(ClfA) 

MSCRAMM Fibrinogen- γ-chain 

carboxyl terminus 

 

Complement factor I 

Adhesion to 

immobilized 

fibrinogen; immune 

evasion by binding 

soluble fibrinogen 

Clumping factor B 

(ClfB) 

MSCRAMM Fibrinogen- α-chain  Adhesion to 

desquamated 

epithelial cells; nasal 

colonization 

Serine–aspartate 

repeat proteins 

(Sdr) 

MSCRAMM Desquamated 

epithelial cells. 

Complement Factor H 

Nasal colonisation and 

immune evasion 

Bone sialoprotein-

binding proteins 

MSCRAMM Fibrinogen- α-chain Adhesion to ECM 

Fibronectin-binding 

proteins A ( FnBPA) 

and B ( FnBPB) 

MSCRAMM Fibrinogen- γ-chain 

carboxyl terminus 

Adhesion to ECM 

Collagen adhesin 

(Cna) 

MSCRAMM Collagen triple helix Adhesion to ECM 

Iron-regulated 

surface proteins 

(Isd) 

NEAT protein Haem , fibrinogen , 

fibronectin, 

cytokeratin 10, loricrin 

Haem uptake and iron 

acquisition. 

Adhesion to 

desquamated 

epithelial cells 

Serine-rich adhesin 

for platelets (SraP) 

NEAT protein Salivary agglutinin 

gp340, unidentified 

ligand on platelets 

Pathogenesis of 

endocarditis 

Table 1- Summary of S. aureus Cell-Wall Associated (CWA) proteins. Adapted from Foster et al.
100, 102 
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1.9 Protein A 

Staphylococcal Protein A (SpA) is a CWA protein found in 98.9% of coagulase-positive S. 

aureus strains,103 and makes up 1.6% of the mass (6.7% cell wall mass) of cultured S. aureus 

colonies.104 It is a unique product of S. aureus; it is not produced by other Staphylococcal 

species such as S. epidermis.105 It is found primarily on the bacterial cell wall, and also in the 

culture supernatant as extracellular SpA.106 The most distinctive feature of SpA is a strong 

IgG-binding capacity, which facilitated its discovery. It was initially described in 1940 by 

Verwey et al,107 as a protein fraction obtained from Staphylococcal extracts, capable of 

precipitating antibodies from rabbit sera. Designated ‘Antigen A’, SpA was later confirmed 

to be a bacterial cell wall protein,108 the first such discovered, and the antigen fraction as 

described by Verwey was given the name ‘Protein A’ in 1964.109 From further antibody 

precipitation tests on SpA, it was found that SpA strongly binds the Fc portion of IgG 

antibodies, in reverse of the usual antigen-antibody binding pattern.110  IgG is capable of 

penetrating the capsule of S. aureus to reach the cell wall, and study comparing 

encapsulated and non-encapsulated S. aureus variants showed an equal binding capacity 

between SpA and free IgG.111 Later studies also confirmed an ability of SpA to also bind to 

human IgM, specifically the Fab VH3 subclass.112 A description of the structure of the SpA 

molecule will aid in the understanding of this antibody-binding capacity.  

1.9.1 Structure of Protein A 

Cell-wall bound SpA, as isolated from the Cowan I strain, was found to be a 42kDa sized 

surface protein.113 However, variations of SpA have been discovered, which encompass a 

range of molecular weights.114 In a study by Cheung et al, cell wall extracts from 12 different 

strains (not including Cowen I) were purified and tested by Western Blot, which identified 7 

distinct SpA variants, ranging from 45-57kDa in size.114 This was theorized to be due to 

variations in the protein structure of SpA. There is also a difference in MW between cell-wall 

bound SpA and extracellular. The most commonly studied SpA-producing strains, Cowen I 

and 8325, produce cell-wall bound SpA at sizes 52kDa and 53kDa respectively, while 

extracellular SpA is smaller, secreted by strain A676, measured at 41kDa by equilibrium 

sedimentation.100, 106, 115 116 

This main functional section of SpA is comprised of 4 or 5 IgG binding domains (IgBDs), 4 of 

which are highly homologous.116 The IgBDs, designated EDABC, are proceeded by an N-
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terminal signal region, and followed by an X-region, formed by 1) a variable repeat region 

(XR) and 2) an end C-terminal sorting signal region (XC).117 As SpA is a CWA protein, the C 

terminal region contains the characteristic cell wall binding section. The SpA molecule is 

synthesised as a precursor molecule with all these regions intact (Figure 3). 

 

Figure 3- Structure of SpA- molecular structure consisting of an N-terminal signal peptide (S), 5 IgG binding 

amino-acid sequences (EDACB), and an X region, consisting of a variable region (XR) and a C-terminal (XC). 

Figure adapted from Sorum et al.
117 

Permission for use in MSc thesis granted by Oxford University Press 

(License number 3953851085813) 

1.9.1.1 N-Terminal Signal Region 

The peptide found at the N-terminal is responsible for SpA joining the extracellular 

exportation pathway within the cell, and subsequently being incorporated into the cell-

wall.118 The particular route of secretion for SpA is known to be the general secretory (Sec) 

pathway, and the N-terminal signal peptide is cleaved during Sec translocation through the 

cell membrane.119 This method of protein sorting to the membrane is common to many 

surface and excreted bacterial proteins, and a large proportion bacterial precursor proteins 

contain a similar sized N-terminal signal sequence for this purpose.120 

1.9.1.2 IgG Binding regions 

The Immunoglobulin binding domains (IgBD) of SpA are 58 amino-acids long, and each 

comprises a triple α-helix structure, with the complete tertiary structure consisting of each 

triple helix folding together, as opposed to a straight string of regions (Figure 4).  

 

Figure 4- SpA IgBD B, ribbon diagram demonstrating triple-helical structure, image from Lambris et al.
121

 

Permission for use granted by Nature Publishing Group (License number 3956030424775) 
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The ability to bind to the Fc portion of antibodies occurs through contact on helices I and 

II.121 Total binding capacity of SpA allows two IgG molecules to bind to each SpA molecule 

(molar ratio 2.1:1).122 The crystal structure of this antibody-domain complex has been fully 

described between domain B and Fc, which has demonstrated two points of contact, one 

hydrophobic and one polar, between the CH2 and CH3 regions of Fc fragments and domain 

B.123 All individual domains can bind to the Fc portion of IgG, as well as the Fab region.124 125 

However, not all regions bind equally; regions A, B, C and D are all highly homologous and 

demonstrate strong binding to IgG, while region E has a weak affinity for IgG, and was only 

discovered via genetic sequencing of strain 8325. This confirmed the complete Ig-binding 

regions of SpA to be pentameric.116 Artificial SpA IgBDs exist, such as domain Z, engineered 

from naturally occurring domain B by replacing a glycine residue with an alanine residue in 

helix I.126 This molecule retains the IgG-binding affinity, and is able to be polymerized to 

form longer chains of IgG binding regions. 

Unlike the wide variety of human and animal IgG molecules which can bind SpA via the Fc 

region,127 the alternative Fab binding is specific to the VH3 (variable heavy chain) region 

within the Fab region of IgM.128 Binding to the Fab region occurs through IgBD helices II and 

III, binding to region VH3 of IgM antibodies (Figure 5).129 
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Figure 5- SpA domain D binding to the VH region of Fab 2A2. Binding sites between helices II and III, and VH are 

labelled D, E and B. Image from Graille et al.129 Permission for use allowed in unpublished MSc by Proceedings 

of the National Academy of Sciences 

 

Different strains of S. aureus can express variants of SpA molecules with different 

combinations of IgBDs; these can include molecules containing only 4 IgBDs, missing region 

A or C.117 Referring to the SpA-producing S. aureus strain, Cowen I, it has been found to 

project 5 IgBDs from the cell surface, with the E domain closest to the N-terminal.116 

1.9.1.3 X-region- variable repeat 

The polymorphic XR region is located immediately before the C-terminal cell-wall binding 

region, and consists of a variable number of 24 base-pair repeats.130 The biological function 

of this region is not known, though it has been suggested that these repeats aid in extending 

the SpA molecule beyond the cell wall.131 The XR region varies between strains of S. aureus, 

and affects the molecular weight of the SpA molecule (Figure 6).117 
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Figure 6- S. aureus isolates demonstrating variants of SpA, with variable XR regions, amino acid (aa) length and 

estimated molecular weight. These variants of SpA genes for identified from MRSA isolates in hospital patients. 

Diagram from Sorum et al.
117 

Permission for use in MSc thesis granted by Oxford University Press (License 

number 3953851085813) 

 

This region does serve a biomedical purpose however; the short sequence repeat (SSR) 

region of the SpA gene (spa), which encodes the SpA XR region present in most strains of S. 

aureus, can be sequenced in order to type S. aureus.132 This is the most common S. aureus 

typing method, due to its speed and ease of interpretation. One disadvantage of this 

however, is any variability in the 5 IgBDs can lead to a ‘non-typable’ result, which is known 

to occur due in 1-2% of strains due to natural mutation.133 

1.9.1.4 X-region- C-terminal sorting signal 

The C-terminal end of the SpA molecule is responsible for attachment to the S. aureus cell 

wall, allowing the SpA to extend from the bacterium.  The section directly responsible for 

this incorporation to the cell wall comprises a 35-residue sorting signal, in the form of the 

LPXTG motif.11 This is then followed by a tail of positively charged residues. Once the 

molecule containing the LPXTG motif is incorporated into the cell wall, a sortase enzyme 

cleaves between the threonine and glycine amino acid residues, allowing the free carboxyl 

group of threonine to bind to the peptidoglycan cross-bridges.99 Once this occurs, the SpA 

molecule is securely attached to the cell wall by the C-terminal, with the N-terminal region, 

including IgBDs, projected in an extended profile outside of the cell.  
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1.9.2 Extracellular Protein A 

Most strains of S. aureus produce SpA as both cell wall bound and extracellular protein; 

approximately 2-6 times more cell wall bound SpA is produced than extracellular,103 though 

some strains (particularly antibiotic-resistant strains) produce solely extracellular SpA.134, 135 

As described, known fractions of secreted extracellular SpA exist at a smaller MW than cell-

wall associated.100 

Extracellular SpA is produced and secreted during the exponential phase, as a fraction of 5% 

of total SpA, by Cowen I S. aureus.106 However, a large proportion of SpA in culture medium 

is the result of release from the cell wall during cell lysis.106 Despite this mixture of secreted 

and cell-wall lysed SpA, there exists evidence that the secretion of SpA is a controlled and 

deliberate act by S. aureus, induced by the external environment. One method by which SpA 

release is induced is through interaction with host chemokines, which has been 

demonstrated in MRSA skin infection in mice.136 

The method of SpA release is through a separate biochemical process through that which 

incorporates SpA in to the cell wall. One such process involves the action of the LytM 

enzyme, a secreted autolytic enzyme which degrades the cell wall of S. aureus by breaking 

cross-bridges of peptidoglycan.137 LytM is understood to be the final step in a process which 

releases SpA from the cell wall; however, LytM mutants continued to produce small 

amounts of secreted SpA, indicating that other enzymes facilitate the cell wall release of 

SpA.138 Another, independent route of release was confirmed recently by O’Halloran et al, 

as released SpA was detected with an unprocessed sorting signal, indicating no prior 

incorporation into the cell wall.139 This evidence shows that the secretion of free SpA is the 

result of a combination of enzyme-induced release from the cell wall and a distinct secretion 

pathway, indicating that extracellular SpA plays a useful role for S. aureus. Given the potent 

IgG binding capability of SpA , extracellular SpA may aid the cell-wall bound protein in the 

primary function of immune evasion. 

1.9.3 Functions of Protein A 

SpA is a multi-faceted virulence factor for S. aureus; its ability to bind host antibodies is 

SpA’s most understood mechanism of virulence, in recent years it has been demonstrated to 
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provide a variety advantageous effects which enhance the propagation of S. aureus. These 

can be grouped into: 

1. Preventing opsonophagocytic killing, by binding to Fc portion of host IgG 

2. Evasion of host adaptive immunity, through superantigenic activation of B-cells 

3. Adherence of S. aureus to sites of thrombosis and endothelial injury, though platelet 

binding 

4. Promotion of S. aureus aggregation and biofilm formation 

1.9.3.1 SpA binding to IgG Fc- prevention of opsonophagocytosis and complement 

activation 

Opsonisation describes the process in which host antibodies (with additional aid from the 

complement system) bind to an invading antigen, in order to clump together pathogens and 

provide increased recognition by the innate and adaptive immune system. The advantage to 

the host is that opsonisation aids phagocytosis of invading organisms by macrophages, a 

process with the combined name of opsonophagocytosis.140 The ability of SpA to bind to the 

Fc portion of IgG confers S. aureus the means to avoid opsonisation, by presenting the 

opposite end of the IgG molecule to the region which immune cells traditionally bind, i.e. it 

‘hides’ the usual antigen recognised by phagocytes (Figure 7).141  

 

 

Figure 7- Comparison of normal antibody-mediated phagocytosis and SpA evasion of phagocytosis from 

polymorphic neutrophils (PMN). Images adapted from Kobayashi et al.142 Permission for use allowed by 

American Society of Microbiology. 
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Experimental evidence demonstrates the effectiveness of SpA in preventing phagocytosis. 

Peterson et al demonstrated that S. aureus strains which expressed higher amounts of SpA 

were phagocytosed by neutrophils at a slower rate, when placed in an IgG rich 

environment.143 Setting this experiment in an IgG saturated medium ensures that SpA-IgG 

surface binding sites are saturated, proving that the reduction in phagocytosis is as a result 

of IgG binding. Furthermore, S. aureus strains displaying a variant of SpA, specially 

engineered to lack specific Fc binding capacity, exhibit reduced survival capacity in mice.141  

This technique of incapacitating the humoural immune system by reversing antibody 

binding patterns isn’t exclusive to S. aureus. A study involving another Gram-positive 

pathogen, Streptococcus pyogenes, showed that the orientation of antibody binding on the 

surface of a bacterium does influence pathogen survival in the host; wild-type S. pyogenes, 

expressing a Streptococcal IgG Fc binding protein (protein M1), survive longer and avoid 

host immune response longer than mutants lacking an IgG Fc binding capacity.144 This is 

additional evidence for IgG Fc binding acting as a viable immune evasion tactic for S. aureus, 

and the authors also suggest that IgG Fc binding plays a large role in the survival of 

pathogenic organisms as commensals in the healthy population.144 

Another potential virulent effect of this interaction with IgG Fc is the depletion of 

complement factor; the complex formed between SpA and Fc fragments has been shown to 

reduce complement factors in rabbit sera,145 but conversely, inhibit complement system 

activation.146 This subsequent inhibition of the classical complement pathway occurs 

through an unknown mechanism. 

1.9.3.2 SpA superantigen activity 

The ability of SpA to bind to the Fab region of IgM confers another route for S. aureus to 

disrupt the host immune response; it is the method by which SpA acts a superantigen.147 

The primary target of Fab binding, the VH3 class of IgM, is specifically expressed on the cell 

membranes of plasma B-cells.148 Following binding, SpA activates the B-cell and promotes 

clonal expansion and  the release of IgG antibodies.149, 150 This mechanism of lymphocyte 

interaction is similar to the S. aureus toxic superantigens discussed above; however, these 

bind to and activate T-cells only, implying a unique role for SpA in humoural immune 

activation. A recent study Goodyear et al, following the fate of peripheral B-cells activated 
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by SpA, discovered that, following a limited amount of clonal proliferation, these cells 

undergo programmed cell death.151 As well as disrupting antibody responses, memory B-

cells have also been proposed as a target for SpA, and murine studies has recently proven 

that SpA-expressing S. aureus ameliorates host adaptive immunity, reducing protection 

against S. aureus re-infection.141 As up to half of mature human B cells are capable of 

expressing the VH3-SpA binding site,151 this could present a significant virulence effect for S. 

aureus. 

Another proposed function of these superantigen effects is the ability to trigger an 

exaggerated immune response towards a specific antigen; this phenomenon is termed 

immunodominance, and describes the predilection of targeted immune responses towards 

one antigen (e.g. SpA) over other potential targets.152 SpA derived B-cell clonal expansion 

produces B-cell types with a bias towards the VH3 class of antibody receptor, which reduce 

the immune system’s ability to recognise the wider range of S. aureus virulence factors, and 

therefore leads to less protection from future infection.152 

Recently, it has been demonstrated that this B-cell superantigen effect subsequently 

activates CD4+ T-cells in lymphatic tissue, providing additional evidence of host immune 

manipulation by S. aureus.153 Whether this T-cell involvement helps or hinders S. aureus 

infection is yet to be investigated. 

1.9.3.3 SpA Platelet Binding 

A study of Staphylococcal platelet binding by Nguyen et al, demonstrated that platelets 

expressing the gC1qR platelet protein show preferential binding to S. aureus strains 

expressing SpA (e.g. Cowen I), and that beads of purified SpA can precipitate gC1qR from 

solution.154 This is an example of a novel method of platelet binding in S. aureus, an ability 

which aids the organism in localising to areas of endothelial damage or thrombosis. 

1.9.3.4 SpA Biofilm Formation 

Along with interactions with the host, SpA plays a role in multicellular behaviour in S. 

aureus, primarily the formation of biofilms. S. aureus mutants with the gene responsible for 

virulence factor expression in S. aureus, agr, deleted has been shown to form more stable 

and strong biofilms.155 The expression of this gene is inversely related to production of cell 

surface proteins, including SpA. Recently, Merino et al demonstrated that over-expression 
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of SpA specifically, both attached to the cell surface and secreted into medium, contributed 

to the initial formation of biofilms in-vitro and in murine infection models.156 These findings 

suggest a role for SpA in primary infections particularly important to ICU wards, those of 

intravascular and urinary catheters. 

1.9.4 Evidence for SpA as a virulence factor 

Several studies have confirmed the role of SpA as an important virulence factor in S. aureus 

infection. In experimental mouse models, SpA-negative mutant strains of S. aureus were 

demonstrated to produce smaller skin lesions and less severe intraperitoneal infection, than 

their SpA-positive counterparts.157 A greater degree of arthritis and bone destruction is seen 

in wild-type S. aureus expressing SpA as opposed to mutants lacking SpA, when injected into 

the synovial cavity.158 Further models of murine septic arthritis, demonstrate clearly that 

SpA  expressing S. aureus strains give rise to more severe infection and higher mortality 

rates, confirming SpA as a virulence factor in osteoarticular infection.158 

Along with direct evidence of the increased pathogenicity of SpA expressing strains, several 

studies have proved a correlation between SpA-depleted S. aureus mutants and reduced 

virulence.157, 159, 160 

The pathogenic effects of SpA have also been confirmed in other manifestations of S. 

aureus, beside direct infection. High levels of SpA have been indentified in S. aureus isolates, 

collected from patients with active Kawasaki disease, an autoimmune disease of childhood 

with suspected S. aureus sensitisation playing a role in pathogenesis.161 Similar immune 

disruption is seen in patients with Kawasaki Disease, as that caused by toxic superantigens 

(such as TSST-1).162 

SpA has a clear, demonstrable role in the pathogenesis of S. aureus infection, along with a 

wide range of proven virulent effects which primarily act on prolonging S. aureus survival in 

the host, avoiding and disrupting the immune system and directly damaging host tissue. 

1.9.5 Genetics of SpA 

The structural gene for SpA, spa, was first cloned into E. coli strains by Löfdahl et al.163 DNA 

sequence assays revealed 5 homologous regions corresponding to 5 IgBDs, which, when 

expressed, retained the ability to bind IgG. The gene was completely sequenced one year 
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later, using S. aureus strain 8325, which gave an estimated Mr for SpA of 58, 703.164 

Depending on the strain of S. aureus, spa can be found primarily on plasmids, or on bacterial 

chromosomes. It should be noted that coagulase-negative strains of S. aureus, with plasmid-

encoded spa  have been found to produce only 12-30% of the SpA expressed by 

chromosomal spa strains, such as Cowen I.165 SpA is maximally produced during the 

exponential phase of growth, like other surface proteins; production is then down-regulated 

in the post-exponential phase.166  

1.9.5.1 Control of SpA expression 

S. aureus virulence factor expression, including exotoxins and surface proteins, is controlled 

by global regulatory systems, which are activated or deactivated at certain times of the S. 

aureus life cycle.167 These regulate the temporal expression of virulence factors by 

controlling the expression of multiple genes at once, and are in turn influenced by the 

quorum sensing system. On such system agr (accessory gene regulator), works at the 

transcriptional level through the action of a regulatory RNA molecule (RNA III).168 This global 

regulator gene was initially described as the genetic loci activated during the exponential 

phase of S. aureus growth; agr- knockout mutants display decreased secretion of the 

exotoxins AH and TSST-1, confirming its role in up-regulating virulence factor expression.169  

The genetic control of spa expression involves several transcription factors, which are also 

involved in the expression of other virulence factors. This system involves inhibitory factors, 

such as SarA (staphylococcal accessory regulator), and promoting factors, such as Rot 

(repressor of toxins), both of which are involved in cell signalling pathways which alter rate 

of spa gene transcription.170 Importantly,  spa gene transcription is inversely related to the 

activity of quorum-sensing transcriptional factors, such as agr.171 In the opposite 

relationship to secreted exotoxins, studies show a 25-fold increase in Protein A production 

displayed in mutated  agr-knockout cells.172 Furthermore, when RNA III expression is 

maximal, during the postexponential phase of bacterial growth, SpA production is inhibited 

(Figure 8).168 
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Figure 8- Diagram describing the growth phases (x axis) of S. aureus to bacteria number (y axis), and type of 

virulence factor production. Adapted from Harris et al.12 

 

The control of virulence factor expression is related to the stages of S. aureus infection. In 

acute infection, with high bacterial cell density and greater nutritional need, agr promotes 

the release of toxins and digestive enzymes.171 In initial colonisation, or chronic, low-lying 

infection, the agr system is suppressed, which in turn promotes the expression of SpA and 

other surface proteins.173 This is evidence of a further adaptive response by S. aureus to its 

environment, in order to promote ongoing infection, as surface proteins are primarily 

involved in adherence to host tissues and biofilm formation. In the case of SpA, increased 

production during times of low bacterial load may correlate to its primary role in immune 

evasion, allowing S. aureus to survive as a commensal organism.144 

1.10 Processing and excretion of Protein A 

The excretion of SpA from the body is known to involve the formation and processing of 

SpA-IgG complexes; a study conducted using radio-labelled SpA-IgG complexes injected into 

rabbits showed maximal uptake of complexes by the liver and spleen.174 This indicates that 

SpA is first sequestered and metabolised by the body before excretion from the urine. 
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Studies into the processing and excretion of naturally occurring SpA, released into the body 

by infection with S. aureus, are rare in the literature, but the potential use of SpA as a 

therapeutic agent has provided animal and human pharmacokinetic studies. In a study of IV 

SpA administration in Cynomolgus monkeys showed that a weekly dosage of 100µg/kg SpA 

is non-toxic and well tolerated, and clearance of purified SpA from plasma is rapid following 

administration.175 Of particular note, the presence of anti-SpA antibodies was associated 

with quicker excretion, even after first dose, implying that there exists a pre-formed 

immune response in certain animals. 

Tests of SpA pharmacokinetics in human subjects are rare, however, following successful 

animal trials, the potential for immune modulation of SpA in autoimmune disease has 

prompted clinical trials. A Phase I human trial was undertaken in 2013, involving 20 healthy 

subjects given single doses of SpA, at either 0.3µg/kg and 0.45µg/kg.176 Generally, the doses 

were well tolerated by subjects, and complete clearance of SpA had occurred by 96 

hours.176 Immunological studies showed an anti-SpA antibody response in 63% of all 

subjects tested, and that antibody-positive patients showed increased frequency of SpA 

clearance. This provides further evidence that formation of anti-SpA antibodies is an 

important step in the excretion of SpA from the body, but not essential. This rapid clearance 

does not require sequestration and breakdown in the liver or spleen, as other 

Staphylococcal bacterial toxins found bound to antibodies in human serum, such as SEB, are 

cleared within 24 hours via the kidneys.177 Other animal studies have located an 

accumulation of Staphylococcal exotoxins TSST-1 and SEB in rat renal tissue, from inoculated 

burn sites, proving that the processing and excretion of toxins from primary infection sites 

involve the kidneys.178 Studies have yet to investigate whether SpA is found in the kidneys 

or urine during excretion, providing an area of opportunity for research. 

1.10.1 Detection of naturally occurring Protein A in human samples 

SpA has been used for the precipitation and purification of antibodies from serum, culture 

supernatants and other solutions, since its discovery, and this is usually achieved through 

the use of SpA-affinity columns.179, 180 Detection of SpA by immunoassay was first achieved 

in order to detect SpA contaminants from commercially sourced antibody products.181 

Optimisation of ELISA methods for detection of SpA in commercial antibody products has 

produced techniques capable of detecting 0.2ng/ml SpA,182 though despite this, attempts to 
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apply these tests to the detection of SpA in clinical samples are rare in the published 

literature. 

In 1991, Nilsson et al described an ELISA method for the detection of commercial SpA in 

human serum samples, which had so far not been accomplished.183 The main complication 

in detecting SpA in serum samples was the presence of IgG in serum; this was theorised to 

interfere with the immunoassay by competitively binding to SpA, and previous studies have 

demonstrated this effect by adding IgG to purified SpA samples, and producing a quenching 

effect on ELISA.184  Only after boiling SpA-spiked serum samples was detection possible, 

implying that IgG-SpA complexes in serum could be broken by boiling. Using this preparation 

method, detection was possible down to a level of 5ng/ml, compared to 0.5ng/ml in buffer, 

implying that sensitivity of SpA detection is still reduced in serum even after boiling samples.  

Endogenous SpA, produced during the course of natural S. aureus infection, has been 

detecting patient serum samples by ELISA. This was done by Steindl et al, using the method 

of boiling patient samples as outlined by Nilsson et al; boiling (and dilution) was again 

demonstrated to be the optimal method of preparing samples and dissociating SpA-

antibody complexes.185 Patients positive for SpA in this study were known to be infected 

with S. aureus, though the amount of SpA detected was small and varied between patients, 

from 0.25ng/ml to 7.9ng/ml.185 

A different method of SpA testing, the detection of host antibodies raised against SpA in 

serum, has also been achieved through ELISA. This was developed by Greenberg et al, using 

SpA as capture antigen and saturating Fc binding sites with human IgG Fc fragments, prior to 

incubation in human serum samples and final detection using an anti-IgG (Fab-region 

specific) antibody.186 Samples tested were from patients with confirmed S. aureus 

endocarditis, and results showed that the ELISA was able to distinguish between 

endocarditis patients and controls, but the test displayed a low sensitivity (52%) and 

specificity (48%) for distinguishing between the two groups. Further work into 

immunoassays for detecting antibody responses to SpA in human samples are currently 

lacking. 
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1.11 Summary 

Staphylococcus aureus is a Gram-positive bacterium capable of causing life-threatening 

infection in humans, and is aided by a wide range of virulence factors which directly damage 

the host, and evade host defences. Peptidoglycan-anchored surface proteins allow S. aureus 

to project virulence factors from the cell wall; the first discovered surface protein, SpA, can 

also be found free in culture medium. SpA has a number of functions, the most important of 

which is the ability to bind host antibodies by both the Fc and Fab regions, providing S. 

aureus with innate and adaptive immune system evasion.  

The detection of endogenous SpA in S. aureus infection has not been achieved in patient 

urine samples, though the detection of antibodies against SpA in human serum has been 

demonstrated. As such, the presence of SpA in human urine samples has not been assessed 

as a potential antigen test for S. aureus infection. 

The emergence, and continual adaptation of, antibiotic-resistant strains of S. aureus 

continues to make S. aureus infection a serious consequence of ICU admission. Correct and 

timely treatment with antibiotics is essential for a good outcome from S. aureus 

bloodstream infection, and blood-culture diagnosis of S. aureus infection can be a slow 

process. Rapid detection of bacterial infection through antigen testing has been previously 

achieved for other pathogens, and has allowed rapid detection of infection through non-

invasive means such as urine testing. Development of a sensitive and specific urinary 

antigen test for S. aureus, with SpA as the antigen, would allow optimal antibiotic treatment 

to commence sooner, improving the management of S. aureus infection. 

1.12 Aims 

This study aims to optimise and develop the work of Yue Han (MSc 2014),187 in detecting 

SpA in ICU patient urine samples by Western Blot methods. Other aims include the 

development of an enzyme-linked immunosorbent assay (ELISA), based on the methods 

established by Frances Price (MSc 2013),80 for the detection of commercial SpA and SpA in 

ICU patient urine. Mass Spectrometry will be utilized to detect SpA in any appropriately 

sized bands seen on SDS-PAGE gels, using a unique method for detecting S. aureus toxins by 

MS. The overall aim of this work is to assess the suitability of SpA as a urinary biomarker for 

S. aureus infection in ICU patients. 
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2 Materials and Methods 

2.1 Materials: 

2.1.1 Western Blot materials: 

2.1.1.1 Material for SDS-PAGE gels: 

 Mini-PROTEAN Tetra Cell Gel kits (BioRad- 165-8000) 

 Mini-PROTEAN Glass Plates (BioRad- 1653311) 

 Mini-PROTEAN Short Plates (BioRad- 1653308) 

 Criterion Blotter Transfer Packs (BioRad- 170-4070) 

 Acrylamide 30% Ultra-Pure Protogel (National Diagnostics- EC-890) 

 N’N’N’N’ Tetramethylethylenediamine (TEMED)- (Sigma- T9281) 

 Ammonium Persulphate (APS) powder (Sigma- A3678)  

 Sodium Dodecyl Sulphate (SDS) powder (Fisher Scientific- S/5200/53) 

 TRIS-Glycine-SDS PAGE buffer (Geneflow, Staffordshire, UK- B9-0034) 

2.1.1.2 Antigens 

 Protein A, purified from S. aureus cell culture (Sigma- P6031) 

 Alpha-haemolysin from S. aureus (Sigma- H9395) 

 Staphylococcal Enterotoxin B (SEB) from S. aureus (Toxin Technology- BT202red) 

 Toxic Shock Syndrome Toxin 1 (TSST-1) from S. aureus (Toxin Technology- TT606) 

 Immunoglobulin G from human serum (Sigma 56834) 

2.1.1.3 Antibodies: 

 Anti-Protein A antibody- polyclonal chicken IgY HRP-conjugated (Abcam- ab18596) 

 Anti-human IgG antibody- polyclonal rabbit IgG HRP-conjugated (Biotin- ab6758) 

2.1.1.4 Protein Standards for Western Blot 

 Protein Mixture ladder (GE Healthcare- 17044601) 

 Precision Plus Protein Dual Colour Standards (BioRad- 161-0374) 

 Kaleidoscope Prestained Standards (BioRad- 161-0324) 
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2.1.1.5 Washing and blocking materials: 

 Phosphate-Buffered Saline Tablets (Sigma- P4417- 100 tablets) 

 TWEEN® 20 (Sigma-Aldrich- P1379 500ml) 

 Milk- dried milk powder (Marvel original) 

 Bovine Serum Albumin, lyophilized powder (Sigma- A7906) 

2.1.1.6 ECL Substrate: 

 P-Coumaric Acid powder (Sigma- C9008).  

 Luminol powder (Sigma- A8511).  

2.1.1.7 Membranes: 

 Immobilin-P PVDF Membranes (Merck- PHV00010) 

2.1.2 Mass Spectrometry Materials: 

2.1.2.1  Sample preparation: 

 Acetonitrile (Sigma- 494445) 

 Dithiothreitol (DTT)- (Melford- MB1015) 

 Trypsin Singles Proteonomics Grade (Sigma- T7200) 

 Trypsin Reaction Buffer (Sigma- R3527) 

 Trypsin Solubilising Agent (SigmaT2073) 

 Coomassie Brilliant Blue R (powder)- (Thermo-Fischer Scientific- 20278) 

2.1.2.2 ELISA Materials: 

 TMB Microwell Peroxidase Substrate- SureBlueTM Reserve (KPL-  53-00-00) 

 Human serum from male AB plasma (Sigma- H4522- 20ml) 

 Gelatine, from cold water fish (Sigma- G7765- 250ml) 

 Carbonate-Bicarbonate capsules (Sigma- C3041- 100 capsules) 

2.1.2.3 Bradford Assay Materials: 

 Brilliant Blue Protein Reagent (Sigma- B5809- 100ml) 

 



SID: 33007675                                                                                                                        Christopher Varley 

42 
 

2.2 Methods: 

 

2.2.1 Western Blot for Protein A samples in control and sample urine 

2.2.1.1 Making polyacrylamide gels for SDS-PAGE electrophoresis 

Initially, front and backing gel plates were fixed with plastic gel holders, with 1mm space 

between. Acrylamide gels were prepared separately as stacking and resolving gels, with 

varying amounts of acrylamide. A solution of 12% acrylamide resolving gel (6.3ml dH20, 5ml 

1.5M Tris HCl pH8.8, 8.3ml 30% (w/v) acrylamide, 200µl 10% (w/v) APS, 200µl 10% (w/v) 

SDS and 20µl TEMED- sufficient for 4 gels) was prepared in a test tube and pipetted into the 

space between the Mini-PROTEAN glass and short gel plates, leaving a 2cm space at the top. 

A small amount of isopropanol was pipetted onto the top of the resolving gel to remove 

bubbles. After allowing 30 minutes for the gel to set, the isopropanol was washed off with 

dH20. Stacking gel (7.66ml dH20, 1.26ml 1M Tris HCl pH 6.8, 1ml 30% (w/v) acrylamide, 

0.5ml 10% (w/v) APS, 100µl 10% (w/v) SDS and 10µl TEMED- sufficient for 4 gels) was then 

pipetted in the remaining space to the top of the front gel plate. A 10-well comb was then 

immediately placed into the gel, and the combined gels were allowed to set for 30 minutes. 

2.2.1.2 Preparing and loading samples 

Included in Western Blots was a protein mixture used as a molecular weight protein ladder 

(see materials). SpA samples were prepared (1mg/ml) in either boiled control urine or 

Phosphate Buffered Saline (PBS), and dilutions for analysis prepared from that stock. Patient 

urine samples were defrosted, and then vortexed and warmed at 360Cto reconstitute any 

material in the sample which had fallen out of solution. In general, all samples and controls 

were mixed with loading buffer (1.15M TRIS, 10% (w/v) SDS, 0.08M DTT, 20% (v/v) glycerol, 

2.5% (w/v) bromophenol blue in 25ml total volume of dH2O) at a ratio of 2/3 sample and 

1/3 loading buffer. In the case of a sample being only used to load a single well, this used 

8µl of sample and 4µl of loading buffer. Samples mixed with LB were vortexed and heated 

at 980C for 3 minutes. Following this, they were centrifuged for 1 minute in a bench-top 

centrifuge at 10,000g, to collect any sample which may have been present on the sides and 

lid of the microfuge tubes.  
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To load the gels, firstly the 10-well comb was removed from the stacking gel, and the 

combined plates were fitted into the Mini-PROTEAN Tetra cell system and then placed in the 

running tank. Tris-Glycine-SDS PAGE buffer was poured into the central reservoir and 

allowed to fill the wells. An aliquot 10µl of each sample was pipetted into each well. 

Once loaded, the surrounding tank was filled with Tris-Glycine-SDS PAGE buffer, and 

electrophoresis performed at 140v for 1.5 hours. Following this, the gels were removed 

from the glass plates ready for transfer. 

2.2.1.3 Transferring to Polyvinylidene fluoride (PVDF) membrane 

The gels were transferred using the ‘wet’ transfer method, using membranes and filter 

papers soaked in transfer buffer (20mM Tris, 150mM Glycine and 20% methanol). First, 

PVDF membranes (Immobilion P, Millipore, UK) were cut to a size of 6cm x 9cm, then 

equalised by placing in pure methanol for 10 seconds, dH20 for 2 minutes and finally 

transfer buffer for at least 20 minutes. The Criterion transfer pack was formed as a 

‘sandwich’ made by stacking the following layers from bottom to top; 4 pieces of filter 

paper, gel, PVDF membrane and finally 4 more pieces of filter paper. The transfer packs 

were closed and put into a tank of transfer buffer, with an ice pack and magnetic stirrer, in 

order to keep the gels cool during the transfer period. An electric current (115v/700mA) was 

then passed from the back to the front of the tank, for 1.5 hours. 

2.2.1.4 Washing and blocking 

Following transfer, the membranes were removed from the transfer pack and placed in PBS- 

0.1% (v/v) Tween 20 (PBST), and washed on the rotary agitator at RT for 1 minute. Following 

this, the PBST was removed and 20ml of blocking buffer was applied; blocks used were 5% 

(w/v) skimmed milk, 2% (w/v) BSA or 5% (w/v) BSA. Membranes were incubated in the 

selected blocking solution on a rotary agitator overnight in a cold room, or for 1 hour at RT. 

2.2.1.5 Incubation in antibody 

The blocking solution was removed and the membranes were washed with PBS- 0.1% (w/v) 

Tween 20 for 1 minute, then twice more, each for a further 15 minutes. A solution of 

primary antibody was diluted in either 20ml 5% (w/v) milk or 2% (w/v) BSA, and applied to 

the membranes.  Antibody concentrations used ranged from 1:500 to 1:10000. The 

membranes were incubated in primary antibody for 1.5 hours on a rotary agitator at RT. 
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2.2.1.6 Washing and Western Blot image development 

Following incubation in primary antibody, the antibody solution was poured off and the 

membranes were washed in PBST, 3 times, for 15 minutes each. This allows final removal of 

non-specific or HRP-conjugated antibody displaying on development of the image. Electro-

chemiluminescence substrate (ECL), comprising 1M Tris HCl pH 8.0 solution, Luminol and p-

Coumaric acid (see materials), was prepared immediately prior to use, and 2-3ml was 

applied to each membrane. Following incubation for 1 minute, they were placed on a piece 

of transparent film and images were saved on a Chemidoc image reader (BioRad), using the 

software Image Lab (BioRad). 

After viewing, membranes were transferred to a separate plate for staining with amido 

black (125ml dH20, 100ml methanol, 25ml glacial acetic acid and 0.1% (w/v) Amido 

Black)solution, which was applied for 3 minutes at RT. They were then washed in de-stain 

solution (50% (v/v) dH20, 40% (v/v)methanol and 10% (v/v) glacial acetic acid) 3 times, for 

15-20 minutes, to allow for optimal viewing of bands. They were then photographed by the 

Chemidoc, using Brightfield settings within the Image Lab software. 

2.2.2 Mass Spectrometry 

2.2.2.1 SDS-PAGE gel electrophoresis and gel staining 

Samples to be examined were subject to polyacrylamide gel electrophoresis, prepared as 

described above. Samples were prepared in the same 1/3rd ratio of loading buffer to sample, 

as described above for WB sample preparation, and 10µl of each were loaded in a 10-well 

gel and electrophoresis was performed for 1.5 hours at 140v. Following this, the gels were 

placed in 10ml of Brilliant BlueTM Coomassie Stain (50% dH20, 40% methanol, 10% glacial 

acetic acid and 0.25% (w/v) Coomassie Brilliant BlueTM), for 1 hour or overnight, on an 

orbital mixer. 

 

Following staining, the gels were washed for 10 minutes in destain solution (described 

above), and fresh destain was added every hour for 3-4 hours. The gels were rehydrated in 

20ml of dH20 overnight. 
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2.2.2.2 Sample Preparation 

The gels were transferred to transparent PVC, where the regions to be prepared for analysis 

by Mass Spectrometry were identified. Prior to sample preparation, the gels were viewed 

and digital images captured saved using a Chemidoc, on the Coomassie Blue setting within 

the Image Lab software. 

The chosen regions were cut out of the gel using a clean scalpel, and then divided into 1mm 

by 1mm squares. These were placed into clean Eppendorf microfuge tubes and centrifuged 

for 10 seconds to ensure their placement at the bottom of the microfuge tube. Then 150µl 

of Acetonitrile (ACN) was added to each sample, and they were incubated at RT for 30 

minutes, with occasional vortexing. Once the gel pieces had shrunk, the ACN was removed, 

and 50µl of DTT solution (1M DTT in 990µl of 100Mm Ammonium Bicarbonate (ABC) pH 8.5 

solution) was added to the gel pieces. The samples were incubated in DTT at 560C for 30 

minutes. Following this, the DTT solution was removed, 150µl of ACN was reapplied to the 

gel pieces and they were incubated at RT for 30 minutes. 

The ACN was then removed and 50µl of Iodoacetamide (10mg of Iodoacetamide in 100µl of 

ABC) was applied to each sample and the gel pieces kept at RT and in a dark environment 

for 20 minutes. The Iodoacetamide was removed and a further 150µl of ACN reapplied for 

30 minutes at RT.  

2.2.2.3 Trypsin Digestion 

Trypsin was prepared by adding 45ul of trypsin reaction buffer and 5ul of trypsin solubilising 

agent to each trypsin vial. Following removal of the ACN from each sample, 25µl of this 

trypsin mixture was added, briefly mixed and kept at 40C for 30 minutes. Following this, a 

further 30µl of trypsin reaction buffer was added to each sample, briefly mixed and then 

incubated overnight (minimum 18 hours) in a 370C incubator. 

Following overnight trypsin digestion, the trypsin was removed by pipette, and the peptides 

were extracted from the gel pieces with 110µl of extraction buffer (1:2 mixture of 5% Formic 

Acid and ACN). These were incubated at 370C for 20 minutes, before the extract was 

transferred to fresh microfuge tubes, with 4 holes cut into the lid. These were placed into a 

freeze-dryer, and set at a cycle of 1 hour freezing, 16 hours of drying and 1 hour final drying. 

The resulting samples were stored at -200C until use. 
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2.2.2.4 LC-MS Sample Processing 

Freeze-dried samples were reconstituted with 20µl of 0.1% trifluoroacetic acid (TFA), before 

being placed in an ultra-sonicating bath for 5 minutes and centrifuged for 1 minute. Then, 

20µl of reconstituted sample was transferred to micro-vials and placed within the Ultimate 

3000 (LC PackingsTM
 a DionexTM Company) autosampler trays. Prior to sample acquisition, 

the computer software Esquire ControlTM  and Chromeleon ExpressTM were used to calibrate 

liquid chromatography settings, to a loading flow of 0.25µl/s and a voltage of ~150v. Sample 

was subject to ionising spray, followed by mass spectrometry analysis, for 110 minutes. 

Following acquisition of data, these data were analysed using the programmes Bruker 

DaltronicsTM and BiotoolsTM software, followed by hit searches using the online MascotTM 

tool. Online search parameters were used to restrict results to Eurkaryotic bacteria in 

certain searches. 

2.2.3 Enzyme-linked immunosorbent assay (ELISA) for the detection of Protein A 

in urine samples 

 

An ELISA method was initially developed by Harrison et al for the detection of 

Staphylococcal exotoxin in infant urine samples,79 and further optimised by Frances Price 

(MSc 2013),80 for the detection of exotoxin in the same urine samples which are the subject 

of investigation in this study. Initial development of a sandwich ELISA for the detection of 

SpA was based on these methods, using IgG as a capture antibody. 

Microwell plates (Nunc-Immuno F96 Maxisorp, Thermo Scientific, Hemel Hempstead, UK) 

were coated with 0.5µg/ml IgG in coating buffer (0.1M carbonate-bicarbonate, pH 9.6, 

Sigma-Aldrich) , at a volume of 100µl per well. Plates were incubated in IgG overnight, at 

40C. 

The following morning, plates were emptied and washed four times with 200µl/well PBS-

0.05% (v/v) Tween 20, using a multi-channel pipette. Following each wash the wells were 

emptied by inverting the plates directly and tapping downward on blue roll. Following this, 

200µl/well 5% (w/v) milk or 2.5% (w/v) fish gelatine was added to the plates and incubated 

for 1 hour at 370C. 
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Following the blocking stage, plates were washed, as described above. SpA standards, in 

either PBS or control urine, and patient samples were then added to the plate, 100µl/well, 

and plates were incubated for 1 hour at 370C. 

Following another wash phase, 100µl of polyclonal chicken IgY anti-SpA antibody, 1:4000 or 

1:8000 in blocking buffer, were added to each well and the plates incubated for 1 hour at 

370C, then washed as previously described. 

To develop the plates, 100µl of substrate (TMB Microwell Peroxidase, KPL, Gaithersburg, 

MD) was added to each well, and the reaction allowed to proceed for 10 minutes, before 

being stopped by the addition of 100µl/well of stopping solution (0.3M H2SO4).  

The absorbance of each well was measured at 450nm, using a Wallace Victor Plate Reader 

(Perkin Elmer, Buckinghamshire, UK).  

2.2.4 Protein Assay for total protein estimation in patient urine samples 

2.2.4.1 Preparing protein standards 

Total protein was measured in patient samples using an assay measuring the absorbance of 

samples following application of a Coomassie Brilliant Blue assay solution, as compared to a 

blank standard. A blank standard was produced by adding 50µl of NaCl solution to 2.5ml of 

Protein Assay Standard (PAS). The blank was measured for absorbance by placing 1ml of the 

standard in a cuvette and measured at 595nm using an EppendorfTM BioPhotometer. This 

produced a calibrated absorbance of 0.000. A standard solution of 300mg/ml BSA was 

prepared in dH20. A Protein Assay Solution (PAS) was made by combining Coomassie 

Brilliant Blue R with dH20 in a mixture of 1 to 4. A volume of 50µl of 300mg/ml BSA solution 

was added to 2.5ml PAS, to give a final concentration of 6mg/ml, and left to react for 2 

minutes. A volume of 1.25ml of this solution was added to 1.25ml of fresh PAS, in order to 

divide the protein concentration by half. This solution was again left for 2 minutes. This 

process was repeated 12 times in order to generate a protein curve down to a 

concentration of 0.073mg/ml. These standards where then measured in the same way as 

the blank, in order to produce a curve. 
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2.2.4.2 Testing patient samples for total protein 

Once the protein curve was established, patient samples were created by adding 50µl of 

undiluted patient sample to 2.5ml of PAS. This was left to stand for 2 minutes and measured 

in the same way as the standard protein samples. 

2.3 Patient sample collection and characteristics 

Patient samples from 47 patients were collected from the Lancaster Royal Infirmary ICU 

ward, by a previous MSc student,80 in 2012-2013, over an inpatient period of at least 48 

hours. Aims of collection were to acquire 8 samples per patient, at intervals of 4 hours, 

giving a full inpatient sample range. The average sample number per patient was 7, with 

some patients providing less than the required number. This was due to a failure to collect 

urine, lack of urine production by the patient, or death of the patient during admission. 

Samples were collected from the patient catheter port, and placed immediately into sterile 

containers at 40C. They were then stored at -800C, until use.  

With each patient sample range, demographic, clinical and biochemical data were collected 

into a database. Patient age and diagnosis at admission and prognosis (death during 

admission) are summarised in the appendix. 

2.3.1 Statistical Analysis 

Statistical analysis, based upon the findings of this primary research and the pre-existing 

clinical database, was performed with the statistical program Stata (Edition 12- StataCorp). 

The statistical tests performed on these data comprised of: 

 Student’s T-test- for continuous data 

 Logistic regression- for categorical data 

2.4 Ethical Approval 

This study received a favourable opinion from Greater Manchester South Ethics Committee, 

with reference: 12/NW/0783. 

An amendment to the above approval was required to allow research to be carried out by 

successive students on patient urine samples; amendment reference number 12/NW/0136, 

amendment number 2. 
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3 Results 
3.1 Method Development- Western Blot for commercial Protein A 

Initial method development focused on the detection of commercial SpA by Western Blot 

(WB), using primary HRP-conjugated anti-SpA antibody. The basis for the WB technique was 

that developed for the detection of S. aureus exotoxin by Frances et al, which was to use 

SDS-PAGE electrophoresis to separate the proteins in patient urine samples and probe with 

toxin specific antibody.80 To ensure the positive identification of SpA, the WB method would 

first have to be capable of detecting small amounts of the target protein in standard 

samples. The detection of commercially purified SpA by WB had previously been performed 

by Yue Han (MSc 2014),187 however, that work achieved this by using high amounts of 

antibody which proved to be highly sensitive for SpA, but displayed high background. The 

initial aim of our WB method development was to ensure that the test was both sensitive 

and specific for biologically relevant levels of SpA, to measure and confirm the standard MW 

of commercial SpA, and to determine the ideal antibody concentration and blocking 

solutions for testing patient samples for endogenous SpA. 

3.1.1 Western Blot to detect commercial SpA in PBS and control urine 

The detection of commercial SpA by WB was confirmed in control urine, at concentrations 

starting at 10µg/ml, and decreasing by 10 times dilution to 0.001µg/ml (Figure 10--13). 

Primary antibody was used at high concentrations (1:500 and 1:1000), and suspended in 

both 5% (w/v) milk and 2% (w/v) BSA. These concentrations of antibody were those used by 

Yue Han (MSc 2014) in the screening of patient samples for SpA, so were seen as an 

appropriate baseline for WB detection (Figure 9-12).187 
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Figure 9- Western Blot of SpA controls of varying concentrations constituted in control urine, using a 1:500 

concentration anti-SpA antibody constituted in 5% (w/v) milk.  Standards of SpA are electrophoresed on SDS-

PAGE gel, before being transferred to membrane as per protocol. Membrane blocked in 5% (w/v) milk, and 

incubated in 1:500 concentration of anti-SpA antibody, constituted in 5% (w/v) milk. Ladder proteins are not 

visible. 

Lane 1 2 3 4 5 6 7 8 
Sample Ladder Control 

Urine 
10µg/ml 
SpA   

1µg/ml 
SpA   

0.1µg/ml 
SpA   

0.01µg/ml 
SpA   

0.001µg/ml 
SpA   

0.0001µg/
ml SpA 

 

 

Figure 10- Western Blot of SpA controls of varying concentrations constituted in control urine, using a 1:1000 

concentration anti-SpA antibody constituted in 5% (w/v) milk. Standards of SpA are electrophoresed on SDS-

PAGE gel, before being transferred to membrane as per protocol. Membrane blocked in 5% (w/v) milk, and 

incubated in 1:1000 concentration of anti-SpA antibody, constituted in 5% (w/v) milk. Ladder proteins are not 

visible. 

Lane 1 2 3 4 5 6 7 8 

Sample Ladder Control 
Urine 

10µg/ml 
SpA   

1µg/ml 
SpA   

0.1µg/ml 
SpA   

0.01µg/ml 
SpA   

0.001µg/ml 
SpA   

0.0001µg/
ml SpA 

 



SID: 33007675                                                                                                                        Christopher Varley 

51 
 

 

Figure 11- Western Blot of SpA controls of varying concentrations constituted in control urine, using a 1:500 

concentration anti-SpA antibody constituted in 2% (w/v) BSA. Standards of SpA are electrophoresed on SDS-

PAGE gel, before being transferred to membrane as per protocol. Membrane blocked in 2% (w/v) BSA, and 

incubated in 1:500 concentration of anti-SpA antibody, constituted in 2% (w/v) BSA. 

 

Lane 1 2 3 4 5 6 7 8 

Sample Ladder Control 
Urine 

10µg/ml 
SpA   

1µg/ml 
SpA   

0.1µg/ml 
SpA   

0.01µg/ml 
SpA   

0.001µg/ml 
SpA   

0.0001µg/
ml SpA 

 

 

Figure 12- Western Blot of SpA controls of varying concentrations constituted in control urine, using a 1:1000 

concentration anti-SpA antibody constituted in 2% (w/v) BSA. Standards of SpA are electrophoresed on SDS-

PAGE gel, before being transferred to membrane as per protocol. Membrane blocked in 2% (w/v) BSA, and 

incubated in 1:1000 concentration of anti-SpA antibody, constituted in 2% (w/v) BSA. 

 

Lane 1 2 3 4 5 6 7 8 

Sample Ladder Control 
Urine 

10µg/ml 
SpA   

1µg/ml 
SpA   

0.1µg/ml 
SpA   

0.01µg/
ml SpA   

0.001µg/m
l SpA   

0.0001µg/
ml SpA 
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These initial WBs resulted in a clear and strongly positive detection of SpA at 10µg/ml, 

1µg/ml and 0.1µg/ml, with faint and variable detection of a band in the 0.01µg/ml lane. All 

of these bands were produced from SpA diluted in control urine, confirming the viability of 

SpA detection in the matrix under investigation in this research.  

However, as each of these samples are further diluted by preparation of a 1/3 loading buffer 

sample at 10µl per well, these initial concentrations are equivalent to approximately 70ng, 

7ng and 0.7µg total volume of SpA in each lane. The definitive detection limit was therefore 

the lowest possible amount detectable by this method under optimal conditions, which was 

0.7ng. However, it was recognised that the signal was weak for this amount of SpA, 

especially at lower antibody concentration, and that the likely condition of patient urine 

samples did not represent ideal testing conditions for WB. As a 0.01µg/ml SpA solution 

could not be relied upon as a reliable standard during sample testing, the decision was 

made to utilise commercial SpA in standards at a concentration of 0.1µg/ml (70ng total 

SpA). 

 Healthy control urine, without added SpA, was found to have no positive bands detected by 

the antibody, proving its suitability as a control lane substance in WB experiments.  

At this initial phase, unwanted background and non-specific signal was found to be more 

effectively diminished by blocking, and incubating antibody, in 2% (w/v) BSA.  

Following this,  a series of experiments were carried out, which tested the detection limit of 

the primary anti-SpA antibody, by reducing the concentration for primary antibody to 

1:8000, and incubating a serial dilution of SpA in this concentration of antibody (Figure 13). 

Also included with each WB was a mixture of protein standards (ladder) to provide the MW 

measurement of SpA. 
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Figure 13- Western Blot of SpA standards constituted in control urine, detected by 1:8000 anti-SpA antibody 

concentration. Standards were constituted at varied concentrations in control urine, before being loaded into 

SDS-PAGE gels and being subject to electrophoresis and transferred to membrane as per protocol. Membranes 

were blocked in 2% (w/v) BSA and then incubated in 1:8000 anti-SpA antibody in 2% (w/v) BSA. 

Lane 1 2 3 4 5 6 7 

Sample Ladder Control 
Urine 

1µg/ml 
SpA   

0.1µg/ml 
SpA 

0.01µg/ml 
SpA 

0.001µg/ml 
SpA   

0.001µg/ml 
SpA   

 

Detection of SpA was found to be possible using lower antibody concentrations, down to 

1:8000, to reveal the SpA from a 0.1µg/ml solution. This level of detection was achieved in 

control urine, showing this method was appropriate for the medium in which we were 

aiming to detect endogenous SpA. Detection of SpA concentrations of 0.01µg/ml or below 

was only seen when using 1:500 antibody concentration, amounts which caused 

considerable background and bleaching of patient sample lanes when used by Yue Han (MSc 

2014) on patient samples.187 It was therefore decided that the reliable detection of SpA in 

0.1µg/ml solutions, or total SpA of 7ng per sample well, with the lowest concentration of 

anti-SpA antibody, would be the main outcome of optimising the WB method.  

Additional information provided by these blots were the MW of commercial SpA and the 

appearance of SpA when electrophoresed on SDS-PAGE gels. The MW of SpA was estimated 

using the BioTools Image Lab software, using protein standards of known weight in order to 

calculate the estimated MW of SpA bands detected.  The MW of SpA was consistent 

between blots, and was found to run at 50-55 kDa, as opposed to its documented MW of 

42kDa, a figure which was provided from the product information . However, this MW is 
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measured from the Cowen I strain of S. aureus, and SpA from different strains display 

heterogeneity.114 Our findings are consistent with findings on Western Blots by other 

studies using SpA from S. aureus strain 8325, the strain cultured to obtain the purified SpA 

used in this study.114, 117 This MW is evident in the following Western Blot (Figure 14): 

 

Figure 14- Western Blot- Protein Standards ladder, tested with 0.1µg/ml (7ng total volume) SpA standards. The 

prepared samples were loaded into SDS-PAGE gel, and electrophoresed and transferred to membrane as per 

protocol. Membranes were blocked in 2% (w/v) BSA, and incubated in 1:2000 anti-SpA antibody in 2% (w/v) 

BSA. 1= protein standards ladder, 3= 0.1µg/ml SpA. 

 

Band Molecular 

Weight 

Band 1 54.8 

Band 2 51.1 

  

On the WB, SpA consistently displayed the appearance of 2 close bands at the position of 

~50-55 kDa. These bands are of similar MW, the higher band appearing to run to ~55kDa 

and the lower band to 50kDa, and show similar signal strength (a slightly stronger signal on 

the heavier band was noted in certain experiments). This indicates that both molecules 

which produce the bands are of similar size and relatively at the same concentration in the 

commercial SpA standards. At concentrations of 1µg/ml and above, these SpA double bands 

merge into a single large band. Work by Yue Han (MSc 2014), which used mass 

spectrometry (MS) to examine samples from the 2 gel bands stained with Coomassie Blue, 
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found that both these bands match the molecular structure of SpA.187 It is very likely 

therefore, that these bands both represent variants of SpA at different MWs, though the 

reason for the resolution of two differently sized SpA molecules within a commercially 

produced sample was unknown. 

Based on these initial experiments on SpA in control urine, it was revealed that the chosen 

lowest reliable concentration of SpA, 0.1µg/ml was visualised well at antibody 

concentrations 1:1000 and 1:2000, and provides a clear view of the SpA double bands 

without bleaching adjacent lanes (see Figure 15). 

 

Figure 15- Western Blot of SpA standards, constituted in control urine, and incubated in different antibody 

concentrations. SpA standards were constituted at a variety of concentrations. The prepared samples were 

loaded into SDS-PAGE gel, and electrophoresed and transferred to membrane as per protocol. Membranes 

were blocked in 2% (w/v) BSA, and incubated in 1:1000 concentration anti-SpA antibody (A), and 1:2000 

concentration anti-SpA antibody (B). Both antibody concentrations were constituted in 2% (w/v) BSA.   

 

Lane 1 2 3 4 5 

Sample Ladder Control Urine 0.1µg/ml SpA   0.01µg/ml SpA   0.001µg/ml 
SpA 

 

The reliable detection of SpA in control urine samples, when spiked with commercial SpA to 

a concentration of 0.1µg/ml, was demonstrated. An additional series of blots were done to 

demonstrate this in both healthy control urine and a sample of ICU patient urine, to a level 

of 0.1µg/ml and 0.01µg/ml SpA (Figure 16 and 17): 
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Figure 16- Western Blot of SpA standards (0.1µg/ml - 0.01µg/ml concentration, total volume 7ng – 0.7ng) in 

control urine and patient urine (Patient 18, sample number 5). Samples were loaded into SDS-PAGE gel, and 

electrophoresed and transferred to membrane as per protocol. Membranes were blocked in 5% (w/v) milk, 

and incubated in 1:4000 anti-SpA antibody in 5% (w/v) milk. 

 

 

Figure 17- Western Blot of SpA standards (0.1µg/ml - 0.01µg/ml concentration, total volume 7ng – 0.7ng) in 

control urine and patient urine (Patient 18, sample number 5). Samples were loaded into SDS-PAGE gel, and 

electrophoresed and transferred to membrane as per protocol. Membranes were blocked in 5% (w/v) milk, 

and incubated in 1:8000 anti-SpA antibody in 5% (w/v) milk. 

 

Lane 1 2 3 4 5 

Sample 0.1µg/ml SpA  
(control urine) 

0.01µg/ml SpA  
(control urine)       

0.1µg/ml SpA   
(Patient 18 urine) 

0.01µg/ml SpA  
(patient 18 urine) 

Patient 18 urine 
(no SpA) 

 

 

Following these experiments to assess the limits of sensitivity for the anti-SpA antibody, a 

WB experiment was performed to investigate the specificity of the anti-SpA antibody in 

relation to previously tested S. aureus toxins by this laboratory.80 This experiment tested for 

SpA, SEB, TSST and AH to a standard sample concentration of 1µg/ml, incubated in 1:1000 

and 1:2000 anti-SpA antibody. These standards concentrations of Staphylococcal toxins 

Lane 1 2 3 4 5 

Sample 0.1µg/ml SpA  
(control urine) 

0.01µg/ml SpA  
(control urine)       

0.1µg/ml SpA   
(Patient 18 urine) 

0.01µg/ml SpA  
(patient 18 urine) 

Patient 18 urine (no 
SpA) 
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were based on standard solutions used by Frances Price (MSc 2013),80 and are significantly 

higher than the concentrations of toxin found in patient urine in the same research. The 

antigens were also made in 2 different solutions, PBS and control urine, to find out if the 

solutions exhibited any differences in SpA signal strength. The subsequent WB shows no 

cross-reactivity with SEB, TSST and AH at the same concentrations of SpA. SpA at 1µg/ml 

also shows evidence of attenuated signal when diluted in control urine (Figure 18). 

 

Figure 18- Western Blot of PBS and control urine standards containing SpA, SEB, TSST and AH. Each toxin was 

prepared in solution to a concentration of 1µg/ml (total volume 70ng). Each prepared sample was loaded into 

SDS-PAGE gel, and electrophoresed and transferred to membrane as per protocol. Membranes were blocked 

in 2% (w/v) BSA, and incubated in 1:2000 anti-SpA antibody in 2% (w/v) BSA. 

 

Lane 1 2 3 4 5 6 7 8 9 

Load Control 

Urine 

SpA 

1µg/ml 

SEB 

1µg/ml 

TSST 

1µg/ml 

AH 

1µg/ml 

SpA 

1µg/ml 

SEB 

1µg/ml 

TSST 

1µg/ml 

AH 

1µg/ml 

 

 

The additional finding of this experiment, that the 1µg/ml concentration SpA  shows 

evidence of signal attenuation when detected in control urine and not PBS, prompted 

further experiments to investigate this finding. This was repeated when 0.1µg/ml SpA was 

made with PBS and a variety of healthy control urines, and re-examined together on the 

same gel. WB techniques also display an increased sensitivity for SPA when it is diluted in 

PBS, as is shown by the detection of 0.01µg/ml SpA in PBS, but not control urine. These 
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effects can be seen on the following WB, which utilizes 3 different healthy control urine 

samples in comparison to PBS samples (Figure 19): 

 

Figure 19- Western Blot of SpA standards prepared with PBS or healthy control urine, loaded intermittently. 

Each prepared sample was loaded into SDS-PAGE gel, and electrophoresed and transferred to membrane as 

per protocol. Membranes were blocked in 5% (w/v) milk, and incubated in 1:2000 anti-SpA antibody in 5% 

(w/v) milk. 

 

Lane 1 2 3 4 5 6 7 8 9       10 

Sample Control 
Urine 

0.1µg/
ml SpA 
(CU 1)   

0.1µg/
ml SpA 
(PBS) 

0.1µg/m
l SpA 

(CU 2) 

0.1µg/m
l SpA 
(PBS)   

0.1µg/m
l SpA 

(CU 3) 

0.1µg/m
l SpA 
(PBS)    

0.01µg/m
l SpA (CU 

1) 

0.01µg/m
l SpA (CU 

2) 

0.01µg/m
l SpA 
(PBS) 

 

This blot also demonstrates an increased sensitivity by WB for SpA when made in PBS 

solution; the final three wells contain 0.01µg/ml SpA, wells 8 and 9 contained this amount in 

control urine and the final well, which contains a faint double-band, the SpA standard was 

constituted PBS solution. It was decided to investigate this effect further prior to completing 

WB method optimisation, in order to determine if the same effect would occur in patient 

urine samples. 

The attenuation of commercial SpA detection appeared to be specific to control urine. IgG is 

one component known to be present in urine, including healthy samples. Therefore, its 

strong binding to SpA was hypothesised to be disrupting either the sample preparation, or 

the binding of anti-SpA in the antibody incubation phase of WB. To test the IgG hypothesis 

in disrupting commercial SpA detection via WB, an experiment was set up which used only 

PBS as sample solution, with samples containing SpA alone, and SpA with added human IgG 

(Figure 20). 
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Figure 20- Western Blot of SpA standards in PBS solution, spiked intermittently with Human IgG 10µg/ml. Each 

prepared sample was loaded into SDS-PAGE gel, and electrophoresed and transferred to membrane as per 

protocol. Membranes were blocked in 5% (w/v) milk, and incubated in 1:2000 anti-SpA antibody in 5% (w/v) 

milk. Ladder proteins are not visible. 

  

 

 

This experiment demonstrates a lack of binding between IgG and anti-SpA antibody, as 

there are no positive bands seen on WB in the 10µg/ml IgG concentration lane. It also 

demonstrates a lack of association between signal strength of SpA and IgG contained within 

the sample solution. To test this theory further, it was decided that prior to WB experiments 

in patient urine, the control urine and patient urine should be tested directly for human IgG, 

using WB and incubating in anti-human IgG antibody. The resulting experiment confirmed 

the fact that both control and patient urine contains IgG, present on WB as heavy and light 

chains (see text below for approximate MW) (Figure 21). 

Lane 1 2 3 4 5 6 

Samples Ladder 10µg/ml 
IgG   

1µg/ml 
IgG   

0.1µg/
ml  SpA   

0.1µg/ml  
SpA (+IgG 
10µg/ml) 

0.1µg/ml 
SpA 
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Figure 21- Western Blot of control urine and patient urine samples, identifying IgG with anti-human IgG 

antibody. IgG spiked standards, control and patient urine samples were prepared and loaded into SDS-PAGE 

gel, and electrophoresed and transferred to membrane as per protocol. Membranes were blocked in 2% (w/v) 

BSA, and incubated in 1:4000 anti-human IgG antibody in 2% (w/v) BSA. 

 

Lane 1 2 3 4 5 6 7 8 9 10 
Sample Ladder 10µg/ml 

IgG (PBS)   
1µg/ml 

IgG (PBS)   
Control 
Urine  

Control 
Urine (with 

1µg/ml 
SpA) 

Control 
Urine (with 
0.1µg/ml 

SpA)   

Patient 4 
urine   

Patient 
20 urine   

Patient 
33 urine   

Patient 
40 urine 

 

 

This result is a clear indicator to the large amounts of IgG in patient urine samples, and even 

small amounts in healthy urine. These correlate to the correct MW as described for human 

IgG; IgG light chains (F) are ~25kDa, heavy chains (H) are ~50kDa, making a full molecule 

weight of ~100kDa.188 As was previously demonstrated, SpA binding in WB is not impaired in 

patient samples, including the samples used in Figure 14. This is further evidence that the 

presence of IgG in patient samples does not attenuate the signal of SpA when it is added to 

those samples and detected by WB. As attenuation did not appear to occur in the testing 

matrix under investigation (only control urine) this effect was not investigated further, 

allowing application of the method to patient samples. 

3.1.2 Optimising Western Blotting for detection of SpA in patient samples 

Following this period of optimising for the detection of commercial SpA by WB, it was 

decided to further optimise the method, based on the presence of multiple, strong bands 

seen in patient samples when tested previously by Yue Han (MSc 2014). While we had 
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determined the optimal antibody concentration to be 1:2000 for detecting commercial SpA, 

an initial experiment was performed to demonstrate the effect of differences in the primary 

antibody concentration on patient samples. Of the 45 patients who provided urine samples, 

we tested the first 5 patients, selecting a sample from the middle of their inpatient period, 

using primary antibody at a range of concentrations, from 1:1000 to 1:8000, diluted in 2% 

(w/v) BSA.  

A single sample from the middle of each patient series was tested due to previous data by 

Frances Price (MSc 2013) demonstrating that the middle sample of a series contained higher 

levels of Staphylococcal toxins. Included in sample testing were SpA standards diluted in 

both PBS and control urine, due to the potential, recognised, difference in signal strength 

which may occur in WB. The following series of blots demonstrates the detection of both 

SpA standards and multiple bands of higher and lower molecular weight and intensity in 

patient urine, when using anti-SpA in 2% (w/v) BSA (Figure 22- 25). 
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Figure 22- Western Blot of patient 1 – 5 urine samples, undiluted, with 0.1µg/ml SpA (total volume 7ng) 

standards, tested by 1:1000 concentration of antibody.  Included in Western Blot was a protein mixture as MW 

ladder. Patient samples and standards were electrophoresed in an SDS-PAGE gel and transferred to membrane 

as per protocol. Membrane was blocked in 2% (w/v) BSA and incubated in 1:1000 concentration anti-SpA 

antibody, also constituted in 2% (w/v) BSA. 

 

 

Figure 23- Western Blot of patient 1 – 5 urine samples, undiluted, with 0.1µg/ml SpA (total volume 7ng) 

standards, tested by 1:2000 concentration of antibody. Included in Western Blot was a protein mixture as MW 

ladder. Patient samples and standards were electrophoresed in an SDS-PAGE gel and transferred to membrane 

as per protocol. Membrane was blocked in 2% (w/v) BSA and incubated in 1:2000 concentration anti-SpA 

antibody, also constituted in 2% (w/v) BSA. 

 

Lane 1 3 4 5 6 7 8 9 10 

Sample Ladder 0.1µg/ml 
SpA (CU) 

0.1µg/ml 
SpA 

(PBS) 

Control 
Urine 

Patient 
1 

sample 
5 

Patient 
2 

sample 
6 

Patient 
3 

sample 
1 

Patient 
4 

sample 
5 

Patient 
5 

sample 
5 
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Figure 24- Western Blot of patient 1 – 5 urine samples, undiluted, with 0.1µg/ml SpA (total volume 7ng) 

standards, tested by 1:4000 concentration of antibody.  Included in Western Blot was a protein mixture as MW 

ladder. Patient samples and standards were electrophoresed in an SDS-PAGE gel and transferred to membrane 

as per protocol. Membrane was blocked in 2% (w/v) BSA and incubated in 1:4000 concentration anti-SpA 

antibody, also constituted in 2% (w/v) BSA. 

 

Figure 25- Western Blot of patient 1 – 5 urine samples, undiluted, with 0.1µg/ml SpA (total volume 7ng) 

standards, tested by 1:8000 concentration of antibody. Included in Western Blot was a protein mixture as MW 

ladder. Patient samples and standards were electrophoresed in an SDS-PAGE gel and transferred to membrane 

as per protocol. Membrane was blocked in 2% (w/v) BSA and incubated in 1:8000 concentration anti-SpA 

antibody, also constituted in 2% (w/v) BSA. 
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 This series of WB results show that the patient urine samples display a variety of bands, of 

different molecular weights, and of varying intensity. This can be clearly seen in patient 4, 

sample 5, with particularly strong bands seen in patient urine at ~60kDa and ~30kDa. 

Initially, it was thought that these bands may either entirely be due to non-specific binding, 

i.e. urinary proteins such as albumin exhibiting cross-reactivity with anti-SpA antibodies, or 

they are variants of SpA at different MWs. A mixture of SpA and non-specific binding was 

thought to be responsible for the large number of bands seen, so further optimisation work 

was carried out in order to reduce any non-specific binding on urinary proteins. 

The fainter of these additional patient bands are seen to disappear at lower antibody 

concentrations, as well as lower band intensity for SpA standards, which is to be expected. 

Following this series of blots, 1:2000 was decided as the most appropriate concentration of 

antibody for reducing the amount of non-specific binding, while also retaining a strong 

signal for SpA standards in PBS and control urine.  

Sample testing optimisation was continued by diluting patient samples; specifically, to 

examine whether the dilution of patient urine would reduce the number of additional bands 

seen on WB, while retaining binding to any endogenous SpA, and so allowing detection, in 

those samples. Patient samples were loaded undiluted and also diluted with PBS 2, 10, 20 

and 100 times. Patients 4, 30 and 33 samples were chosen as the sample volumes 

associated with these patients were amongst the largest in the series, allowing large 

amounts of urine to be used during a dilution. Also, patient 4 had previously demonstrated 

many strong additional bands in WB experiments and so would provide insight into the 

impact of this approach on the most challenging of patient samples. The subsequent WB 

results demonstrated significant attenuation in patient band signal when diluted 10 times 

(Figure 26 - 28). 
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Figure 26- Western Blot of Patient 4, urine sample 5, undiluted and also diluted in PBS; 2, 10, 20 and 100 times. 

Each prepared sample, and SpA standards (0.1µg/ml concentration, total volume 7ng), was loaded and 

electrophoresed in SDS-PAGE gel and transferred as per protocol. Membranes were blocked in 2% (w/v) BSA 

and incubated in 1:2000 anti-SpA antibody (constituted in 2% (w/v) BSA). 

 

 

Figure 27- Western Blot of Patient 30, urine sample 5, undiluted and diluted in PBS; 2, 10, 20 and 100 times. 

Each prepared sample, and SpA standards (0.1µg/ml concentration, total volume 7ng), was loaded and 

electrophoresed in SDS-PAGE gel and transferred as per protocol. Membranes were blocked in 2% (w/v) BSA 

and incubated in 1:2000 anti-SpA antibody (constituted in 2% (w/v) BSA). 
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Figure 28- Western Blot of Patient 33, urine sample 5, undiluted and diluted in PBS 2, 10, 20 and 100 times. 

Each prepared sample, and SpA standards (0.1µg/ml concentration, total volume 7ng), was loaded and 

electrophoresed in SDS-PAGE gel and transferred as per protocol. Membranes were blocked in 2% (w/v) BSA 

and incubated in 1:2000 anti-SpA antibody (constituted in 2% (w/v) BSA). 
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The results demonstrate the losses of patient band detection as the samples are diluted, 

losing the majority of band detection at 10 times dilution. More importantly to the 

detection, no bands of equal size to the SpA controls remain and/or appear once samples 

are diluted, meaning that these additional bands are also not diminishing the effect of SpA 

bands in the undiluted samples, at least in patients 4, 30 and 33. As there is no increasing 

signal seen for any particular band following dilution, it was decided to continue using 

patient samples undiluted when testing for SpA. 

Further challenges exist in the analysis of patient samples, as many contained insoluble 

material, which may be sequestering proteins in patient sample WBs. Some of this solid 

matter was in fine grain form, while others were found to exist in the urine as large particles 

larger than 1mm in size. Before continuing to screen patient samples, we performed an 

experiment to finalise the optimal method of preparing samples; either mixing and 
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therefore reconstituting the solid material into the sample, or avoiding it when possible for 

creating a sample for WB. Patients 30 and 33 had a significant amount of solid material in 

some samples, in particular samples 3 (patient 30) and sample 5 (patient 33). These samples 

were each separated into two; one sample contained the pure liquid, which was retrieved 

by spinning down the solid matter into the bottom of the microfuge tubes in a bench-top 

centrifuge. The remaining solid parts of the samples were subject to heating and 

reconstitution, by vortexing, in 100 µl of sterile PBS. Both liquid and solid samples were 

diluted 2, 10, 20 and 100 times with PBS. These samples were both subject to WB on two 

separate membranes, incubating in 1:2000 anti-SpA antibody, in 2% (w/v) BSA (Figure 29 

and 30): 

 

Figure 29- Western Blot of Patients 30 (A) and 33 (B) liquid portion of urine reconstituted in PBS. Each patient 

urine sample was diluted 2, 10, 20 and 100 times in PBS. Each prepared sample, and SpA standards (0.1µg/ml 

concentration, total volume 7ng), was loaded and electrophoresed in SDS-PAGE gel and transferred as per 

protocol. Membranes were blocked in 2% (w/v) BSA and incubated in 1:2000 anti-SpA antibody (constituted in 

2% (w/v) BSA). 
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Figure 30- Western Blot of Patients 30 (A) and 33 (B) solid portion of urine reconstituted in PBS, by heating and 

vortexing. Each patient urine sample was diluted 2, 10, 20 and 100 times in PBS. Each prepared sample, and 

SpA standards (0.1µg/ml concentration, total volume 7ng), was loaded and electrophoresed in SDS-PAGE gel 

and transferred as per protocol. Membranes were blocked in 2% (w/v) BSA and incubated in 1:2000 anti-SpA 

antibody (constituted in 2% (w/v) BSA). 
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In these sample blots, it is evident that the separated liquid produced far fewer bands than 

the reconstituted solid, and no bands at the level concurrent with commercial SpA. Due to 

this paucity of bands seen in the liquid, without prior mixing of solid material, further 

screening of samples would involve vortexing of patient urine in order to retain as much 

solid material as possible. This was seen as giving the highest chance of detecting SpA in 

patient samples, as it may be present as a precipitate or bound to other proteins in the solid 

material.  

Initial observations in the WB method development stage showed 2% (w/v) BSA was a 

superior agent for use in blocking and as antibody solution, as it was more effective in 

removing background signal from purified SpA blots (see Figure 10 and 12). However, these 

experiments only evaluated the WB detection of commercial SpA at different 

concentrations. Given the large number of strong bands of different molecular weight being 

detected in patient urine samples, attempts were made to further define the best agent for 

blocking, when testing patient samples in particular. Retaining the WB sample preparation 

as described, two WB membranes containing SpA controls (PBS and control urine) and a 
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selection of patient urine samples, were both blocked with 5% (w/v) milk. Following this, 

one membrane was incubated in 1:2000 antibody in 2% (w/v) BSA, and the other with 

1:2000 antibody 5% (w/v) milk. The differences in the resulting blots were therefore as a 

result of the antibody binding solution only (Figure 31 and 32). 

 

Figure 31- Western Blot of SpA controls and select patient urine samples, incubated antibody in BSA, with 

associated Amido Black stain. SpA standards (concentration 0.1µg/ml, total volume 7ng), and patient urines 

were electrophoresed in SDS-PAGE gels and transferred to membrane as per protocol. Membranes were 

blocked in 5% (w/v) milk and incubated in 1:2000 anti-SpA antibody, except in 2% (w/v) BSA. This figure 

includes developed Western Blot (A), and Amido black staining of the membrane (B). 
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Figure 32- Western Blot of SpA controls and select patient urine samples, incubated antibody in milk, with 

associated Amido Black stain. SpA standards (concentration 0.1µg/ml, total volume 7ng), and patient urines 

were electrophoresed in SDS-PAGE gels and transferred to membrane as per protocol. Membranes were 

blocked in 5% (w/v) milk and incubated in 1:2000 anti-SpA antibody, in 5% (w/v) milk. This figure includes 

developed Western Blot (A), and Amido black staining of the membrane (B). 
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These WB results clearly demonstrate a significantly increased blocking effect when anti-

SpA antibody was incubated in milk as opposed to BSA. This effect is seen entirely in the 

multiple patient bands that had been previously detected using BSA as antibody solution. 

Not only does diluting antibody in milk prevent the detection of all protein bands in patient 

samples, the ladder bands (which are a mixture of proteins), which were previously 

detected are absent. The 0.1µg/ml SpA standards also appeared to display increased signal. 

These findings together provide strong evidence that the bands previously seen on patient 

sample WB are in fact non-specific urinary proteins, displaying similar binding with anti-SpA 

antibody as the ladder proteins. These non-specific bands appear to correspond to the 

protein bands seen when the membrane is stained with Amido Black. Given the ability of 

the WB method for reliably detecting 0.1µg/ml SpA, and the retention of these SpA 

standard bands when using 5% (w/v) milk as antibody solution, it is reasonable to suggest 

that there is no SpA at, or above, this concentration in the patient samples tested.  

This method of using 5% (w/v) milk as both blocking agent and antibody solution, was 

adopted as the optimised method for the detection of SpA. This retained the sensitivity of 

detecting 0.1µg/ml (or 7ng total volume), SpA, with the beneficial removal of the additional 

bands seen in original patient sample blots. A further experiment was devised in order to 

test the limit of this enhanced blocking effect of milk antibody solution. This was achieved 

by testing SpA standards and patient samples by WB, and increasing antibody concentration 

in 5% (w/v) milk, from 1:1000 to 1:500. This would prove whether the non-specific bands in 

patient urine would once again become visible at higher antibody concentrations, indicating 

that the blocking effect is dose-dependent (Figure 33 and 34). 
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Figure 33- Western Blot of SpA standards and patient urine samples, incubated in 1:1000 concentration anti-

SpA antibody. SpA standards (concentration 0.1µg/ml, total volume 7ng), and patient urines were 

electrophoresed in SDS-PAGE gels and transferred to membrane as per protocol. Membranes were blocked in 

5% (w/v) milk and incubated in 1:500 anti-SpA antibody (also in 5% (w/v) milk). Ladder proteins not stained. 
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 Figure 34- Western Blot of SpA standards and patient urine samples, incubated in 1:500 concentration anti-

SpA antibody. SpA standards (concentration 0.1µg/ml, total volume 7ng), and patient urines were 

electrophoresed in SDS-PAGE gels and transferred to membrane as per protocol. Membranes were blocked in 

5% (w/v) milk and incubated in 1:500 anti-SpA antibody (also in 5% (w/v) milk).  Ladder proteins not stained. 
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These blots demonstrate that the blocking of additional bands is not negated by increasing 

the concentration of antibody incubated in 5% (w/v) milk. However, at higher antibody 

concentrations, white bands, or ‘bleached’ bands appear at positions analogous with the 

additional bands seen when the antibody is in a BSA solution. Because of this bleaching 

effect, further testing of patient samples would utilize anti-SpA at a 1:2000 concentration.  

3.1.3 Patient sample testing by Western Blot 

A full sample screening of single patient samples was undertaken, using the optimised WB 

technique and 1:2000 antibody in 5% (w/v) milk. As in previous optimisation experiments, 

samples from the middle of the range were used per patient, with a total of 8 patient 

samples per gel. Similarly to previous blots using milk as antibody solution, these patient 

sample WBs did not produce any positive results for SpA, nor were any additional bands 

present as seen in previous blots of patient samples. These were confirmed as viable 

experiments due to the continued detection of 0.1µg/ml SpA standards, in both control 

urine and PBS (Figure 35). 

 

Figure 35- WB- Western Blot of SpA standards and patient number 37 – 41 urine samples, with associated 

Amido Black stain. SpA standards (concentration 0.1µg/ml, total volume 7ng), and patient urines were 

electrophoresed in SDS-PAGE gels and transferred to membrane as per protocol. Membranes were blocked in 

5% (w/v) milk and incubated in 1:2000 anti-SpA antibody (also in 5% (w/v) milk). This figure includes developed 

Western Blot (A), and Amido black staining of the membrane (B). 
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In order to fully assess the validity of these negative findings, it was important to rule out 

variability of sample composition within the same patient range; i.e. the chances that 

individual samples in a patient sample range were positive, while others were negative. TO 

achieve this, it was decided to test the full sample ranges of particular patients which would 

provide the highest chance of detecting SpA. Patients 4 and 12 were found to contain many 

additional protein bands on Amido Black staining, so were candidates for full sample testing. 

Urine samples from patients 18, 19 and 24 were also fully tested by WB, due to a high 

probability of exposure to S. aureus (Table 2). 

 

Patient  Rationale for full sample range testing 

18 Gram positive bacteria in blood culture 

19 Necrotising fasciitis 

24 Necrotising fasciitis, Gram positive bacterial growth from wound swab 

Table 2- Patient number and diagnosis indicating likely presence of S. aureus. 

 

These full sample range blots, tested using the same method as the previous screening 

experiments, also did not yield any positive results, again appearing blank apart from the 

SpA standards. These negative WB are contrasted with the Amido Black stain displaying 

multiple protein bands (Figure 36). 
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 Figure 36- Western Blot of SpA standards and patient 18 full sample range, with associated Amido Black stain. 

SpA standards (concentration 0.1µg/ml, total volume 7ng), and patient 18 urine sample range were 

electrophoresed in SDS-PAGE gels and transferred to membrane as per protocol. Membranes were blocked in 

5% (w/v) milk and incubated in 1:2000 anti-SpA antibody (also in 5% (w/v) milk). This figure includes developed 

Western Blot (A), and Amido black staining of the membrane (B. Ladder proteins are non-distinct on the stain. 

 

 Due to these negative WB results, the decision was made to not continue screening patient 

samples by WB. Despite optimising the method and removing almost all non-specific 

binding, the detection limit of our SpA WB, in patient sample testing conditions (7ng SpA) 

was considered insufficient to entirely rule out the presence of SpA in patient samples. This 

prompted the development of a sensitive ELISA technique, in order to continue our search 

for endogenous SpA. 

3.1.4 Western Blot Results Summary 

This work represents the development of a highly specific WB method for the detection of 

commercial, cell-culture purified SpA in sterile PBS and control urine solutions. However, 

application of this technique to testing patient urine has found it to be incapable of 

detecting any endogenous SpA above a solution concentration of 0.1-0.01µg/ml. 

Optimisation of this technique has revealed that multiple strong bands, initially detected in 

patient samples at a variety of MWs using WB, are likely to correspond to non-specific 
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urinary proteins. This is due to their elimination from WB following the switch from BSA to 

milk as a blocking agent and antibody solution, a method which continued to detect SpA 

standards.  

3.2 ELISA Results  

3.2.1 ELISA development for detection of SpA in patient urine 

The development of an ELISA technique for the detection of SpA was based on the method 

developed by Harrison et al and Frances Price (MSc 2013), using an indirect ‘sandwich’ ELISA 

technique. These ELISA techniques have shown high sensitivity for Staphylococcal toxins, as 

previous work by this laboratory had achieved detection of TSST, SEB, SEC and AH, to a 

concentration of 1-3ng/ml.80 

The method chosen for the detection of SpA was an indirect ELISA, using a capture antibody 

to bind to SpA, before using an HRP-conjugated anti-SpA antibody to bind to the IgG-bound 

SpA. Human IgG was used as capture antibody, due to its previously discussed affinity for 

SpA. Several parameters were to be assessed in order to identify the optimal method: 

1. Capture antibody concentration- each microwell was coated in 100µl of 0.5µg/ml or 

1µg/ml commercial human IgG 

2. Blocking solution- following capture antibody, blocking buffer, similar to those used 

in WB, are placed in wells to reduce the non-specific binding ability of the capture 

antibody. Blocking buffers compared in our ELISA were 5% (w/v) milk, and 2.5% (v/v) 

cold water fish gelatine. 

3. Anti-SpA antibody concentration- lower amounts of antibody are usually required for 

ELISAs rather than WB; initial tests compared 1:4000 and 1:8000 anti-SpA 

concentration 

Initial ELISA method development focused on first; establishing the efficacy of the method 

as described for the detection of SpA, and second; to determine the sensitivity limits of the 

methods for SpA detection in PBS solution and urine. To determine if the technique was 

viable for the detection of small amounts of SpA , known concentrations of SpA from 

100ng/ml to 25ng/ml were added to both PBS and control urine, and tested by ELISA using a 

variety of capture IgG concentrations and blocking buffers (Figure 37-40). 
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Figure 37- SpA standards in PBS, tested by SpA ELISA, with varying blocking materials. Microwell plates were 

coated with 0.5µg/ml IgG, and blocked with either 5% (w/v) milk or 2.5% (v/v) fish gelatine. SpA standards 

were then added, and finally incubated with 1:4000 anti-SpA antibody. Error bars are standard deviation. 

 

 

 

Figure 38- SpA standards in PBS, tested by SpA ELISA, with varying blocking materials. Microwell plates were 

coated with 1µg/ml IgG, and blocked with either 5% (w/v) milk or 2.5% (v/v) fish gelatine. SpA standards were 

then added, and finally incubated with 1:4000 anti-SpA antibody. Error bars are standard deviation. 
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Figure 39- SpA standards in control urine, tested by SpA ELISA, with varying blocking materials. Microwell 

plates were coated with 0.5µg/ml IgG, and blocked with either 5% (w/v) milk or 2.5% (v/v) fish gelatine. SpA 

standards were then added, and finally incubated with 1:4000 anti-SpA antibody. Error bars are standard 

deviation. 

 

Figure 40- SpA standards in control urine, tested by SpA ELISA, with varying blocking materials. Microwell 

plates were coated with 1µg/ml IgG, and blocked with either 5% (w/v) milk or 2.5% (v/v) fish gelatine. SpA 

standards were then added, and finally incubated with 1:4000 anti-SpA antibody. Error bars are standard 

deviation. 
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The ability to detect SpA on ELISA was confirmed in both PBS and urine, and background 

was low across the plate; average PBS absorbance was 0.052 (SD 0.005).  

In terms of SpA sample absorbance, there was little appreciable difference between 

blocking in 5% (w/v) milk and 2.5% (v/v) fish gelatine; however, control urine background 

was raised when blocked with fish gelatine (0.124) when compared with milk (0.043). This 

corroborates with the superior blocking effect of milk seen in WB, when incubating with 

polyclonal anti-SpA antibody. It was decided to use milk as a blocking agent for ELISA, due 

to a lower background and to maintain consistency with WB method. 

The concentration of primary antibody was investigated by comparing 1:4000 and 1:8000 

solutions, based on concentrations used in ELISA techniques for the detection of other 

Staphylococcal toxins by Frances Price (MSc 2013).80 The 1:4000 antibody solution 

provided higher absorbance range when testing SpA standards in control urine, as well as 

displaying lower standard deviation error bars at the higher-middle range of SpA 

concentration (Figure 41). 
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Figure 41- SpA standards (in control urine), tested by SpA ELISA, with varying primary antibody concentration. 

Microwell plates were coated in 0.5µg/ml IgG, then blocked in 5% (w/v) milk. SpA standards were added and 

incubated in either 1:4000 or 1:8000 anti-SpA antibody. Error bars are standard deviation. 
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Figure 42- SpA concentration curve, with SpA standards constituted in PBS. Commercial SpA standards were 

tested by ELISA using 0.5µg/ml IgG as capture antibody, then blocked in 5% (w/v) milk and incubated in 1:4000 

anti-SpA antibody. Error bars are standard deviation. SpA concentrations were created in a 2x dilution series. 

 

 

Figure 43- SpA concentration curve, with SpA standards constituted in control urine. Commercial SpA 

standards were tested by ELISA using 0.5µg/ml IgG as capture antibody, then blocked in 5% (w/v) milk and 

incubated in 1:4000 anti-SpA antibody. Error bars are standard deviation. SpA concentrations were created in 

a 2x dilution series. 
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These results demonstrate the ELISA technique to be effective and sensitive for the 

detection of SpA, in both PBS and control urine. Standard deviation was very low 

throughout this curve, confirming the ELISA method optimised to be reliable and sensitive 

for detecting nanogram amounts of SpA. Both PBS and control urine SpA concentration 

curves roughly equate to each other; upper asymptotes are reached between 25-50ng/ml, 

and lower asymptotes are reached at approximately 0.78ng/ml, creating a linear region 

from 25-0.78ng/ml (EC50= 9.37ng/ml). This produced the following linear standard SpA 

curve in control urine, which would allow quantification of SpA in patient samples (Figure 

44). 

 

Figure 44- SpA ELISA of SpA standards in PBS, creating a standard curve with trend line through linear region. 

SpA standards were tested by ELISA using 0.5µg/ml IgG as capture antibody, then blocked in 5% (w/v) milk and 

incubated in 1:4000 anti-SpA antibody. 

3.2.2 Screening Patient Urine Samples for SpA 

Following the development of a method for the detection of 1ng/ml of SpA in control urine, 

we performed a screening experiment by testing a single sample from each available patient 

range (patient n=45). This was done as an initial pilot experiment due to the potential for 

interaction between the large amounts of protein in patient urine, and the anti-SpA 

antibody. An initial ELISA would be useful to rule out this result, and in order to confirm this 

technique as sensitive and specific. 
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blocked in 5% (w/v) milk, and incubated in 1:4000 anti-SpA antibody. Only 1 well was used 

per patient sample, at 100µl/well, in an attempt to limit overuse of patient samples. 

Results of the initial experiment were promising, with an average background of 0.053. 

Several samples displayed a raised absorbance corresponding to low levels of SpA (1.562 - 

3.125ng/ml), while others showed absorbance no greater than background (PBS) level. 

Given that only 1 well was used per patient sample, the experiment was repeated with 2 

wells per patient sample, using the same patient samples as previously. This experiment 

concurred with the increased absorbance seen in certain patient samples, compared to 

control urine and PBS background, leading to the decision to test more patient samples. 

 Full sample-range testing was conducted for 241 (79%) of patient urine samples. Patient 

samples were not tested if there was insufficient volume of sample, or there were 

unavailable samples in that range. The figures below display the absorbance on ELISA for the 

patient ranges containing 1 or more samples positive for SpA. Patients with entirely 

negative sample ranges are not displayed (Figure 45A – 45L, 46A - 46D and 47). 
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Figure 45A- 45L - Patient urine sample ranges, tested by ELISA, with mildly raised absorbance (0.0- 0.5 at 450nm). SpA 

ELISA was performed with 0.5µg/ml IgG as capture antibody, blocked in 5% (w/v) milk and incubated in 1:4000 anti-SpA 

antibody. Patient samples were tested at a volume of 100µl, undiluted. 
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Figure 46A- 46D- Patient urine sample ranges, tested by SpA ELISA, with moderate raised absorbance (0.0- 1.0 at 

450nm). SpA ELISA was performed with 0.5µg/ml IgG as capture antibody, blocked in 5% (w/v) milk and incubated 

in 1:4000 anti-SpA antibody. Patient samples were tested at a volume of 100µl, undiluted. 

Figure 47- Patient 13 sample range absorbances tested by SpA ELISA. Patient 13 is the only sample with absorbance 

between 0.0 - 3.0 at 450nm. SpA ELISA was performed with 0.5µg/ml IgG as capture antibody, blocked in 5% (w/v) milk 

and incubated in 1:4000 anti-SpA antibody. Patient samples were tested at a volume of 100µl, undiluted. 
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Of the 241 patient samples tested for SpA, 55 samples (22.81% of those tested), derived 

from a total of 16 patients, showed a significantly raised absorbance, indicating the 

presence of SpA. The majority of these patients (e.g. Figure 48A- 48L) displayed an 

absorbance corresponding to very low concentrations of SpA (<1ng/ml). Only 5 patient 

ranges contained samples which displayed an absorbance above this level (1-5ng/ml), while 

one patient (patient 13) displayed an absorbance significantly above this level (5-15ng/ml). 

Of the patients with full sample ranges tested for SpA by ELISA, 16 patients did not contain a 

single sample with a significantly raised absorbance. 

These patient sample range graphs also provide temporal information about the variation of 

SpA ELISA result over the course of the 48 hour ICU admission. In this patient group, there 

did not appear to be any relationship over time, with adjacent urine samples (taken 6 hours 

apart) displaying high variability. 

3.2.3 Comparison of ELISA with Western Blot results 

Following full sample range ELISAs, the patient samples with highest SpA ELISA absorbance 

were selected for re-testing by WB, in order to discover if bands of SpA could be visualised. 

Patients tested by both ELISA and WB were 13 and 36, as these were found to contain the 

highest potential concentration of SpA. Each patient sample range was treated as per WB 

methods described above, and incubated in 1:2000 anti-SpA antibody (Table 3-4, Figure 48-

49). 
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Patient and 
sample number 

Absorbance on 
SpA ELISA 

Estimated 
concentration of 
SpA (ng/ml) 

P013-01 0.055 0.11 
 

P013-02 2.802 15.765 
 

P013-03 1.584 8.826 
 

P013-05 2.409 13.526 
 

P013-06 0.429 2.239 
 

P013-07 0.453 2.377 
 

Table 3- Patient 13 full sample range absorbance on SpA ELISA, and estimated concentration of SpA based on 

SpA standard concentration. 

 

 

Figure 48- Western Blot of Patient 13 samples 1-7, with SpA standards and Precision Plus protein standards 

(ladder). Patient urine samples and standards were electrophoresed and transferred to membrane as per 

Western Blot protocol, blocked in 5% (w/v) milk and incubated with 1:2000 anti-SpA antibody. This figure 

displays the developed blot (A) and Amido Black stain of the same membrane (B). 
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Patient and 
Sample Number 

Absorbance on 
SpA ELISA 

Estimated 
concentration of 
SpA (ng/ml) 

P036-01 0.156 0.685 
 

P036-02 0.475 2.502 
 

P036-03 0.276 1.369 
 

P036-04 0.475 2.503 
 

P036-05 0.916 5.018 
 

P036-06 0.042 0.035 
 

Table 4- Patient 36 full sample range absorbance on SpA ELISA, and estimated concentration of SpA based on 

SpA standard concentration.  

 

Figure 49- Western Blot of Patient 36 samples 1-6, with SpA standards and Precision Plus protein standards 

(ladder). Patient urine samples and standards were electrophoresed and transferred to membrane as per 

Western Blot protocol, blocked in 5% (w/v) milk and incubated with 1:2000 anti-SpA antibody. This figure 

displays the developed blot (A) and Amido Black stain of the same membrane (B). 
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These results demonstrate definitively that the high absorbance results seen when testing 

patient urine by ELISAs, a raised absorbance does not translate to positive findings on WB 

using the same antibody. Amido Black stains of the membranes following WB display the 

presence of protein bands, and the identification of 0.1µg/ml SpA standards show that any 

SpA at that concentration should have been identified. However, in terms of total SpA 

identified, WB can detect ~7ng, while ELISA is more sensitive, capable of detecting SpA 

standards of <1ng/ml. Only patient 13 contains samples with ELISA results which may 

indicate levels of SpA that may cross the WB detection limit (~15ng/ml), however, these 

samples do not display bands on WB.  

These results suggests that either our WB developed for SpA does not have the sensitivity to 

detect biologically relevant levels of SpA, or SpA is not present in the urine samples, and the 

raised absorbance seen on ELISA is the result of non-specific binding with urinary proteins. 

Further experiments which could provide evidence of non-specific binding were undertaken 

before the results of our ELISA could be definitively stated as endogenous SpA. 

3.2.4 ELISA for detection of total IgG in patient urine 

We were aware of the potential for the cross-reaction of the antibody with urinary proteins 

and IgG, as seen on initial patient sample WBs. Therefore, we decided to quantify total IgG 

and protein in a certain ELISA positive and negative patient urine samples, to statistically 

determine if these contributed to the raised absorbance seen in positive SpA ELISA results. 

3.2.4.1 ELISA technique development for detection of total IgG 

An IgG ELISA was theorised to be achievable through two methods; direct adsorbance of IgG 

to the microwell plates, followed by incubation in anti-human IgG antibody (HRP-

conjugated), or initial adsorbance of SpA to the microwell plates for use as a capture 

antigen, followed by incubation in sample, and finally incubation in anti-Human IgG 

antibody. IgG curves were created from an initial concentration of 500µg/ml, with the 

concentration reduced by half in 18 steps in order to reach the lowest concentration of 

3.8ng/ml.  

For the experiments investigating SpA as capture antigen, either 1µg/ml or 0.5µg/ml SpA 

was adsorbed onto microwell plates, overnight at 40C. Following the formation of IgG curve 

samples in carbonate-bicarbonate buffer, and incubation in anti-Human IgG antibody, an 



SID: 33007675                                                                                                                        Christopher Varley 

89 
 

IgG curves was produced for each adsorption technique. All IgG concentrations had 

background absorbance subtracted before inclusion into the curve (Figure 50). 

 

Figure 50- IgG ELISA concentration curves, tested on a microwell plate coated with either 0.5µg/ml or 1µg/ml 

SpA. Standards were incubated on microwell plates overnight at 40C. Following incubation, plates with blocked 

in 5% (w/v) milk and incubated in 1:4000 concentration anti-human IgG antibody. Error bars are standard 

deviation. IgG standards were created from a 500µg/ml solution in a 2x dilution series, and are  

 

PBS background absorbance was significantly raised on the plate containing 1µg/ml, hence 

the lower absorbance of the curve after subtraction of the background. For the IgG curve 

created with 0.5µg/ml SpA as capture antigen, background was 0.712, and for 1µg/ml SpA 

background was 1.417.Low ELISA absorbances seen in these curves were the result of 

subtracting these high background from standard absorption. As well as this high 

background, standard deviation error bars through the linear region were large. Both of 

these limiting factors meant that the method of using SpA as capture antigen was deemed 

unacceptable for detection of endogenous IgG in patient urine.  

An alternative method of IgG detection, would be to IgG adherence to microwell plates 

without capture antibody, developing a direct ELISA. To achieve this, IgG concentration 

curve samples were incubated overnight at 40C in order to give highest chance of IgG 
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adherence to microwell plates. Following adherence, 5% (w/v) milk was used as blocking 

agent, and anti-IgG antibody was then applied (Figure 51). 

 

Figure 51- IgG ELISA concentration curve, tested by IgG ELISA, on a microwell plate coated directly with sample 

overnight at 40C. Following standards adsorption to plates, they were blocked with 5% (w/v) milk and 

incubated in 1:4000 anti-human IgG antibody. Error bars are standard deviation. 

 

Background was low, with an average of 0.047 for PBS, similar to levels seen in ELISA 

experiments testing for SpA using IgG as capture antibody, while remaining sensitive for IgG 

down to 7ng/ml. It was decided to use the overnight direct adsorbance method for 

detecting IgG in patient samples. However, the standard curve would ideally be in the same 

solution as the samples being tested, which would be urine.  

If patient samples would to be constituted in carbonate-bicarbonate buffer, as in the curve, 

a 1:1 solution with 2 times carbonate-bicarbonate buffer would be used. This would mean 

that the true concentration of IgG in patient samples would be double that measured by 

ELISA. This finalised IgG ELISA technique produced the following IgG standard curve (Figure 

52).  
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Figure 52- IgG Standard Curve, of human IgG standards constituted, in carbonate-bicarbonate buffer. Linear 

region of curve is displayed. IgG standards were tested by direct IgG ELISA, blocked with 5% (w/v) milk and 

incubated with 1:4000 anti-human IgG antibody. 

 

3.2.5 ELISA for total IgG in patient urine 

Using the method developed for detecting total IgG on ELISA, samples which were positive 

on SpA ELISA were retested for IgG, alongside a control group of negative SpA ELISA 

samples. This could be a possible cause of false-positive results in SpA ELISA; if large 

numbers of urinary IgG molecules remain bound to capture IgG, it could non-specifically 

bind to anti-SpA antibody. Total number of patient samples tested for IgG was 33, 15 SpA 

positive samples, and 18 SpA negative samples (Table 5 and 6). 
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Positive Patient 

(Sample Number) 

N=15 

SpA ELISA 

Absorbance 

Total IgG 

Absorbance 

Estimated 

concentration of 

IgG (ng/ml) 

1(2) 0.063 1.787 428.4 

2(5)  0.091 1.687 401.8 

5(6)  0.122 1.515 239 

9(1)  0.700 0.363 48.6 
 

10(2)  0.063 1.893 456.6 

12(5)  0.117 1.987 481.8 

13(2)  1.992 0.337 41.6 

25(1)  0.109 1.465 342.6 

31(5)  0.076 2.581 640.2 

34(3)  0.229 0.528 92.6 

36(5)  1.044 0.445 70.4 

38(2)  0.059 1.047 231.2 

39(2)  0.150 1.995 483.8 

42(6)  0.102 1.568 239 

44(3)  0.060 1.846 444.2 

Table 5- Patient samples displaying highest absorbance for SpA, retested by SpA and IgG ELISA. Estimated 

concentration of IgG in patient urine samples is calculated by IgG ELISA. 

 

 

 

 



SID: 33007675                                                                                                                        Christopher Varley 

93 
 

Negative Patient 

(Sample Number) 

N=18 

SpA ELISA 

Absorbance- 

retest 

Total IgG 

Absorbance 

Estimated 

concentration of 

IgG (ng/ml) 

4(3) 0.053 2.106 513.5 

6(5) 0.056 1.804 433.1 

11(5) 0.051 0.464 75.6 

18(5) 0.047 2.136 521.6 

19(3) 0.049 1.761 421.6 

21(1) 0.091 0.525 91.8 

22(1) 0.061 2.380 586.7 

24(3) 0.066 1.847 444.6 

28(6) 0.056 1.109 247.7 

29(3) 0.072 1.719 410.3 

30(3) 0.046 1.042 229.9 

32(1) 0.047 1.704 406.3 

33(2)  0.059 1.462 341.7 

35(1)  0.053 1.490 349.2 

37(1)  0.054 1.508 353.9 

40(4)  0.053 1.496 350.9 

43(7)  0.050 0.563 101.9 

47(3)  0.051 1.359 314.4 

Table 6- Patient samples displaying lowest absorbance for SpA, retested by SpA and IgG ELISA. Estimated 

concentration of IgG in patient urine samples is calculated by IgG ELISA. 
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Statistical analysis on the levels of IgG absorbance revealed no difference between these 2 

groups. Mean absorbance for IgG in positive samples was 1.471 (95% CI 1.196-1.746), and 

for negative samples was 1.403 (95% CI 1.017-1.789), giving a non-significant p-value of 

0.7570. Given the significant difference between the two groups for absorbance when 

tested for SpA, this was seen as evidence that the presence or absence of IgG in the patient 

samples did not affect the absorbances seen when testing for SpA by ELISA. 

These IgG ELISAs proved that IgG is present in variable amounts in patient urine samples, 

and the presence of IgG was not significantly raised in the patient samples with highest SpA 

ELISA absorbance. 

3.3 Bradford Assay of Patient Samples 

Following indication that the amount of total IgG is not producing false positive absorbances 

in patient samples, the same sample range was tested for total protein content. This was to 

rule out non-specific interaction with urinary proteins (such as albumin) as the sole cause of 

positive SpA ELISA results. It was previously shown that the polyclonal anti-SpA antibody 

used in WB had the potential for non-specific binding, especially when in BSA solution. 

However, whether this phenomenon also occurred with non-denatured samples, tested by 

ELISA, was unknown. 

To estimate total protein in patient samples, a standard protein curve was made, as detailed 

in the methods. Following measurement of absorbance, a standard protein curve was 

created (Figure 53). 



SID: 33007675                                                                                                                        Christopher Varley 

95 
 

 

Figure 53- BSA standard curve, equalised against a blank of NaCl. BSA standards were tested by Bradford assay 

as per protocol. BSA standards were created from a 1.5mg/ml BSA solution, in a 2x dilution series.  

 

Each patient sample, previously tested for SpA and IgG by ELISA, was retested for total 

protein, using the method as described for creating protein standards. The results are 

displayed as absorbance and concentration of protein (Table 7 and 8). 
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Positive Patient 

(Sample Number) 

N=15 

Bradford Assay 

Absorbance 

Estimated 

concentration of 

protein (mg/ml) 

1(2) 0.112 0.292 

2(5)  0.68 1.774 

5(6) 

 

0.91 2.375 

9(1)  1.35 3.523 

10(2)  0.722 1.884 

12(5)  0.284 0.741 

13(2)  0.703 1.834 

25(1)  0.549 1.432 

31(5)  0.254 0.662 

34(3)  0.045 0.116 

36(5)  0.543 1.417 

38(2)  0.192 0.501 

39(2)  0.803 2.095 

42(6)  0.81 2.114 

44(3)  0.802 2.093 

Table 7- Patient samples most positive for SpA by ELISA, tested for total protein content by Bradford Assay 

absorbance, with estimated protein concentration. 
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Negative Patient 

(Sample Number) 

N=17 

Bradford Assay 

Absorbance 

Estimated 

concentration of 

protein (mg/ml) 

4(3) 1.66 4.333 

6(5) 0.354 0.924 

11(5) 0.311 0.812 

18(5) 0.266 0.694 

19(3) 0.513 1.339 

21(1) 0.253 0.660 

22(1) 0.245 0.639 

24(3) 0.494 1.289 

28(6) 0.422 1.101 

30(3) 0.28 0.730 

32(1) 0.572 1.492 

33(2)  0.507 1.323 

35(1)  0.794 2.072 

37(1)  0.299 0.781 

40(4)  0.933 2.435 

43(7)  0.76 1.983 

47(3)  0.376 0.981 

Table 8- Patient samples negative for SpA by ELISA, tested for total protein content by Bradford Assay 

absorbance, with estimated protein concentration 
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 Statistical analysis performed on the Bradford Assay absorbances showed no significant 

difference between positive and negative patient groups. Mean protein assay absorbance 

for the positive group was 0.583 (95% CI 0.388-0.779), and for the negative group was 0.532 

(95% CI 0.348-0.715), giving a non-significant p-value of 0.6808 for the difference in the 

means, as tested by Student’s T-Test. This provided evidence that the total amount of 

protein in patient samples was not the sole contributing factor to a raised absorbance seen 

on SpA ELISAs. However, given the small sample population tested for both total IgG and 

protein, only limited conclusions can be drawn from this information. 

3.4 Boiling patient urine and serum samples 

As the patient samples and control urine are known to contain IgG, it was hypothesised that 

this may be found bound to endogenous SpA, reducing its ability to bind to the capture IgG 

during the initial phase of an SpA ELISA. This sample attenuation by IgG would also apply to 

SpA concentration curves, as they have been constituted in control urine in the course of 

this research. The ELISA method for SpA detection in human serum, developed by Nilsson et 

al, showed clear evidence of SpA-IgG binding in human serum, which could be broken by 

boiling the serum for 10 minutes.183 In this study, it was found that without boiling, the 

absorbance of SpA standards constituted in human serum was not raised above background 

level, while following boiling, the SpA concentration curve in serum equated to levels seen 

in PBS solution.183   

Using this information, we repeated this experiment by creating an SpA concentration curve 

in control urine, and we subjected one curve’s samples to heating at 980C for 10 minutes. 

Both sets of SpA standards in control urine were treated as per SpA ELISA method, with the 

only independent variable being the heating of samples (Figure 54). 
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Figure 54- SpA concentration curves, constituted in control urine, tested non-boiled and following boiling for 

10 minutes. Commercial SpA was added to undiluted control urine to create a concentration curve. SpA ELISA 

was performed with 0.5µg/ml IgG as capture antibody, blocked in 5% (w/v) milk and incubated in 1:4000 anti-

SpA antibody. SpA standards were constituted in a 2x dilution series, in control urine. 

 

These curves show that the sensitivity for SpA in ELISA is increased when control urine 

standards are boiled prior to testing, with the concentration curve displaying a shift to the 

right. This correlates with the findings of Nilsson et al, and demonstrates that a certain 

amount of SpA in patient urine samples may be quenched by the binding action of human 

IgG.183 Furthermore, it shows that the SpA molecule is capable of tolerating boiling for 10 

minutes, with anti-SpA binding retained.  

3.4.1 Protein A Standards in serum 

In order to confirm the potential quenching effect of IgG in commercially sourced healthy 

human serum on detecting SpA by ELISA, a series of SpA standards was made up in a sample 

of commercial human serum. These standards were prepared at 400ng/ml, 40ng/ml and 

4ng/ml concentration, and subsequently tested by SpA ELISA.  
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3 samples were tested non-boiled, and the same samples were also tested after 10 minutes 

of heating at 980C. Each serum sample was diluted 1:5 with dH20, in order to avoid 

solidification of the serum sample on heating (Figure 55). 

 

Figure 55- Comparison of commercial SpA detected by SpA ELISA, when added to human control serum. 

Standards were tested non-boiled and following boiling for 10 minutes. SpA standards were constituted in 

human control serum, and diluted 1:5. SpA ELISA was performed with 0.5µg/ml IgG as capture antibody, 

blocked in 5% (w/v) milk and incubated in 1:4000 anti-SpA antibody. 

 

This result clearly demonstrates the quenching effect seen in serum, most likely due to the 

effect of IgG binding to SpA and blocking binding to the capture antibody. On boiling, these 

existing bonds are likely to be broken, freeing up SpA binding sites. To confirm the presence 

of IgG in the commercial serum, a separate ELISA dilution test was performed, which was 

positive; the healthy serum was calculated to contain 9.85mg/ml total IgG. Again, this also 

demonstrates the viability of commercial SpA detection by ELISA after boiling for 10 

minutes. 

3.4.2 Testing patient samples after boiling 

The logical next step in investigating this effect was an ELISA retest of SpA positive and 

negative patient urine samples, following boiling. If endogenous IgG is capable of quenching 
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SpA ELISA signal, then patient urine samples which were initially negative may become 

positive, while positive ELISA samples may display increased signal. This experiment was 

conducted with two groups of urine samples, three SpA ELISA positive samples and 3 SpA 

ELISA negative samples. These were tested both untreated, and after heat treatment for 10 

minutes, meaning each urine sample was tested twice (Table 9 and 10). 

 

Positive Samples Non-boiled 

Absorbance 

Boiled absorbance 

9 0.068 0.046 

9 0.102 0.051 

34 0.571 0.042 

34 0.777 0.041 

36 2.763 0.041 

36 2.769 0.067 

Table 9- Positive urine samples tested by SpA ELISA, with samples tested non-boiled and following boiling. 

 

Negative Samples Non-boiled 

Absorbance 

Boiled absorbance 

4 0.047 0.041 

4 0.041 0.040 

18 0.046 0.042 

18 0.051 0.044 

24 0.071 0.043 

24 0.064 0.039 

Table 10- Negative urine samples tested by SpA ELISA, with samples tested non-boiled and following boiling. 

 

These samples demonstrate that after 10 minutes of boiling, these patient samples display 

no higher absorbance than background (PBS background 0.047- SD 0.011). This is the 

opposite to what was expected from this experiment, if we are detecting SpA, as it is heat 

tolerant and should have raised signal following dissociation from IgG. 
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Not only is heating capable of eliminating positive ELISA results, but it was found to be 

capable of this effect after only a short amount of heating time. Within only 3 minutes of 

boiling, 8 patient urine samples, which initially showed a range of absorbance on SpA ELISA, 

became uniformly negative, which indicated that the non-specific binding, or protein, is 

denatured quickly (Figure 56). 

 

Figure 56- Patient urine samples tested by SpA ELISA, before heating, after 3 minutes heating and 5 minutes 

heating (including background). Each patient urine sample was tested once at each temperature. SpA ELISA 

was performed with 0.5µg/ml IgG as capture antibody, blocked in 5% (w/v) milk and incubated in 1:4000 anti-

SpA antibody. 

 

This figure shows the complete reduction in absorbance following a short amount of heating 

at 980C.  

Concurrent with the collection of urine samples, a single sample of serum was collected at 

the start of each patient ICU admission. This preparation of SpA ELISA samples by boiling 

was tested in these patient serum samples, to identify if signal increases in certain samples 

after boiling. A collection of 40 patient serum samples (1 serum sample per patient) was 

independently tested for SpA by ELISA, and the same samples were tested for SpA following 

10 minutes of boiling. Like the control serum used to constitute SpA standards (Figure 58), 

each patient sample was diluted 1:5 with dH20. Following SpA ELISA, prior to boiling, none 
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of the patient samples displayed an absorbance above that of background (PBS background 

0.064- SD 0.005).  These patient samples displayed no increase in absorbance following 

boiling; no samples displayed a significant increase in absorbance from background. 

3.4.3 ELISA Conclusions 

We have developed a sensitive ELISA for SpA, using IgG as capture antibody, which was 

capable of detecting commercial SpA down to physiological levels in PBS and control urine. 

It is also able to be detected in serum by the same method, but only after serum samples 

are boiled. IgG is suspected to cause a quenching effect on commercial SpA detection in 

both urine and serum, an effect which is reversed fully by heating.  

Initial positive ELISA results in patient urine samples, thought to be due to low levels of 

endogenous SpA, become negative on heating, indicating that the protein or molecule 

which caused a raised absorbance in these samples was not heat-resistant. From this, we 

can conclude that the substance responsible for a raised absorbance in these samples is not 

the same molecule as the commercially purified SpA. 

3.5 Mass Spectrometry Results 

In order to identity the substance causing a raised ELISA absorbance in patient urine, an LC-

MS method using samples created by in-gel digestion was devised. The aim was to identify 

the presence of SpA in positive ELISA samples, and to achieve this, 14 patient samples were 

prepared by on two SDS-PAGE gels. Following staining with Coomassie Blue, a band, 

selected on the gel at the same MW as commercial SpA, was excised from each patient 

sample well, and subject to in-gel digestion. Excised bands were sufficiently sized in order to 

encompass a range of MWs from ~47-53kDa (Figure 57).  
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Figure 57- SDS-PAGE gel of SpA and BSA standards, and 6 patient samples, electrophoresed for 1.5 hours. Gels 

were then stained with Coomassie Brilliant Blue. Red boxes indicate bands excised to form MS samples. 

 

Lane 1 2 3 4 5 6 7 8 9 

Sample SpA 

100µg/ml 

BSA 

1mg/ml 

Patient 

1 

Patient 

4 

Patient 

6 

Patient 

9 

Patient 

10 

Patient 

12 

Patient 

15 

 

For Mascot search results, each search result is given a score, and the significance level is a 

cut-off score above which results have a >5% chance of not being a random event. In this 

chapter, the score will only be presented if it is significantly higher than this level.  

In order to confirm LC-MS as capable of detecting SpA, and what form it is able to detect it, 

a sample of commercial SpA at concentration 500µg/ml was tested, following SDS-PAGE 

electrophoresis and in-gel digestion. Also in order to confirm the efficacy of the machine, 

BSA standards at 1mg/ml were processed and tested with each sample run (Table 11). 
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Standard 

Sample 

Top Hits Score Molecular 

Weight (kDa) 

SpA 100µg/ml  IMMUNGLOBULIN G BINDING PROTEIN A 

PRECURSOR (Staphylococcus aureus) 

1153.34 53.7 

Structural Protein A (Staphylococcus aureus) 1065 53.2 

Protein A (Staphylococcus aureus) 1018 35.1 

Protein A (Staphylococcus aureus) 795 38.02 

BSA 1mg/ml Albumin (Bos taurus) 2107.87 71.2 

Table 11- SpA and BSA standards, from SDS-PAGE and in-gel digestion, with LC-MS protein identification, score 

and estimated mass of identified proteins. 

 

The results of the SpA standard experiments confirmed the efficacy of the method of in-gel 

digestion used for processing patient samples, and the ability for the BioTools program to 

confirm the presence of SpA. Interestingly, the commercial SpA from S. aureus strain 8325 

was shown to be constituted of different forms of SpA, of different molecular weights. 

Mainly these constituted SpA at 53kDa and another protein, identified at SpA, at 35kDa and 

38kDa. 

The top hits found by MS for each patient individual patient sample, tested from the middle 

of the sample range (14 samples- see Figure 60 and 61), were found to contain no SpA in 

any form recognised by the BioTools software. The most common detectable protein 

product, with no search filters applied, was alpha-1 glycoprotein and albumin, two proteins 

commonly found in urine. Furthermore, only these proteins were above the significance 

levels for these searches (chance of random detection >5%). When search filters were 

applied to detect only bacterial protein products, a wide variety of different species 

molecules were detectable, but with no hits at scores higher than the significance level. This 

indicated a need for further, more encompassing testing of samples. 
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The decision was made to test certain patients sample ranges, based on the patients which 

displayed positive SpA ELISA results, and diagnostic information. These patients were: 

1. Patients 13 and 36- chosen as they displayed the highest absorbance on SpA ELISA  

2. Patient 18 and 24- both independently positive for Gram-positive bacterial infection, 

from blood culture and wound swab respectively. 

These patients full sample range were run on a single SDS-PAGE gel, and excised as one 

large band, at MW ~47-54kDa. The top results for these samples are displayed below, with 

only the significant hits displayed (Table 12). 

Patient 

sample 

Top Hits- all 

results 

Score Top hits- 

bacterial 

proteins 

Score SpA 

Identified? 

13 Alpha-1 acid 

glycoprotein 

242.9 Collagen-like 

protein 3 

(Streptococcus 

equi) 

57 No 

18 Albumin (Bos 

taurus) 

468.9 No significant 

hits 

N/A No 

24 Unnamed 

product protein 

(Homo sapiens) 

162.3 Fusion Protein: 

Heavy Chain (E. 

coli) 

75 No 

36 Alpha-1 

Antitrypsin 

(Homo sapiens) 

475.2 Fusion Protein: 

Heavy Chain (E. 

coli) 

148 No 

Alpha-1 Acid 

Glycoprotein 

precursor 

258.2 

Immunoglobulin 

Gamma: heavy 

Chain (Homo 

sapiens) 

126.9 

Table 12- Full sample ranges of patient tested, and band excised at level of commercial SpA. Top hits with 

scores are displayed. 
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As stated, these patient samples demonstrated clear detection of expected urinary proteins 

(such as alpha-1 acid glycoprotein), but no significant detection of SpA. As these samples 

represented the best chance of detection, based on previous research, this suggests the 

absence of SpA in these patients at the MW of commercial SpA.  

Due to the chance of SpA being present in urine samples at different MW, or small products 

of SpA breakdown being present lower in the gel, it was decided to create samples for LC-

MS which would contain all the products of a urine sample. This was achieved by placing 

patient samples into SDS-PAGE gels, and applying electrophoresis for 10 minutes only, 

thereby eliminating small charged molecules and leaving all large molecules and proteins in 

a single compressed region. This region was excised and halved to create two samples per 

patient range, which would contain all proteins present in the sample (Figure 58-59). 
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Figure 58- Patient 36 samples on SDS-PAGE to create MS samples for complete urine samples. Patient urine 

samples were electrophoresed for 10 minutes, before staining with Coomassie Brilliant Blue. Red boxes 

indicate excision boundaries, the subsequent gel pieces formed became MS samples 36-1 and 36-2. 

 

Lane 1 2 3 4 5 6 

Sample Patient 36, 
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Figure 59- Patient 13 samples on SDS-PAGE to create MS samples for complete urine samples. Patient urine 

samples were electrophoresed for 10 minutes, before staining with Coomassie Brilliant Blue. Red boxes 

indicate excision boundaries, the subsequent gel pieces formed became MS samples 13-1 and 13-2. 

 

Lane 1 2 3 4 5 6 

Sample 13 (1) 13 (2) 13 (3) 13 (5) 13 (6) 13 (7) 
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Once these samples were analysed, as expected, many significant hits for urinary protein 

were found, though again, none of these included SpA. This occured even when anlysis was 

restricted to bacterial proteins (Table 13). 

 

Patient 

sample 

Top Hits- all 

results 

Score Top hits- 

bacterial 

proteins 

Score SpA 

Identified? 

13-1 Human Albumin  566 Unnamed 

Protein 

Product (E. 

coli) 

151.36 No 

Human Serum 

Albumin 

532 

13-2 Serum albumin 

precursor 

(Homo sapiens) 

1145.7 Unnamed 

Protein 

Product (E. 

coli) 

120 No 

Alpha-1 acid 

glycoprotein 

precursor 

225.2 

36-1 Sequence 92 

from Patient US 

6663485 

627.6 Unnamed 

Protein 

Product (E. 

coli) 

91 No 

Human Serum 

Albumin 

534.3 

36-2 Serum Albumin 

precursor 

892 Unnamed 

Protein 

Product (E. 

coli) 

76 No 

Unnamed 

protein product 

(Homo Sapiens) 

837 

Table 13- Full range of samples with all bands excised, allowing the complete sample to be tested. Only top 

hits and scores displayed. 
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In summary, these LC-MS sample analyses have shown no evidence of the presence of SpA, 

in a small sample of patient urine samples. However, as these samples have been chosen 

specifically for their relation to S. aureus infection, and their positive ELISA results, we have 

given ourselves the highest chance of detecting the molecule. The lack of positive SpA 

identification may be due to number of factors, which are discussed in the limitations of this 

study. 

3.6 Statistical results and patient characteristics  

In order to obtain further information which might help determine the identity of the non-

specific binding molecules found in ELISA testing, statistical analysis was performed, looking 

at clinical and biochemical variables obtained when urine samples were collected. Basic 

statistics of the 47 patients, such as mortality rates, diagnosis and treatment, were 

performed by Frances et al.80 

Statistical analysis was performed using the Stata (Edition 12) program, with inputted data 

from ELISA experiments and collected clinical data. The aim of this was to reveal which 

characteristics, clinical or biochemical, were significantly associated with a raised 

absorbance seen on SpA ELISA, and whether these results indicated a link to infection. 

In order to perform statistical analysis, ELISA results were dichotomised as ‘positive’ 

(absorbance >0.100) and ‘negative’ (absorbance <0.100). Absorbance was set at the high 

level of 0.100, compared to an average background absorbance of 0.038-0.055, in order to 

ensure all true positives are contained within the positive group. Based on these groupings, 

basic statistics on SpA ELISA results were collected (Table 14). 

Category Total number 

of patient 

samples 

Total number 

of samples 

tested for SpA 

by ELISA 

Samples with 

raised 

absorbance 

(>0.100) 

Samples 

without raised 

absorbance 

(<0.100) 

Number 

(percentage) 

305 241 (79.02%)  

 

60 (24.9%)  

 

181 (75.1%)  

 

Table 14- proportion of positive and negative patient urine samples on SpA ELISA, based on a cut-off value of 

0.100 at 450nm. 
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Statistical analysis was performed comparing these two groups by continuous variables, 

related to clinical status. Based on 6 clinical findings, heart rate, respiratory rate, 

temperature, pH, white cell count and CRP, there was no statistical significant differences in 

these variables between ‘positive’ and ‘negative’ patient samples (Table 15). 

 

Variable Mean- 

positive 

group 

Mean- 

negative 

group 

Mean 

Difference 

between 

groups 

Standard 

Error of the 

Mean 

P Value  

Heart Rate 92.268 93.517 1.251 2.546 0.624  

Respiratory 

Rate 

19.811 21.624 1.812 1.813 0.128  

Temperature 37.436 37.461 0.025 0.11 0.82  

pH 7.382 7.393 0.011 0.015 0.454  

White Cell 

Count 

13.412 12.936 0.477 0.924 0.606  

CRP 211.518 229.86 18.342 20.702 0.377  

Table 15- statistical analysis of clinical variables between positive and negative groups on SpA ELISA. 

 

This indicates that the substance which is causing a raised absorbance in SpA ELISA is not 

related to traditional markers of infection. When patient diagnosis was categorised as 

infectious or non-infectious, comparison between ELISA result groups showed that there 

were more non-infective diagnoses within the ‘positive’ group. This is the opposite result to 

what could reasonably be assumed, if SpA was the cause of the raised ELISA absorbance, 

providing further evidence that the results are due to non-specific binding. 

Further statistical analysis revealed a strong, significant, association between a raised SpA 

ELISA result, and evidence for renal failure. These variables were serum urea and creatinine 

(Table 16). 
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Variable Mean- 

positive 

group 

Mean- 

negative 

group 

Mean 

Difference 

between 

groups 

Standard 

Error of 

the Mean 

P Value 

(significant?) 

Serum 

Urea 

13.665 9.098 4.566 0.969 0.001 (yes) 

Serum 

Creatinine 

169.55 86.209 83.34 12.906 0.001 (yes) 

Table 16- variables associated with renal failure, compared between SpA ELISA positive and negative samples, 

tested by Student’s T-test. 

 

Patients with eGFR > 60 (normal renal function), and <60 (renal failure) were split into two 

groups, and the groups were subject to logistic regression to predict the odds of renal 

failure being present in samples with a positive SpA ELISA result. Incidence of renal failure 

was found to be significantly increased in SpA ELISA positive patients (odds ratio: 4.28, p-

value 0.001). 

 

In summary, patients with evidence of renal failure were likely to produce urine which 

caused a raised absorbance on SpA ELISA. However, whether those patients exhibited 

kidney damage (and therefore glomerular leakage), which would allow large molecules into 

the urine, is not known. It is also a possibility, given the association with a reduced eGFR, 

that these patients produced more concentrated urine, implying an increased concentration 

of protein or other macromolecules which could exhibit non-specific binding with anti-SpA 

antibody. 
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4 Discussion 

The primary aim of this research was to develop methods to detect commercially sourced 

SpA via WB and ELISA, and apply those techniques to the detection of endogenous SpA in 

ICU patient urine samples. Mass spectrometry methods were developed to provide an 

additional insight into patient samples, in order to confirm the results of WB and ELISA. This 

information would then be used to assess the viability of SpA as a biomarker for S. aureus 

infection or bacteraemia in the ICU setting. The research to be conducted would involve 

three main stages: 

1. The development of a sensitive WB technique for detection of commercial SpA, and 

the application of the technique to testing ICU patient samples. 

2. The development of a sensitive ELISA technique for detection of commercial SpA, 

and the screening of patient samples by ELISA for endogenous SpA. 

3. Preparation and testing of patient samples by LC-MS. 

4.1 Detection of Protein A by Western Blot 

Previous work conducted by Yue Han proved that detection of commercial SpA by a WB 

method is possible,187 and many other studies investigating the structure of SpA have also 

utilised this approach to confirm the presence of SpA, for example in cell culture.114, 117 The 

work reported here has confirmed this technique as efficacious and specific for commercial 

SpA detection, using a primary (HRP conjugated) polyclonal anti-SpA antibody. The 

detection of SpA was possible down to the nanogram range, shown to be physiological 

relevant, based levels of other Staphylococcal urinary toxins (TSST-1, SEB) quantified by 

Harrison et al.79 Solutions containing 0.1µg/ml SpA produce a reliable and strong signal on 

WB, while there is variable and weak detection of solutions of 0.01µg/ml SpA. These 

concentrations represent a total of 7ng – 0.7ng of SpA per sample.  The higher of these two 

figures was set as the lower limit of detection when applying the method to patient 

samples, as it could be certain that 0.1µg/ml SpA could be detected even in less than 

optimal sample conditions. 

During the course of method development, we observed a number of issues which required 

resolving prior to using the method to test patient samples; these included variations in 
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commercial SpA band size seen on WB, differences in signal strength of SpA when diluted in 

buffer or urine, and the effect of antibody incubation in milk or BSA. 

4.1.1 Differences in Protein A size and bands 

The commercially sourced SpA used in WB standards was purified from cell culture of SpA-

producing S. aureus strain 8325, using an IgG-affinity column. This was documented in the 

product information as MW 42kDa; however, as seen in our SpA WB (e.g. Figures 16 and 

17), the product was detected as two distinct bands at the larger size of ~50-55kDa. We 

initially thought this could be due to phenomenon known as ‘gel shifting’, a phenomenon 

primarily seen when cell membrane proteins are subject to electrophoresis in SDS-PAGE 

gels, and can result in bands at MWs higher than expected.189 However, other reports, in the 

literature, including genetic studies on SpA secretion by strain 8325, established the MW of 

SpA as ~58kDa.115 This was confirmation that our WB results were displaying the correct 

MW for the particular S. aureus strain, though ‘gel-shifting’ may explain slight variation in 

MW seen between blots. 

Commercially sourced SpA was consistently identified as a double band upon examination 

by WB, with the higher MW band displaying marginally increased signal, implying a higher 

concentration (e.g. Figure 20).  These multiple bands were initially believed to be 

contamination from a separate protein; IgG was a likely candidate, as this was used to purify 

the SpA from culture, and the heavy chain of IgG is of approximate MW of 50kDa.188 

However, LC-MS investigation of multiple SpA bands, separated by electrophoresis, showed 

that each band contains SpA, but of different MWs (38-55kDa). This experiment also 

excluded the contamination of IgG (or other proteins) in the commercially sourced SpA. 

One explanation for multiple bands of the same protein is protease degradation during 

storage of SpA, which can cause of proteins to run at a different MW or appear as a double 

band.190 However, another possibility, backed by evidence in the literature, is that the 

commercial SpA culture medium contains different variants of SpA.. One study identified an 

enzyme (LytM) which actively cleaves SpA from the cell wall, producing a secreted form of 

SpA which included peptidoglycan amino acid residues; these residues contribute 

approximately 3-5kDa to the whole SpA molecule.137 Another study by O’Halloran et al, into 

the structure of secreted forms of SpA, discovered that the protein can be found secreted 
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without evidence of prior incorporation into the cell wall, with precursor molecule regions 

(e.g. C-terminal sorting signal) unprocessed.139 That study found that this purely secretory 

form of SpA measured at 51.9kDa, while variants of SpA, displaying prior inclusion to the cell 

wall, measured between 52kDa and 54kDa. This is evidence that SpA can be found in a 

number of forms in culture, at different MWs. The commercial purified SpA used in our WB 

experiments is from a single culture source, we suggest that we are seeing a mixture of cell-

wall associated SpA and a secreted variant, also explaining the identification of both bands 

as SpA by LC-MS.  

4.1.2 Effect of sample solution on detection of Protein A 

In the WB method optimisation stage, signal attenuation of commercial SpA was noted 

when SpA was examined in a control urine solution, as opposed to PBS (e.g. Figure 22). As 

no studies have been identified that have attempted to detect SpA in urine by WB, this is a 

novel observation. Previous work on WB development for the detect Staphylococcal toxins 

by Frances Price (MSc 2013), showed no attenuation in the signal of purified toxin in control 

urine compared to PBS.80  

We theorised that a component of control urine may be contributing to the reduced signal, 

as both urine and PBS SpA samples were prepared identically and to the same 

concentration. A molecule which is known to bind to SpA and is present in healthy urine is 

IgG, which is also found along with small amounts of IgA and IgD.191 SpA ELISA results show 

that there is approximately 0.4-0.5µg/ml IgG in the control urine used for creating WB 

samples. The interaction between SpA and IgG may affect the ability for anti-SpA antibodies 

to bind to the protein once transferred to membrane, potentially reducing signal on WB. 

However, the mechanism by which this effect occurs following heating and coating of 

samples in SDS, which should eliminate SpA-IgG bonds, is not known. It was decided to 

attempt to replicate the potential quenching effect of IgG on SpA, in PBS. 

Despite the repeated observation of a quenching effect in control urine, this was not 

reproducible by adding 1µg/ml commercially sourced human IgG to sterile PBS samples 

containing SpA. This result confirms that a collection of human IgG, at higher concentrations 

found in urine, is unable to reproduce this effect. Further experiments demonstrated that 

patient urine, which can contain up to 10 times the amount of IgG than healthy urine (as 
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demonstrated by WB and ELISA), showed no quenching effect on samples when spiked with 

SpA (Figure 19- 20). Ultimately, this attenuation in SpA signal was not reliably reproduced by 

WB of patient samples, and IgG levels did not appear to influence the effect. It was decided 

that we could not conclude the reason for this difference in signal between different 

standard solutions. 

4.1.3 Optimal blocking and antibody solution for Protein A detection 

In WB method development, important factors to consider are the blocking buffer, and the 

subsequent concentration of antibody solution, which is constituted in the same blocking 

solution. These factors proved to greatly influence the sensitivity and specificity of the WB 

technique developed to detect SpA. 

Firstly, blocking solution was compared in WBs of commercial SpA, between BSA (2% (w/v) 

or 5% (w/v)) and 5% (w/v) milk. BSA was initially chosen as the blocking and antibody 

solution of choice, due to its purity; it is made up of a single serum protein as opposed to 

milk, which is a mixture of proteins and other macromolecules. Literature evidence also 

shows that milk, due to the presence of casein, could interfere with the detection of 

antibodies by ECL.190 During initial WB experiments detecting purely SpA standards, BSA-

blocked membranes demonstrated lower background signal. However, when adapting the 

method to testing patient samples, it was revealed that blocking and incubating in 5% (w/v) 

milk greatly reduced the additional bands seen in patient samples. This was restricted to 

ladder proteins and patient urinary proteins, with 0.1µg/ml SpA standards still displaying 

strong signal (e.g. Figure 38). By exchanging milk for BSA in the antibody incubation stage of 

WB, we developed a specific test for SpA. 

Literature describing this increased blocking potential of milk is scanty, with most sources 

describing equal efficacy for both milk and BSA as blocking buffers,190  or reduced 

background and increased sensitivity when using BSA.192 However, we found that the 

elimination of non-specific binding was only seen when milk was used as antibody solution 

(not blocking specifically). Milk may be responsible for this effect in a number of ways: 

1. Increased variety of proteins in milk- as stated, milk contains a mixture of proteins, 

including casein and lactoglobulin, which allows a greater variety of blocking sites. 

Given the wide variety of potential proteins in patient urine, including plasma 
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proteins, immunoglobulins and enzymes, this may make milk a very effective 

blocking substance for WB of this matrix. 

2. Competitive binding with anti-SpA antibody- as we have demonstrated, the 

reduction in non-specific binding does not occur during the blocking stage, but is 

specific to the antibody incubation stage. This implies a degree of interaction with 

anti-SpA for the blocking effect to be achieved, which could be of a competitive 

nature. Anti-SpA may be directly inhibited from non-specific binding sites by the 

presence of milk proteins, or, it may be that anti-SpA antibodies bind to a milk 

protein preferably to the non-specific urinary proteins. Given that that the sensitivity 

of the WB for SpA standards remained unchanged by incubating antibody in milk, 

the level of interaction between milk protein and antibody would have to not 

interfere with commercial SpA binding. 

4.2 Detection of Protein A by Western Blot- sample experiments 

When applying the optimised SpA WB method to testing patient samples, it was decided to 

perform screening experiments, using a sample from each patient, followed by in-depth 

experiments on certain patients most likely to produce positive results. Following this series 

of WB tests, no positive detection of SpA was achieved, meaning no bands of proteins were 

detected in patient samples, at the correct MW for commercial SpA, or at any other MW. 

During initial screening, using BSA as blocking and incubating solution, multiple bands of 

different MW were detected in patient samples (e.g. Figure 25- 26), which showed promise 

that SpA might be present in some form in patient urine. However, for these bands to be 

SpA, it would have to be at a variety of MWs not documented in the literature.  The highest 

estimate for S. aureus toxin rates in the same patient samples was 72% (specifically for 

Staphylococcal AH),80 and as almost every patient sample displayed a band using the non-

optimised WB method, these additional bands were unlikely to all represent a form of SpA. 

This was confirmed during optimised testing (using milk), as none of these additional bands 

were detected, in any patient sample. 

The lack of detected SpA, even those later found to be positive on SpA ELISA, can have 

arisen for a number of reasons. Firstly, there may be no SpA present in these samples. This 

is a likely eventuality, as corroborating evidence (e.g. LC-MS) also concur that no SpA is 
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present in patient samples. However, given a reliable detection limit of 0.1µg/ml (~7ng) SpA, 

it may be that SpA is present, but at limits below that which is detectable by WB. 

Physiological levels of regular urinary proteins (e.g. albumin) is around <300µg/ml,193 but 

bacterial toxins and other excreted products can be significantly lower; Harrison et al 

estimated levels of Staphylococcal toxins in the range of nanograms to picograms (e.g. 1-

0.1ng).79 If SpA is present in samples at the picogram level, then our WB method would not 

have sufficient sensitivity to detect it. 

Some patient samples were later estimated to contain levels of SpA which approach the 

detection level of WB, such as patient 13, indicating that SpA bands could be detected by 

WB. This patient’s sample range demonstrated an ELISA result corresponding to a level of 

approximately 15ng/ml (1.5ng total), but a repeat WB of this patient samples did not yield 

any positive bands. 

Finally, it may be the case that SpA is present in patient urine at appropriate levels for WB 

detection, but in an altered form or variant which is unable to bind to the primary antibody 

used. Given the previously discussed range of SpA variants, depending on strain and protein 

secretion method, it may be that SpA is present in urine in one such form. Using a primary 

antibody known to bind to a different epitope of SpA may be helpful in ruling out this 

eventuality.  

4.2.1 Optimal sample preparation and method 

A series of experiments were carried out in order to optimise the preparation of patient 

samples for WB testing, to allow an effective screening process for SpA. This process 

elucidated important information about the patient samples which were carried into the 

screening and testing. 

Many patient samples carried a substantial amount of solid material suspended in the urine. 

This is seen amongst urine collected from patients on ICU wards, due to sloughed material 

from the urinary tract, as well as contaminant material from urinary catheters. However, it 

was not clear as to how to prepare samples containing substantial material; either the solid 

was to be avoided, to reduce non-specific protein contamination of WB, or it should be 

mixed in with the liquid urine, to obtain greatest chance of detecting SpA. We carried out an 

experiment testing these two methods of preparation found that the vast majority of 
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material detectable by SpA WB, which was later thought to be mostly non-specific proteins, 

is contained within the solid particulate matter. It was decided that in order to give the best 

chance of finding SpA in patient urine, this proteinacious material should be incorporated in 

WB samples, by vortexing. SpA, if present in patient urine, may have been bound to a 

number of antibodies, which may have experienced aggregation with other proteins in the 

samples. This method of sample preparation also extended to SpA ELISA sample application, 

and LC-MS sample analysis. 

4.3 Conclusions from Western Blots 

An effective and specific WB method, developed to detect commercial SpA, was unable to 

detect any positive results in a wide range of patient samples which had previously shown 

to be positive for AH, SEB, SEC and TSST-1 by WB methods. This does not rule out the 

presence of SpA in these samples, or in its presence in urine in a form undetectable by WB. 

The development of an ELISA with higher sensitivity for SpA would aid in interpreting the 

negative WBs. 

4.4 Detection of Protein A by ELISA 

An ELISA method was developed for the detection of SpA, utilizing the strong SpA-IgG 

binding affinity, by using IgG as capture antibody, followed by detection of IgG bound SpA 

by use of anti-SpA antibody. During optimisation, it was found that primary antibody at 

1:4000 concentration, and using milk as a blocking agent and antibody solution, lead to the 

greatest useful range of SpA detection. Using this method, we were able to detect 

commercial SpA diluted in both PBS and control urine; this was a sensitive and specific test 

for SpA, with a linear detection range of 0.78-25ng/ml SpA. Background, in both PBS and 

control urine, was consistently low. 

Screening of patient samples by this method was promising, with 25% of patient samples 

displaying an increased absorbance, the majority containing potentially low levels of SpA, 

e.g. 1-5ng/ml. In each ELISA microwell, 100µl of sample is added for testing, meaning that 

the total amount of SpA potentially being detected in sample is one tenth of this 

concentration, equalling 0.1-0.5ng. These protein levels are in keeping with physiological 

levels of Staphylococcal toxin found in patient urine by work carried out by Harrison et al,79 

and Frances Price (MSc 2013).80 Not only did concentrations of antigen correspond to 
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previous studies, but the percentage of positive samples fell within the range of samples 

estimated to be positive for other Staphylococcal toxins (5.9-72%).80 If these results were 

proven to be specific for low levels of SpA, this represents a sensitive technique for 

detecting a Staphylococcal surface protein in a novel matrix. 

However, we were aware of a number of methodological shortcomings which may call into 

question the specificity of this ELISA. These include the use of a mixture of human IgG as 

capture antibody, and detecting SpA with a primary anti-SpA antibody known to be capable 

of non-specific interaction with urinary proteins (shown on WB). This raises the suggestion 

that the positive results we see on SpA ELISA may be due to non-specific interaction, which 

prompted a series of experiments to confirm the specificity of this SpA ELISA method. 

4.4.1 Tests of protein and IgG content 

Unlike using an antigen specific antibody, using IgG as capture antibody means that a 

number of different proteins capable of binding to IgG, could be present in the microwell 

plates when primary antibody is added. This presents the chance of non-specific binding, as 

human IgG is capable of binding to a host of antigens and proteins. In order to find out if the 

presence of additional proteins attached to IgG is the cause of the increased absorbance on 

SpA ELISA, an experiment was carried out to estimate the levels of the two most likely 

candidates causing cross-reactivity; IgG and total protein. 

Following a further stage of method development, an IgG ELISA was underdone which 

measured directly adsorbed IgG (direct ELISA). Interestingly, the initial section of our 

method development discovered that using SpA as a capture antigen for IgG, which has 

been suggested as efficacious by other studies,194 proved to be non-specific and unreliable 

for commercial IgG estimation. 

A select number of patient samples were collated, based on previous ELISA results, in order 

to test a cohort of the most positive patient urine samples on a single microwell plate, as 

well as negative patient controls. These same patient samples were retested for SpA, along 

with a fresh test for IgG and total protein content. We identified no statistical difference in 

IgG and total protein absorbance between positive and negative patient SpA groups. The 

sample size for each group was small (n=15 positive group, n=18 negative group), lending 

these tests limited statistical power. Despite this, it was found that certain samples with 
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large amounts of IgG and protein displayed very little absorbance on SpA ELISA, confirming 

that the positive results seen on this ELISA were not solely influenced by these factors. We 

propose this as evidence of a high specificity of the SpA ELISA method, and if the positive 

SpA ELISA results are in fact the result of antibody cross-reaction, this is likely due to a 

specific urinary protein, not level of total protein or IgG. Further work needs to be done in 

order to confirm the specificity of the anti-SpA antibody, and therefore confirm the SpA 

ELISA as a viable test. 

4.4.2 ELISA of boiled samples 

As discovered from previous WB and ELISA, as well as the literature, IgG is present in both 

healthy and patient urine. Previous studies have theorised that the presence of IgG in 

human samples, such as serum, interferes with immunoassays for SpA by binding to SpA and 

blocking binding sites.183, 184 We were able to corroborate these findings by attempting to 

detect SpA in healthy human serum, which showed a large quenching effect, large enough 

to almost completely mask the SpA in the serum (Figure 63). The absorbance of SpA 

standards became co-incident with PBS standards following boiling of the serum SpA 

samples, which would provide the energy to break apart SpA-IgG bonds. This quenching 

effect was seen at a greatly reduced level in control urine, but an increase in sensitivity was 

still observed following boiling of urine (Figure 62).  

So far, this information was consistent with the nature of SpA-IgG binding, though this 

proves that saturation of SpA binding sites can occur in IgG solutions, and this effect is dose 

dependent. Also, importantly, these boiling experiments proved that the commercially 

sourced SpA used to create the standard ELISA curve is heat resistant. When ELISA-positive 

patient samples were boiled, we expected to see either an increase, or no change, to 

absorbance of patient samples. As our ELISAs show, this did not occur, and all patient 

samples became uniformly negative following boiling. This means that the molecule, or 

protein, which was causing the raised absorbance, was denatured fully after boiling after 3 

minutes. 

We propose that any SpA produced during the course of infection should remain heat 

resistant following excretion into urine; therefore, the positive ELISA results are most likely 

not due to the presence of SpA. 
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This leads to the primary question arising from our ELISA results; what have we detected by 

this technique, if not purely SpA? The most likely answer is a different protein which is 

denatured by boiling, but other options include particular antibody complexes or whole 

cells, or cell fragments. If these are present in the urine, unaltered, they can be immobilised 

by IgG in the first step of the ELISA, and subsequently picked up non-specifically by anti-SpA. 

The substance which is binding to both the IgG and anti-SpA in the ELISA, is unlikely to be a 

pure form of SpA released by S. aureus infection, a conjecture which is backed up by the 

results of both LC-MS of positive samples, and also statistical analysis displaying a lack of 

association with infective status. 

4.5 Protein A detection by LC-MS 

By using LC-MS techniques, our aim was to rule out, or confirm, the presence of SpA in 

patient urine samples, by using targeted in-gel digestion sample preparation. By excising 

and digesting visible bands of commercial SpA on an SDS-PAGE gel, we were able to 

confidently identify SpA. These data confirmed the viability of an in-gel digestion method for 

detecting Staphylococcal toxins, and also identified the presence of SpA variants, of differing 

MW, contained within the commercial SpA product. This confirmed previous speculation on 

the cause of the SpA double-band consistently seen on WB. 

Following this positive identification of the target protein, we tested a range of patient 

samples by excising bands at the approximate MW of commercial SpA. This targeted 

approach aimed to avoid the detection of more abundant urinary proteins, present at 

different MWs. However, none of the sample analyses by LC-MS provided identification for 

SpA, including testing whole samples which were positive by ELISA. The lack of detection 

could not be attributed to preparation or processing errors, due to the identification of 

commercial SpA and BSA, analysed concurrently with samples, as well as significant 

detection of known urinary proteins such as albumin and alpha 1 acid glycoprotein 

(orosomucoid) in the patient samples themselves. 

The method devised to test full samples, using a limited amount of electrophoresis to create 

a single large band of all proteins, allowed the identification of most abundant proteins in a 

sample. This did not detect SpA, only finding E. coli proteins at significant levels. These 

proteins may be from the urinary tract, urinary catheter or catheter bag, or from 
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contamination while handling samples. Waiting time between sample preparation and 

processing by MS was minimal (<1 day), so it is unlikely to be from Gram-negative growth 

from storage. This full sample testing method provides a promising route of investigation for 

urinary Staphylococcal antigens. However, to take full advantage of this method, a machine 

capable of detecting proteins at very small concentrations would have to be used.  

The use of LC-MS in indentifying Staphylococcal toxins is a technique used extensively in the 

investigation of the S. aureus proteome, using either in-gel digestion techniques, or whole 

cell culture sample digestion, to catalogue the proteins found in bacterial culture.195 The use 

of LC-MS to detect antigens in human samples has not been studied extensively, so could 

represent a potentially fruitful area of research. However, the presence of other bacterial 

proteins from the urinary tract or, or contamination from handling of samples, as well as the 

large amount of other urinary proteins, are issues which complicate the detection of scarce 

bacterial toxins. 

4.6 Statistical Analysis 

A basis for statistical analysis on the patient cohort was formed by characterising ELISA 

results as positive (1) or negative (0), based on a cut-off absorbance of 0.100, which would 

correspond to a hypothetical concentration of 0.1ng/ml SpA. Using this cut-off absorbance 

was deliberately high (>10 SD away from background absorbance), due to the likely chance 

of non-specific antibody interaction marginally raising absorption. Choosing a high cut-off 

was a strategy to avoid potential false positive results being analysed within the SpA positive 

group. This created a positive group of patient samples, which consisted of 25% of samples 

tested. Statistical analysis, performed by dichotomisation of samples into positive and 

negative and testing mean difference, would help to highlight any factors which may be 

contributing to a raised absorbance in these samples. Identifying a relationship between 

SpA ELISA result and infective status of patient was also an important aim for this research. 

To achieve this, markers of infection (HR, RR, BP, temperature, pH, WCC and CRP) were 

compared between the two groups, then analysed by Student’s T-test and logistic 

regression. Results showed no significant differences between the 25% of patients with 

positive ELISA and the rest of the sample population. As the raised absorbances seen on SpA 

ELISAs are strongly suspected to be of a non-specific nature, these findings are further 
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indication of these results being false positive. Previous work on this patient cohort, by 

Frances Price (MSc 2013) had revealed a weak association between markers of infection and 

presence of Staphylococcal toxins (particularly AH). This is in keeping with previous work on 

ICU patient status and urinary Staphylococcal toxins, by Azuma et al, which found a greatly 

increased incidence of toxins in patients with confirmed sepsis (42%), compared to other 

diagnosis (6%).76 Based on this, it should be expected that a positive SpA ELISA, detecting 

endogenous SpA, would relate to increased markers of infection. However, this particular 

patient group was collected from a general ICU population, without prerequisites for sepsis 

or infection, making the relationship of the ELISA results to infective status difficult.  

However, despite small patient numbers with an infectious diagnosis (n=22, 49% of total 

samples), and a smaller number with confirmed sepsis (n=6, 13% of total samples), limited 

conclusions can be drawn based on this diagnostic information. These mostly concur with 

the absence of SpA in patient urine. Of the 6 patients with confirmed sepsis, 3 produced 

samples with a significantly raised ELISA result. Two patients at highest risk of S. aureus 

infection, 18 (Gram-positive blood culture) and 24 (Gram-positive wound swab), were 

negative for SpA in all modes of testing; WB, ELISA and LC-MS. The patients with the most 

positive ELISA results, 13 and 36, were admitted with non-infectious diagnosis, diabetic 

ketoacidosis and bowel perforation respectively. Admittedly, these are single case examples 

and a number of factors could have influenced this pattern of ELISA results (e.g. urinary 

contamination, infection during ICU admission), but does provide some evidence against the 

SpA ELISA for predicting S. aureus infection in the ICU setting. 

Statistical analysis did reveal a significant association between the positive ELISA result 

group, and evidence of renal failure, including raised serum urea, creatinine and a reduced 

eGFR. This could be a result of antigen deposition in the kidneys, an event which is known to 

occur with Staphylococcal toxins,196 TSST-1,197 and also Streptococcal toxins.198 This leads on 

to the prospect that the anti-SpA antibody used in ELISA is detecting SpA in a form of SpA-

IgG complexes, which are known to form in response to SpA in the bloodstream.175, 176 These 

would be large molecules, which would only be able to be excreted in the event of 

glomerular basement membrane leakage. However, for this to explain the our positive SpA 

ELISA results, it would depend on the SpA-IgG complexes being detected by an anti-SpA 

antibody, but not the unbound SpA molecule which would be released by boiling. We 
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believe this is unlikely, as it would involve the alteration of the SpA molecule by interaction 

with IgG, which is not known to occur. 

It has been shown that proteinuria, caused by damage to the glomerular basement 

membrane, increases over the course of chronic renal failure,199 as well as being a direct 

result of kidney damage in diseases such as acute tubular necrosis.200 As we have clear 

evidence of the lack of SpA in patient urine from WB, and to a more limited extent, LC-MS 

results, the presence of proteins causing non-specific binding is the more likely explanation 

for the link between raised absorbance in SpA ELISA and markers of renal failure. 

4.7 Limitations of this study 

Given the negative outcome of this study in terms of identifying a novel antigen target for S. 

aureus infection status, it is important to highlight areas in which research required 

improvement, before ruling out SpA as potential testing candidate. While we have 

developed a sensitive and specific ELISA, as well as a specific (but less sensitive) WB, certain 

aspects could be improved to optimise these methods further. 

4.7.1 Antibody specificity 

As demonstrated during the WB method development, and during preliminary work by this 

laboratory, polyclonal HRP-conjugated anti-SpA antibodies have the potential to exhibit 

extensive non-specific binding to various proteins which may be found in patient urine. 

While through the process of this research we were able to remove much of this effect in 

WB, through the use of lower amount of antibody diluted in 5% (w/v) milk, there remained 

the possibility that non-specific binding could have been reducing the sensitivity of the WB 

technique. The use of an HRP-conjugated primary antibody (‘direct detection’ WB) could 

also be associated with reduced sensitivity as signal amplification is less pronounced 

without the use of a primary-specific secondary antibody.201 However, using a secondary 

antibody (such as HRP-conjugated anti-rabbit IgG), has been associated with an increased 

background and increased likelihood of non-specific binding.202 It was decided that the 

detection of SpA on WB to a concentration of 0.1µg/ml (7ng per sample), was a sensitive 

enough detection level to rule out the presence of SpA, however, we were unable to rule 

out whether an indirect WB method would provide a greater level of sensitivity. 
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In the ELISA experiments, antibody specificity is likely to have contributed to the raised 

absorbance results seen in patient samples. Due to the lack of protein separation by SDS-

PAGE electrophoresis, a positive result seen in ELISA may be due to high-protein levels in 

the samples, especially in ICU patient urine. Because of this lack of protein differentiation, it 

has been recommended that ELISA is best utilised when using an antibody with high 

specificity to the target antigen.203 As the antibody used in these experiments has shown to 

be capable of exhibiting non-specific binding, it would be difficult to rule cross-reaction as a 

complicating factor in interpreting results. Further experiments to demonstrate the 

specificity of a variety of anti-SpA antibodies, monoclonal and polyclonal, would be required 

in order to improve the development of an effective SpA ELISA method. 

The direct comparison of antibody binding in WB and ELISA is difficult due to the differences 

in sample preparation between the methods. Antibody-binding in ELISA samples occurs in 

more natural conditions than in WB; this is due to the SDS-coating process which is integral 

to the separation of proteins on SDS-PAGE. During WB sample preparation, SDS binds to 

hydrophobic regions on proteins and induces ‘reconstructive denaturation’, forming 

proteins into alpha-helices.189 While it may be that the anti-SpA would have had more 

available sites of binding in WB samples due to this denaturation process, unaltered urine 

may have contained more large contaminants, such as complexes, biofilms or whole cells, 

which may have facilitated antibody binding, or produced false positive ELISA results. 

Regardless of sample preparation, the fact remains that the primary antibody used was a 

polyclonal IgY, meaning the potential exists for a monoclonal anti-SpA antibody to be more 

specific, if not necessarily more sensitive. 

4.7.2 Patient sample group 

For this research, as well as the earlier work by Frances Price (MSc 2013), 305 urine samples, 

from 46 patients, were collected for this research from the local ICU ward at Royal Lancaster 

Infirmary. In order to test potential candidate molecules for S. aureus antigen testing, a wide 

selection of patients, with varying diagnoses, was included in the sample series. However, 

despite providing the opportunity to test antigen levels in a realistic hospital population, it 

may be the case that the amount of samples available to test did not provide a higher 

enough incidence of S. aureus bacteraemia or transient colonisation, in order to detect SpA 
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in sufficient quantities. Previous published work on detecting an antibody response to SpA 

in serum has been limited to patients with confirmed S. aureus endocarditis,186 which would 

guarantee the highest chances of detecting Staphylococcal toxins.  

To fully assess the data found by this research, the small sample size must be taken into 

account. A relatively small number of patients, and specifically from the ICU department, 

may limit generalisation to the rest of the hospital, or general, population. 

Roughly 80% (241) of the available samples were tested by ELISA, and substantially less by 

LC-MS, which was primarily undertaken in order to confirm the constituents the urine 

samples which were positive on ELISA. While we can be reasonably confident that our ELISA 

results are influenced by non-specific antibody binding, in order to confirm the absence of 

SpA in the ICU patient samples, a more complete screening of samples, using the LC-MS 

method capable of detecting proteins of low concentration, would need to undertaken.  

4.7.3 Mass spectrometry sensitivity 

Interpreting LC-MS data, specifically the ability to rule out the presence of SpA in patient 

urine samples, must take into account the sensitivity and resonance of the MS machine. The 

sensitivity of the instrument used in this research was capable of generating an 

identification score of >1000 for BSA, when a sample of 1.5pmol of BSA was analysed, 

indicating a very high sensitivity. Positive identification (e.g. scores of ~100-1000) of very 

small amounts of a target molecule could be ‘masked’ by the abundance of other proteins 

within the samples. This ability to discern wide ranging concentrations of proteins in a 

sample is known as the dynamic range. Unfortunately, this figure is low in our MS 

instrument, measuring approximately 102 to 103
, meaning any molecule with concentration 

less than 1-0.1% of a sample will not be (significantly) detected. This represents a significant 

problem in interpreting MS data of full patient samples, given the amount of total proteins 

present in some samples, hence the requirement to run samples on an SDS-PAGE gel and 

excise the band of desired MW range. While this may reduce the amount of additional 

protein in a sample, the problem of SpA variants of different MW going undetected remains 

an issue. 

Also of concern is the MS resonance, which is the degree in which peaks of similar weight 

can be distinguished as separate proteins. As commonly identified urinary proteins include 
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albumin (MW 66kDa) and orosomucoids (MW 22-25kDa), there is reduced chance of 

interference with the entire SpA protein (MW 50-55kDa). However, if SpA is present as a 

smaller breakdown product, or in a variant at different MW, the MS resonance may be 

playing a role in the negative SpA identification seen. 

As such, our findings from LC-MS data should be analysed with the detection limits of the 

machine taken into account, when confirming, or ruling out, the presence of a protein. This 

is particularly the case in test solutions containing a high number of additional proteins, and 

if the target protein or toxin is believed to be present at very low concentrations (e.g. 

nanograms). 

4.8 Wider Implications 

In an attempt to locate SpA in ICU patient urine by a variety of commonly used biomedical 

techniques, we have developed a sensitive and specific WB for SpA, a sensitive ELISA for 

SpA, and a method for screening patient urine samples for bacterial proteins through in-gel 

digestion and LC-MS. Despite this, we have been unable to detect any SpA by WB and LC-

MS, or confidently rule out the chance of false positive ELISA results.  

Previous work, by other groups and this laboratory, has revealed the presence of 

Staphylococcal toxins in the general and hospital population. Healthy infant urine displayed 

a pyogenic toxin rate of ~10%,79 indicating early exposure to S. aureus, while Frances Price 

(MSc 2013) found a high proportion of exotoxins in the same cohort of ICU patients, 

especially AH (72%).80 If these results are indicative of S. aureus colonisation or infection, 

then SpA should be present in these same patients. Aside from methodological factors, such 

as non-specific binding, the fact that these results do not correlate with previous findings 

may be due to: 

 Lack of urinary excreted SpA-  SpA is shown to induce IgG antibody responses in the 

host, which increase rate of SpA elimination from the bloodstream,175 and is known to 

involve primarily the liver and spleen.174 These are common sites of phagocytosis, which 

serves the function of removing unwanted serum components, the breakdown products of 

which are able to be excreted in the urine. However, it may be the case that SpA is entirely 

digested in the liver and spleen, and the eventual excreted product bears no resemblance to 

the original SpA molecule. SpA-IgG complexes are too large (~200kDA) to pass through the 
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intact glomerular basement membrane, so it is reasonable to suggest that most SpA goes 

through a stage of processing before eventual secretion.  

 

 Low production of SpA by S. aureus- studies attempting to quantify the amount of 

SpA produced by S. aureus strains are limited, however, an early study produced a figure of 

1.6% of cell culture mass of S. aureus, which gives an indication that production can be 

significant.104 However, different S. aureus strains produce variable amounts of SpA,135 

making the possibility that even if infection was present, sufficient quantities of SpA might 

not be released in order to be detectable. Genetic control of SpA production indicates that 

there is up-regulation of SpA during times of low bacterial load,204 which implies that SpA 

may be found in higher proportions during early infection or healthy colonisation. However, 

levels may also rise during times of Staphylococcal cell lysis (releasing cell wall SpA), and 

secretion of SpA also differs between strains.106
 Therefore is it difficult to accurately suggest 

when during the course of S. aureus infection SpA production is maximal. 

4.9 Future work 

Previous discussion has illuminated areas of this research which could be continued, along 

with new areas of research which would provide more information on the presence of SPA 

in the human body. For example, the SpA WB developed by this research could be extended 

to testing urine from different patient populations, where the concentrations of SpA may be 

significantly higher, such as S. aureus soft tissue infection or endocarditis patients. The 

concurrent collection of serum and urine samples from such patients would allow the 

testing for SpA in both, in order to learn more about SpA excretion from the body. 

4.9.1 Further patient sample testing 

While the search for SpA in ICU patient urine may have proved ineffective by WB, future 

work could focus on ELISA of other patient samples, given the increased sensitivity of this 

method. Evidence in the literature proves that antibody responses to SpA can be elucidated 

in the bloodstream of bacterial endocarditis patients, using a sensitive and specific ELISA 

technique for anti-SpA.186 This demonstrates that SpA, either extracellular or cell-wall 

bound, is located in the bloodstream during active infection. Furthermore, the ability for S. 

aureus, particularly antibiotic resistant strains, to secrete SpA,117 provides a basis for more 

widespread serum testing .The ability to detect an antibody response, or to directly detect 
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SpA, in the serum of ICU patients could provide a viable biomarker for the presence of S. 

aureus in the bloodstream.  

As our patient population contains no confirmed S. aureus bacteraemia or sepsis cases, this 

research would involve the collection of serum samples from patients with these conditions. 

Development of WB and ELISA tests optimised for anti-SpA in serum could also be 

developed, though this matrix may prove more difficult than urine due to high protein 

content of serum samples. 

However, the potential benefits of a serum SpA test are great; the identification of SpA, or 

response to SpA, in the bloodstream could provide rapid information on the presence of S. 

aureus in the actual location of importance in sepsis, bypassing the need to take renal 

excretion into account. Aside from diagnostic information, the frequent use of invasive 

interventions on ICU wards exposes patients to the risk of bloodstream infection, and a 

rapid serum test for SpA could prove valuable in determining if S. aureus exposure has 

occurred. However, the disadvantage of a serum test is the invasive route required for 

sampling, over the ease and non-invasive nature of urine testing. 

Another potential candidate for future sample testing would be nasal isolates taken from 

ICU patients, followed by culture and WB testing for SpA. As ~30% of the population is 

colonised by S. aureus at any one time,205 this could provide useful quantification 

information into SpA production in patient ICU population, compared to the general 

population. 

4.9.2 Continued mass spectrometry of patient samples 

The LC-MS method developed to test entire patient samples (e.g. Figure 63- 64) carries 

potential for cataloguing the constituents of the unique subset of ICU patients. The samples 

tested in this research revealed a number of human proteins traditionally found in urine, as 

well as some significant evidence of E. coli proteins. As discussed, these may be due to 

contamination, either from sample preparation or from the storage and collection of urine 

from the catheter. However, these preliminary findings prove the potential effectiveness of 

this LC-MS technique in screening this sample population for bacterial toxins, if features 

such as dynamic range and resonance are improved. 
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Future work could aim to establish the presence of other infectious biomarkers by MS, and 

determine whether these relate to, or predict, infection status. Ideally, these samples 

should be analysed with an LC-MS machine with greater ability to detect proteins of lower 

concentration. Follow up experiments could attempt to confirm these markers using the 

biochemical tests used in this research; WB and ELISA. 

5 Conclusion 

Staphylococcus aureus is a common cause of serious infection on Intensive Care wards, and 

ensuring prompt treatment of bloodstream infection is important in avoiding potentially 

fatal outcomes. Techniques involving urinary testing by ELISA have allowed swift diagnostic 

tools for a variety of infections, such as pneumococcal and Leigionella pneumonia.73 Recent 

research by this laboratory has revealed the presence of Staphylococcal toxins and 

superantigens in ICU patient urine using similar techniques. We decided that it would be 

beneficial to test these samples for the presence of additional Staphylococcal antigens, with 

the aim of ascertaining whether a suitable diagnostic test for S. aureus infection could be 

developed in the future.  

Staphylococcal Protein A is an abundant surface protein found in almost all S. aureus strains. 

It has been shown to play a role in overt S. aureus infection and also promoting healthy 

carriage of the organism,205 and it is conceivable that its detection in urine could provide a 

marker for these conditions. 

 Our aim was to develop methods for detecting SpA by Western Blot and ELISA. These 

laboratory techniques were optimised for the detection of commercial SpA spiked in buffer 

and urine, which included work to reduce the cross-reactivity of anti-SpA antibody. 

However, when our optimised Western Blot was performed on patient urine sample ranges, 

we could not detect bands at a MW which could correspond to SpA.  

Subsequently, an effective ELISA using IgG as capture antibody was developed, which 

proved more sensitive than Western Blot, allowing detection of SpA levels as low as 

0.78ng/ml (0.07ng total SpA). Once applied to patient sample screening, this technique 

identified a raised absorbance level in approximately 25% of the ICU urine samples, 

suggesting the presence of SpA. However, follow-up experiments indicated that non-specific 
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binding of SpA antibody may have contributed to the increased absorbance levels seen in 

these samples. For example, whilst commercial SpA spiked samples retained their levels of 

SpA following heat treatment, in the positive patient samples, SpA levels appeared to 

entirely disappear on heat treatment. Additionally, LC-MS analysis of the same patient urine 

samples could not identify SpA. It could be the case that our ELISA technique has detected a 

heat sensitive SpA variant in the positive samples, or, more likely these results are due to 

non-specific binding to abundant urinary proteins. 

A potential reason for our inability to detect SpA in the urine could be that SpA binds to 

plasma IgG, generating SpA-IgG complexes, which have an approximate MW of 200kDa. 

Interestingly, statistical analysis revealed that while a positive SpA ELISA result did not 

significantly correlate with patient markers of infection, there was a correlation between 

SpA detection and evidence of renal failure, specifically raised serum creatinine and urea, 

and lowered eGFR. It appears that kidney dysfunction has led to positive ELISA results in 

these patients, conceivably because of increased passage of SpA-IgG complexes, or simply 

total protein, through damaged glomerular membranes.  

Limitations of this study include the small sample size (<241 samples). While we can infer 

that our positive ELISA samples may be the result of non-specific interaction of the SpA 

antibody, investigation of a wider range of patient samples would allow us to add weight to 

this suggestion. We could also employ different anti-SpA antibodies in Western blotting and 

ELISA to see if these allow a more sensitive detection of SpA in our positive samples, or 

whether they confirm absence of SpA in these samples.  

Using optimised immunoblotting and immunoassay techniques, the Staphylococcal surface 

protein SpA has been determined to currently be an elusive candidate for these methods of 

testing in a general ICU patient cohort. This research presents opportunity for future work 

to investigate the primary route of excretion of SpA, with S. aureus diagnosis through SpA 

testing a viable opportunity for future research. The focused collection of additional patient 

serum and urine samples with known S. aureus bacteraemia would provide useful 

confirmation of these methods. Attempts to identify potential markers of Staphylococcal 

infection are rare in the literature, despite the great need for improving our knowledge of, 

and management of, this disease. 
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Appendix 
Patient diagnosis and characteristics.  

Patient number- 45 

Patient number Diagnosis on 
admission 

Age Death during 
admission? 

1 Addisonian Crisis 77 N 

2 Ruptured Aortic 
Aneurysm 

83 N 

3 Pneumococcal 
Pneumonia 

66 Y 

4 Hodgkin’s Lymphoma 19 N 

5 Ruptured Aortic 
Aneurysm 

73 N 

6 Viral Encephalitis 67 N 

7 Trauma 40 N 

8 Spinal Cord Ischemia 54 N 

9 Urinary Sepsis 67 N 

10 Acute Kidney Injury 61 N 

11 Pneumonia 64 N 

12 Bowel Perforation 80 N 

13 Diabetic Ketoacidosis 37 N 

14 Ventilation Acquired 
Pneumonia 

30 N 

15 Gram-negative sepsis 71 N 

16 Pneumonia 82 N 

17 Ischaemic Bowel 86 N 

18 Not Known 54 N 

19 Necrotising Fascitis 48 N 

21 Perforated Stomach 18 N 

22 Pneumonia 77 N 

23 Deep Vein Thrombosis 25 N 

24 Necrotising Fascitis 72 N 

25 Ischaemic Bowel 67 N 

26 Sepsis 63 Y 

27 Not Known 38 N 

28 Caecal Volvulus 46 N 

29 Upper GI haemorrhage 80 Y 

30 Pneumococcal 
Pneumonia 

61 N 

31 Pneumonia 74 N 

32 Multiple Organ Failure 37 Y 

33 Pneumonitis 77 Y 

34 Sepsis Not collected Y 

35 Pneumonia 35 N 

36 Bowel Perforation Not collected N 

37 Diabetic Ketoacidosis 69 N 
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For further patient details, the following information is available in Frances Price (Msc 

2013):80 

 Vital Signs: 

o Heart rate 

o Blood pressure 

o Temperature 

o Respiratory Rate 

 Ventilation 

o Invasive/ Non Invasive 

 Invasive lines and catheters: 

o Central Venous Catheter 

o Arterial Catheter 

o Urinary Catheter 

o Abdominal Drain 

o Chest Drain 

o Other lines 

 Gender 

 

 

38 Intra-abdominal 
haemorrhage 

61 Y 

39 Pneumonia 65 Y 

40 Meningitis 56 N 

41 Pneumonia 83 N 

42 Sepsis 70 N 

43 Necrotising Fascitis 33 N 

44 Pancreatitis 46 Y 

46 Sepsis 34 N 

47 Gram-negative Sepsis 76 N 


