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Summary: We consider population genetics models where selection acts at a set

of unlinked loci. It is known that if the fitness of an individual is multiplicative

across loci, then these loci are independent. We consider general selection models,

but assume parent-independent mutation at each locus. For such a model, the

joint stationary distribution of allele frequencies is proportional to the stationary

distribution under neutrality multiplied by a known function of the mean fitness

of the population. We further show how knowledge of this stationary distribution

enables direct simulation of the genealogy of a sample at a single locus. For a

specific selection model appropriate for complex disease genes, we use simulation

to determine what features of the genealogy differ between our general selection

model and a multiplicative model.
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1 Introduction

Consider selection acting on a set of unlinked loci. Under a multiplicative model

for fitness, these loci will evolve independently (Risch, 1990). However, for com-

plex diseases there may be interactions between unlinked genes, and a simple

multiplicative model will be innappropriate (Wiesch et al., 1999; Niu et al.,

1999; Cordell et al., 2001). Fearnhead (2003) introduced a coalescent-type an-

cestral process for such models of selection, where the fitness depends in a non-

multiplicative way on the alleles at a set of unlinked loci. Here we show that

if parent-independent mutations occur at each loci, then the joint stationary

distribution of the allele frequencies at the unlinked loci is proportional to this

stationary distribution under neutrality multiplied by the exponential of the

mean fitness of the population. This result is a natural extension of the result

for selection acting at a single loci (Wright, 1949; Donnelly et al., 2001).

Central to our proof of this result is the following result for Langevin diffusions

(see Roberts and Stramer, 2002; Kent, 1978)

Theorem 1 Consider a diffusion in d-dimensions, specified by the following

stochastic differential equation

dX(t) = b(X(t))dt + σ(X(t))dB(t) (1)

where B is a d-dimensional Brownian Motion, b(·) is a d-dimensional vector and

σ(·) a d× d matrix. Assume X = (X1, . . . , Xn) is not explosive, define the d× d

matrix a(x) = σ(x)σT (x), and δ(x) as the determinant of a(x). Further assume

that there exists a density function π(x) such that for all j

bi(x) =
1

2

d
∑

j=1

aij(x)∂ log π(x)/∂xj + δ1/2(x)
d
∑

j=1

∂

∂xj

(aij(x)δ−1/2(x)). (2)

Then π(x) is the unique stationary distribution of X.
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The interpretation of the d- dimensional drift vector b(x) and the d × d matrix

a(x), are that

lim
h→0

(

E(Xi(t + h) − Xi(t)|X(t) = x)

h

)

= bi(x), (3)

represents the expected infinitesimal change in X(t) and

lim
h→0

(

Cov(Xi(t + h), Xj(t + h)|X(t) = x)

h

)

= aij(x) (4)

represents the instantaneous covariation of X(t).

We introduce our general selection model in Section 2; this is equivalent to the

model considered in Fearnhead (2003). Our result for the stationary distribution

of the allele frequencies is then given in Section 3. In the following two Sections

we compare features of our general selection model with multiplicative selection

models where loci are independent. Firstly we compare the stationary distri-

bution of each model; and we then look at features of the distribution of the

genealogy at a single locus under each model. For the latter, we extend existing

approaches to sample genealogies at a non-neutral locus. The paper ends with a

discussion.

2 Model and Notation

We consider the diffusion limit of the following Wright-Fisher model. Assume a

population of N diploid individuals. Each individual is charaterised by its two

haplotypes at a set of L independent loci, and we assume Ki possible alleles at

loci i (for i = 1, 2, . . . , L). Thus one haplotype of an individual will be a vector

of L alleles, describing the allele carried by the individual at each of its L loci on

one of its two copies of its genome. We characterise the state of the population

by the list of haplotypes (and their multiplicities) in the current generation.
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The fitness of an individual with haplotypes (α, β) is 1 + sα,β. We proceed from

one generation to another as follows. We choose 2N pairs of haplotypes from

the current generation. These choices are independent, and the chance that a

particular pair, (α, β) is chosen at each choice is proportional to 1 + sα,β. For

each of these 2N pairs we then produce a new haplotype by choosing an allele

uniformly at random from the pair of alleles at each loci (with the choices at

each loci being independent of all other choices), and for locus l = 1, . . . , L, we

have a probability ul of mutating the chosen allele. If a mutation occurs at locus

l the mutant will be of type i with probability ν
(l)
i , which is independent of the

parent allele. (Note, that for this and all our notation that follows, we subscript

by the allele and superscript by the locus.)

We consider the diffusion limit of this model as N → ∞; time is measured in

units of 2N generations; and θ
(l)
i = 4Nulν

(l)
i (population scaled mutation rates)

and σα,β = 4Nsα,β (population scaled selection rates) are kept fixed. We let

θ(l) =
∑

i θ
(l)
i , the mutation rate at locus l. Note that this diffusion limit applies

to a wide range of population models and hence our results apply more widely

than for just the Wright-Fisher model.

In this diffusion limit, the loci are unlinked, and the population frequency of a

haplotype α, Pr(α), is obtained as the product of the population frequencies of

the alleles of α across the L loci. The population can thus be characterised by

the population frequencies of the alleles at each loci. We denote the frequency

of allele i at loci l by x
(l)
i , and let x = (x

(1)
1 , . . . , x

(L)
KL−1) be the set of allele

frequencies at the L loci. Note that for locus l we record only the frequencies of

alleles 1, . . . , Kl − 1 as the final allele frequency is defined by the fact that allele

frequencies sum to 1.
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Conditional on x we can define the mean selection rate of the population

σ̄ =
∑

α

∑

β

Pr(α) Pr(β)σα,β. (5)

We can also define the conditional mean selection rate of an individual of geno-

type (i, j) at locus l as

σ̄
(l)
ij =

∑

α

∑

β

Pr
l
(α|i) Pr

l
(β|j)σαβ,

where Prl(α|i) is the conditional probability of haplotype α given an allele i at

locus l. If haplotype α has allele i at locus l then this is the product of the

marginal frequencies of the alleles at other loci, otherwise this is 0. Note that

the σ̄
(l)
ij s are independent of the allele frequencies at locus l, and that

σ̄ =

Kl
∑

i=1

Kl
∑

j=1

x
(l)
i x

(l)
j σ̄

(l)
ij . (6)

Finally we can define a mean selection rate for an allele i at locus l as

σ̄
(l)
i =

Kl
∑

j=1

x
(l)
j σ

(l)
ij .

By standard arguments the stochastic differential equation which describes the

evolution of x is of the form (1). Using (3) and (4) we can obtain the drift

function of x
(l)
i as,

b
(l)
i (x) =

1

2
(θ

(l)
i − θ(l)x

(l)
i ) + x

(l)
i (σ̄

(l)
i − σ̄).

and that the infinitessimal covariance matrix is block diagonal (due to the sam-

pling independence across loci). The block diagonal entries A(1), . . . , A(L) corre-

spond to the covariance matrices for loci 1, . . . , L respectively, with A(l) having

entries

a
(l)
ij =







x
(l)
i (1 − x

(l)
i ) if i = j

−x
(l)
i x

(l)
j otherwise.
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Note that the form of this covariance matrix comes directly from the covariance

of multinomial random variables.

Finally, we note that the neutral model is a special case of this model. Selection

only effects the drift function, and if c(x) is the drift function under neutrality

we have

b
(l)
i (x) = c

(l)
i (x) + x

(l)
i (σ̄

(l)
i − σ̄). (7)

Furthermore, in the neutral case the allele frequencies at each locus are indepen-

dent. We denote the marginal distribution of allele frequencies at locus l in this

case by

π
(l)
N (x(l)) ∝

Kl
∏

i=1

(x
(l)
i )θ

(l)
i

−1, (8)

which is a Dirichlet distribution with parameters (θ
(l)
1 , . . . , θ

(l)
Kl

).

3 Stationary Distribution

Our main result is the following, which gives the stationary distribution of the

multi-locus selection model introduced in Section 2.

Theorem 2 Consider the multi-locus model of Section 2. Let πN(x) be the sta-

tionary distribution of the neutral model (σα,β = 0 for all α and β),

πN(x) =
L
∏

l=1

π
(l)
N (x(l)),

where π
(l)
N (x(l)) is defined by (8). The stationary distribution of the general se-

lection model is

π(x) ∝ πN(x) exp

{

1

2
σ̄

}

, (9)

where σ̄ is the mean population selection rate, defined by (5).
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Proof: See Appendix A. 2

This result is a multilocus extension of the result presented in Donnelly et al.

(2001). For the single locus case, (9) differs from equations 1–4 of Donnelly

et al. (2001) by the factor of 1/2 in the exponent; and this is because we chose

a different scaling for our population-scaled selection rates (of 4N as opposed to

2N).

A special case of the general selection model of Section 2 is genic selection,

where σα,β = σ∗

α + σ∗

β. In this case, we can define a haplotype mean selection

rate σ̄∗ =
∑

Pr(α)σ∗

α, and we get σ̄ = 2σ̄∗. Thus for genic selection

π(x) ∝ πN(x) exp {σ̄∗} .

Finally the conditional distribution of the population allele frequencies at locus

l, given the population frequencies at all other loci satisfies

π(x(l)|x(−l)) ∝ π
(l)
N (x(l)) exp

{

∑

i

∑

j

x
(l)
i x

(l)
j σ

(l)
ij

}

.

Which is the stationary distribution of allele frequencies for a locus with the

same mutation parameters as locus l, and selection rates σ
(l)
ij .

4 Properties of the Stationary distribution

We now consider properties of the joint stationary distribution of allele frequences

at different loci, and how this distribution differs from that of a multiplicative

selection model for which the allele frequencies are independent across loci. There

are a large range of possible multi-locus models and parameter values we could

consider. For simplicity we concentrate on 2-locus models with genic selection,

and we choose parameter values suitable for modelling complex disease genes.

The properties of the marginal and joint distributions of allele frequencies in
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the multiplicative model have been studied by Pritchard (2001) and Pritchard

and Cox (2002) to address the question of whether common complex diseases

are caused by common or rare variants. We will focus on one such model for

complex diseases, and address to what extent the conclusions of this work are

robust to the assumption of a multiplicative selection model.

We consider a 2 locus model with alleles 1 and 2 at each locus. The loci represent

2 unlinked genes, and we let 1 denote the susceptible allele at each gene (the

allele that marginally increases the risk of a disease), and 2 the normal allele.

Selection is in favour of the normal allele, whereas the mutation rate from normal

to susceptible allele is much greater than for the reverse mutation, modelling

the fact that there may be many ways to impair the function of a gene, but

mutations which repair a gene must be more specific (see Pritchard, 2001, for

more discussion)

We simplify notation from Section 3 by dropping the ∗ superscript on genic

selection rates. We fix mutation rates at θ
(l)
1 = 1.5 and θ

(l)
2 = 0.1. We assume the

selection rates for the haplotype across the two loci satisfy σ11 = 0, σ12 = σ21 ≥ 0

and σ22 ≥ σ12. Under the multiplicative model of Pritchard (2001), σ12 = σ21 = σ

and σ22 = 2σ for some parameter σ. We consider two general selection models,

which are the two models most different from the multiplicative model: (A)

σ12 = σ21 = 0; and (B) σ22 = σ12.

For models A and B we choose the (single) selection rate in the model to be

12. For an appropriate comparison with a multiplicative selection model we

found the value of σ in the multiplicative selection model which gives the same

mean population frequency of the susceptible alleles at each loci. These mean

frequencies are 49% and 52% for models A and B respectively; and we require

σ = 5.6 and σ = 5.3 in the multiplicative model to attain the same mean

frequencies. We denote these two multiplicative models as models MA and MB
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respectively.

A comparison of the joint distribution of allele frequencies at the two loci is shown

in Figure 1, and a comparison of the marginal allele frequencies (calculated via

numerical integration, using ideas from Joyce, 2005) at a single locus are shown

in Figure 2. The joint distribution for model A has a similar, though more highly

peaked, mode at low allele frequencies at both loci as compared to model MA.

The main difference between these two models is that model A has a further mode

where both allele frequencies are large; whereas the model MA has further modes

where only one of the allele frequencies is large. The distribution of marginal

allele frequencies has similar modes for both models A and MA, with the main

difference in the two distributions being that the variance of the allele frequencies

is larger for model A, with less mass at intermediate frequencies (20%-80%).

There is a greater difference in the joint distribution of allele frequencies for

models B and MB. Model B has modes for a high allele frequency at just one

loci; whereas the main mode for model MB is for low allele frequencies at both

loci. Again the main difference in the marginal distribution of allele frequencies

at a single locus is that there is greater variance for model B, with less probability

mass at intermediate frequencies.

We further looked at the distribution of the larger and smaller minor allele fre-

quencies at the two loci for each model. These are shown in Figure 3, and are

of interest as they show the probability of either one of both loci having a high

minor allele frequency (and hence being a common variant responsible for the

complex disease we are modelling). The distribution of the larger minor allele

frequency is concentrated on smaller values for the general models A and B then

for the comparative multiplicative models, while there is little difference in the

smaller minor allele frequency in each case. This shows that the probability of

a common variant for the complex disease under either general model is smaller
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than under the corresponding multiplicative model, and is consistent with the

smaller probability mass at intermediate frequencies (see Figure 2) under the

general models. Quantitatively, the difference between general and multiplica-

tive models is small for Model B (probability of larger minor allele frequency

greater than 10% is 85% and 94% for the general and multiplicative models),

but much more substantial for model A (probabilities of 67% and 94% for the

general and multiplicative models).

5 Simulating the Genealogy

We now consider simulating from the genealogy at a selective locus under our

multi-locus selection model. We first describe the ancestral process for these

models, and then how knowledge of the stationary distribution of the population

allele frequency enables us to perform exact simulation of the genealogy (at one

locus) of a sample conditional on the type of the sample. Furthermore, this

enables us to sample from the unconditional distribution of the genealogy by

(i) simulating the type of the sample (using Equation 9 to first simulate the

population allele frequencies); and (ii) simulating the genealogy conditional on

the type of the sample.

The idea of conditional simulation of genealogies under (single-locus) selection

was first considered by Slade (2000), and exact simulation was introduced for

these models by Stephens and Donnelly (2003). We use the approach of Stephens

and Donnelly (2003), together with a simplification from Fearnhead (2002) which

can greatly reduce the computational burden, to perform exact conditional sim-

ulation for our multi-locus selection models.

For simplicity and ease of exposition, we solely consider 2-locus, 2-allele genic

selection models. We denote the alleles at each locus by 1 and 2. As described
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Figure 1: Comparison of the joint distribution of allele frequencies at two loci.

(a) General model A, σ12 = σ21 = 0 and σ22 = 12 (b) Multiplicative model MA

σ = 5.6; (b) General model B, σ12 = σ21 = σ22 = 12; and (d) Multiplicative

model MB σ = 5.3. The mean marginal allele frequencies are the same in (a)

and (b); and in (c) and (d). In each plot lighter colours imply higher density.
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Figure 2: Comparison of the marginal allele frequency of two-locus models. (a)

General model A, σ12 = σ21 = 0 and σ22 = 12 (full-line) and multiplicative model

MA, σ = 5.6 (dashed-line); (b) General model B, σ12 = σ21 = σ22 = 12 (full line)

and multiplicative model MB, σ = 5.3 (dashed-line).
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Figure 3: Comparison of the marginal distribution of the larger and smaller minor

allele frequencies. (a) larger minor allele frequencies; and (b) smaller minor allele

frequencies for general model A (full-line) and multiplicative model MA (dashed-

line); (c) larger minor allele frequencies; and (d) smaller minor allele frequencies

for general model B (full-line) and multiplicative model MB (dashed-line).

13



above, genic selection models are parameterised by a set of selection rates, one

for each possible haplotype. We denote these rates σij for a haplotype with allele

i at the first locus, and allele j at the second locus (again we have dropped the ∗

superscript used in Section 3 to simplify notation). Without loss of generality we

assume σ11 = 0. For concreteness, from Section 5.2 onwards we further assume

that σ12 = σ21 = σ1 and σ22 = σ1+σ2, with σ1, σ2 ≥ 0. However, generalisation of

our approach to multi-locus, multi-allele and general selection models is possible.

5.1 Ancestral Processes

The ancestral process for our multi-locus model was derived in Fearnhead (2003),

and is called the complex selection graph (CSG). This processes is an extension of

the Ancestral Selection Graph (Krone and Neuhauser, 1997) and the Ancestral

Influence Graph (Donnelly and Kurtz, 1999) and produces supra-genealogies,

that is graphs in which the genealogies are embedded, of samples at each of the

loci. For a sample consisting of n(l) chromosomes at locus l, the CSG is started

at time 0 with n(l) branches at locus l, for l = 1, 2. The CSG is a continuous

time Markov process, which simulates events in the history of the sample. The

possible events are coalescent, mutation, and selection events. If at time t (in the

past) there are n(t)(l) branches at locus l, then (backwards in time) coalescent and

mutation events occur at the same rates as for the coalescent (n(t)(l)(n(t)(l)−1)/2

and n(t)(l)θ(l)/2 respectively), independent of the state or events at the other

locus. Selection events jointly affect both supra-genealogies. A selection event

occurs at rate σ/2 to each branch at each locus, where σ = max{σij} is the

maximum selection rate. At a selection event a new branch is added to the

supra-genealogy at each locus. The branch to which the selection event occured

becomes the continuing branch, the new branch at the same locus the incoming

branch, and the new branch at the other locus the linked-incoming branch.
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If the CSG is simulated until a time T in the past, and the alleles on each of the

branches in the CSG at time T are simulated, then the alleles on the branches

in the CSG for all t < T can be simulated forward in time, and the genealogy

of the sample at each locus can be recovered. Simulation forward in time is

the same as for the coalescent except for at the selection events. Consider a

selection event to a branch at locus 1. At such a selection event, if the alleles on

the incoming and linked-incoming branches are i and j respectively, then with

probability σij/σ the incoming branch will be parental, otherwise the continuing

branch will be. This determines the allele of the branch to which the selection

event occurred, and by resolving which branches are parental at each selection

event we can obtain the genealogy at each locus.

For full details of the CSG, and its generalisations to multi-locus, multi-allele, and

general selection models see Fearnhead (2003). Whilst the above procedure can

be used to simulate genealogies under our multi-locus model, it can be inefficient.

In particular, the CSG has to be simulated back until a time T that is sufficiently

large that there is negligible probability that the time to the most recent common

ancestor (TMRCA) at each locus will be larger than T . A more efficient approach

to simulating genealogies is to first simulate the type of the sample, and then

simulate the CSG back in time conditional on this.

5.2 Conditional Simulation

We now assume that the type of our sample is known. We focus on the case

where the genealogy at a single locus is of interest. Without loss of generality

we assume that this is the first locus, and consider a sample of size n(1) at locus

1, and of size 0 at locus 2. We further assume the haploid selection model where

σ12 = σ21 = σ1 and σ22 = σ1 + σ2, with σ1, σ2 ≥ 0. We initially know the

alleles of the n(1) branches at locus 1 in the CSG, and we will simulate the CSG
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backwards in time such that we always know the allele on each branch at each

locus. At time t in the past we will let n(t)
(l)
i denote the number of branches at

locus l which have allele i. Where the meaning is clear, we write n
(l)
i for n(t)

(l)
i

in the following.

Backward Simulation

Stephens and Donnelly (2000) show how to calculate the rates of events in the

coalescent backwards in time, conditional on knowing the alleles on the branches.

These calculations were extended to the ancestral selection graph in Stephens and

Donnelly (2003). We briefly describe the general form of these calculations, which

can be intuitively viewed as an application of Bayes formula, or of time-reversing

a Markov process.

Let π(x) denote the stationary distribution of population allele frequencies (at a

single locus). We can define the stationary probability of an ordered sample A

(which consists of ni branches carrying allele i, for i = 1, . . . , K) by

π(A) =

∫

(

K
∏

i=1

xni

i

)

π(x)dx.

Now assume that the current state of our ancestral process, defined as the alleles

on each of the branches, is denoted by A; the unconditional rate of a specific

event is λ and the new state of the process after this event is A′. Then the

conditional rate of such an event is just

λπ(A′)/π(A). (10)

These results generalise to the multi-locus case we consider, and a list of the

conditional rates are given in Table 1. In this case A will represent the type of

branches at both loci. Our numerical method for calculating of π(A) is described

in Appendix B.

Virtual and Real Branches
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Event Rate

Coalescence: two branches type i n
(1)
i (n

(l)
i − 1)π(A − i)/(2π(A))

Mutation: branch i to j n
(1)
i θ

(l)
i π(A − i + j)/(2π(A))

Selection: to branch type 1:

S1a: addition of (1, 1) n
(1)
1 (σ1 + σ2)π(A + 1(1) + 1(2))/(2π(A))

S1b: addition of (1, 2) n
(1)
1 (σ1 + σ2)π(A + 1(1) + 2(2))/(2π(A))

S1c: addition of (2, 1) n
(1)
1 σ2π(A + 2(1) + 1(2))/(2π(A))

S1d: addition of (2, 2) n
(1)
1 σ1π(A + 2(1) + 2(2))/(2π(A))

Selection: to branch type 2:

S2a: addition of (1, 1) n
(1)
2 (2σ1 + σ2)π(A + 1(1) + 1(2))/(2π(A))

S2b: addition of (1, 2) n
(1)
2 (σ1 + 2σ2)π(A + 1(1) + 2(2))/(2π(A))

S2c: addition of (2, 1) n
(1)
2 (σ1 + σ2)π(A + 2(1) + 1(2))/(2π(A))

S2d: addition of (2, 2) n
(1)
2 (σ1 + σ2)π(A + 2(1) + 2(2))/(2π(A))

Table 1: Backward rates conditional on the current state: the set of alleles on

each branch in the CSG. Rates are given for events at locus 1 (the rates at locus

2 can be calculated by symmetry). The current state is denoted by A. For

coalesence and mutation events we have used the shorthand, whereby we denote

by A − i and A + j, states which differ from A by the removal of an allele i and

the addition of allele j at locus 1 respectively. For selection events we use the

notation A + 1(1) + 2(2) to denote a state which differs from A by the addition of

a branch of type 1 at locus 1 and of type 2 at locus 2. At selection events two

virtual branches are added to CSG; for example the event denoted S1b adds a

branch of type 1 at locus 1 and a branch of type 2 at locus 2. For derivation of

the selection rates see Appendix C.
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By simulating selection events conditional on the alleles on the branches, we are

able to determine which of the incoming and continuing branches are ancestral

(see Table 1). As noted by Slade (2000), this enables us to keep track of which

branches in the CSG are ancestral to the sample, and hence in the genealogy of

the sample, and which are not. We call the branches which are in the genealogy

real branches, and those which are not, virtual branches.

There are two practical advantages of keeping track of which branches are real

and which are virtual. Firstly it enables us to determine the first point at which

we can stop our conditional simulation of the genealogy, as this will be the first

time at which there is just one real branch at the first locus in our CSG.

Secondly, it enables us to simplify the conditional simulation of the CSG, as it is

only events which effect the real branches that we are interested in. We do need

to include virtual branches in our CSG, however it is shown in Fearnhead (2002)

that some virtual branches can be removed. The intuition behind this idea is as

follows.

A key feature of the CSG (and other ancestral processes) is that the distribution

of the population allele frequencies at a time t in the past, conditional on the

events in the CSG up to time t, is equal to the conditional distribution of the

allele frequencies given the state of the CSG at time t. This is the condition that

means that (10) is the correct rate for simulating events in the CSG (and that

these rates only depend on the current state). The reason that virtual branches

cannot be removed from the CSG is that this condition would no longer hold:

that is that the distribution of the population allele frequencies at a time t in

the past, conditional on the events in the CSG up to time t, is not necessarily

equal to the conditional distribution of the allele frequencies given the alleles on

the real branches at time t.

However it is possible to remove certain virtual branches in the CSG, such that
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this key feature of the CSG is maintained. The condition for removing branches

is that the distribution of the allele on the virtual branch must be the conditional

distribution of an allele given the alleles on all branches in the CSG.

Removal of Virtual Branches

In practice, virtual branches can be removed at (i) mutation events to virtual

branches; and (ii) selection events. We first describe (i) in detail, and then more

briefly cover the calculations for (ii).

Consider a mutation event at locus l (backwards in time) to a virtual branch of

type i. Let the current state of the CSG be A, and denote by A− i + j the state

obtained by removing an allele of type i and adding an allele of type j to the

current set of alleles at locus l. (We have suppressed the dependence on l in our

notation to simplify notation.) The backward rate at which such an event occurs

is θ
(l)
i π(A − i + j)/(2π(A)). Note the mutation rate depends on i and not j, as

the actual mutation forward in time is from allele j to i.

By summing over j we get that the rate of a mutation at locus l to a virtual branch

of type i is just θ
(l)
i π(A−i)/(2π(A)). So we could simulate a mutation event by (a)

simulating a mutation event with rate θ
(l)
i π(A− i)/(2π(A)); and (b) conditional

on a mutation occuring, simulate the new type from π(A − i + j)/π(A − i) =

π(j|A − i), the conditional distribution of an allele given the alleles on all the

other branches in the CSG. As shown by Theorem 1 of Fearnhead (2002), and

described above, we can thus remove this branch.

We now describe the calculations for selection events in the case σ2 ≥ σ1. The

calculations for σ2 < σ1 proceed similarly. The resulting rates of selection event

are summarised in Table 2.

First consider selection to branches of type 1, and sum the rate of the events S1a–

S1d. Using the same notation as in Table 1, the total rate of selection events to
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branches of type 1 becomes

n
(1)
1

2π(A)

(

σ1(π(A + 1(1) + 1(2)) + π(A + 1(1) + 2(2)) + π(A + 2(1) + 1(2)) + π(A + 2(1) + 2(2)))

+σ2(π(A + 1(1) + 1(2)) + π(A + 1(1) + 2(2))) + (σ2 − σ1)π(A + 2(1) + 1(2))
)

,

which simplifies to

n
(1)
1

2π(A)

(

σ1π(A) + σ2π(A + 1(1)) + (σ2 − σ1)π(A + 2(1) + 1(2))
)

.

Thus we can split simulating an selection event to a specfic branch of type 1 into

three, each refering to a term in this expression:

(1) At rate n
(1)
1 σ1/2 simulate the types of new branches at both loci from

π(i(1), j(2), |A).

(2) At rate n
(1)
1 σ2π(A + 1(1))/(2π(A)) add a branch of type 1 to locus 1. Sim-

ulate the type of a new branch at locus 2 from π(i(2)|A + 1(1)).

(3) At rate n
(1)
1 (σ2 − σ1)π(A + 2(1) + 1(2))/(2π(A)) add a branch of type 2 to

locus 1 and of type 1 to locus 2.

Thus by Theorem 1 of Fearnhead (2002), we do not need to add the branch at

locus 2 for event (2) or either new branch for event (1). Thus in total we add

a new virtual branch of type 1 to locus 1 with rate n
(1)
1 σ2π(A + 1(1))/(2π(A))

and two virtual branches of types 2 at locus 1 and type 1 at locus 2 with rate

n
(1)
1 (σ2 − σ1)π(A + 2(1) + 1(2))/(2π(A)).

By similar argument for selection events to branches of type 2, we just need to

add a new virtual branch of type 1 to locus 1 with rate n
(1)
2 σ2π(A+1(1))/(2π(A)),

and two new virtual branches, of types 1 at locus 1 and 2 at locus 2 with rate

n
(1)
2 (σ2 − σ1)π(A + 2(1) + 1(2))/(2π(A)).
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Add σ1 ≤ σ2 σ1 > σ2

1(1) (n
(1)
2 σ1 + n

(1)
1 σ2)π(1(1)|A)/2 (n

(1)
2 σ2 + n

(1)
1 σ1)π(1(1)|A)/2

1(2) (n
(2)
2 σ1 + n

(2)
1 σ2)π(1(2)|A)/2 (n

(2)
2 σ2 + n

(2)
1 σ1)π(1(2)|A)/2

1(1), 1(2) 0 (n
(1)
2 + n

(2)
2 )(σ1 − σ2)π(1(1) + 1(2)|A)/2

1(1), 2(2) (n
(1)
2 + n

(2)
1 )(σ2 − σ1)π(1(1) + 2(2)|A)/2 0

2(1), 1(2) (n
(1)
1 + n

(2)
2 )(σ2 − σ1)π(2(1) + 1(2)|A)/2 0

2(1), 2(2) 0 (n
(1)
1 + n

(2)
1 )(σ1 − σ2)π(2(1) + 2(2)|A)/2

Table 2: Simplified rates for addition of virtual branches due to selection events.

For notational convenience we write π(1(1)|A) for π(A + 1(1))/π(A) etc. See text

for details of calculation of these rates; rates are calculated by summing rates of

adding branches of specific type at selection events for both loci.

5.3 Results

We simulated genealogies at the first locus under Models A and B from Section

4. For each model we considered two cases (i) the distribution of the genealogy

at a locus conditional on a sample of 50 alleles of type 1 and 50 alleles of type

2 at that locus; and (ii) the unconditional genealogy of a sample of size 100.

For comparison, we also simulated genealogies under models MA and MB (see

Section 4) in each case. We simulated 1000 genealogies for each of these eight

cases, and looked at the distribution of summaries of these genealogies and the

mutations on the genealogies.

Firstly we looked at three features of the genealogies, the time to the most recent

common ancestor (TMRCA), the total length of the branches, and the total

length of the exterior branches. We found little difference in the distribution of

these between the general and multiplicative models in each to the four cases

above. For example, Figure 4 shows the distributions of TMRCA and length of
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the tree for Model A.

Secondly we looked at features of mutations on the genealogies. We motivated

models A and B as suitable for complex disease genes, and the age and frequency

of susceptible mutations under such models are important factors underlying the

power of studies to detect such genes (see Pritchard, 2001). Again we aim to

get some insight into the robustness of the results in Pritchard (2001) to the

assumption of a multiplicative model for selection.

We studied the number of mutations from a Normal to a Susceptible allele, and

the age of the most common Susceptible allele. For each of our four scenarios the

mean number of mutations is smaller under the general model (2.2, 3.6, 2.1 and

3.5 for scenarios A(i), A(ii), B(i) and B(ii) respectively) than the multiplicative

model ( 2.8, 3.9, 2.5 and 3.9 respectively for the four scenarios). The distribution

of the age of the most common mutation is concentrated on smaller values for the

general models (see Figure 5). These results suggest smaller allelic heterogeneity

under the general models, which means greater power for association studies;

and younger mutations under the general models, which means larger regions

around the mutations that are identical by descent.

6 Discussion

We have considered a population genetics model for unlinked loci, where parent-

independent mutations occur at each locus, but where the fitness of an individual

depends on the alleles at each locus. If the fitness of an individual depended in

a multiplicative way on individual fitnesses of genotypes at each locus, then the

distribution of the allele frequencies would be independent across loci. We have

calculated the stationary distribution of the allele frequencies for a general selec-

tion model. This distribution is proportional to the distribution under neutrality
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Figure 4: Comparison of the distribution of TMRCA and length of the tree for a

sample of size 100 for Model A (full-line) and a model MA (dashed-line). Plots

(a) and (b): unconditional distributions; plots (c) and (d): conditional on 50

alleles of each type.
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Figure 5: Comparison of the age of the most common susceptible mutation.

Plots are labelled according to the Model (A or B) and whether unconditional

(i) or conditional (ii). In each plot the full-line is the density under the general

model, and the dashed-line the density under the multiplicative model.
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multiplied by the exponential of half the mean population fitness. This result is

a multi-locus extension of the result in Donnelly et al. (2001).

We have also shown how knowledge of this stationary distribution allows in-

dependent samples from the distribution of genealogies at a single locus to be

simulated. Our simulation method is based on the idea of Stephens and Don-

nelly (2003), but additionally uses the simplification of Fearnhead (2003). This

simplification, and the resulting method for simulation applies more general to

simulation of genealogies at selected loci. For example, it trivially applies to sin-

gle locus models (as they are a special case of our multi-locus models); and this

simplification can substantially reduce the computational burden of the approach

of Stephens and Donnelly (2003) for some selection models.

We have presented a few results comparing the features of our general selection

model and the multiplicative model. Our focus has been on suitable models

for complex diseases. For the parameter values considered we found that most

important features of the data and genealogy under the multiplicative model were

very similar to those under the general model. The two exceptions appear to be

that (i) mutations which increase susceptibility to the disease (or equivalently

reduce fitness) tend to be younger under the general model; (ii) there are fewer

such mutations in the history of a sample under the general model; and (iii) there

is less chance of obtaining alleles at intermediate frequency under the general

model.
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Appendix A: Proof of Thoerem 2

An immediate corollary of Theorem 1 is the following. Assume we have a d-

dimensional diffusion with drift function c(x) and covariance matrix a(x) which

satisfies Equation 2 (with c(x) in place for b(x)) for a given probability density

π(x). Further assume a process X ′ satisfies is second d-dimensional diffusion

which satisifes stochastic differential equation (1) with drift function

b(x) = c(x) + d(x)

for some d-dimensional function d(x), but the same covariance matrix a(x). Then

if there exists a positive d-dimensional function λ(x) such that for i = 1, . . . , d,

di(x) =
1

2

d
∑

j=1

aij(x)∂ log λ(x)/∂xj (11)

then the stationary distribution, π̃(x) of X ′ satisfies

π̃(x) ∝ π(x)λ(x).

This corrolary can be applied to the multi-locus selection model of Section 2 by

letting the first diffusion be that for the neutral model, and the X ′ diffusion be

that for the non-neutral model. The relationship between the drifts is given by

(7), so

d
(l)
i (x) = x

(l)
i (σ̄

(l)
i − σ̄).

We thus only need to show that log λ(x) = 1
2
σ̄ satisfies (11) in order to prove

Theorem 2. We further note that the if we consider the drift for x
(l)
(i) we need only

consider the sum over j for the allele frequencies at locus l on the right-hand

side of (11), as the aij terms are 0 for allele frequencies at two distinct loci.
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By using (6), and noting σ
(l)
ij = σ

(l)
ji we can see that

∂σ̄/∂x
(l)
j = 2

Kl
∑

k=1

(σ
(l)
kj − σ

(l)
kKl

).

So if λ(x) = exp{σ̄/2} the right-hand side of (11) becomes

x
(l)
i

[

Kl
∑

k=1

x
(l)
k σ

(l)
kj −

Kl
∑

k=1

x
(l)
k σ

(l)
kKl

−

Kl
∑

j=1

x
(l)
j

Kl
∑

k=1

x
(l)
k σ

(l)
kj +

Kl
∑

j=1

x
(l)
j

Kl
∑

k=1

x
(l)
k σ

(l)
kKl

]

.

(12)

The first two sums on the left-hand side of this equation come from the product

of ∂σ̄/∂x
(l)
i and the x

(l)
i term in aii and the third and fourth terms come from

the product of ∂σ̄/∂x
(l)
j and the −x

(l)
i x

(l)
j terms in the aij (remembering aij = 0

for allele frequencies at separate loci).

Finally we note that the second and fourth sums in this equation cancel; the first

simplifies to σ̄
(l)
i and the third simplifies to σ̄. Thus (12) simplifies to d

(l)
i (x) as

required. 2

Appendix B: Evaluating π(A)

Calculating π(A) requires the calculation of an integral of the form
∫ 1

0

∫ 1

0

xa−1(1−x)b−1yc−1(1−y)d−1 exp{σ1(x(1−y)+y(1−x))+(σ1+σ2)xy}dxdy,

(13)

where in the integrand x and y represent the frequency of the advantageous

alleles at the first and second loci, and the known constants a, b, c and d depend

on the mutation rates and sample configuration.

Our approach to calculating integrals of this form is based on ideas from Fearn-

head and Meligkotsidou (2004) and depends on whether or not σ1 > σ2. For

each case we introduce the following notation

Rx[i, j] =

∫ 1

0

xa+i−1(1 − x)b+j−1dx, and

Ry[i, j] =

∫ 1

0

yc+i−1(1 − y)d+j−1dy,
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which are standard Beta constants.

Case 1: σ2 ≥ σ1

In this case we can simplify and then expand the exponential in (13) as

exp(σ1(x + y) + (σ2 − σ1)xy) =
∞
∑

k=0

(σ2 − σ1)
k

k!

∞
∑

i=0

∞
∑

j=0

σi+j
1

i!j!
xi+kyj+k.

Thus (13) can be written as

∞
∑

k=0

(σ2 − σ1)
k

k!

∞
∑

i=0

∞
∑

j=0

σi+j
1

i!j!
Rx[i + k, 0]Ry[j + k, 0].

Finally writing

Ak =
∞
∑

i=0

σi
1

i!
Rx[i + k, 0], and Bk =

∞
∑

j=0

σj
1

j!
Ry[j + k, 0],

we get that (13) is equal to

∞
∑

k=0

(σ2 − σ1)
k

k!
AkBk. (14)

We first evaluate Ak and Bk by truncating their infinite sums, and then truncate

this infinite sum to evaluate (13). All sums are sums of positive terms, and

are thus stable to evaluate, and the terms in the sums decay exponentially for

sufficiently large values of the sums. Furthermore a look-up table of the Aks and

Bks can be constructed to speed up the calculation of (14).

Case 2: σ1 > σ2

We now write and expand the exponential in (13) as

exp(σ1y + (σ1 − σ2)x + σ2x(1 − y)) =
∞
∑

k=0

σk
2

k!

∞
∑

i=0

∞
∑

j=0

(σ1 − σ2)
iσj

1

i!j!
xi+kyj(1 − y)k.

Thus (13) can be written as

∞
∑

k=0

σk
2

k!

∞
∑

i=0

∞
∑

j=0

(σ1 − σ2)
iσj

1

i!j!
Rx[i + k, 0]Ry[j, k].
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Finally writing

Ck =
∞
∑

i=0

(σ1 − σ2)
i

i!
Rx[i + k, 0], and Dk =

∞
∑

j=0

σj
1

j!
Ry[j, k],

we get that (13) is equal to
∞
∑

k=0

σk
2

k!
CkDk.

This can be evaluate in an equivalent way to (14), and again is stable as it

requires sums of positive terms which decay exponentially. Calculation of this

sum can be made efficient by constructing a look-up table for the Ck and Dk

terms.

Appendix C: Backward Rates at Selection events

Consider a selection event forward in time. There are 8 possible configurations

of continuing, incoming and linked-incoming branch, and for each configuration

we can write down the probability of the new branch being of type 1 or 2. These

probabilities multiplied by the unconditional rate of selection events per branch

(σ1 + σ2)/2 are summaried in Table 3

To get conditional backward rates involves (i) summing up the rates of selection

events per branch that produce the correct offsrping, and have the correct type of

virtual branch at each locus; and (ii) multiplying this by the number of branches

of the correct type and the ratio of the stationary probabilities of the new and

old states of the CSG.

So to obtain the rate of event S2a (selection to branch of type 2, producing

virtuals of type 1 at each locus) in Table 1, for (i) we get contributions of σ1/2

and (σ1 +σ2)/2 from respectively lines 3 and 5 of the above table; and for (ii) we

get a factor of n
(1)
2 π(n

(1)
1 + 1, n

(1)
2 , n

(2)
1 + 1, n

(2)
2 )/π(A). The rates in (i) are added

and their sum multiplied by the factor in (ii) to obtain the required rate. Other

entries in Table 1 are obtained similarly.
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Continuing Incoming Linked Incoming 1 2

1 1 1 (σ1 + σ2)/2 0

1 1 2 (σ1 + σ2)/2 0

1 2 1 σ2/2 σ1/2

1 2 2 0 (σ1 + σ2)/2

2 1 1 0 (σ1 + σ2)/2

2 1 2 σ1/2 σ2/2

2 2 1 0 (σ1 + σ2)/2

2 2 2 0 (σ1 + σ2)/2

Table 3: Rates of specific selection events producing branches of type 1 and 2

(forward in time)
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