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Abstract

Techniques for managing trade-offs between tumour control and normal tissue

sparing in radiotherapy treatment planning are reviewed and developed.

Firstly, a quality control method based on data envelopment analysis is proposed.

The method measures the improvement potential of a plan by comparing the plan

to other reference plans. The method considers multiple criteria, including one

that represents anatomical variations between patients. An application to prostate

cases demonstrates the capability of the method in identifying plans with further

improvement potential.

A multi-criteria based planning technique that considers treatment delivery is then

proposed. The method integrates column generation in the revised normal bound-

ary intersection method, which projects a set of equidistant reference points onto

the non-dominated set to form a representative set of non-dominated points. The

delivery constraints are considered in the column generation process. Essentially,

the method generates a set of deliverable plans featuring a range of treatment

trade-offs. Demonstrated by a prostate case, the method generates near-optimal

plans that can be delivered with dramatically lower total fluence than the optimal

ones post-processed for treatment delivery constraints.

Finally, a navigation method based on solving interactive multi-objective opti-

misation for a discrete set of plans is developed. The method sets the aspira-

tion values for criteria as soft constraints, thus allowing the planner to freely ex-

press his/her preferences without causing infeasibility. Navigation is conducted

on planner-defined clinical criteria, including the non-convex dose-volume criteria

and treatment delivery time. Navigation steps on a prostate case are demonstrated

with a prototype implementation. The prostate case shows that optimisation cri-

teria may not correctly reflect plan quality and can mislead a planner to select

a “sub-optimal” plan. Instead, using clinical criteria provides the most relevant

measure of plan quality, hence allowing the planner to quickly identify the most

preferable plan from a representative set.
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Chapter 1

Introduction

Radiation therapy, or radiotherapy, is a medical treatment modality that uses

external ionising radiation to control or eliminate cancerous cells. It is the most

effective non-surgical cancer treatment modality (Department of Health Cancer

Policy Team, 2012) with 50% of all cancer patients recommended with radiotherapy

as part of their cancer treatment (Delaney et al., 2005). Around 40% of cured

cancer cases receive radiotherapy as part of the cancer treatment (Baskar et al.,

2012). Radiotherapy is also cost effective, accounting for only 5% of the total cost

of cancer care (Ringborg et al., 2003).

Radiotherapy planning involves managing conflicting goals between irradiating

cancerous tissues and sparing of surrounding critical organs. Conventional treat-

ment planning practice is conducted in a trial-and-error manner. As a consequence,

the treatment planning process is highly inefficient and the resulting plan quality is

not guaranteed. Techniques for managing treatment trade-offs have developed con-

siderably over the last decade. In particular, a multi-criteria optimisation (MCO)

based planning approach has been deployed clinically (Craft and Richter, 2013).

The multi-criteria planning approach generates a set of plans capturing potentially

preferable treatment trade-offs. Given the set of plans, the planning practice be-

comes an informed decision making process in which the planner compares and

evaluates treatment plans in order to find the most preferable plan from the set.

1
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While multi-criteria based planning allows a more informed decision making pro-

cess, it is not without limitations. This thesis addresses the limitations and fur-

ther develops the planning practice, taking into consideration other planning ap-

proaches in managing treatment trade-offs. In particular, we focus on the following

aspects:

• Plan quality control, in which the improvement potential of a given plan is

measured quantitatively, thus ensuring only top quality plans are approved

for treatments.

• Multi-criteria based plan generation incorporating delivery constraints, such

that plans reviewed by the oncologists are directly deliverable without the

need for further adjustments that can degrade plan quality.

• Plan evaluation and comparison with clinically relevant criteria, such that

given a set of potential plans, one can quickly identify the most preferable

plan using any user-defined criteria.

The thesis is organised as follows. The rest of this chapter provides relevant infor-

mation on radiotherapy treatment planning. In Chapter 2 we provide background

material on MCO and data envelopment analysis (DEA). In Chapter 3, we provide

a literature review on radiotherapy planning approaches, emphasising techniques

for managing treatment trade-offs. We categorise the planning approaches based

on how the planners interact with the planning software during the planning pro-

cess. In Chapter 4, we propose a quality assessment method based on DEA. We

apply the method to a set of prostate plans and demonstrate its efficacy. In Chap-

ter 5, an MCO based plan generation method is proposed. The plan generation

method uses the column generation technique to incorporate treatment delivery

constraints. As a result, the generated plans are directly deliverable, thus avoid-

ing subsequent modification that can degrade plan quality. Chapter 7 considers

how a planner can effectively identify the most preferred plan from a given set

of candidates. In contrast to previously proposed methods, our technique allows

plan comparison based on any user defined criteria, regardless of the mathematical

form of the criteria. In particular, convexity is not assumed.



Chapter 1 3

1.1 Radiotherapy

Radiotherapy is based on the fact that cancerous cells are incapable of reproducing

themselves if they are damaged by radiation while slightly damaged non-cancerous

cells are capable of doing so. Radiotherapy exploits this therapeutic advantage

by focusing radiation to a targeted region to kill the cancerous cells while sparing

surrounding healthy structures. The two major ways to deliver radiation are exter-

nal beam radiotherapy and brachytherapy. Brachytherapy is a form of treatment

where a radiation source is placed inside the patient’s body. In external beam ra-

diotherapy, the radiation, in the form of x-rays, electrons, protons or gamma rays,

is generated by a linear accelerator and delivered from a gantry to the tumour. In

this thesis we consider external beam radiotherapy.

The goal of radiotherapy is to maximise tumour control without causing unaccept-

able complications in the normal tissue. This goal is usually expressed in terms

of dose to relevant structures, or volumes, of interests, i.e., to deliver a high and

uniform dose of a certain level to the target volume while limiting the dose to the

surrounding healthy structures to certain acceptable levels. However, achieving

the treatment goal can be challenging since as target dose increases, dose to the

surrounding healthy structures typically increases. Treatment techniques such as

three-dimensional conformal radiation therapy (3DCRT) and intensity modulated

radiation therapy (IMRT) were developed to address this challenge.

The 3DCRT is a treatment technique which shapes the radiation beams to be

conformal to the beam’s-eye-view of the tumour volume. The radiation beam

is shaped by simple modifying devices such as wedges or compensating filters.

IMRT, first proposed by Brahme (1988), is an advanced form of 3DCRT. In IMRT,

radiation fields are shaped by a device called multileaf collimator (MLC) that is

attached to the gantry. An MLC consists of a number of pairs of metal leaves that

can move in and out of the path of the radiation independently (see Figure 1.1 for

an illustration). When radiation passes through the MLC, part of the radiation is

blocked by the metal leaves, resulting in a shaped radiation field. The radiation

fields of IMRT may not conform to the contour of the target volume, but the

cumulative effects of these shaped radiation fields result in a modulated fluence
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Figure 1.1: An illustration of MLC leaves.

map with a high dose to the tumour while sparing doses to surrounding healthy

structures.

1.2 Radiotherapy treatment process

In this section we provide an overview of the radiotherapy treatment process, which

consists of image acquisition and simulation, treatment planning, quality assurance

and treatment delivery. Readers are referred to specialised textbooks, e.g., Webb

(2001) and Schlegel and Mahr (2007) for further detail.

Image acquisition and simulation The first step of radiotherapy planning

is image acquisition and simulation. The patient is set up in the treatment po-

sition while being scanned by a computed tomography (CT) scanner. Custom-

designed body moulds and immobilization devices are usually used to immobilize

the patient. The use of these devices should also assist in positioning the patient

accurately and consistently for the treatments. Imaging technologies such as CT

imaging, magnetic resonance imaging (MRI), positron emission tomography (PET)

and other functional imaging studies can be used to facilitate structure definition.

The imaging process produces 2D transverse scans of the treatment site. The scans

are then reviewed and the borders of the essential structures are contoured manu-

ally. The essential structures include the tumour volume, planning target volume

(PTV), which is an extension of the tumour volume that is assumed to contain
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microscopic extensions of the the cancer, and the organs at risk (OARs). By cal-

ibrating the 2D scans along with the contouring of each structure, the treatment

software produces a 3D simulation of the treatment anatomy.

Planning The treatment planning proceeds once the 3D simulation of the

anatomy is completed. The oncologist determines a set of plan requirements,

for example, the prescription dose to the tumour and the tolerable dose-to-volume

parameters for the OARs (see Section 1.5 for details). A treatment planner then

inputs appropriate planning parameters, which reflect the planning requirements,

to a computerised treatment planning system in order to generate a plan that

satisfies the plan requirements. Essentially the planning parameters are used to

construct planning optimisation problems (as described in Section 1.4). By solving

the optimisation problems, one obtains a treatment plan to be evaluated against

the plan requirements. Conventional treatment planning practice requires a plan-

ner to iteratively adjust the planning parameters in a trial-and-error manner until

a satisfactory plan is generated. Advanced planning practices avoid some of the

trial-and-error planning practice through techniques such as MCO and knowledge-

based planning (see Chapter 3 for details).

Quality assurance IMRT requires exact delivery of radiation to specified re-

gions, thus it is important to assure that the selected treatment plan can be de-

livered precisely. Quality assurance verifies that the plan can be delivered by the

mechanical hardware accurately to achieve the desired dose distribution. Examples

of quality assurance include dosimetric verification using phantoms, verification of

leaf positions and verification of patient setup.

Treatment delivery During a treatment, radiation is generated by a linear

accelerator (linac) and delivered through a gantry that can rotate along a central

axis. The patient is positioned on a couch that allows vertical, longitudinal, lat-

eral and rotational movement. Through the positioning of the couch and gantry,

radiation can be delivered to the target volume from almost any angle, provided

that the couch and the gantry do not collide. During the delivery, the gantry

moves to one beam direction, delivers the radiation intensities assigned to that
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beam direction and proceeds to the next beam direction. During this process an

MLC is used to modulate the fluence. The MLC can be operated in two modes:

static mode and dynamic mode. In static mode, radiation is delivered when the

MLC leafs remain static. During the transition from one segment to the other,

radiation is turned off. The static mode is also referred to as step-and-shoot or

stop-and-shoot. Alternatively, in dynamic mode, which is also referred to as the

sliding window technique, radiation is delivered continuously while the MLC leafs

sweep across the leaf positions unidirectionally to achieve the desirable fluence

modulation. While the dynamic MLC mode enables more efficient delivery than

the static MLC mode, the mechanism is more complicated and requires a more

complicated planning and quality assurance. In this thesis we primarily consider

MLC in static mode.

1.3 Mathematical modelling of radiotherapy

treatments

To mathematically model the beam intensity, the radiation fields at each beam

direction are discretised into a grid of rectangular fields called bixels. Bixels are

used to represent the accumulated radiation intensities that are delivered from

a specific position of a radiation field. The size of the bixels is determined by

the width of the individual MLC leaf and the positions along the MLC leaf path,

i.e., where the leaf can stop. To evaluate the anatomical dose, the treatment

site is discretised into m 3D cubic volumes called voxels. Dose is calculated at a

certain point within a voxel, called a dose point. It is assumed that the dose value

throughout the voxel is the same as the dose value at the dose point.

Given a set of beam directions k = {1, . . . , o} for a treatment, let the radiation

fields of all beams be represented by bixels j = 1, . . . , n and the patient volume be

represented by voxels i = 1, . . . ,m. The radiation dose distributed to voxel i from

bixel j under unit intensity, is represented by aij. This value is calculated based

on the physical behaviour of radiation as it travels through the body. Different

dose calculation models, such as pencil beam models (Jeleń and Alber, 2007),

the superposition algorithm (Keall and Hoban, 1996) and Monte Carlo simulation
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(Reynaert et al., 2007), exist for dose calculation, with simulation models being

the gold standard. The aij can be grouped into a dose deposition matrix A by

indexing rows by i and columns by j. The mapping between the intensity and

dose is (at least approximately) linear (Kolmonen et al., 1998), hence the dose

distribution d is calculated as

d = Ax, (1.1)

where d ∈ Rm is the dose vector in which di represents the dose delivered to

voxel i. Vector x ∈ Rn is the radiation intensity vector in which xj describes the

radiation intensity for bixel j. For convenience, A can be partitioned and re-ordered

into sub-matrices according to the structure type of the voxel, i.e., AT ∈ RmT×n,

AC ∈ RmC×n and AN ∈ RmN×n for the tumour T with mT voxels, for critical

organs C with mC voxels and for normal tissue N with mN voxels, respectively.

1.4 Treatment planning optimisation problems

IMRT planning can be considered as three sequential optimisation problems: the

beam angle optimisation problem, the fluence map optimisation problem and the

realisation (or leaf sequencing) problem (Ehrgott et al., 2010).

Beam angle optimisation The starting point of the planning process is to

select a number of beam angles from which the radiation will be delivered to the

treatment site. This is referred to as the beam angle optimisation problem. The

beam angles selected for a treatment determine the dose deposition matrix A and

hence directly affect the quality of plans produced in the subsequent optimisation.

The beam angle optimisation problem is a complex non-convex problem (Censor

and Unkelbach, 2012). In a clinical environment, the beam directions are usually

determined based on the geometry of the treatment site and the experience of the

planner. An IMRT treatment often utilises 4 to 9 beam angles (Lim et al., 2014).

An overview of the beam angle optimisation problem can be found in Ehrgott et al.

(2008c).
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Fluence map optimisation (FMO) After the beam directions are decided,

the dose distribution matrix is derived and equation (1.1) is incorporated in an

optimisation model to find a set of optimal bixel intensities that result in a satisfac-

tory treatment outcome. These bixel intensities are also referred to as the intensity

pattern or fluence map. Due to physical limitations, it is impossible to irradiate

cancerous tissues without irradiating surrounding healthy tissues. Rather, the

planner needs to make trade-offs on the degree of tumour control and healthy tis-

sue sparing. These treatment trade-offs are primarily considered in FMO. Further

information on FMO is provided in Section 1.6.

Realisation problem The final step focuses on the realisation of the intensity

pattern obtained from FMO. In the delivery of a treatment, an MLC device is used

to shape the radiation fields delivered to the treatment site. The shapes that are

formed by the MLC during part of the treatment are referred to as apertures or

segments. The radiation output assigned to a segment is referred as the segment

weight, measured in monitor units (MU), which is the unit of output measure for

the linac. The goal of the realization problem is to find a sequence of segments,

each with an associated segment weight, that efficiently reproduces the intensity

pattern, by for example, minimising total beam-on time or minimising the number

of segments (Baatar et al., 2005). This process is also referred to as segmentation.

The segments must comply with the physical constraints of the MLC leaves. The

elementary ones are collision constraints, that prevent opposing leaves to overlap

and constraints that ensure the opening in any MLC row is continuous, i.e., all

open bixels in a row are consecutive. A survey of the realisation problem can be

found in Ehrgott et al. (2008b).

1.5 Plan evaluation

In this section, we present common criteria used to evaluate the quality of a treat-

ment plan. Throughout this thesis, we will refer to these criteria as clinical evalu-

ation criteria. In contrast, we will refer to criteria used in an optimisation model

as optimisation criteria (reviewed in Section 1.6). Note that a criterion can be

both a clinical evaluation criterion and an optimisation criterion. These terms are
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Figure 1.2: DVH of a sample prostate treatment plan.

used to distinguish whether a criterion is used for evaluation or for optimisation

during a treatment planning process.

The primary tool for plan evaluation is often based on assessing the so-called dose-

volume histogram (DVH). A DVH depicts the cumulative volume of a structure

that receives at least a given dose value. An example DVH is illustrated in Fig-

ure 1.2. Certain points on the DVH are often selected as planning requirements,

specified in terms of

• a dose-at-volume (Dv) parameter, which is the dose of which the associated

iso-dose volume contains v% of the volume of a given structure.

• a volume-at-dose (Vd) parameter, which is the percentage volume of a given

structure that is contained by the d Gray (Gy, unit for radiation dose) iso-

dose volume.

Example treatment requirements for prostate cancer cases, with the prescription

dose denoted as dp, are shown in Table 1.1.

Other common evaluation criteria include homogeneity index (HI) and conformity

index (CI). HI measures the uniformity of dose distribution within a target volume.

Ideally, one would like the voxels within a target volume to receive a uniform dose.
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Table 1.1: An example of DV requirements for prostate treatment plan-
ning.

Structure DV parameter DV requirement
Tumour volume D99 ≥ 99% × dp Gy
PTV D95 ≥ 95% × dp Gy
Rectum V60 ≤ 40%

V70 ≤ 10%
Bladder D50 ≤ 40 Gy

D25 ≤ 75 Gy
Femur heads D10 ≤ 50 Gy

Various formulations for HI have been proposed (see, e.g., Kataria et al. (2012)).

The formulation proposed by Wu et al. (2003a), as shown in (1.2), is the most

common HI index used in the literature,

HI =
D2 −D98

dp
× 100%. (1.2)

The use of D2 and D98, instead of the exact minimum and maximum dose, bet-

ter represents the dose received by a volume because the calculation of the true

maximum and minimum is typically unreliable (Wu et al., 2003b). CI measures

how well the dose distribution conforms to the target volume. Various formula-

tions of CI exist (see Feuvret et al. (2006) for a review). Here we consider the CI

formulation proposed by Lomax and Scheib (2003) ,

CI =
V(T,d)
Vd

, (1.3)

where V(T,d) is the d Gy isodose volume of the target and Vd is the d Gy isodose

volume of the total patient volume. Hence a good target coverage by the d Gy

isodose volume is indicated by a CI value close to 1.

Criteria based on biological responses can also be used for plan evaluation. Com-

mon biological criteria include tumour control probability (TCP), normal tis-

sue complication probability (NTCP) and (generalised) equivalent uniform dose

((g)EUD). Variations of these criteria exist due to different modelling approaches

(mechanistic or phenomenological) and different modelling factors are being consid-

ered (e.g., effects of repopulation, redistribution and/or reoxygenation). Readers

are referred to Niemierko (2006) for an overview and to Romeijn et al. (2004) and
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Hoffmann et al. (2008) for a review of commonly used biological criteria. In this

thesis, we consider the gEUD formulation proposed by Niemierko (1999):

gEUD =

(
1

M

M∑
i=1

dai

) 1
a

, (1.4)

where M is the number of the voxels of a given structure and a is a structure

specific parameter that is negative for tumours and positive for non-tumourous

tissues.

1.6 Fluence map optimisation

The goal of FMO is to find a fluence map that maximises the probability of tu-

mour control while avoiding unacceptable complications in healthy structures. In

treatment planning, this goal is often translated to dose and volume requirements

derived from evidence-based knowledge on the outcomes of treatments (Marks

et al., 2010). These requirements naturally lead to physical optimisation models,

which are models formulated based on dose and volume. In contrast, the biological

optimisation models, which are models based on biological criteria such as TCP

and NTCP, are not commonly used due to uncertainties in the model parameters

(Niemierko, 2006). In this section we introduce FMO in terms of physical opti-

misation models due to their active use in research and practice (Bortfeld, 1999,

Ehrgott et al., 2008a, Shepard et al., 1999).

Consider the following abstract FMO model:

min f0(x)

s.t. fi(x) 5 0 for i = 1, . . . , r,

x = 0.

(1.5)

Here x is a vector representing bixel intensities, which is required to be non-

negative. The objective function f0(x) provides a quantitative measure on the

quality of the intensity pattern. Constraints fi(x) 5 0 specify the planning re-

quirements as a function of the intensity pattern. The goal of the optimisation
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problem is to find an optimal intensity pattern that results in a minimal objective

function value. Here minimisation is considered without loss of generality since

maximisation of a function f is equivalent to minimisation of −f .

To find a satisfactory intensity pattern, the choice of objective function and con-

straints should reflect the desirable characteristics of an ideal clinical outcome. To

do so, the planner specifies a prescription dose for the target and tolerance dose

levels for the critical organs and normal tissues. In particular we consider dose

lower bound LBT ∈ RmT for the tumour and dose upper bounds UBT ∈ RmT ,

UBC ∈ RmC and UBN ∈ RmN for the tumour, critical organs and normal tissue,

respectively.

A majority of physical functions are of the form of an lp − norm which essentially

measures the distance between a dose vector d to a reference dose vector dr

f0(d) = c‖d− dr‖p, (1.6)

where c is a scaling parameter and the anatomical dose d is related to the bixel

intensities through equation (1.1). For healthy structures, under-dosing can be

neglected using

f0(d) = c‖ (d− dr)+ ‖p, (1.7)

with (·)+ = max{0, ·}. In conventional planning, trade-offs between target cover-

age and OAR sparing are usually managed by assigning a non-negative importance

scale or weighting factor for each objective function, e.g., λT for the turmour, λC

for critical organs and λN for normal tissue. The weighted objectives are then

aggregated to form a single objective function, which is being minimised. As an

example, a min-max formulation by Lim et al. (2007), as shown in (1.8), minimises

the weighted sum of maximum deviation on the tumour and maximum overdose

on healthy structures using the l∞ − norm

min λT‖ATx− dp‖∞ + λC‖(ACx− UBC)+‖∞ + λN‖(ANx− UBN)+‖∞. (1.8)

In clinical practice, a weighted least-squares model (which is essentially a squared

l2 − norm) has become an accepted standard (Ehrgott et al., 2010).
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The optimisation model can be made more clinically relevant by the use of con-

straints. One obvious choice for constraints are the DV constraints, which incor-

porate the DV requirements into the model. Precise formulation of DV constraints

requires the use of binary variables bi which turn the model into a mixed integer

programme (MIP). For example, the DV constraint for critical organs C can be

expressed as

Aix 5 (1 + biF )UBCi
∀i ∈ C∑

i∈C

bi 5 PmC ,
(1.9)

where F is the overdose fraction and P is the volume fraction. Alternatively, the

DV constraints can be incorporated in the model implicitly through an iterative

post-optimisation process, e.g., by iteratively introducing a penalty objective for

voxels violating the DV constraints (Spirou and Chui, 1998). Note that DV con-

straints are non-convex (Deasy, 1997) with existence of local minima (see, e.g.,

Llacer et al. (2003) which can have major differences from the global minimum

(Jeraj et al., 2003, Wu et al., 2003a).

An alternative form of constraints are dose constraints, which set the threshold

values for the dose received by the voxels of a certain structure, for example, ATx =

LBT and Acx 5 UBC . However, it can be non-trivial to set the threshold values,

since if the constraints are too loose, plan improvement potential is sacrificed while

if the constraints are too tight, the model becomes infeasible.

To address the infeasibility issue, Holder (2003, 2005, 2006) proposes to use elastic

constraints, which allow violation of threshold values while violations are penalised:



Chapter 1 14

min ωlTα + uTCβ + uTNγ

s.t. LBT − Lα 5 ATx 5 UBT

ACx 5 UBC + UCβ

ANx 5 UBN + UNγ

0 5 Lα 5 LBT

−UBC 5 UCβ

0 5 UNγ

0 5 x,

(1.10)

where ω is the weighting factor for achieving the dose lower bound for the tumour

and α ∈ RqT , β ∈ RqC , γ ∈ RqN , l ∈ RqT , uC ∈ RqC , uN ∈ RqN , L ∈ RmT×qT , UC ∈
RmC×qC and UN ∈ RmN×qN . Let e be a vector of ones with an appropriate dimen-

sion. The author proposes two types of solution analysis. One is average analysis,

where l = 1
mT
e, uC = 1

mC
e and uN = 1

mN
e and L,UC and UN are identity matri-

ces (thus qT = mT , qC = mC , qN = mN). The other is absolute analysis, where

l = 1, uC = 1, uN = 1, L = e, UC = e and UN = e (thus qT = qC = qN = 1).

A multi-objective formulation of Holder’s average-analysis model is used in Chap-

ter 6.

1.7 Extension: Volumetric-modulated arc ther-

apy

Volumetric-modulated arc therapy (VMAT) is a further development of IMRT in

which radiation is delivered continuously with an MLC in dynamic mode while the

gantry rotates around the target to form one or more radiation arcs. Since VMAT

can utilize many more angles to deliver the radiation than fixed-gantry IMRT in a

given treatment time, it provides better flexibility in shaping the dose distribution

(Bedford, 2009). It is acknowledged that the dosimetric quality of VMAT plans

is comparable to that of IMRT plans while the delivery efficiency is better due
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to continuous delivery and variable dose rate (see Studenski et al. (2013) and the

references within).

Although VMAT is delivered continuously, the dose distribution of VMAT is not

calculated from a continuous model. Instead, the dose distribution delivered by

VMAT is approximated with discrete static beams that spread evenly and tightly

over the arc interval, each with an assigned segment and MU. During treatment

delivery, the machine moves the gantry and the MLC leaves from one planned

position to the next planned position, with variable movement speed.

Since the dose distribution is calculated from discrete static beam samples, the

FMO of VMAT is almost identical to that of IMRT, except that a large set of

beams is used. However, in terms of realisation, a VMAT plan needs to consider an

additional constraint when compared to an IMRT plan: the inter-leaf connectivity

constraint. That is, the leaf displacements from one planned beam angle to the

next must be attainable given the maximum leaf movement speed and the planned

gantry rotational speed. Optimisation methods in VMAT primarily consider the

leaf sequencing aspect of the planning problem (Unkelbach et al., 2015). A review

of VMAT is available in Yu and Tang (2011).
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Multi-criteria optimisation and

data envelopment analysis

In this chapter, we present basic materials of MCO (Section 2.1) and DEA (Sec-

tion 2.2).

2.1 Introduction to multi-criteria optimisation

In this section we present concepts, definitions and solution approaches of MCO.

Note that the terms “multi-criteria optimisation” and “multi-objective optimi-

sation” are used interchangeably to refer to the field of optimisation with more

than one objective function. In the literature, “multi-criteria optimisation” is

typically used by studies in the field of radiotherapy treatment planning whereas

“multi-objective optimisation” is usually used by studies in the field of operational

research. A comprehensive introduction of MCO materials is available in Ehrgott

(2005).

16
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2.1.1 Definitions

Consider a general multi-objective programme (MOP)

min {f(x) : x ∈ X} , (2.1)

where x ∈ Rn is a vector of decision variables and X is the feasible set of x.

f(x) = (f1, . . . , fp)
T is a vector of criteria or objective functions. We denote Y as

the feasible set in objective space,

Y = {f(x) : x ∈ X}. (2.2)

For multiobjective linear programmes (MOLPs), we express f(x) as Cx where

C ∈ Rp×n is the coefficient matrix consisting of row vectors ck ∈ Rn for k = 1, . . . , p.

We use the following notation for comparison of vectors.

Definition 2.1. Let y1, y2 ∈ Rp, we say

y1 5 y2 ⇔ y1k 5 y2k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1k 5 y2k and y1 6= y2

y1 < y2 ⇔ y1k < y2k for k = 1, . . . , p

Furthermore, we define the cones Rp
= = {y ∈ Rp : y = 0}, Rp

> = {y ∈ Rp : y > 0}
and Rp

≥ = {y ∈ Rp : y ≥ 0}.

Definition 2.2 (Dominance). For two vectors y1, y2 ∈ Rp, we say

• y1 dominates y2 if y1 ≤ y2

• y1 weakly dominates y2 if y1 5 y2

• y1 strictly dominates y2 if y1 < y2.

In MCO, as more than one objective is considered, a single solution that simul-

taneously optimises all criteria generally does not exist. Instead, MCO seeks for

solutions that cannot improve in any single criterion without deteriorating at least
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one other criterion. Solutions with this property are referred to as efficient solu-

tions and the points obtained by mapping the efficient solutions to the objective

space are referred to as non-dominated points (Definition 2.3).

Definition 2.3 (Efficiency, Non-dominance). A feasible solution x̂ ∈ X of (2.1)

is called efficient if there exists no x ∈ X such that f(x) ≤ f(x̂). The set of

all efficient solutions of (2.1) is called the efficient set in decision space and is

denoted by XE. The corresponding point ŷ = f(x̂) in criterion space is called

a non-dominated point and YN = {f(x) : x ∈ XE} is the non-dominated set in

criterion space of (2.1).

Definition 2.4 (Weak efficiency, Weak non-dominance). A feasible solution x̂ ∈ X
of (2.1) is called weakly efficient if there exists no x ∈ X such that f(x) < f(x̂).

The set of all weakly efficient solutions of (2.1) is called the weakly efficient set in

decision space and is denoted by XWE. The corresponding point in criterion space

ŷ = f(x̂) is called a weakly non-dominated point and YWN = {f(x) : x ∈ XWE} is

the weakly non-dominated set in criterion space of (2.1).

Definition 2.5 (ε-efficiency, ε-nondominance). Let ε ∈ Rp
=.

• A feasible solution x̂ ∈ X of (2.1) is called ε-efficient if there exists no

x ∈ X such that f(x) ≤ f(x̂)−ε. The corresponding point in criterion space

ŷ = f(x̂) is called an ε-nondominated point.

• A feasible solution x̂ ∈ X of (2.1) is called weakly ε-efficient if there exists

no x ∈ X such that f(x) < f(x̂) − ε. The corresponding point in criterion

space ŷ = f(x̂) is called a weakly ε-nondominated point.

2.1.2 Obtaining non-dominated points

In this subsection we introduce common MCO techniques that can be used to

obtain one or more non-dominated points.

Weighted-sum method Let λT = (λ1, λ2, . . . , λp) be a weight vector with

entries representing the relative weighting for each criterion. By assign weightings
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to the criteria, (2.1) is transformed to a single criterion weighted-sum problem:

min{λTf(x) : x ∈ X}. (2.3)

Essentially, λ specifies the marginal rate of substitution among the criteria and can

be visualised as a hyperplane with a normal λ in criterion space where any point y

on the hyperplane has the same value of λTy. Thus, to obtain an optimal solution

of (2.3), one moves the hyperplane toward the non-dominated set of Y to the

greatest extent while ensuring at least one point on the hyperplane is feasible. Let

an optimal solution of (2.3) be x̂. At optimum, λ and f(x̂) then define a supporting

hyperplane of Y . Optimal solutions of (2.3) with positive/non-negative weights

are always efficient/weakly efficient (Ehrgott, 2005, Proposition 3.9).

Constraint methods Another way to obtain non-dominated points is through

imposing constraints to the model. The constraints limit the solution space such

that (weakly) efficient solutions can be found by solving a single criterion prob-

lem. One of the most well known constraint methods is the ε-constraint method in

which only one of the original objectives is minimised while others are transformed

into constraints with upper bounds ε:

min fi(x)

s.t. fj(x) 5 εj for j ∈ {1, . . . , p} \ {i}

x ∈ X.
(2.4)

It can be non-trivial to determine an appropriate ε. If the constraints are too tight,

(2.4) may be infeasible. Instead, the elastic constraint method (Ehrgott and Ryan,

2002) relaxes these constraints and penalises violation of the upper bounds:
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min fi(x) +

p∑
j∈{1,...,p}\{i}

µjsj

s.t. fj(x)− sj 5 εj for j ∈ {1, . . . , p} \ {i}

sj = 0 for j ∈ {1, . . . , p} \ {i}

x ∈ X,

(2.5)

where µj ≥ 0, j = {1, . . . , p}\{i}. An optimal solution of (2.4) and (2.5) is weakly

efficient (Ehrgott, 2005, Proposition 4.3 and 4.8) but with appropriate j, ε and µ,

one obtains efficient solutions by solving (2.5) (Ehrgott, 2005, p. 104). Further-

more, given a weakly efficient solution x̄, a corresponding efficient solution can

be obtained by solving a hybrid model of the weighted-sum method and the ε-

constraint method:

min

p∑
i

fi(x)

s.t. fi(x) 5 fi(x̄) for i = 1, . . . , p

x ∈ X.
(2.6)

Reference-point based methods Reference-point based methods transform

an MOP to a single criterion problem that minimises a certain metric between the

original criteria f(x) and a reference point q ∈ Rp. One example of the reference-

point methods is the weighted Tchebycheff method (Steuer and Choo, 1983):

min max
i=1,...,p

λi (fi(x)− qi)

s.t. x ∈ X. (2.7)
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Prioritised goal programming In prioritised goal programming, the multiple

criteria are prioritised and each assigned a goal value. Single-criterion optimisa-

tions are conducted in the prioritised sequence to minimise the deviation between

criterion value fj(x) and its goal value qj. The achieved criterion value q̄i from

previous higher-priority (i = 1, . . . , j − 1) optimisations are turned into hard con-

straints for subsequent (lower-priority) optimisations:

min fj(x)− qj
s.t. fi(x) 5 q̄i for i = 1, . . . , j − 1

x ∈ X.
(2.8)

A variation of prioritised goal programming is lexicographic programming where

the high-priority criteria are optimised (i.e., minx∈X fj(x)) and the optimised val-

ues are turned into constraints for subsequent optimisations. Solutions produced

from lexicographic optimisation are efficient (Ehrgott, 2005, Lemma 5.2) whereas

this may not be true for prioritised goal programming.

2.1.3 Solution approaches to MCO

The goal of MCO is to find a most preferable solution for the decision maker.

Hence the preferences of the decision maker influence the solution approaches of

MCO. In this subsection, we classify the solution approaches of MCO subject to

the availability of the decision maker’s preferences during the solution process.

Further detail of the classification scheme is available in Miettinen (1999).

• No-preference methods, in which the decision maker has no preference on

the solution.

• A priori methods, in which the decision maker’s preferences are specified

before the solution process.

• A posteriori methods, in which a set of solutions that capture all decision

trade-offs are obtained with absence of decision maker’s preferences. Given
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the set of solutions, the decision maker can learn the decision trade-offs and

then select the most preferred solution out of the solution set.

• Interactive methods, in which the decision maker’s preferences are gradually

articulated by iteratively exploring potential solutions during the solution

process.

In the no-preference methods, the decision maker is satisfied as long as a solu-

tion is efficient. The a priori methods seek to find an efficient solution that best

matches the decision maker’s pre-specified preferences. The interactive methods

can be considered as iteratively conducting an a priori method subject to changing

preferences. Both the a priori and the interactive methods do not require a deci-

sion maker to obtain the non-dominated set. In contrast, the a posteriori methods

seek to obtain the non-dominated set and one efficient solution in the pre-image

of every non-dominated point. The decision maker then selects the most preferred

non-dominated point and a corresponding efficient solution out of the set.

2.1.4 Representation and approximation of the non-domi-

nated set

In practice, it might be neither practical nor desirable to generate the non-dominat-

ed set. For multi-objective continuous optimisation problems, the non-dominated

set consists of infinitely many non-dominated points and it is impractical for a

decision maker to examine all of them. Instead, a practical approach is to ob-

tain a discrete representation of the non-dominated set that satisfies some quality

requirements (Faulkenberg and Wiecek, 2010, Sayın, 2000).

Definition 2.6 (A representative non-dominated set). A set of discrete non-

dominated points Y ′ ⊂ YN used to represent the non-dominated set is referred

to as a representative non-dominated set or a representation of the non-dominated

set.

When the optimisation required to find a non-dominated point is computationally

expensive, computing evenly distributed non-dominated points across the non-

dominated set with a fine granularity can be time-consuming. To reduce the
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computational burden, it is often practical to generate an approximation of the

non-dominated set or an approximated non-dominated set within a tolerable error

instead of generating a representative non-dominated set.

Definition 2.7 (An approximated non-dominated set). An approximated non-

dominated set or an approximation of the non-dominated set refers to a set that is

used as an estimation of the non-dominated set. The points in the approximation

are not necessarily non-dominated or feasible.

Methods for generating an approximation of the non-dominated set are reviewed

by Ruzika and Wiecek (2005). In particular, a subclass of the approximation

methods, the sandwiching methods, are of close relevance to the field of radio-

therapy treatment planning optimisation. A sandwiching method is characterised

by a procedure that iteratively encloses the space between an upper bounding set

Y u ⊂ Rp and a lower bounding set Y l ⊂ Rp of YN . A lower (upper) bound set con-

tains points that act as lower (upper) bounds for some points in YN (Ehrgott and

Gandibleux, 2007). Precisely, let Y ′ ⊂ YN , then Y ′ ⊆ Y l +Rp
= and Y u ⊆ Y ′+Rp

=.

For multi-objective convex optimisation problems, given a set of feasible solutions

X̄ and let the mapping of X̄ in the objective space be Ȳ , then by convexity, the

non-dominated set of the convex hull of Ȳ defines an upper bound set of YN . A

lower bounding set can be obtained from supporting hyperplanes of Y . In a sand-

wiching method, an upper bound set acts as an approximation of YN and a lower

bound set provides an error measure of the approximation. Given an approxima-

tion of YN , the decision maker then wishes to find the most preferred point out of

the set and its corresponding solution. In practice, the searching process to find

such a point is often conducted by solving interactive multi-objective optimisa-

tions in which the feasible set of the original problem is further constrained to the

convex hull of X̄.

2.2 Introduction to data envelopment analysis

In this section we introduce basics of data envelopment analysis. For a detailed

introduction to DEA we refer the interested reader to Chapter 6 of Coelli et al.

(2005) and to Cooper et al. (2011).
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2.2.1 Efficiency, the production possibility set and the pro-

duction frontier

DEA is a technique for evaluating the performance of a set of peer entities referred

to as decision-making units (DMUs). The performance of each DMU is measured

based on how good the DMU is in converting a set of inputs into a set of outputs.

In particular, the performance of a DMU is evaluated by comparing its inputs and

outputs to a set of inputs and outputs potentially attainable under certain as-

sumptions. Essentially, given a DMU with certain amounts of inputs and outputs,

DEA finds a greatest attainable improvement in inputs and outputs for the DMU.

Assume there are N DMUs, each converts a varying amount of I inputs into a

varying amount of O outputs. Let rj ∈ RI
≥ and wj ∈ RO

≥ be the amount of inputs

consumed and outputs produced by the jth DMU , respectively. The jth DMU

is represented by a point DMUj =
(
rj

T
, wj

T
)T
∈ RI+O. We denote P as a set

of potentially attainable inputs and outputs derived by N existing DMUs under

certain assumptions (discussed in Subsection 2.2.3). Efficiency in DEA is defined

as the following.

Definition 2.8 (DEA efficiency).

• The kth DMU is efficient and (rk
T
, wk

T
) is non-dominated if there exists no

(r, w) ∈ P such that r ≤ rk and w ≥ wk.

• The kth DMU is weakly efficient and (rk
T
, wk

T
) is weakly non-dominated if

there exists no (r, w) ∈ P such that r < rk and w > wk.

The concept of efficiency is illustrated in Figure 2.1 in which a set of existing

DMUs are represented by points A to J and the set of potentially attainable

inputs and outputs is illustrated in grey. In the figure, DMUs represented by A,

B, C and D are considered efficient since none of the potentially attainable inputs

and outputs show a lower or equal input value and a higher or equal output value

simultaneously than these DMUs. Other DMUs are considered inefficient since

there are potentially attainable inputs and outputs (e.g., points A, B, C and D)

that empirically suggest the inefficient DMUs can be improved in the input/output
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Figure 2.1: Illustrating the concept of efficiency. DMUs represented by
points A, B, C and D are considered efficient while other DMUs are inef-
ficient.

without worsening the output/input. Furthermore, the DMU represented by point

G is a weakly efficient DMU as it cannot be improved further in input while

improvement in output is attainable. The set of potentially attainable inputs and

outputs P is referred to as the production possibility set in the DEA literature.

A production possibility set can be characterised by different assumptions (as

discussed in Subsection 2.2.3). The production possibility set shown in Figure 2.1

is referred to as the free disposal hull (FDH), which represents a set of attainable

DMUs assuming free disposability, i.e., each DMU can consume extra inputs while

producing the same levels of outputs or produce less outputs with the same levels of

inputs. The frontier that envelops the production possibility set, illustrated by the

dashed lines in Figure 2.1, is referred to as the production frontier. The production

frontier consists of potentially attainable inputs and outputs that cannot be further

improved in at least one of the inputs or outputs, i.e., all efficient and weakly

efficient DMUs.
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2.2.2 An introduction to DEA models

DEA models can have different formulations depending on the intuition behind

the comparison of DMUs (the ratio, multiplier or the envelopment form), the

orientation of comparison (input-oriented or output-oriented) and the assumptions

on the production possibility set (free disposability and returns-to-scale of inputs

and outputs). In this subsection, we present input-oriented DEA models with

different forms under the assumption of free disposability and constant returns-to-

scale (CRS). For a corresponding output-oriented model, readers are referred to

Cooper et al. (2011).

Comparing DMUs is difficult when the relative importance or cost of the multiple

inputs and outputs are undefined. In the original DEA model proposed by Charnes

et al. (1978), as shown in (2.9), comparison of DMUs is facilitated by allowing

each DMU to choose weight vectors, one for the inputs and one for the outputs, to

maximize its own ratio of weighted output to weighted input. If a DMU is incapable

of achieving a superior ratio of weighted output to weighted input than other DMUs

using its optimal weights, the DMU is inefficient. The ratio of weighted output to

weighted input is referred to as the efficiency score.

Let the inputs and outputs of all N DMUs be represented by an input matrix

R ∈ RI×N
≥ and an output matrix W ∈ RO×N

≥ where the jth column vectors of

the two matrices are rj and wj, respectively. The weights for the inputs and the

outputs are denoted by vectors ρ ∈ RI and υ ∈ RO, respectively. The optimal

ratio of weighted outputs to weighted inputs for the kth DMU can be obtained by

solving the following DEA model in the ratio form:

max
υTwk

ρT rk

s.t.
υTwj

ρT rj
5 1 for j = 1, . . . , N

υ, ρ = 0.

(2.9)

Given an optimal solution
(
υ∗

T
, ρ∗

T
)

, if the kth DMU is efficient, then the optimal

ratio of weighted outputs to weighted inputs for the kth DMU would equal to 1.
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Alternatively, if the kth DMU is inefficient, we obtain an optimal ratio of less than

1 due to a binding constraint υTwj
∗
/ρT rj

∗
= 1 caused by the j∗th DMU. The

j∗th DMU is referred to as the target for the kth DMU due to a superior ratio

of weighted outputs to weighted inputs. Note that the target is only guaranteed

to be weakly efficient due to the non-negative constraints of the weight vectors

υ, ρ. Full development of the model would replace the non-negative constraints

with a strict positive constraints, i.e., υ, ρ = εe, ε ∈ R>, to ensure the target is an

efficient DMU (Charnes et al., 1979). In the DEA literature, ε is referred to as a

non-Archimedean element, i.e., a number smaller than any positive real number.

The ratio form has an infinite number of optimal solutions since if
(
υ∗

T
, ρ∗

T
)

is

an optimal solution, with any α ∈ R>,
(
αυ∗

T
, αρ∗

T
)

would also be an optimal

solution. A particular solution can be selected by setting the denominator of the

objective function to one and transforming the linear fractional programme to an

equivalent linear programme (Charnes and Cooper, 1962):

max υTwk

s.t. υTwj − ρT rj 5 0 for j = 1, . . . , N

ρT rk = 1

υ, ρ = εe.

(2.10)

Model (2.10) is referred to as the multiplier form and its dual formulation, as

shown in (2.11), is referred to as the envelopment form, with decision variables

θ ∈ R, λ ∈ RN , s+ ∈ RO and s− ∈ RI .

min θ − ε(eT s+ + eT s−)

s.t. Wλ− s+ = wk

Rλ− θrk + s− = 0

λ, s+, s− = 0.

(2.11)

Let an optimal solution of (2.11) be θk∗, λk∗, s+∗ and s−∗, where θk∗ is the efficiency

score of the kth DMU, λk∗ is a vector of weights and s+∗ and s−∗ are slack variables

for outputs and inputs, respectively. Essentially, the model searches for an optimal

improvement of DMUk among the set {(rT , wT )T : r = Rλ,w = Wλ, λ = 0}. The
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search is facilitated by radial contraction of the input vector through θ and by the

slack variables s+ and s−. Since the penalty weight, ε, for the slack variables is

very small, the model seeks for maximal radial contraction (by minimising θ) of the

input vector where possible, which projects DMUk to a point on the production

frontier where at least one of the inputs or outputs cannot be improved. Slack vari-

ables are then used to search for improvements in the individual inputs/outputs

of the projected point.

By solving (2.11), one obtains a non-dominated point with inputs equal to Rλk∗,

Rλk∗ = θ∗rk − s−∗ and outputs equal to Wλk∗, Wλk∗ = wk + s+∗, representing

an optimal input-oriented improvement available for the kth DMU. The point is

referred to as the target for the kth DMU and the DMUs associated with a positive

weight in forming the target are referred to as the peers of the kth DMU, i.e., the

jth DMU is a peer of the kth DMU if λj > 0. The target represents the inputs and

outputs that the kth DMU should aim for to make itself efficient. For an efficient

DMU, the DMU itself is its own target as well as its only peer and in this case

θ∗ = 1 and all slack variables equal to 0. Note that by the construction of the

model, the value of θ must be at least zero and at most one.

2.2.3 The production possibility set – free disposability

and returns-to-scale

In this subsection we review the basic assumptions of a production possibility

set. From now on, we focus on DEA models in the envelopment form, which are

explained intuitively in terms of inputs and outputs.

A basic assumption of a production possibility set is free disposability of the inputs

and the outputs. That is, a DMU can dispose extra inputs (while incurring the cost

of the inputs) or dispose the produced outputs freely, if the DMU wishes to do so.

Hence, when information of the returns-to-scale of inputs and outputs is not avail-

able, the production possibility set of a collection of existing DMUs D0 is defined

by the FDH of D0, i.e., the set {(r∗T , w∗T )T : ∀(rT , wT )T ∈ D0, r
∗ 5 r, w∗ = w}.

An illustration of the FDH is shown in Figure 2.1. Graphically, each DMU in
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the FDH defines a closed orthant, non-negative in inputs and non-positive in out-

puts, where any DMU located within the orthant, other than the origin of the

orthant, is inefficient. Therefore, it is trivial to see that the target of a DMU must

be one of the existing DMUs. Hence, instead of searching the entire FDH for a

maximal improvement of a DMU, one can simply restrict the search space to the

existing DMUs by adding a binary constraint λ ∈ {0, 1}N in the envelopment form:

min θ − ε(eT s+ + eT s−)

s.t. Wλ− s+ = wk

Rλ− θrk + s− = 0

λ ∈ {0, 1}N

s+, s− = 0.

(2.12)

If additional information about the returns-to-scale of inputs and outputs is avail-

able, then one can derive a set of potentially attainable inputs and outputs D

from D0 (without assuming free disposability). The production possibility set with

the additional information is then defined by the FDH of D, i.e., {(r∗T , w∗T )T :

∀(rT , wT )T ∈ D, r∗ 5 r, w∗ = w}. In this chapter we consider two assumptions of

returns-to-scale: the CRS and the variable returns-to-scale (VRS) (Banker et al.,

1984). The assumption of CRS is appropriate when the inputs and outputs change

at a constant proportion. Essentially, CRS assumes that inputs and outputs ob-

tained from linear combinations of existing DMUs with non-negative weights are

potentially attainable. The assumption of CRS is facilitated by the constraint

λ = 0 in the multiplier form, as shown in (2.11). An illustration of the production

possibility set assuming CRS is shown in Figure 2.2, in which the production fron-

tier is a ray that emanates from the origin and passes through points A and B.

These two points represent the best ratio of output to input among all the DMUs.

Alternatively, VRS suggests that as the inputs change, the outputs change at

a variable rate and vice versa. The change of scale in VRS is described by lines

connecting the points corresponding to the existing DMUs, hence the production

possibility set is formed by convex combinations of existing DMUs. Hence, intu-

itively, in the envelopment form, VRS is facilitated by the convexity constraint



Chapter 2 30

Figure 2.2: An illustration of the production possibility set assuming CRS.

Figure 2.3: An illustration of the production possibility set assuming VRS.
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eTλ = 1, as shown in (2.13).

min θ − ε(eT s+ + eT s−)

s.t. Wλ− s+ = wk

Rλ− θrk + s− = 0

eTλ = 1

λ, s+, s− = 0.

(2.13)

An illustration of the production possibility set assuming VRS is shown in Fig-

ure 2.3.

2.2.4 An example of an input-oriented DEA model assum-

ing VRS

In this subsection we demonstrate the mechanism of DEA with an input-oriented

model assuming VRS in the envelopment form (model (2.13)). The mechanism is

illustrated by Figure 2.4, which shows a set of DMUs, each associated with one

input and one output, represented by points A to F . The production frontier is

shown by the piecewise linear solid line connecting efficient DMUs A,B, and C.

These DMUs have a more preferable output to input ratio than the inefficient

DMUs D, E and F , for the corresponding input level. The efficiency of each

DMU is determined by the amount of radial contraction of inputs required to

shift the corresponding point to the production frontier. DMUs corresponding to

points A,B and C have an efficiency of 1 since no radial contraction of the input

is required to shift the corresponding points to the frontier. On the other hand,

DMUs corresponding to points D, E and F are inefficient as radial contractions

of the inputs are required to shift these points to points D∗, E∗ and F ∗ on the

production frontier. Once a point is on the production frontier, DEA attempts

to further improve the point by decreasing the individual inputs and increasing

the individual outputs where possible. This is illustrated by point D∗ which is

shifted to point A by increasing its output value by 2 units (hence s+ = 2). The

efficiency scores, input and output values, target values, value of slacks and the
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Figure 2.4: A demonstration of the mechanism of an input-oriented DEA
model assuming VRS (model (2.13)).

corresponding peers and weights of the DMUs in Figure 2.4 are summarized in

Table 2.1.

Table 2.1: The efficiency scores, inputs, outputs, targets, slacks, and the
corresponding peers and weights for the six DMUs shown in Figure 2.4.

DMU θ (r, w) Target (s−, s+) peer(s) weight(s)

A 1 (2,6) (2,6) (0,0) A 1
B 1 (5,12) (5,12) (0,0) B 1
C 1 (10,14) (10,14) (0,0) C 1
D 0.5 (4,4) (2,6) (0,0) A 1
E 0.6 (5,8) (3,8) (0,0) A,B 0.667,0.333
F 0.695 (9,12.5) (6,12.5) (0,2) B,C 0.750,0.250
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Managing treatment trade-offs in

radiotherapy treatment planning

Several criteria need to be considered for a plan to be considered satisfactory: ad-

equate radiation needs to be delivered to the target volume while at the same time

radiation delivered to adjacent organs and normal tissues must be tolerable. Due

to physical limitations, an ideal dose distribution that simultaneously optimises all

the criteria does not exist. Instead, trade-offs between various conflicting criteria

need to be made. The planner may rate the criteria differently by considering sev-

eral factors such as the patient’s condition, type of complications expected and/or

possible salvage treatment of complications. Ideally, one wishes to find a clinically

optimal plan that results in a preferable balance of benefit and risk for the patient.

The multi-criteria nature of the radiotherapy planning problem is conventionally

handled by assigning importance scales. Each optimisation criterion, in the form

of a mathematical function, is given a weight factor based on the relative impor-

tance of that criterion and these criteria are summed up to form an aggregated

criterion. The optimisation algorithm then produces a (mathematically) optimised

plan according to the composite optimisation criterion. However, it is not clear how

a change of the weight factors affects the resulting plan. When an unsatisfactory

plan is produced, the treatment planner will have to repeat the optimisation with a

different set of weight factors, using a trial-and-error approach, until a satisfactory

plan is found. Such a trial-and-error approach is ineffective and time consuming.

33
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In addition, the treatment planner will not know whether the chosen treatment

plan is clinically optimal or not because the trade-offs between the treatment goals

are unknown and it is unrealistic to explore the trade-offs using a trial-and-error

approach.

In this chapter we review planning approaches for managing treatment trade-

offs. In Section 3.1, we classify these approaches according to the participation

of the planner in the planning process. In Section 3.2, we review the benefits and

limitations of a clinically adopted MCO-based planning approach. In Section 3.3,

recent advancements in computational efficiency in radiotherapy optimisation are

reviewed. The majority of techniques presented in this chapter are in the context

of MCO, of which the background materials are provided in Section 2.1.

3.1 Techniques for managing treatment trade-

offs

In this section we review techniques for managing treatment trade-offs. We cate-

gorise these techniques with MCO classifications as described in Subsection 2.1.3.

Note that no planning approach fits the no-preference classification, hence it is not

included in this section.

3.1.1 A priori methods

In a priori methods, sufficient information of the decision maker’s preferences must

be available and be adopted in the solution process. Such information can be

specified directly by the decision maker, in the form of prioritised goals or detailed

protocols for decision making. Alternatively, one can also extract such informa-

tion from one or more decisions made previously using methods such as machine

learning.

Prioritised goal programming Jee et al. (2007) apply the lexicographic pro-

gramming method to a prostate case and a head and neck case and demonstrate
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that a comprehensive list of planning goals can be optimised in a few priority levels

by grouping goals of similar importance into the same level. Wilkens et al. (2007)

apply goal programming with slip factor s to slightly relax the constraint of the

criteria values obtained from previous steps, i.e., the constraints of (2.8) become

fi(x) 5 (1 + s)q̄i for i = 1, . . . , j − 1. (3.1)

Application on head and neck cases shows that plans benefit from the use of a slip

factor where a small deterioration of higher priority goals allows large improvement

of lower priority goals. Similar results are obtained by Clark et al. (2008) where 10

prostate planning problems are considered. Breedveld et al. (2009) use a variant

of the lexicographic programming method where the bounds for under-achieving

goals are relaxed with a slip factor and over-achieving goals are set to the original

goal value. The method is extended to include the beam angle optimisation prob-

lem as an automatic plan generation method in Breedveld et al. (2012), in which

the beam selection process iteratively finds the most promising beam at the current

iteration and adds the beam to the solution, until no significant plan improvement

is possible by introducing more beams. This automatic plan generation method

is reported superior when compared with plans generated by manual selection of

planning parameters (Voet et al., 2013). Goal programming is applied to intensity

modulated proton therapy (IMPT) by Falkinger et al. (2012). The study shows

that, compared to IMRT cases, the slip factor has little influence in IMPT plan-

ning due to the additional freedom in energy modulation and the specific Bragg

peak of protons. Kalantzis and Apte (2014) propose a reduced-order prioritised

optimisation method. The method consists of three stages. In the first stage, the

weighted-sum method is used to generate a representative set of efficient solutions

by varying the weight vector. In the second stage, principal component analysis is

applied to the representative efficient set to obtain the major eigen modes in terms

of bixel intensities. In the third stage, prioritised optimisation is conducted on the

reduced search space formed by the major eigen modes. The method is applied

to a prostate and a lung case. The results show that plans found in the reduced-

order space are comparable to the plans generated without dimension reduction.

Moreover, a maximum speedup factor of 49.9 is achieved due to the reduction of

the search space.
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Optimisation based on a pre-defined planning protocol An alternative

way to generate treatment plans is to specify a detailed planning protocol in which

the planning parameters and/or the weighting factors are adjusted based on the

protocol to achieve planning requirements. Zhang et al. (2011) propose an auto-

mated class solution for lung cancers in which the EUD-based planning parameters

are found through binary search. Zaghian et al. (2014) propose to satisfy the DV

requirements by gradually tightening the hot/cold spot control parameters and

increasing the associated weighting factors. Xhaferllari et al. (2013) develop a

planning script that iteratively reduces hot or cold spots by automatically incor-

porating the corresponding volumes as additional criteria with appropriate weights.

Optimisation based on reference plan(s) Plan generation can be conducted

based on the information (e.g., the planning parameters or the DVHs) obtained

from a set of previously accepted reference plans. This planning approach is most

effective if the anatomical geometry of the reference plan(s) closely resembles that

of the planning problem. Different approaches have been proposed to quantify

geometrical similarity. One way is to consider a so-called overlap volume histogram

(OVH) (Wu et al., 2009), which describes the percentage volume of an OAR that is

within a specific distance of a PTV. OVH is based on the idea that OARs closer to

the target are harder to spare while OARs further away from the target are easier

to spare. Wu et al. (2009) use OVHs to identify a group of previous reference plans

that are at least as difficult as the planning problem. The minimum achievable DV

parameters of the group of reference plans are then used as the DVH objectives

for the subsequent plan optimisation. Wu et al. (2011) report that the OVH-based

planning approach reduces the average number of optimisation rounds from 27.6

to 1.9. The OVH planing method is extended to VMAT head and neck plans by

Wu et al. (2013) in which a database of IMRT plans are used as references. The

OVH based planning method is also applied to pancreatic cancer cases (Petit et al.,

2012) and prostate cancer cases following hydrogel injection (Yang et al., 2013).

One can also obtain planning information from one of the reference plans that best

matches the anatomical geometry of the planning problem. Chanyavanich et al.

(2011) find a matching plan based on mutual information of beam’s-eye-views, i.e.,
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by measuring the mutual dependence of two plans through a statistical compari-

son of the image histograms of the beam’s-eye-views. Planning parameters of the

best matching plan are used for the planning problem. Application on prostate

cancers shows that the proposed planning approach produces plans with a com-

parable dose quality as the reference plan. Good et al. (2013) also use mutual

information to find the best matching plan. Deformable registration is addition-

ally used to transform the fluence maps of the best matching plan to that of the

planning problem. Schreibmann and Fox (2014) rank geometric similarities based

on the mean of the closest distances between voxels of a matching plan and the

corresponding structure surface of the planning problem. The best matching plan

is used as a warm start solution for the subsequent plan optimisation. Application

on VMAT prostate cases shows that the planning time reduced from 1-2 hours to

15 minutes due to the reduction of the trial-and-error process of selecting arc direc-

tions and lengths as well as the removal of optimisation constraints. Li et al. (2013)

propose a DVH-guided planning approach for adaptive radiotherapy in which the

voxel weights of the planning problem are iteratively adjusted so that the DVHs

of the produced plan match those of the initial plan (which is the reference plan).

Zarepisheh et al. (2014) generalise the method of Li et al. to IMRT planning given

a set of reference plans. Machine learning is used to build a model for reference

plan selection where various geometric features are considered as inputs and DVH

similarity as an output.

Machine learning and regression Machine learning and regression can be ap-

plied to a set of previously accepted plans to find the correlation between anatom-

ical geometry variations and achievable treatment goals/parameters. Given the

correlation, a planner will be able to make an informed evaluation of treatment

quality based on the anatomical geometry, hence enables a more consistent plan-

ning practice and an improved plan quality.

Moore et al. (2011) build a nonlinear model that predicts the achievable mean

dose of the PTV based on the fractional volume of an OAR overlapping the PTV.

Application of the model to head and neck cases results in substantial improve-

ment in dose sparing on parotid glands. Zhu et al. (2011) use distance-to-target
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histograms (DTH), which have a similar definition as the OVH with minor vari-

ations, to account for anatomical geometry variations. In the study, principal

component analysis is applied to DVHs and DTHs to identify their salient fea-

tures. Support vector regression is then applied to establish the correlations be-

tween these features. The method successfully predicted the DVHs for 11 out of

14 prostate cancer cases. Appenzoller et al. (2012) develop a model that predicts

achievable OAR DVHs based on the minimum distance from an OAR voxel to the

PTV surface, in which OAR voxels with the same minimum distances are grouped

into subvolumes. Application of the model to 20 prostate cancer cases correctly

identified suboptimal plans of which further OAR sparing is achieved after replan-

ning. Yuan et al. (2012) use principal component analysis to identify significant

anatomical factors for OAR dose sparing. These factors are used to build a model

that predicts OAR DVHs using stepwise multiple regression. The model is applied

to the bladder and the rectum for prostate cancer cases and the parotids for head

and neck cancer cases. For the bladder and rectum model, the prediction errors of

DV parameter values are within 6% for 17 plans and within 10% for 21 plans, out

of 24 cases. For the head and neck cases, the prediction error of the median dose

values of parotids, are within 6% for 30 plans and within 10% for 40 plans, out of

48 cases.

Other than predicting achievable treatment quality, machine learning methods can

also be used to facilitate automatic planning where predicted treatment outcomes

are used to set the planning parameters. Yang et al. (2015) use the method of

Yuan et al. (2012) to predict OAR DVHs and use the predicted DV parameters

as criteria for automatic treatment planning for prostate cancer. The study shows

that, compared to conventional planning, the DVH informed planning reduces the

average planning time by 5.2 minutes and produces plans with a lower number

of MUs while maintaining comparable plan quality. Fogliata et al. (2014) use a

combination of principal component analysis and regression to construct a model

that predicts the DVHs from various anatomical geometry features, such as OAR

volume and overlap volume with targets. Application of the method to lung can-

cer reduces cases that violate treatment requirements from 11% to 7% for the

training set and from 13% to 10% for the validation set. Boutilier et al. (2015)

apply machine learning techniques to generate criteria weights for the planning

of IMRT prostate treatments. The training dataset consists of 315 treated plans,
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each inverse-optimised (i.e., given an intensity pattern, find a corresponding op-

timal criterion weight vector) using the method of Chan et al. (2014), to obtain

a weight vector. Overlap volume ratio and overlap volume histogram slopes of

bladder and rectum are used as explanatory variables. The study demonstrates

that the generated weight vectors produce plans that closely replicate the clinical

plans.

3.1.2 A posteriori methods

In a posteriori methods, a set of potential solutions and the corresponding points

in the criterion space are generated and given to the decision maker, who will

select a most preferable solution from the set. In radiotherapy treatment design,

MCO is primarily applied to a posteriori methods so that only efficient solutions

are provided to the decision makers.

Weighted-sum based methods One way to generate a representative non-

dominated set is by solving the MOP using the weighted-sum technique repetitively

with different weight vectors. Cotrutz et al. (2001) and Lahanas et al. (2003a) use

such an approach with entries of the weight vectors normalised and uniformly

distributed over zero to one. That is, the weight vectors are chosen from the set

Λ =

{
(λ1, . . . , λp) |

p∑
j=1

λj = 1;λj ∈
{

0

η
,

1

η
, . . . ,

η − 1

η
, 1

}}
, (3.2)

where p is the number of criteria and η is the sampling parameter. However, such

an approach becomes less practical when the number of criteria is more than 3.

In addition, as illustrated in Das and Dennis (1997), this approach is unlikely to

produce an even spread of non-dominated points. The examples provided in Das

and Dennis suggest that an even spread of non-dominated points often results from

a very uneven distribution of weighting factors.

Constraint based methods Alternatively, one can obtain a representative

non-dominated set by imposing different constraints. Given a non-dominated point
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f(x̂), Hamacher and Küfer (2002) propose to find nearby non-dominated points

iteratively using relaxed bounds:

min fi(x)

s.t. fi(x) ≥ (1− q)fi(x̂)

fj(x) ≤ fj(x̂) + q/(p− 1)fi(x̂)

x ∈ X,

(3.3)

where i ∈ {1, . . . , p} \ {j}. The parameter q is chosen to be between 0.2 and 0.8

and may vary for different criteria. The algorithm starts by finding an efficient

solution using a lexicographic programming method and successively expands to

other efficient solutions.

Küfer et al. (2003) use the ε-constraint method to find non-dominated points where

criteria are partitioned into an active setM withM 6= ∅ and a non-active set N .

For every possible partition of the criteria, the following problem is solved to ob-

tain a non-dominated point.

min s

s.t. fi(x) ≤ s ∀i ∈M

fj(x) ≤ sj ∀j ∈ N

x ∈ X,

(3.4)

where sj is an appropriate upper bound chosen by the decision maker. A subse-

quent optimisation based on the hybrid model (2.6) is then solved to make sure

the solution is efficient. The 2p− 1 efficient solutions found through each partition

define the scope of the approximated non-dominated set. Triangulation and re-

finement steps are used to add new points between existing non-dominated points

to achieve a desired granularity.

The normalised normal constraint method (Messac et al., 2003) is used by Craft

et al. (2005) to explore the two-dimensional trade-offs (hence in the study p = 2)
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between tumour dose homogeneity and OAR sparing. The method first calculates

anchor points yi,∀i ∈ {1, . . . , p}, which are points found by minimising each crite-

rion individually. The algorithm then derives a set of evenly distributed reference

points q (referred to as utopia points) that lie on the line segments connecting

the anchor points (referred to as utopia lines). Note that for p > 2, equidistant

reference points are placed on the utopia plane, which is the convex hull of utopia

points. The method finds individual non-dominated points by solving problems of

the form:

min fi(x)

s.t. NT
j (f(x)− q) ≤ 0 ∀j ∈ {1, . . . , p} \ {i}

x ∈ X,
(3.5)

where Nj = yi−yj. The inequality NT
j (f(x)−q) ≤ 0 reduces the feasible criterion

space such that a unique non-dominated point can be found for each reference

point q by minimising only one criterion.

Sandwiching methods Sandwiching methods create an approximation of the

non-dominated set by iteratively enclosing the search area between a lower and an

outer bounding set. For multi-objective convex optimisation problems, a common

approach to construct a lower and an upper bounding set is by solving scalar

subproblems using the weighted-sum method. Let x̄ be an optimal solution to

a weighted-sum problem with a weight vector λ̄. A supporting hyperplane of the

feasible set in criterion space can be defined by f(x̄) and λ̄ where λ̄ is the normal of

the hyperplane. The supporting hyperplane then forms part of the lower bounding

set, along with other supporting hyperplanes found by solving other weighted-sum

subproblems each with a different λ. Let X̄E be a set of efficient solutions found at

a given iteration of the sandwiching process and let ȲN be the corresponding set

of non-dominated points. By convexity, the non-dominated set of the convex hull

of ȲN defines an upper bounding set, which is also an approximation of YN . As

more non-dominated points are added to the approximation, the space between the

lower bounding set and the upper bounding set shrinks. Given an approximation

of YN , the decision maker still needs to find the most preferred point and its
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corresponding solution. This is achieved by interactively solving a multi-objective

optimisation problem in which the feasible set is restricted to the convex hull of

X̄E (see Subsection 3.1.3).

The computational goal of sandwiching methods is to generate an approximation

of the non-dominated set of adequate accuracy with as few non-dominated points

as possible. Hence, preferably, one wishes to find non-dominated points that max-

imally reduce the distance between a lower bounding set and an upper bounding

set. To achieve this computational goal, Craft et al. (2006) propose a heuristic

approach in which the next weight vector is a vector maximally different from the

existing weight vectors, chosen from the convex hull of existing weight vectors.

Hoffmann et al. (2006) use an ε-constraint based sandwiching method where non-

dominated points are found by solving scalar subproblems using the ε-constraint

method while the normal λ of the supporting hyperplane is obtained from the La-

grange multipliers associated with the constraints. The study by Hoffmann et al.

investigates different strategies to add new points to the non-dominated set approx-

imation. The results show that strategies that minimise the Hausdorff distance or

the total uncertainty area between the upper bounding set and the lower bound-

ing set produce better approximations of the non-dominated set than the strategy

that minimises the maximum error. Thieke et al. (2007) propose to successively

optimise all combinations of criteria, i.e., first each criterion individually then all

combination of 2 criteria and so forth. Bokrantz and Forsgren (2013) propose a

vertex enumerative algorithm to find the weight vector of a non-dominated point

that maximally reduces the distance between the lower bounding set and the upper

bounding set.

Shao and Ehrgott (2008) propose a sandwiching method for MOLPs based on

Benson’s outer approximation algorithm (Benson, 1998a,b). In Benson’s outer

approximation algorithm, the lower bounding set is the non-dominated set of a

simplex S that encloses the feasible set Y in criterion space. At each iteration, a

vertex v of S, with v /∈ Y , is chosen and the non-dominated point that lies on the

line segment between v and the anti-ideal point yAI , yAIk := max{yk : y ∈ Y } is

calculated. The non-dominated point is then used to solve a pair of primal and

dual linear problems, the solutions of which are used to construct a supporting
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hyperplane of Y at the point. S is then reconstructed to incorporate the support-

ing hyperplane and the vertices are updated. The upper bounding set is formed

by the non-dominated set of the convex hull of existing non-dominated points. In

Benson’s outer approximation algorithm, the procedure repeats with another ver-

tex v, v /∈ Y , and the procedure ends once all vertices are non-dominated, in which

case the non-dominated set of S is the same as YN . Shao and Ehrgott (2008) report

that the non-dominated surface of some IMRT problems is “curved”. “Curved”

surfaces lead to the construction of an excessive number of supporting hyperplanes,

which inevitably result in a prolonged computational time. Therefore, Shao and

Ehrgott propose an approximation version of Benson’s algorithm. In the proposed

algorithm, a tolerance value ε is predefined. If the distance from a vertex to the

corresponding non-dominated point is within the tolerance value ε, the construc-

tion of the supporting hyperplane is omitted. Shao and Ehrgott prove that points

of the upper bounding set produced from the algorithm are ε-nondominated where

ε = εe. The authors find this approach significantly reduces the computational

time while maintaining the approximation within a tolerable error.

Given a representation or an approximation of the non-dominated set, the decision

maker still needs to search for the most preferable point among the set. One way

to do so is by the interactive methods, which will be discussed in Subsection 3.1.3.

Evolutionary algorithms Lahanas et al. (2003b) apply the evolutionary algo-

rithm NSGA-II (Deb et al., 2002) and its controlled elitist version NSGA-IIc (Deb

and Goel, 2001) to the IMRT planning problem. The solutions generated from

NSGA-II and NSGA-IIc are compared to the solutions generated by the gradient

based algorithm L-BFGS (Lahanas et al., 2003a), which uses a weighted-sum tactic

to find a representative non-dominated set. The results show that the solutions

generated from NSGA-IIc cover more of the non-dominated set than the solutions

from NSGA-II, which converges prematurely. For both NSGA-ll and NSGA-IIc,

some regions of the non-dominated set can only be explored if a number of so-

lutions generated from L-BFGS are used as initial solutions. Holdsworth et al.

(2010) propose a hierarchical evolutionary algorithm in which the top level of the

algorithm is a multi-criteria evolutionary algorithm and the bottom level is a deter-

ministic algorithm used to solve constrained quadratic problems (Breedveld et al.,
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2006). The deterministic algorithm uses a weighted-sum approach to handle the

multiple criteria and the top level evolutionary algorithm uses the weight vector

as the genes of the individuals. Fiege et al. (2011) apply a genetic algorithm to a

combined problem of beam selection and fluence map optimisation. The method

is applied to two phantom cases. The results show that conformity-based PTV

fitness functions and DVH or EUD based OAR fitness functions produce relatively

uniform and conformal PTV doses.

3.1.3 Interactive methods

In interactive methods, the decision maker iteratively adjusts preferences based

on existing optimisation results. The conventional planning approach in which

a planner iteratively adjusts planning parameters to find a treatment plan can

be considered as an interactive multi-criteria method. However, such a planning

practice requires a planner to experiment with the planning parameters which can

be ineffective. Alternatively, one might want to use an interactive MO method to

effectively guide a decision maker to a preferable plan. There are limited studies

on the use of interactive MO methods for plan generation. One example is by

Ruotsalainen (2009) who uses a classification-based interactive method to solve

the planning problem. The method classifies criteria into those that should be

improved (optionally with aspiration values), those that are considered satisfactory

and those that are allowed to deteriorate (optionally with given bounds).

The lack of interactive methods in radiotherapy treatment design might be due

to the long computational time for executing one optimisation round. Using an

interactive method, the planning process can be tedious since it can take many

optimisation rounds before a satisfactory plan is found. To address this issue, one

can conduct interactive methods on the convex hull of a set of efficient solutions

generated from a sandwiching method (see Subsection 3.1.2). Let
{
x1, . . . , xk

}
be

a set of efficient solutions generated by a sandwiching method. Let X̄ be a matrix

formed by the solution vectors in which X̄·,i = xi. By convexity, solutions formed

by convex combinations of the k efficient solutions are also feasible. To obtain the

efficient solutions of the set, one solves the following MOP in which the feasible

set is determined by the convex hull of the k efficient solutions,
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min f(X̄λ)

s.t. eTλ = 1

λ ∈ Rk
=.

(3.6)

As demonstrated in Monz et al. (2008), the optimisation of (3.6) can be solved

in real time since the search space is substantially reduced. Furthermore, by con-

vexity, convex interpolation of feasible points in criterion space acts as an upper

bound for the criteria values of interpolated feasible solutions because

fj

(
k∑
i=1

λix
i

)
5

k∑
i=1

λifj(x
i). (3.7)

Hence, the approximated non-dominated set obtained from the sandwiching method

is also an upper bounding set for the non-dominated set of (3.6). In other words,

if the approximated non-dominated set generated from a sandwiching method is

sufficiently accurate, then the point obtained from solving (3.6) will be sufficiently

close to be non-dominated.

The interactive process of finding a preferred point from a set of points in the

objective space is referred to as navigation (Allmendinger et al., 2016). In this

paragraph, we review navigation methods proposed in the field of radiotherapy

treatment planning in which the set of feasible points are the mapping of the con-

vex hull of a set of efficient solutions
{
x1, . . . , xk

}
generated from a sandwiching

method. A navigation method should allow a decision maker to specify a “navi-

gation query” that moves a current point to another (non-dominated) point with

a desirable improvement. This is achieved by solving a scalarised model of (3.6)

incorporating the current point and the navigation query. In Monz et al. (2008),

navigation is conducted by solving the following scalarised model of (3.6)
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min max
i={1,...,p}\{j}

fi(X̄λ)− qi

s.t. fj(X̄λ) = τ

f(X̄λ) 5 b

eTλ = 1

λ ∈ Rk
=,

(3.8)

where q is the current point, the navigation query is to set the jth objective func-

tion value to τ and b represents the minimal requirements for the objective function

values set by the planner. To ensure the feasibility of the optimisation problem, the

maximal and minimal values for each criterion subject to the constraint f(X̄λ) 5 b

are calculated whenever b is modified and search queries τ outside the feasible range

are not allowed. In the study, the feasible range of criteria values defined by the

individual maxima and minima is referred to as the “planning horizon”. Craft and

Monz (2010) use a variant of (3.8) to conduct navigation

min t

s.t. t = fi(X̄λ)− qi for i = 1, . . . , p

eTλ = 1

λ ∈ Rk
=,

(3.9)

in which q is a reference point on the convex hull of the individual minima and

navigation queries are specified by changing the value of q. The navigation model

is applied to a problem with multiple representative non-dominated sets where

each set corresponds to a certain beam orientation. Craft and Richter (2013) pro-

pose a “2D-cut” navigation which features the 2D trade-off curve of two chosen

criteria while other criteria are either relaxed or bounded by certain values. The

2D trade-offs are obtained using the normalised normal constraint method (3.5).

A number of studies apply interactive methods as a fine-tuning tool primarily

for plans close to satisfactory. Cotrutz and Xing (2003) and Lougovski et al.
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(2010) fine-tune the dose distribution by adjusting the penalty associated with

each unsatisfactory voxel. Süss et al. (2013) propose to eliminate cold or hot spots

by imposing dose upper/lower bound constraints on the relevant voxels. Otto

(2014), Ziegenhein et al. (2014) and Fuss and Salter (2007) propose to fine-tune

the dose distribution by adjusting the bixel intensities associated with the voxels

that require dose tuning. Real-time interactivity is achieved by Otto (2014) and

Ziegenhein et al. (2014) and hence their methods can be used to construct a plan

from scratch. Otto (2014) achieves real-time interactivity using an approximated

dose calculation, in which the 2D convolution of fluence and dose deposition kernel

is performed in the Fourier domain. Ziegenhein et al. (2014) achieves real-time

interactivity by exploiting CPU arithmetic capability in which the dose distribution

is calculated on-the-fly to avoid the time consuming task of transferring data from

the main memory to the arithmetic unit.

3.2 Clinical adoption of a MCO-based planning

approach

In recent years, a planning approach based on MCO has been clinically deployed

(Craft and Richter, 2013). The method first generates an approximation of the

non-dominated set using a sandwiching algorithm (Craft et al., 2006), followed by

plan navigation among a set of points mapped from the convex hull of a set of

efficient solutions obtained from the sandwiching method (Monz et al., 2008). For

convenience, this planning approach will be referred to as MCO-based planning.

Benefits of MCO-based planning have been demonstrated by several studies. Based

on a paraspinal case and a prostate case, Thieke et al. (2007) demonstrate that

the MCO-based planning approach produces plans of comparable quality to the

clinically approved reference plans, while the required planning time for navigation

is only on the order of 10 minutes. Hong et al. (2008) apply MCO-based planning

to ten locally advanced pancreatic cancer cases and show that navigation can be

done within 10 minutes. The study also demonstrates how MCO facilitates active

clinical inputs from the planners when planning trade-offs are readily available: 9

out of 10 plans selected from the navigation step have a lower stomach mean dose
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and higher kidney dose compared to the previously-treated reference plans. Based

on 5 glioblastoma and 5 pancreatic cancer cases, Craft et al. (2012b) show that

MCO-based planning reduces planning time from 135 to 12 minutes on average

while the active planning time from the planner increases from 4.8 to 8.6 minutes,

on average. The plans selected from MCO-based planning are also considered su-

perior to those produced from the conventional planning approach. Wala et al.

(2013) find that, based on 9 prostate cancer cases, plans generated from MCO-

based planning are considered superior to the clinically approved reference plans

generated with the conventional approach, with approximately 10 minutes of nav-

igation time for each case. With 20 head and neck cancer cases, Kierkels et al.

(2015) demonstrate that MCO-based planning allows less experienced planners to

create plans comparable to those created by experience planners using the con-

ventional approach, with average planning time reduced from 205 minutes to 43

minutes.

The MCO-based planning approach is also shown to benefit other treatment de-

livery techniques. Craft et al. (2012a) and Bokrantz (2012) apply MCO-based

planning to VMAT planning in which the initial step involves fluence map naviga-

tion based on static beams, followed by a leaf sequencing step that (approximately)

reproduces the selected fluence map. Khan and Craft (2015) apply MCO-based

planning with limited segmentation to 10 previously accepted 3D-CRT cases of

various disease sites. All plans re-created with MCO are preferred over the orig-

inal plan, with an average reduction of 17% in MUs. MCO planning can also be

used to identify a reference IMRT-plan for VMAT planning, in which the DVHs

of the reference IMRT plan are used as criteria and constraints for VMAT plan-

ning. Chen et al. (2014) apply this MCO informed VMAT planning approach to

prostate and head and neck cancer cases. The study reports that MCO informed

VMAT plans are of comparable quality to the reference IMRT plans but with a

shorter delivery time and fewer MUs. Chen et al. (2015) apply the MCO informed

VMAT planning approach to spinal radiosurgery cases and observe similar plan

quality and MUs for both treatment techniques, with a 25% reduced delivery time

for VMAT.

Despite the benefits reported in the literature, the MCO-based planning approach

is not without limitations. The first limitation is due to plan generation using
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convex interpolation of a set of efficient solutions. A plan generated through in-

terpolation is not necessarily efficient and can potentially be improved further.

The improvement potential of a plan generated through interpolation depends

on how well the non-dominated set is approximated by the finite non-dominated

points generated by the sandwiching method. If given a poorly approximated

non-dominated set, certain trade-offs in criteria may be neglected or poorly rep-

resented, resulting in plans with further improvement potential. To eliminate the

approximation error, Bokrantz and Miettinen (2015) propose to project a point,

which corresponds to an inefficient plan selected from the navigation process, to

the non-dominated set as a post-processing step for MCO-based planning. Appli-

cation of the method to a prostate case and a head and neck case demonstrates

improved dose conformity and better OAR dose sparing.

The second limitation of MCO-based planning is plan degradation from the seg-

mentation process (McGarry et al., 2014). Note that this is also an limitation

for the conventional single-objective planning practice in which the FMO problem

and the segmentation problem are considered as two separate problems (see, e.g.,

Rocha et al. (2012)). If a treatment plan becomes unsatisfactory after segmenta-

tion, the planner will have to re-optimise and find another plan, which makes the

planning process inefficient. To address this issue, Craft and Richter (2013), Salari

and Unkelbach (2013) and Fredriksson and Bokrantz (2013) have proposed navi-

gation methods for deliverable plans. These approaches use convex combinations

of a set of segmented plans or conical combinations of a set of segments to ap-

proximate the non-dominated set. Furthermore, deliverable navigation for VMAT

plans with sliding-window MLC approach is proposed by Craft et al. (2014) by

averaging the times at which the MLC leafs leave certain control points along the

MLC trajectory. However, as stated in the first limitation, these methods also

use the interpolation technique to generate treatment plans, hence neglect plan

improvement potential.
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3.3 Recent advances in computational efficiency

in radiotherapy optimisation

Approaches to speed up the optimisation process have been proposed by using spe-

cialised algorithms (Chen et al., 2010) and distributed computing (Bokrantz, 2013).

Chen et al. (2010) propose a projection based algorithm for multi-criteria IMRT

planning. Compared to general purpose algorithms implemented in MOSEK, their

algorithm achieves a speed up factor of 2 to 7. However, the algorithm can only be

applied to certain types of objective functions with linear constraints. Bokrantz

(2013) proposes a scheme for distributed computing for weighted-sum based sand-

wiching methods. The scheme iteratively computes a set of weight vectors that are

likely to minimise the approximation errors based on an artificial approximation of

the non-dominated set, followed by solving the corresponding individual weighted-

sum problems in parallel. The parallel scheme produces an approximation of the

non-dominated set that is comparable in quality to one generated sequentially

while the degree of parallelisation is about twice the number of criteria (i.e., a

speed up factor of 10 for a typical five criteria problem).

Other studies propose to exploit the parallel arithmetic capabilities of graphical

processing units (GPUs) and central processing units (CPUs) to fasten the optimi-

sation. Men et al. (2009) implement a gradient-based FMO algorithm with GPU

parallel computing. Based on three test cases, the implementation is capable of

generating an optimal fluence map in 0.2 to 2.8 seconds, which is 20-40 times faster

than a corresponding implementation using serial CPU computing. The study sug-

gests that the speed up factor depends on the number of multiprocessors available

within the GPU. Men et al. (2010a) implement a column generation based plan-

ning algorithm (see Men et al. (2007) and Chapter 5 for details) with parallel GPU

computing and report a computational time of 0.7 to 3.8 seconds. Performance

evaluation of the algorithm shows that the column generation subproblems can be

solved efficiently in parallel by a GPU. Men et al. (2010b) apply the GPU-based

column generation method to VMAT planning and report an optimisation time

of 18-31 seconds, in contrast to a run time of 5 to 8 minutes on a benchmark

implementation in serial CPU computing. The relatively small memory size of

GPUs cannot be used to store a large dose deposition matrix. To address this
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issue, Tian et al. (2015) propose to split the matrix into sub-matrices and use the

memory spaces of multiple GPUs to store the sub-matrices. The multi-GPU im-

plementation is capable of optimising VMAT head-and-neck cases within 1 minute

and VMAT prostate cases within 24-46 seconds. Note that GPU-based computing

has also been applied to imaging-related (e.g., deformable image registration) and

therapy-related (e.g., dose calculation) areas of radiotherapy planning, as reviewed

by Jia et al. (2014).

Ziegenhein et al. (2013) suggest the parallel architecture of modern multi-core

CPUs is not leveraged and implement a performance-optimised approach for solv-

ing FMO using a low-cost CPU commonly used for desktop computers. The

implementation decomposes the optimisation algorithm (iterative quasi-Newton

method) so that the computing associated with each voxel can be executed inde-

pendently in parallel. The resulting implementation conducts plan optimisation in

a few seconds at clinical resolution and quality. The study shows that optimisation

time is largely dependent on the transfer rate from the main memory to the arith-

metic unit. Ziegenhein et al. (2014) propose an interactive dose shaping method

to avoid data transfer of the dose deposition matrix by calculating the resulting

dose distribution on-the-fly. The resulting implementation is capable of modifying

a dose feature, which involves one modification step and 10 to 30 heuristic recovery

steps, within 1 to 2 seconds.

3.4 Summary and remarks

In this chapter we reviewed the literature for managing radiotherapy treatment

trade-offs. While a priori methods allow one to (semi-)automate the planning pro-

cess, the resulting plan is subject to a pre-determined one-for-all planning practice,

with limited consideration of different treatment trade-offs. In a posteriori meth-

ods, the trade-off information is provided by a representative or an approximated

non-dominated set, which can be computationally expensive to generate. The in-

teractive methods require an active planner to iteratively tailor a treatment plan,

thus the solution process can be cumbersome if the computational time for one

round of optimisation is long.
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In clinical practice, computational time for one round of optimisation is usually on

the order of minutes (Ziegenhein et al., 2013). This rather long computational time

discourages a posteriori and interactive methods as generating a set of solutions

and the iterative solution process can be burdensome. To facilitate a posteriori

and iterative methods, commercial MCO-based planning restricts the feasible set

to the convex hull of some efficient solutions generated by a sandwiching method.

By doing so, one can solve the optimisation problems in real-time, thus allowing an

efficient interactive navigation process. However, MCO-based planning may gen-

erate plans with further improvement potential due to plan degradation after seg-

mentation and the error associated with the approximation of the non-dominated

set.

Recent advances in parallel computing have substantially reduced the optimisation

time for radiotherapy plan generation. This encourages a posteriori methods that

produce finely sampled non-dominated points over the non-dominated set. By

doing so, one overcomes the limitations of commercial MCO-based planning, i.e.,

each point is truly non-dominated and the segmentation process can be applied

independently to each plan before being reviewed by the planner. In this thesis,

we propose such a method in Chapter 5 and demonstrate its application in radio-

therapy treatment planning in Chapter 6. Given a discrete set of solutions, it can

be time consuming to examine every solution. In Chapter 7 we propose a naviga-

tion method that allows a decision maker to effectively explore a set of points in

objective space. In contrast to the navigation methods proposed in radiotherapy

planning, the proposed method allows any user-defined navigation criteria, instead

of optimisation criteria, hence enhances the relevance of the decision making pro-

cess to the underlying problem.
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Quality assessment for

radiotherapy treatment planning

based on data envelopment

analysis

Managing treatment trade-offs in conventional radiotherapy treatment planning

has been a trial-and-error process in which the planner iteratively adjusts plan-

ning parameters (i.e., the objective weights and/or the objectives) in order to find

a satisfactory plan. However, because the exact effects of changing the plan pa-

rameters cannot be known a priori, it is difficult for the planner to verify if there is

further potential to improve a plan. If a plan is deemed to be of inadequate quality

it would take further time to produce another plan, without knowing in advance

whether the new plan is going to be superior to the previous plan. This trial-and-

error aspect of the planning process is time consuming and in order to reduce the

planning time, plans tend to be accepted as long as the planning requirements are

satisfied, without considering further improvement potential.

This planning dilemma can be addressed by comparing the plan quality against

other plans. This comparison will allow the planners to score the plan against an

“optimal” plan and therefore allow informed decisions on whether further improve-

ment is possible. The “optimal” plan may not be truly the best one achievable

53
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but rather an indication of what can be achieved. A number of assessment ap-

proaches that use past plans as references have been proposed in the literature

(see the review in Section 3.1). These quality assessment approaches predict the

achievable OAR sparing based on the geometrical relationship of the PTV and

the OAR. Thus, given a particular geometrical relationship, if a newly generated

plan has a significantly higher dose to the OAR than the predicted dose, the plan

is considered of inadequate quality and re-optimisation is required. However, as

these approaches do not consider the dose to the PTV, one may unintentionally

conclude that more OAR sparing is available without realising that the improve-

ments in OAR sparing would likely deteriorate the PTV dose coverage. This might

inadvertently lead to a longer planning process since a high quality plan with good

PTV coverage and acceptable OAR sparing may be considered of inadequate qual-

ity simply because it does not achieve the maximal OAR sparing.

In this chapter we propose a plan quality assessment method that can take both

the dose to the PTV and the OARs into consideration. By doing so, when a plan is

generated, a planner can assess the plan quality using its current dose distribution

to both the PTV and the OARs rather than assess it against a plan that solely

encourages maximal OAR sparing. The method is based on DEA (see Section 2.2).

The concept of DEA is directly applicable to the problem of assessing treatment

plan quality in radiotherapy in which the doses to OARs are considered as the cost

we pay for delivering dose to the PTV. Hence, DEA performs peer evaluation by

comparing treatment plans with respect to an ideal defined by historical plans. In

healthcare, DEA has been applied in performance assessment of healthcare systems

(Chilingerian and Sherman, 2011), including formative evaluation of radiotherapy

services (Santos and Amado, 2012) and even to compare prostate cancer treatment

options (Ramer et al., 2008). However, to the best of our knowledge, it has never

been used for case-based quality assessment for radiotherapy treatment planning.

One of the strengths of DEA is its ability to handle multiple inputs and outputs.

This strength makes DEA ideal for radiotherapy plan assessment in which several

conflicting planning criteria need to be considered.

The DEA based quality control method integrates well with the plan generation

methods reviewed in Chapter 3. For planning using a posteriori methods, as the
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non-dominated set is determined by the planning parameters, if the planning pa-

rameters are poorly chosen, the most preferable plan found from the resulting

non-dominated set may be of poor quality. In this case, DEA can be used to re-

assure the quality of the plan by comparing the plan to past plans. Furthermore,

the representative set of plans can consist of a large number of plans and it can be

difficult for the planner to explore and compare all the plans thoroughly. A well

established DEA model will assist the planner to quickly identify plans of best

quality from the representative set and thus enable an even more efficient plan-

ning process (as will be demonstrated in Chapter 7). For planning using a priori

approaches, since planners are provided with only a single plan that matches the

treatment goals/protocols as closely as possible, it is important to have additional

measures for quality control, which can be facilitated by DEA. For interactive

methods, DEA reduce the need to explore other treatment trade-offs by providing

an “optimal” plan for reference.

In this study we apply DEA as a quality assessment tool to a set of prostate

VMAT plans and investigate its capability of identifying plans with further im-

provement potential. In Section 4.1, we present the DEA model used in this study.

In Section 4.2 we present a case study in which DEA is applied to assess the qual-

ity of prostate radiotherapy plans. The results and discussion are presented in

Sections 4.3 and 4.4 respectively.

4.1 A DEA model for quality assessment of ra-

diotherapy treatment plans

In this study we use an input oriented DEA model for the analysis since we are

interested in maximal OAR sparing available for a given dose to the PTV. Mathe-

matically, we may assume CRS for the model since we are able to obtain a constant

return of dose to the PTV for each unit change of dose to the OARs by scaling the

entire dose distribution. However, in practice, treatment planning usually follows

strict requirements on the dose of the PTV, thus scaling the entire dose distribu-

tion may produce unsatisfactory plans. Thus, in this study we use a DEA model

assuming VRS.
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When performing DEA, one may want to take environmental factors into account.

Environmental factors are factors that may influence the performance of DMUs

but are external and out of the control of the DMUs. In our study, the percent-

age overlap of PTV and rectum is such an environmental variable. This value is

not influenced by the planning variables but can adversely affect the attainable

quality of the treatment plan. Environmental factors can be incorporated in the

DEA formulation as environmental variables. A number of ways to handle envi-

ronmental variables are introduced in Chapter 7 of Coelli et al. (2005). In this

study, we assume that higher values of the environmental variables are likely to

impair the efficiency of the DMUs and we incorporate the environmental variables

into the DEA model as a so-called non-discretionary output variable (Banker and

Morey, 1986). We assume there are L environmental variables represented by a

vector zi ∈ RL for the ith DMU and by a matrix Z ∈ RL×I for the whole dataset.

Environmental variables are incorporated into the DEA formulation by adding the

constraint Zλ− sz = zk into formulation (2.13) where sz ∈ RL is a vector of slack

variables. The constraint restricts the feasible set and ensures that DEA searches

for the evidence of further improvements among potentially attainable inputs and

outputs that are associated with higher or equal values of environmental variables

than the kth DMU. Since high values of the environmental variables are consid-

ered unfavourable to the efficiency, if a DMU can achieve certain efficiency with

higher or equal values of environmental variables than the kth DMU, the kth DMU

should be able to achieve at least the same efficiency, otherwise it is considered

inefficient. For completeness, the DEA formulation used in this study, which is an

input oriented VRS model with a non-discretionary environmental output variable,

is shown in formulation (4.1).

min θ − ε(eT s+ + eT s− + eT sz)

s.t. Wλ− s+ = wk

Rλ− θrk + s− = 0

Zλ− sz = zk

eTλ = 1

λ, s+, s−, sz = 0.

(4.1)
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4.2 Application of DEA to prostate radiotherapy

treatment planning

One of the most difficult tasks in prostate radiotherapy treatment planning is

managing the dose delivered to the PTV and the rectum. The rectum is usually

the OAR that most influences the ability to achieve the desired dose to the PTV.

In this preliminary study, we only consider the dose delivered to the PTV and the

rectum. The goal is to generate a dose distribution that matches the prescription

dose in the PTV as closely as possible while maximising rectal sparing. In a

loose economic interpretation, the dose delivered to the rectum is considered as

the cost for delivering the dose to the PTV. Specifically, we use D95 of the PTV

as the output and gEUD of the rectum as the input for the DEA model. In

addition, we use the percentage volume of the rectum that overlaps the PTV

as an environmental variable. The higher the overlap the more difficult it is to

achieve good PTV coverage and low OAR dose simultaneously. We handle the

environmental variable using the method described in Section 4.2. While many

other dose descriptors or anatomical descriptors can be alternatively used for the

DEA model, it is out of the scope of this study to investigate the most preferable

inputs and outputs. Instead, we empirically select these input and outputs and

focus on investigating the validity of using DEA as a quality assessment method

in radiotherapy planning.

A series of 37 anonymised clinically intact prostate treatment plans were pro-

vided by Auckland Radiation Oncology, following approval and guidelines of New

Zealand Health & Disabilities Ethics Committees for observational study. All plans

were the actual plans used for the subsequent delivery of treatment and were gen-

erated using the same treatment planning system over a 1 year period utilising the

same plan acceptability criteria. In all cases, 74 Gy was prescribed to the PTV

with requirements that 99% of the PTV received 95% of the prescribed dose and

that 99% of the actual prostate receive 99% of the prescribed dose. For rectal

criteria, the percentage volume of the rectum that received equal to or more than

40Gy, 60Gy and 70Gy of radiation dose should not exceed 60%, 40% and 10%,

respectively, i.e., V40 < 60%, V60 < 40% and V70 < 10%. Not all rectal criteria were

met in all cases, but all plans were nevertheless considered clinically acceptable.
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All plans were designed for VMAT delivery with Pinnacle v9 and the SmartArc

module (Philips, Netherlands) using a single 360 degree arc. The plan input/out-

put values were extracted using CERR (Deasy et al., 2003). The input/output

values of the plans are shown in Table 4.1.

We used an in-house DEA software package, pyDEA, to assess the efficiency of

these 37 prostate plans. After obtaining the results from the analysis, five inef-

ficient plans were selected for re-optimisation. We use the term re-optimisation

throughout this thesis to describe the process of modifying the treatment planning

objectives and re-running the inverse plan optimiser. The input/output values of

the re-optimised plans are included in Table 4.1, indicated by the original plan

ID with an asterisk. The plans for re-optimisation are selected manually based on

two criteria. Firstly, each of the selected plans should have a percentage overlap

volume substantially different from the other selected plans. Secondly, each plan

should be substantially inefficient for their range of percentage overlap volume.

Note that the plans selected for re-optimisation all have an efficiency score less

than the average efficiency score (0.985). These plans are selected in order to

test the ability of DEA in assessing plans with variations in anatomical structure

relationships. A planner was instructed to further improve rectal sparing while

maintaining overall clinical acceptance for the selected plans without access to the

results of DEA. The original plans were optimised for rectal sparing via the use

of a single rectal objective based on gEUD with the volume parameter “a” equal

to 1. Plan re-optimisation involved changing the a-value from 1 to 6 thereby in-

creasing the penalty weight of the higher dose components of the rectal DVH. All

other aspects of the plan remained the same. After re-optimisation, the plans were

included in the dataset and the DEA analysis was repeated.

Table 4.1: The efficiency scores and the input/output values of the plans.
Plans 10, 19, 26, 31 and 35 were re-optimised. Those plan IDs with an
asterisk indicate re-optimised plans.
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Plan ID Efficiency
(original
dataset) 1

Efficiency
(re-optimised
dataset) 2

Output:
D95 PTV
(Gy)

Input:
Rectal
gEUD
(Gy)

Fractional
overlap

1 0.988 0.975 71.625 61.418 0.048
2 0.982 0.98 71.025 62.478 0.1
3 0.966 0.96 71.275 62.805 0.066
4 0.985 0.977 71.225 61.369 0.053
5 0.994 0.981 71.675 60.744 0.036
6 0.974 0.968 71.825 63.714 0.077
7 0.982 0.975 71.675 62.779 0.074
8 0.978 0.968 71.775 61.745 0.031
9 0.982 0.972 71.775 62.56 0.061
10 0.964 0.955 71.575 63.457 0.065
10* N/A 0.987 71.525 61.314 0.065
11 0.982 0.97 71.575 61.73 0.049
12 0.979 0.969 71.525 61.61 0.042
13 0.985 0.975 71.675 62.16 0.062
14 0.998 0.987 71.725 60.362 0.03
15 0.98 0.966 71.625 61.934 0.047
16 0.984 0.976 71.475 62.192 0.072
17 0.995 0.986 71.475 61.403 0.069
18 1 0.997 71.825 60.173 0.022
19 0.975 0.963 71.725 62.562 0.052
19* N/A 0.987 71.325 60.71 0.052
20 0.994 0.985 71.375 60.502 0.037
21 1 1 71.975 63.648 0.111
22 0.978 0.977 72.025 63.87 0.076
23 0.985 0.982 71.875 63.644 0.091
24 0.983 0.983 72.075 63.763 0.077
25 1 1 72.125 61.192 0.033
26 0.98 0.98 71.325 63.545 0.11
26* N/A 0.991 71.025 62.181 0.11
27 0.976 0.969 71.425 62.746 0.075
28 1 1 72.075 62.019 0.062
29 1 1 70.875 61.572 0.115
30 0.986 0.98 71.625 62.603 0.079
31 0.978 0.968 71.425 61.522 0.038
31* N/A 1 71.725 59.567 0.038
32 1 1 72.125 64.804 0.119

1Efficiency score according to DEA based on original treatment plans 1 to 37 (original dataset).
2Efficiency score according to DEA based on original treatment plans 1 to 37 and re-optimised

plans 10*, 19*, 26*, 31* and 35* (re-optimised dataset).
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(a) (b)

Figure 4.1: Plot of the data points where colour represents PTV rec-
tum overlap, (a) before and (b) after re-optimisation of a subset of the
plans. Red numbers indicate treatment plans considered efficient in each
DEA analysis. Black numbers indicate treatment plans selected for re-
optimisation.

33 0.993 0.99 72.025 61.854 0.046
34 0.99 0.978 71.775 61.593 0.049
35 0.966 0.96 71.425 63.57 0.08
35* N/A 0.993 71.525 61.658 0.08
36 0.974 0.97 71.175 62.529 0.079
37 1 0.992 71.575 60.056 0.032
Average 0.985 0.98 71.611 62.098 0.064
Standard
deviation

0.01 0.012 0.302 1.17 0.025

The data of Table 4.1 is visualised in Figure 4.1. Notice that due to the presence of

the environmental variable, the production frontier is not a single piecewise linear

line as in Figure 2.3.

4.3 Results

The efficiency scores before and after including re-optimised plans as well as the

input and outputs used in DEA are provided in Table 4.1. Note that in the table we

do not show the values of slack variables as the majority of them are zero and the
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maximum value of them is only 0.35 Gy. The high efficiency scores (average 0.985,

standard deviation 0.01) indicate that the plan qualities of these prostate plans,

in terms of PTV D95 and rectal gEUD, are quite consistent in general. The PTV

D95 values among these plans vary slightly from 70.88 to 72.13 Gy while rectal

gEUD and percentage overlap volume vary quite considerably from 59.57 to 64.80

Gy and from 2.2% to 11.9%, respectively. We find very strong evidence from the

original dataset that the percentage overlap volume is correlated to rectal gEUD

(p = 1.76× 10−8). This suggests that one reason for the large variations in rectal

gEUD is due to the large variations in percentage overlap volume. The small

variation of PTV D95 among the plans is consistent with the fact that meeting

the PTV coverage requirement was the highest priority for the planners unless

instructed otherwise.

Plans 10, 19, 26, 31 and 35 were deemed sufficiently inefficient for their range of

percentage overlap volume and were re-optimised. The efficiency scores of these

plans are less than the original average efficiency score (0.985). The re-optimisation

of plan 31 produced an additional efficient plan in the dataset. This plan extends

the production frontier slightly and results in lower or equal efficiency scores of

all other plans compared to those of the original dataset, as shown in Table 4.1.

The efficiency score of the re-optimised plans are higher than those of the original

plans, with an average improvement of 0.026 units. Note that this improvement is

quite substantial since the standard deviation of the efficiency scores is only 0.012

(Table 4.1). All of the re-optimised plans achieved an efficiency score higher than

the re-optimised average efficiency score (0.98).

A clinical peer review of the plans was performed using MIM Maestro V5.4 Mac

Version (MIM Software Inc. Cleveland, OH). In this review, clinical and DVH pa-

rameters not included in the DEA (ie. bladder, femur heads, dose maxima, hot spot

percentage and site, etc) were also taken into account. The review confirmed that

re-optimised plans 10*, 31* and 35* were deemed superior when comparing with

the original plans. Figure 4.2 shows improved conformity for these re-optimised

plans. The green shaded areas show iso-dose volume of the original plans and the

red shaded areas show the improvement in iso-dose volume after re-optimisation.

Re-optimised plan 19* was deemed substantially equivalent to the original plan

from a clinical and dosimetric viewpoint. For plan 26, the re-optimised plan was
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Figure 4.2: Examples of improved conformity for re-optimised plans.

not considered superior to the original plan due to comparatively inferior dose

painting and conformity. However, we note that dose painting and conformity in-

dex were not taken into account in the DEA analysis and the goal of re-optimisation

was to further improve rectal sparing while maintaining overall plan acceptance,

which was achieved for all five re-optimised plans. The fact that planners could

achieve improvements as instructed is a positive finding with regard to our DEA

model. The degradation of the treatment is a product of the DEA information

not perfectly in agreement to clinical concerns. The original, re-optimised and the

target input values for the selected plans are summarised in Table 4.2. The overlap

fractions are not included since they are the same as the corresponding values in

Table 4.1. In terms of the chosen input and outputs, re-optimisation of the five

plans resulted in an average reduction of 1.84 Gy in rectal gEUD. The reduction

in PTV D95 is only between -0.3 (an actual increase) and +0.4 Gy with an aver-

age of +0.07. Due to this minor change in PTV D95 only rectal gEUD (input) is

shown in Table 4.2. Among the five plans, the minimum rectal gEUD reduction

is 1.364 Gy (Table 4.2). These results suggest that DEA successfully identified

plans with potential improvements in terms of the chosen input and outputs. In

addition, although planners were not provided with the results of DEA, the values

for the re-optimised plans are very close to their targets, with a maximum differ-

ence of 0.806 Gy. Note that the target of a re-optimised plan represents DEA’s

prediction of a best attainable plan. This minor input/output difference between
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Table 4.2: The original, re-optimised and the corresponding target input
values for the selected plans. The measurement unit for the input is Gy.

Plan Original Target
(original
dataset)

Re-
optimised

Target
(re-
optimised
dataset)

Dose
reduction 1

Prediction
error 2

10 63.457 61.198 61.314 60.508 2.143 0.806
19 62.562 61.007 60.71 59.93 1.852 0.78
26 63.545 62.291 62.181 61.632 1.364 0.549
31 61.522 60.167 59.567 59.567 1.955 0
35 63.57 61.409 61.658 61.211 1.912 0.447
Avg 62.931 61.214 61.086 60.57 1.845 0.516

the prediction and the re-optimised plan demonstrates the ability of DEA in pre-

dicting potential improvement in terms of the input and outputs. The DVHs for

the original plans and the re-optimised plans are shown in Figure 4.3. The im-

provements in rectal sparing are clearly illustrated in the DVHs while there are no

clinically considerable differences between original PTV DVHs and re-optimised

PTV DVHs. We also applied the Spearman’s rank test to test the significance of

the correlation between the change in rectal sparing after re-optimisation and the

predicted change in rectal sparing made by DEA. However, possibly due to the

small sample size, the result was not statistically significant.

To provide an assessment of the clinical relevance of the plan changes, an analysis of

the biological objective function P+ was undertaken. P+ is a scalar quantity that

combines the probability of tumour control with the probability of normal tissue

complication (Kallman et al., 1992) and is often referred to as the complication

free tumour control probability. The average P+ value increased from 0.618 to

0.632, a 2.3% improvement. If, however, we scale the treatment plan to that of

a 78Gy prescription, which is now the institutional norm for medium to high risk

cases at Auckland Radiation Oncology, then the average P+ increases from 0.661

to 0.685, a 3.6% improvement. As the dose prescription increases, the biological

consequences and potential gains also increase. In deriving P+, the endpoint for

1Dose reduction is calculated as original input value minus re-optimised input value.
2Prediction error is the absolute difference between the re-optimised target input value and

the re-optimised input value.
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normal tissue complication was necrosis/stenosis according to the values of Ågren-

Cronqvist (1995) and tumour control probability from Cheung et al. (2005).

An additional measure that can be extracted from DEA analysis is the peer count,

which is the number of times a plan is referred to as a peer. The peer count

indicates how often an efficient DMU is used as benchmark for others and thus

(a) (b)

(c) (d)

(e)

Figure 4.3: The original and re-optimised DVHs of (a) plan 10, (b) plan
19, (c) plan 26, (d) plan 31 and (e) plan 35.
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attests to the plan’s quality. The peer counts of the efficient plans are shown in

Table 4.3. There are 7 efficient plans in the original dataset. After including plan

31* in the dataset, plan 18 and plan 37 are no longer efficient and are not used

as a peer for other plans. Plan 25 and plan 32 have relatively low peer counts for

both the original and re-optimised dataset, as shown in Table 4.3. One limitation

of DEA is that a plan can be considered efficient simply because it has the best

value in one of the inputs or outputs. Plan 25 has the highest PTV D95 value and

plan 32 has the highest overlap fraction. However, the peer counts of these two

plans being greater than 1 suggests that these plans have preferable output to input

ratios compared to at least one other plan and that they are not considered efficient

purely because they have an optimal value in one of the inputs or outputs. Plan

31* has the highest peer count of 37 and is referred to as a peer for all inefficient

plans in the re-optimised dataset. A closer look at its input and outputs shows

that it has the lowest rectal gEUD value of 59.567 Gy with an above average PTV

D95 value of 71.725 Gy. This results in the highest output to input ratio of 1.204

within the dataset and explains why the plan is used as a peer for all inefficient

plans.

Table 4.3: Peer counts (the number of times a plan is referred to as a peer)
of the efficient plans.

Plan 18 21 25 28 29 31* 32 37

Peer count original 22 6 2 24 30 N/A 2 9
Peer count re-optimised N/A 23 4 5 27 37 2 N/A

To further justify our approach, we carried out re-optimisation for two plans that

were characterised as efficient in the initial DEA analysis, plans 28 and 29. The

re-optimisation was carried out by the same planner who did the re-optimisation

of the 5 inefficient plans with the same instructions. As mentioned before, the

planner was unaware of the results of the DEA analysis. The efficiency score of

both plans before and after re-optimisation is 1. Once again the values of PTV

D95 changed by only small amounts (an increase of 0.3 and 0.45 Gy, respectively).

Rectal sparing was achieved with a decrease in rectal gEUD of 1.555 and 1.898 Gy,

respectively. The DVHs in Figure 4.4 illustrate the plan changes. But in contrast

to the re-optimisation of inefficient plans, the improvement in rectal sparing was
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(a) (b)

Figure 4.4: The DVHs of original and re-optimised (a) plans 28 and (b)
29.

accompanied by an increase of dose to the bladder and other areas beyond the rec-

tum, which worsened the conformity index for plan 28 and significantly increased

dose to the small bowel beyond what was considered as clinically acceptable for

plan 29. Clinical review of these plans suggests that the re-optimised plans are

not better than the original plans. These results further support the correctness

of our DEA model in identifying plan improvement potential. We also performed

the Mann-Whitney U test against the null hypothesis that the improvement in

rectal sparing after re-optimisation for the five inefficient plans is not greater than

that of the two efficient plans. However, possibly due to the small sample size, the

result was not significant.

4.4 Discussion and conclusion

In this study we posited the validity of using DEA as a quality assessment tool

for radiotherapy planning. We used DEA to assess the quality of 37 prostate

plans using an input-oriented VRS model with rectal gEUD as the input, PTV

D95 as the output and the percentage volume of rectum overlapping PTV as a

non-discretionary output variable. Five plans were considered of lesser quality

by DEA were re-optimised with the goal of further improving the dose to the

rectum while maintaining clinical acceptance. After re-optimisation, the dose to

the rectum for all five plans improved without clinically considerable deterioration
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in PTV coverage. In addition, the input and outputs of the re-optimised plans

are very close to DEAs prediction of the best achievable plan, with a maximum

difference of 0.8 Gy. These results confirm that DEA is capable of identifying

plan improvement potential and predicting the best attainable plan in terms of

the input and outputs.

There are several advantages of using DEA methodology as a quality assessment

tool for radiotherapy treatment planning. Firstly, DEA is non-parametric. For

non-parametric approaches, there is no need to assume a functional form for the

production frontier whereas such an assumption is required for parametric ap-

proaches. While parametric approaches such as regression analysis can also be

used to estimate the production frontier, it can be difficult to specify a functional

form for the production frontier especially when there are multiple inter-related

parameters. In contrast, the non-parametric nature of DEA allows practitioners

to select the inputs and outputs that are considered most relevant in assessing the

quality of radiotherapy treatment plans without too much concern on the under-

lying relationship among them. The non-parametric nature of DEA leads to its

second advantage: the ability to handle multiple inputs and multiple outputs. This

ability is particularly important in assessing radiotherapy treatment plans due to

the conflicting nature of treatment objectives. Assessing radiotherapy treatment

plans based solely on the maximal OAR sparing might encourage the planners

to generate plans with maximal OAR sparing but near minimal acceptable PTV

coverage. DEA methodology allows plan assessment based on multiple inputs and

outputs and therefore captures the conflicting nature of treatment planning more

adequately. Thirdly, DEA constructs a production frontier based on the best at-

tainable results in the dataset of historical treatment plans. This is distinctly

different to ordinary least squares regressions that attempt to fit a regression func-

tion to the centre of the data spread to estimate the “average” attainable results

rather than the best attainable results. In this radiotherapy application, since we

are interested in the best attainable results, we consider DEA to be preferable to

regression methods. Fourthly, DEA not only provides the efficiency score for the

plan being assessed, but also target information, including the peers and the cor-

responding weights. The target shows the inputs and outputs required to make a

radiotherapy treatment plan efficient. A treatment planner can compare the target

with the treatment plan being assessed and decide if further planning is required.
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If the target is largely composed of a particular peer, a treatment planner can

trace back to the peer, assess how the peer is derived and perhaps conduct the

re-optimisation using similar treatment objectives and/or objective weights. In

addition, DEAs capability to predict the best attainable dose for both the PTV

and the OAR allows planners to set achievable plan objectives. Wu et al. (2011)

suggested that by setting achievable plan objectives, one can reduce the trial-and-

error attempts required to find a satisfactory plan. Last but not least, DEA is

readily available in many software packages (Barr, 2004) and can be conducted

independently of the treatment planning system with negligible computational ef-

fort. This provides clinics with an approach to improve planning efficiency and

plan quality without replacing their existing treatment planning system, which is

quite an effort from both fiscal and implementation viewpoints.

While DEA offers many advantages, it is not without some potential limitations.

One limitation is that the efficiency score for a plan is a relative measure compared

to other plans in the dataset. Thus a plan rated fully efficient for a dataset might

not be truly the best plan, but simply a superior plan compared to the plans in the

dataset. However, as more efficient plans are generated and included in the dataset,

DEA will be able to learn from the plans and will be able to approximate the true

production frontier more accurately. As a result, this limitation would become

less significant over time. Another limitation is that as more inputs and outputs

are included in the formulation, DEA starts to lose discrimination power on the

performance of the DMUs. Introducing more inputs and outputs imposes more

constraints in the formulation and thus further constrains the set of potential inputs

and outputs. As a consequence, the DMUs are closer to the production frontier

and more DMUs will be deemed efficient or close to be efficient. To address this

limitation, we note that in practice at most two or three clinically relevant trade-

offs between the objectives need to be considered (Hoffmann et al., 2006). By

including only these relevant objectives in the formulation, the number of inputs

and outputs can be effectively controlled while maintaining the discrimination

power. The last limitation is that a plan can be rated efficient simply because it

has an optimal value in one of the DEA inputs or outputs compared to all other

plans. For example, the plan with the lowest rectal gEUD and the plan with the

highest PTV D95 will be rated as efficient regardless the values of other DEA

inputs and outputs. This limitation can be alleviated by checking if the plan is
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referred to as a peer for other plans. In general, given a database of reasonable

size, an efficient plan with preferable output to input ratio is likely to be used as

a peer for another plan. In contrast, a plan considered efficient simply because it

has an optimal value in one of the input/output values is usually not used as a

peer for other plans. Thus by checking the peer counts, we can effectively identify

efficient plans that may not be truly desirable.

In this preliminary study, due to limited clinical resources (planners, oncologists

and the treatment planning software) available for plan re-optimisation and evalu-

ation, the performance of DEA are evaluated empirically based on a small sample

of re-optimised plans. In future studies, the statistical aspects in evaluating the

performance of DEA model should be investigated. In particular, statistical signif-

icance on the improvements in plan quality after re-optimisation for the inefficient

plans and for the efficient plans, as suggested by DEA, should be investigated.

Furthermore, the significance on the correlation between the change in plan qual-

ity after re-optimisation and the predicted change in plan quality by DEA should

be considered. As clinical resources are usually scarce, acquiring clinical resources

for plan re-optimisation and evaluation for a decent sample size can be challeng-

ing. Alternatively, one may consider collecting all the plans generated from the

(trial-and-error) planning phase for the incoming patient cases and subsequently

investigate for statistical difference in DEA efficiency scores between plans con-

sidered unsatisfactory and plans accepted for actual treatment. Additionally, one

can also investigate the significance of correlation between DEA predicted plan im-

provement and plan improvement realised by the final plan selected for treatment.

Further investigation is required to extend the DEA model to include more and/or

other plan assessment criteria. In this study we use PTV D95 and rectal gEUD

to account for the dose to the PTV and the rectum, respectively. Planning cri-

teria associated with other OARs such as bladder and femur heads are generally

unchallenging and, in our opinion, would not require DEA analysis. It may, how-

ever, in the case of prostate planning be useful to include second PTV or rectal

parameters such as PTV conformity index or rectal V70 Gy (percentage volume

of a structure that receives at least 70 Gy of radiation). As previously discussed,

adding to the number of plan assessment criteria in the DEA model degrades plan

quality discrimination. In future research, we will investigate the most effective
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plan assessment criteria that should be included in the DEA model, followed by

an investigation on how these plan assessment criteria can be incorporated in the

DEA model while maintaining sufficient discrimination on the quality of the plans.

Other treatment sites likely to require a larger number of inputs and outputs such

as head and neck will also be investigated in future work.
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Integrating column generation in

a method that generates an

evenly distributed representative

non-dominated set

MCO deals with optimisation problems involving several conflicting criteria. In

MCO, a single solution that simultaneously optimises all objectives generally does

not exist. Instead, the decision maker must consider the trade-offs between the

efficient solutions. One way to do so is by adopting an a posteriori MCO method,

which seeks to obtain the non-dominated set so that the decision maker can select

the most preferred non-dominated point and a corresponding efficient solution

for the problem at hand. In multi-objective continuous optimisation, the non-

dominated set consists of infinitely many non-dominated points. It is therefore

impractical for a decision maker to examine all non-dominated points. Instead,

a practical approach is to obtain a discrete representation of the non-dominated

set satisfying some quality requirements (Faulkenberg and Wiecek, 2010, Sayın,

2000). Many methods that follow this approach have been proposed in the last

two decades, as the paper by Faulkenberg and Wiecek (2010) shows. Given this

representative non-dominated set, the decision maker can navigate through the

non-dominated points and decide on the most preferred point. In this chapter we

71
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consider how column generation can be integrated in an MCO approach to find an

approximated representation of the non-dominated set for MOLPs.

Column generation is a technique that solves linear programmes by considering

only a subset of the decision variables. The technique is particularly beneficial

when the number of variables is much greater than the number of constraints.

The idea is based on the fact that, typically, only a subset of variables is required

in the basis to reach optimality; other variables are non-basic and have a value

of zero. Column generation exploits this fact by only considering variables that

have the potential to improve the objective function value, indicated by negative

reduced costs. In each iteration of a column generation method, two problems

need to be solved successively: the restricted master problem (RMP) and the

subproblem (SP). RMP is the original problem with only a subset of variables. By

solving the RMP, a vector of dual values associated with the constraints of the

RMP is obtained. The dual information is passed on to the SP. The goal of the

SP is to identify a new variable and an associated coefficient column with negative

reduced cost, which can potentially improve the objective function value of the

original problem. If such a variable and column can be identified, then they are

added to RMP, which is re-optimised, and the next iteration begins. Otherwise,

an optimal solution of RMP is also an optimal solution of the original problem.

Column generation methods in multi-objective optimisation are rare. Moradi et al.

(2015) present a column generation approach for the (linear) bi-objective multi-

commodity minimum cost flow problem. Their algorithm incorporates column gen-

eration within a bi-objective simplex algorithm, which requires a modification of

the objective function of the SP to a linear fractional function. The study of Salari

and Unkelbach (2013) falls into the domain of non-linear programming, thus the

subproblem is based on partial derivatives of individual objective functions. The

aim of Salari and Unkelbach (2013) is to approximate the entire non-dominated set

using a limited number of variables. The basic idea is to use column generation to

identify variables that potentially improve the non-dominated set approximation as

a whole. To find such variables, multiple weighted-sum RMPs, where each RMP

is associated with a unique non-negative weight vector, are solved. The partial

derivatives obtained from solving each RMP are passed to a subproblem, which
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aggregates the individual subproblems corresponding to each RMP. A column ob-

tained from solving the aggregated subproblem therefore potentially improves the

majority of individual RMPs, thus improving the non-dominated set approxima-

tion as a whole. However, due to the use of weight vectors for the RMPs and the

use of an aggregated subproblem, their method cannot guarantee that the whole

non-dominated set is well approximated.

In this chapter, we propose to use column generation within a procedure that con-

structs an evenly distributed finite representative set of non-dominated points of

an MOLP, i.e., the revised normal boundary intersection (RNBI) method of Shao

and Ehrgott (2007). The RNBI method combines aspects of the global shooting

method (Benson and Sayin, 1997) and the normal boundary intersection method

(Das and Dennis, 1998) and has been proven to generate evenly distributed non-

dominated points for MOLPs (Shao and Ehrgott, 2007). Unlike the method of

Salari and Unkelbach (2013) in which a subproblem identifies a variable that im-

proves the non-dominated set approximation in general, each of the column gener-

ation subproblems in our approach identifies a variable and an associated column

to move a point in objective space in a direction that leads to non-dominance. In

fact, if the master problems are solved to optimality by column generation, the

resulting points will be on the boundary of the feasible set of the MOLP in ob-

jective space, thus one obtains a representative non-dominated set identical to the

one generated by RNBI. However, we note that column generation is rarely used

to solve a master problem to optimality. In this situation, the points generated

by the column generation RNBI method will be in the interior of the feasible set

in objective space and form an approximated representation of the non-dominated

set, i.e., a set of discrete feasible points, not necessarily non-dominated, used to

represent the non-dominated set.

In Sections 5.1 and 5.2, we provide background and formulations of single objec-

tive column generation and the RNBI method, respectively. In Section 5.3, we

introduce the column generation RNBI formulation and discuss implementation

issues associated with the method, i.e., the detection of infeasibility through a

reference point bounding method and initialisation of the process. The quality of

the representative set obtained by our column generation based RNBI method is

discussed in Subsection 5.3.3.
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5.1 Column generation

Consider a single objective linear programme referred to as the master problem

(MP),

vMP := min
∑
j∈J

cjxj

s.t.
∑
j∈J

ajxj = b,

xj = 0, j ∈ J,

(MP)

with |J | = n variables and m constraints. Each variable xj is associated with a cost

coefficient cj and a constraint column aj ∈ Rm. The right-hand side constraint

coefficients are specified by column b ∈ Rm. The column generation technique

considers a RMP which uses only a subset J ′ ⊆ J of all variables. Because of this,

the optimal solution x∗ of RMP is worse than or equal to the optimal solution

of MP in terms of the objective function. By solving the RMP, we obtain a dual

solution π∗ associated with the constraints of the RMP. In the Simplex method,

the dual solution is used to calculate the reduced cost of each non-basic variable

which indicates the unit change of the objective function value if the variable were

to enter the basis. If the reduced cost of all non-basic variables is non-negative, the

current basic feasible solution of RMP is an optimal solution to MP. Otherwise, a

non-basic variable with negative reduced cost enters the basis, which improves the

objective function if the entering variable takes a value greater than zero.

Column generation works in an analogous way. The vector of dual values π∗

obtained from solving the RMP is passed into a subproblem,

min c̄j = cj − (π∗)T aj

s.t. j ∈ J.
(SP)

SP finds a variable xj∗ with lowest reduced cost c̄j∗ . If c̄j∗ is negative, the non-basic

variable xj∗ and the coefficient column
(
cj∗ , a

j∗
T
)T

are added to RMP and RMP

is re-solved. Otherwise, an optimal solution of RMP is also an optimal solution of
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MP. Note that SP can be solved as an optimisation problem if the set J can be

described by the feasible set XJ of an optimisation problem

min c (λ)− (π∗)T a (λ)

s.t. λ ∈ XJ ,
(5.1)

in which cj = c (λ) and aj = a (λ) and which has variable vector λ ∈ XJ .

The lowest reduced cost c̄j∗ can be used to derive a lower bound on the optimal

value vMP of MP. Denote the optimal value of the current RMP as v∗RMP . If there

exists a constant κ with
∑

j∈J xj ≤ κ for any optimal solution of MP, then we have

a lower bound

v∗RMP + κc̄j∗ 5 vMP , (5.2)

since we cannot improve the objective function value v∗RMP by more than κ times

the lowest reduced cost c̄j∗ (Lübbecke, 2010).

5.2 The RNBI method

The RNBI method is designed to solve an MOLP

min{Cx : x ∈ X}, (MOLP)

where C ∈ Rp×n is the cost coefficient matrix consisting of row vectors ck ∈ Rn for

k = 1, . . . , p. For MOLPs we will assume that X ⊆ Rn is a non-empty compact

polyhedral set (a polytope) of feasible solutions. The feasible set in objective space

Y defined by

Y = {Cx : x ∈ X} (5.3)

is also a polytope since it is the image under a linear mapping of the polytope X.
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Figure 5.1: The RNBI method: Illustration of the simplex S containing
the feasible set in objective space Y , the reference subsimplex Ŝ and the
half-lines emanating from the reference points.

We first explain the general idea of RNBI. A simplex S is constructed such that

it contains Y and such that the non-dominated set SN of S is a subsimplex of S.

We denote by Ŝ := SN the reference subsimplex. Reference points are positioned

on Ŝ and for each reference point q, a half-line emanating from q in direction e is

generated, where e is a vector of all ones. The RNBI subproblem then searches for

the intersection point between the half-line and (the boundary of) Y closest to the

reference point. As illustrated in Figure 5.1, not all half-lines intersect with Y . In

this case the RNBI subproblem will be infeasible. In addition, some intersection

points may be dominated. Hence in the last step, the algorithm checks the non-

dominance of intersection points by solving one LP for each intersection point.

The following subsections outline the RNBI method in more detail.
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5.2.1 Constructing the reference subsimplex and choosing

reference points

To construct the reference subsimplex Ŝ, we first obtain scalar µ as µ := min
{
eTy : y

∈ Y }. µ is attained at a non-dominated point ŷ of Y , as illustrated in Fig-

ure 5.1. We then derive the anti-ideal point yAI of the MOLP, where yAIk :=

max {yk : y ∈ Y } for k = 1, . . . , p (Ehrgott, 2005). Based on µ and yAI , we can

define the p+ 1 vertices vk ∈ Rp, k = 0, 1, . . . , p of the simplex S that contains Y .

Let v0 := yAI . For k = 1, . . . , p and l = 1, . . . , p let

vkl :=

{
yAIl if l 6= k,

µ+ yAIk − eTv0 if l = k. (5.4)

The convex hull of vertices {vk : k = 0, 1, . . . , p} is a p-dimensional simplex S

that contains Y , as shown by Benson and Sayin (1997). The reference subsimplex

Ŝ, which is the non-dominated set of S, is defined by the convex hull of vertices

{vk : k = 1, 2, . . . , p}. Reference points on Ŝ can now be chosen as particular

convex combinations of the extreme points of Ŝ, i.e. a reference point q is given

by

q =

p∑
k=1

αkv
k, (5.5)

where αk is the weighting of vertex k for k = 1, . . . , p with 0 5 αk 5 1 and∑p
k=1 αk = 1. By varying the weighting for each vertex with a fixed increment η,

an evenly distributed discrete set of points on the reference subsimplex Ŝ can be

generated (Benson and Sayin, 1997).

5.2.2 Computing the intersection points and checking non-

dominance

Let the set of reference points be Q. For each reference point q ∈ Q, RNBI

computes the intersection point y of the half-line {q+ te : t = 0} and the boundary
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of Y by solving the RNBI subproblem

min{t : q + te ∈ Y ; t = 0}. (RNBISub)

Notice that by construction, the all-ones vector e is the normal of the reference

subsimplex Ŝ. As illustrated in Figure 5.1, there are three scenarios for RNBISub:

• RNBISub is infeasible if and only if the half-line {q + te : t = 0} does not

intersect Y .

• RNBISub has an optimal solution t∗, but the intersection point q+ t∗e of the

half-line {q + te : t = 0} and Y is dominated.

• RNBISub has an optimal solution t∗ and q+ t∗e is a non-dominated point of

Y .

The first case is detected by infeasibility of RNBISub. Because an intersection

point may be dominated, it is necessary to check every intersection point for non-

dominance. To do so, after obtaining all intersection points, a non-domination filter

can be used to exclude some of the dominated points (Messac et al., 2003). This

method allows fast elimination of some dominated intersection points but cannot

guarantee the remaining points are non-dominated. Hence the non-dominance of

the remaining intersection points ȳ must be verified, e.g., by solving the linear

programme

min{λTy : y 5 ȳ; y ∈ Y }, (5.6)

where 0 < λ ∈ Rp is an arbitrary strictly positive weight vector, for instance λ = e.

Then ȳ is non-dominated if and only if the optimal value of (5.6) is equal to λT ȳ

(Ehrgott, 2005).

5.3 The RNBI method using column generation

To integrate column generation in the RNBI framework we solve RNBISub using

column generation. To do so, we adopt RNBISub as the master problem. Following

the background definitions for column generation in Section 5.1, we formulate the
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restricted master problem with a subset J ′ ∪ {t} of variables and with feasible

set defined by constraints
∑

j∈J ′ a
jxj = b, xj = 0 for all j ∈ J ′ and t = 0. The

condition q + te ∈ Y of RNBISub is rewritten as constraints qk + t =
∑

j∈J ′ c
k
jxj

for k = 1, . . . , p. In this way, the objective functions of the original MOLP are

incorporated in the restricted master problem as constraints of RNBISub, i.e.,

(5.7b), in addition to the original constraints of MP, i.e., (5.7c). The corresponding

RMP is referred to as RMP-RMBISub, and is shown as follows.

min t (5.7a)

s.t. qk + t =
∑
j∈J ′

ckjxj, k = 1, . . . , p, (5.7b)

∑
j∈J ′

ajxj = b, (5.7c)

xj = 0, j ∈ J ′ (5.7d)

t = 0. (5.7e)

Notice that RMP-RNBISub is essentially the same as the RNBI subproblem but

with only a subset of variables j ∈ J ′. To conduct column generation on this

RNBI subproblem, we solve RMP-RNBISub and the corresponding SP sequentially

and iteratively. We remark that, in case column generation is terminated early,

i.e., an optimal solution of RNBISub is not yet confirmed, the intersection point

may be dominated. In contrast to the original RNBI method, non-dominance of

the intersection points will not be checked, because only an optimal solution of

RNBISub can define a non-dominated point.

As indicated in Section 5.2.2 RNBISub may be infeasible even in the presence of

all variables. Hence, if we solve RMP-RNBISub with a subset of variables, it may

be infeasible because either the constraints (5.7c) are not satisfied with a subset of

variables or because the master problem RNBISub is infeasible, i.e., {q+te : t = 0}
does not intersect Y . The former case can be dealt with by the use of artificial

variables to satisfy constraints (5.7c), see also Section 5.3.1. But in the latter

case, many iterations of column generation may be wasted in an attempt to detect
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infeasibility. In fact, infeasibility of RNBISub could only be determined once all

artificial variables are eliminated from the solution.

It will therefore be beneficial to identify reference points for which this is the

case early to avoid attempts to solve RNBISub for such reference points. For

convenience, we will from now on refer to reference points for which RNBISub

is infeasible as infeasible reference points. In Section 5.3.1 we present a method,

which we call reference point bounding, to identify infeasible reference points. To

deal with infeasibility due to the restricted number of variables in RMP-RNBISub,

we present three methods of initialisation in Section 5.3.2. Finally, we discuss the

quality of the discrete approximation generated by column generation RNBI in

Section 5.3.3.

5.3.1 Reference point bounding

One issue with the RNBI method, which stems from the use of the anti-ideal point

in the definition of the covering simplex S and the reference subsimplex Ŝ, is that

there can be infeasible reference points, i.e., reference points for which RNBISub

is infeasible such that {q + te : t = 0} ∩ Y = ∅. Because the components of yAI

may be far larger than the objective values of any non-dominated point, there can

potentially be many reference points for which this is also the case, as shown in

Figure 5.1. Obviously, any effort invested in solving RNBISub for infeasible refer-

ence points is wasted in the sense that it does not contribute to the computation

of a representative set of non-dominated points. Therefore, solving RNBISub us-

ing column generation if RNBISub is in fact infeasible, can dramatically increase

the computational time (see Section 6.2). In order to identify infeasible reference

points we provide Theorem 5.2 characterising infeasible reference points and there-

fore defining the subset of feasible reference points of Ŝ. We first state a lemma

concerning the set of all feasible reference points.

Lemma 5.1. The subset Q̂ ⊂ Ŝ of points q such that {q + te : t = 0} ∩ Y 6= ∅ is

a polytope.

Proof. The result follows, because Q̂ is the projection of polytope Y onto Ŝ, which

is a simplex on the hyperplane eTy = µ.
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Theorem 5.2. Let q ∈ Ŝ be a reference point. Then q is infeasible if and only if

there is some d ∈ Rp \ {0} such that dT q < min{dT z : z + te ∈ Y, z ∈ Ŝ, t = 0}.

Proof. We first observe that the LP min{dT z : z + te ∈ Y, z ∈ Ŝ, t = 0} is always

feasible, because z∗ = ŷ, t∗ = 0 with ŷ as defined in Section 5.2.1 is a feasible

solution. It is also bounded, because Y is a compact set by assumption. Then

dT q < min{dT z : z+ te ∈ Y, z ∈ Ŝ, t = 0} implies that q does not satisfy q+ te ∈ Y
for any t = 0. Now let q be an infeasible reference point. Then q /∈ Q̂ as defined

in Lemma 5.1. Hence there exists a hyperplane strictly separating q from Q̂, i.e.,

there is d ∈ Rp \ {0} such that dT q < min{dT z : z ∈ Q̂} = min{dT z : z + ty ∈
Y, z ∈ Ŝ, t = 0}.

Although Theorem 5.2 provides a theoretical characterisation of all feasible ref-

erence points, it is clearly impractical for implementation. Hence, we restrict

ourselves to finding minimum and maximum values of each individual co-ordinate

zk of points on the reference subsimplex Ŝ that are feasible reference points, i.e.,

we use the sufficient condition of Theorem 5.2 and apply it to vectors d = ek and

d = −ek for k = 1, . . . , p, where ek is the kth unit vector. We call this method

reference point bounding.

The linear programme min{dT z : z + te ∈ Y, z ∈ Ŝ, t = 0} is solved for d = ek and

d = −ek for k = 1, . . . , p. Let the optimal values be zmink and zmaxk , respectively.

Then according to Theorem 5.2, reference points q with qk < zmink or qk > zmaxk

for any k ∈ {1, . . . , p} will be infeasible. Corollary 5.1 summarises the above

argument.

Corollary 5.1. If q is a reference point with qk < zmink or qk > zmaxk for some

k ∈ {1, . . . , p}, then {q + te : t = 0} ∩ Y = ∅.

Reference points that satisfy the condition of Corollary 5.1 are eliminated from

the set Q of reference points and the corresponding RNBI subproblems are left

unsolved.
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5.3.2 Initialisation of RMP-RNBISub

Constraints (5.7b) may not be feasible given a limited set of variables. In addition,

even after the reference point bounding procedure is applied, infeasible reference

points may remain due to {q + te : t = 0} ∩ Y = ∅. In this section we discuss how

the infeasibility of RMP-RNBISub can be managed.

One way to handle the infeasibility is the Phase-1 approach, see, e.g., Chvátal

(1983), which adds non-negative artificial variables to satisfy constraints (5.7b)

and (5.7c) while changing the objective function of the problem to minimise the

sum of the artificial variables. The Big-M approach assigns large costs M to the

artificial variables and minimises the sum of the original objective function plus the

sum of the costed artificial variables. Using artificial variables, feasibility of RMP-

RNBISub is assured. As soon as any of the artificial variables has a value of zero in

a solution, the artificial variable can be removed. If any of the artificial variables

remain positive when the optimality condition is satisfied, we can conclude that

RMP-RNBISub is infeasible because {q + te : t = 0} ∩ Y = ∅.

We notice that in practice, column generation is rarely used to solve a (single

objective) linear programme to optimality. In this situation, a possible approach

is to perform column generation iterations on RMP-RNBISub until a specified

termination condition, such as a pre-specified number of columns, is reached. One

can, for example, conclude that a reference point is (approximately) feasible, if

the solution satisfies constraints (5.7c) and the remaining total infeasibility in

constraints (5.7b) is small enough, i.e., below a certain pre-determined threshold.

An alternative approach to manage infeasibility is to generate coefficient columns

that show that the RMP is feasible (Andersen, 2001). The method is based on

Farkas’ lemma, which states that either Ax = b, x = 0 is feasible or there is a vector

π with πTA = 0 and πT b < 0. The vector π corresponds to the dual vector of a

linear programme. A linear programme is proved to be infeasible by finding a dual

vector such that the condition πTAx = πT b can never be met due to opposite signs

on the right-hand side and the left-hand side of the equation. Thus to prove that

the restricted master problem is feasible, we can add a column a to A with πTa 5 0.

Such a column can be found by solving min {πTa(λ) : πTa(λ) 5 0, λ ∈ XJ}. If no
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such column exists, we can conclude that the corresponding master problem is

infeasible. We will refer to this approach as Farkas pricing.

5.3.3 Quality of the representative set computed by the

column generation RNBI method

Sayın (2000) defines three measures, coverage, uniformity and cardinality, to quan-

tify the quality of a discrete representation of a set. A good representation of the

non-dominated set should not contain an excessive number of points (low cardinal-

ity), should have points significantly different from one another (as indicated by

high uniformity level) and should not neglect large portions of the non-dominated

set (low coverage error).

Let G ⊂ YN be a finite set of non-dominated points generated by the standard

RNBI method using reference points q ∈ Q. Let H be the representative set gen-

erated by the column generation RNBI method based on the same set of reference

points. We shall write g(q) and h(q), respectively, to indicate the dependence of

representative points on reference point q. The distance between two adjacent

reference points is denoted as dq. Cardinality represents the number of points

contained in the representation. It is clear that the number of points contained in

H depends on the distance between adjacent reference points. In the rest of this

section we discuss the quality of H in terms of uniformity level and coverage error.

The uniformity level δ of a representative set is measured by the distance between

a pair of closest points in the set. The uniformity level of H can therefore be

expressed by

δ := min
hi,hj∈H,hi 6=hj

d(hi, hj) (5.8)

with d being a metric. Here we use the Euclidean distance as metric. Assume

hk and hl are the two closest points in H and let qk and ql be the corresponding

reference points, as illustrated in Figure 5.2. By definition of the RNBI method,

we know that vector vN = hl − ql must be perpendicular to vector vq = ql − qk.
Hence we have cos θ = ‖vq‖/‖vh‖ where vector vh = hl − hk and θ is the angle

between vectors vh and vq. To satisfy hl = ql + tle with tl = 0 being the absolute

difference between ql and hl in all objectives, we must have 0 5 θ < π/2, which
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corresponds to 0 < cos θ 5 1. Therefore, minimal ‖vh‖ occurs when cos θ = 1 and

in that case the distance between hl and hk is ‖vh‖ = ‖vq‖ = dq. Therefore the

lower bound on the uniformity level of H is dq, which is the same as that of G

(Shao and Ehrgott, 2007).

Figure 5.2: An illustration of the uniformity level for a representation pro-
duced by the RNBI method using column generation. The two diamonds
represent a pair of closest representative points hl and hk and the circles
represent the corresponding reference points ql and qk.

The coverage error ε indicates how accurately set H represents YN and can be

expressed as

ε := max
y∈YN

min
h∈H

d(y, h). (5.9)

Essentially, the coverage error ε is the maximum distance between a point in the

non-dominated set and its closest point in the representation H. Notice that if

RMP-RNBISub is not solved to optimality by column generation, h ∈ H can be

an intersection point of {q + te : t = 0} with Y that is dominated even though

{q + te : t = 0} intersects Y in a non-dominated point.

Shao and Ehrgott (2007) show that the coverage error of G is at most (
√
pdq)/2.

Hence the coverage error of H is bounded by the maximum distance between points

g(q) and h(q) of H and G generated for reference points q ∈ Q plus the coverage

error of G which can be expressed as

ε 5 max
q∈Q

d (g(q), h(q)) +
√
pdq/2. (5.10)

The term d(g(q), h(q)) can be derived from the difference between the objective

function values of RNBISub and RMP-RNBISub for reference point q. If RNBISub
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is not solved to optimality, then one can use a lower bound on the optimal value

of RNBISub as described in Section 5.1 to estimate the coverage error.

Based on the above discussion, we can see that the quality of a representation

generated by column generation RNBI depends on the distance between adjacent

reference points. As the distance decreases, cardinality increases, the uniformity

level decreases and the coverage error decreases. In addition, the coverage error

also depends on the maximum distance between representative points g(q) and

h(q) for reference points q ∈ Q.

5.4 Summary

In this chapter, we have proposed the integration of column generation in the

RNBI method to compute a discrete approximation of the non-dominated set of

an MOLP. The method is based on solving each RNBI subproblem using col-

umn generation, which moves the current point in objective space of the MOLP

towards the non-dominated set. Since RNBI subproblems may be infeasible, we at-

tempt to detect this infeasibility early. First, a reference point bounding method

is proposed to eliminate reference points that lead to infeasible RNBI subprob-

lems. Furthermore, different initialisation approaches are also discussed, including

Farkas pricing, which provides a mechanism to conclude the infeasibility of a RNBI

subproblem.

In terms of the quality of a representation computed with the column generation

RNBI method, we showed that the uniformity level is at least the same as the dis-

tance between two closest reference points (dq). The coverage error is bounded by

the the distance between column generation RNBI points and the non-dominated

set plus
√
pdq/2. This property allows the decision maker to choose an appropriate

value of dq and select appropriate termination condition for the column generation

process to produce a representative set tailored for the decision making problem

at hand.
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Application of the column

generation RNBI method in

radiotherapy treatment design

The clinical deployment of MCO-based planning has been shown to benefit the

planning practice in both the planning time and in managing the treatment qual-

ity (see Subsection 3.2). However, one limitation of MCO-based planning is plan

degradation from the segmentation process (McGarry et al., 2014, Rocha et al.,

2012). The plan selected from the navigation process represents an intensity pat-

tern that may not be efficiently delivered. In order to make the plan deliverable,

the segmentation process finds a limited set of deliverable segment intensities that

reproduce the intensity pattern. Because the number of segments allowed in a

treatment session is limited, the intensity pattern is only approximately repro-

duced, thus the plan quality deteriorates. If the segmented plan becomes unsat-

isfactory, the planner will have to find another plan, resulting in an ineffective

planning process. In this chapter, we show how this limitation of MCO-based

planning can be overcome by applying the column generation RNBI method to

the planning problem.

Column generation has been used to generate deliverable plans for single objec-

tive radiotherapy plan optimisation (Preciado-Walters et al., 2004, Romeijn et al.,

86
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2005). The physical delivery constraints in the segmentation process are consid-

ered in the column generation subproblem. Essentially, each column generated

from the subproblem represents a segment that is likely to improve the objective

function value. As a result, the plans produced from column generation can be

delivered without additional segmentation. By applying column generation within

the RNBI framework, one produces a set of plans that are deliverable and each

represents a certain trade-off in optimisation criteria. As will be demonstrated by

our results, column generation RNBI produces plans that are near-optimal and

can be delivered with dramatically lower monitor units than the corresponding

optimal plans generated by the standard RNBI method followed by segmentation.

Such plans are desirable as they can be delivered with a shorter treatment time,

i.e., exposing patients to radiation for a shorter time, and with lower radiation

leakage from the MLCs (Broderick et al., 2009). In fact, near-optimal plans that

can be delivered efficiently and accurately are often preferable to complex optimal

solutions in practice (Carlsson and Forsgren, 2014). The column generation RNBI

approach therefore combines the advantage of considering multiple objectives in the

FMO problem with the advantage of producing deliverable intensity maps without

potential deterioration of treatment quality, which column generation delivers.

In this chapter, we explain the column generation reformulation of a FMO model in

Section 6.1. Application of the method to a prostate radiotherapy planning prob-

lem is described in Section 6.2 and the results are shown in Section 6.3, followed

by discussion and conclusion in Section 6.4.

6.1 Formulation

Consider a FMO problem with m voxels and n bixels with the dose calculated

by d = Ax where d ∈ Rm is the dose vector, x ∈ Rn is the radiation intensity

vector and A ∈ Rm×n is the dose deposition matrix. We denote AT ∈ RmT×n,

AC ∈ RmC×n and AN ∈ RmN×n as the dose deposition matrices for the PTV T

with mT voxels, critical organs C with mC voxels and normal tissue N with mN

voxels, respectively.
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The formulation used in this study is based on the model of Holder (2003), as

shown in (6.1), but with a slight variation. The parameters include the dose lower

bound LBT ∈ RmT for the tumour and upper bounds UBT ∈ RmT , UBC ∈ RmC

and UBN ∈ RmN for the tumour, critical organs and normal tissue, respectively.

Variables α ∈ RmT , β ∈ RmC and γ ∈ RmN are voxel-wise one-sided dose deviations

from tumour lower bound, critical organ upper bound and normal tissue upper

bound, respectively.

min

(
1

mT

eTα,
1

mC

eTβ,
1

mN

eTγ

)
s.t. LBT − α 5 ATx 5 UBT

ACx 5 UBC + β

ANx 5 UBN + γ

α 5 UBα

β 5 UBβ

γ 5 UBγ

0 5 x, α, β, γ.

(6.1)

Different from Holder’s model, we introduce upper bounds UBα ∈ RmT , UBβ ∈
RmC and UBγ ∈ RmN for α, β and γ, respectively. These upper bounds can

easily be set so that Y is bounded and thus allows us to compute yAI . Note that

the unit of the objective functions is Gy, since we are trying to minimise dose

deviations. The RNBI subproblem of (6.1) is simply (5.7) with constraints (5.7c)

and (5.7d) replaced by the constraints of (6.1) and with the objective functions of

(6.1) incorporated in the form of constraint (5.7b).

An optimal fluence map obtained by solving the RNBI subproblem of (6.1) with

variables representing bixel intensities is not directly deliverable. Alternatively,

deliverable plans can be generated from a reformulation in which the bixel intensity

variables x are replaced by segment intensity variables x̄ and the dose deposition

matrix A based on bixel columns is replaced by the dose deposition matrix Ā

using segment columns. Column s of Ā, denoted as ās ∈ Rm, represents the dose
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deposited to the m voxels by segment s at unit intensity. Column ās is derived by

ās = Aus, (6.2)

where us ∈ {0, 1}n is a vector defining segment s with usj = 1 if bixel j is open

and usj = 0 if bixel j is closed in segment s. Note that the two formulations have

the same optimal values since feasible solutions in terms of variables x can be

represented by variables x̄ and vice versa, through the relationship

x = Ux̄, (6.3)

with U being a matrix containing all feasible segment columns u.

Due to the large number of feasible segments, Ā has a much larger number of

columns than A, which makes the reformulation hard to solve. Therefore it is

beneficial to use column generation to solve the reformulation in which we only

consider a subset of segments in the RMP. By solving the RMP, we obtain a vector

of dual values π∗, which is passed to the subproblem to find a non-basic variable

(representing the radiation intensity for a segment) with the most negative reduced

cost. Here the subproblem is

min{−π∗TAu : u ∈ U}, (6.4)

where, as before, u ∈ {0, 1}n is a vector defining a segment and U is the set

of all feasible segment columns satisfying the MLC constraints. Note that the

objective function coefficients of the segment intensity variables, with model (6.1)

reformulated to the form of RNBISub, are zero, thus they are not included in

subproblem (6.4). Let u∗ be an optimal solution of (6.4). Given u∗, we can

derive the dose deposition column a∗ = Au∗ to be added to the RMP-RNBISub

reformulation of (6.1).

In this study we consider the basic constraints of the MLC leaves, i.e., the leaf

collision constraint, which prevent opposing leaves to overlap, and the constraint

that ensures the opening for each row of collimator leaves is contiguous. Since we

consider only these two constraints, all MLC rows are independent of one another.

Therefore, (6.4) can be further decomposed by MLC row. For a given row, the
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objective of the decomposed problem is to find the leaf positions that result in

the lowest reduced cost for the MLC row. To decompose (6.4) by MLC row, one

needs to change the index of each bixel to its corresponding beam index, MLC row

position and MLC column position. Let τ = −π∗TA and denote by τb,r,c the ob-

jective function coefficient of (6.4) corresponding to the bixel at beam b, MLC row

position r and MLC column position c. We assume that each MLC row consists

of t bixels, with MLC column positions indexed incrementally from left to right.

Denote by t1 the column index of the right-most bixel covered by the left leaf and

by t2 the column index of the left-most bixel covered by the right leaf. Then the

decomposed subproblem (6.4) for beam b and MLC row r is

min

t2−1∑
c=t1+1

τb,r,c

s.t. t1 5 t2 − 1

t1 ∈ {0, . . . , t}

t2 ∈ {1, . . . , t+ 1}.

(6.5)

This decomposed problem is then solved by the algorithm described in Section

3.1.1 of Romeijn et al. (2005). It is important to note, that the non-dominated set

of the original formulation of (6.1) and its column generation reformulation are

identical.

6.2 The test case

We apply both the original RNBI method and the column generation RNBI method

to a prostate radiotherapy treatment design problem. The RNBI method solves

the RNBISub reformulation of (6.1) with bixel intensity variables x, producing a

set of (not necessarily deliverable) intensity patterns that define a representatve set

of non-dominated points for MOLP (6.1). The column generation RNBI method

solves the RMP-RNBISub reformulation of (6.1) with a subset of segment intensity

variables x̄. We consider three objective functions: one for the PTV (objective 1),

one for the rectum (objective 2) and one for the bladder (objective 3). Other

clinically relevant structures such as the prostate, the right and left femur head
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and normal tissues, are involved in the formulation as constraints, e.g., voxels of

the prostate are given a lower bound and an upper bound on the delivered dose

and voxels of femur heads and normal tissues are given structure specific upper

bounds. By only involving three objective functions, we are able to illustrate the

results graphically.

The dose deposition matrix A consists of 593 columns (corresponding to bixels) for

11 equi-spaced coplanar beam angles and 20000 rows (corresponding to voxels).

Both methods use the set of reference points generated by the standard RNBI

method. Therefore, we are able to identify feasible reference points, and we apply

the column generation RNBI method only to feasible reference points. The column

generation process terminates when any of the following termination conditions is

satisfied:

• no variable with a negative reduced cost can be found,

• the number of segments assigned with a positive intensity in a solution ex-

ceeds 100, or

• the number of column generation iterations (or equivalently the number of

segments) exceeds 150.

We implement the Phase-1 approach, the Big-M approach and Farkas pricing to

handle infeasibility of RMP-RNBISub. The initialisation phase stops when the

feasibility of RMP-RNBISub without artificial variables is guaranteed or when

the termination condition is reached. The column generation model starts with

only one coefficient column representing fully closed MLC segments (i.e., u = 0)

in all beam directions. If a segment is assigned a positive intensity, we refer to

this segment as a “positive segment”. Positive segments are those segments that

will be delivered in a treatment plan. This is in contrast to the zero-intensity

segments, which will not be part of the treatment plan. We limit the number of

positive segments in each plan so that the plans can be delivered in a reasonable

treatment time. Additionally, we group plans with similar number of positive

segments together to allow fair comparison, since radiotherapy treatment quality

is influenced by the number of segments involved in a treatment. Specifically,

a solution is separately recorded when the number of positive segments in the
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solutions first exceeds 40, 50, 60, 70, 80, 90 and 100. These solutions are grouped

into representative sets according to the number of positive segments.

6.3 Results

For convenience, representative points generated using RNBI and column genera-

tion RNBI will be referred to as RNBI points and the CG-RNBI points, respec-

tively. The representative sets of the CG-RNBI points, grouped according to the

number of positive segments, will be denoted as CG-number with number being

the corresponding number of positive segments.

Using the standard RNBI method with increment η = 0.08 (see Section 5.2.1)

or a distance of 3.2153 Gy between closest reference points, we identify that 17

of 91 reference points are feasible. Figure 6.1 illustrates the reference points and

the RNBI points. We then initialise the column generation RNBI subproblems

with the Phase-1 approach, the Big-M approach or Farkas pricing, followed by

RMP-RNBISub when feasibility of RMP-RNBISub is guaranteed.

Figure 6.1: Illustration of the reference points and standard RNBI inter-
section points. The colour of the intersection points indicates the value of
bladder deviation.
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Figure 6.2 shows RMP-RNBISub objective function values versus column genera-

tion iteration for the first 4 of the 17 reference points after the initialisation stage.

In each column generation iteration, one newly generated column, which repre-

sents a segment, is added to RMP-RNBISub. The red dashed line, blue solid line

and green dash-dot line indicate the objective function values of the corresponding

RMP-RNBISub problem initialised with the Big-M approach, the Phase-1 ap-

proach and Farkas pricing, respectively. The starting point of these lines indicates

the number of iterations used to reach RMP-RNBISub feasibility using the three

approaches. The dark line parallel to the horizontal axis represents the objective

function value obtained using the standard RNBI method for the same reference

point. The results show that, for all 17 cases, an initialisation using the Big-M ap-

proach reaches feasibility with the same or a smaller number of iterations compared

to an initialisation with the other two approaches. In addition, during the early

stages of the column generation process, initialisation with the Big-M approach

generally produces a lower objective function value compared to initialisations with

the other two approaches. The results indicate that the Big-M approach is supe-

rior to the other two approaches in terms of identifying columns that contribute to

the objective function value. However, the difference in objective function values

among different initialisation strategy diminishes as more columns are added to

the model.

The next results are based on the solutions obtained from runs that employ an

initialisation with the Big-M approach. Figure 6.3 shows the RNBI points (solid

circle) and the points of CG-40 (asterisk) and CG-100 (empty circle). The figure

illustrates how intersection points gradually move toward the boundary of the

feasible set in objective space during the column generation process. Notice that in

each of the column generation representative sets, there can be points dominated

by other points. Our results show that the number of dominated points in a

representative set ranges from one point in CG-60 to five points in CG-90.

Our results show that CG-RNBI points are close to the corresponding optimal

RNBI points. The objective function values and the average computation time of

the RNBI points, CG-40 and CG-100 are shown in Table 6.1. Recall that these

points are obtained by solving the RNBI reformulation (RNBISub) and CG-RNBI

reformulation (5.7) of Holder’s model (6.1). The objective function values of the
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Figure 6.2: RMP-RNBISub objective function values (vertical axis) versus
column generation iteration (horizontal axis) for the first four reference
points.

points in CG-40 and CG-100 are on average 0.3647 and 0.1264 Gy higher than the

objective function values of the RNBI points. In agreement with the remark in

Lübbecke (2010) that column generation is in general not a competitive technique

in solving linear programmes, we observe that computation times using column

generation are longer. The average computation time used to obtain the RNBI

points, CG-40 and CG-100 are approximately 17, 43 and 553 seconds, respectively.

In addition, we observe that, as the number of generated columns increases, the

computation time required for solving RMP-RNBISub increases as well.

Next we compare the plan complexity, in terms of monitor units, of plans generated

by the RNBI and the CG-RNBI method. The segmentation algorithm by Engel

(2005) is used to derive the segments and the monitor units needed for delivering

the optimal intensity patterns generated by the standard RNBI method. The

results, as included in Table 6.2, show that the monitor units of the segmented

pattern (an average of 408.8 MU) is much higher than that of the intensity patterns

generated by column generation (an average of 76.7 MU and 123.8 MU for CG-40

and CG-100, respectively).

We use (5.8) to measure the uniformity of the representative sets. The results show
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Figure 6.3: The RNBI points (solid circle) and the points in CG-40 (as-
terisk) and CG-100 (empty circle). Colour indicates the value of bladder
deviation.

that the uniformity levels for all representative sets are the same up to 4 decimal

places, with a value of 3.2153 Gy, which is the same as the distance between any

two closest reference points. However, the two closest intersection points that

define the uniformity level are different for the different representative sets.

Next, we apply the reference point bounding method described in Section 5.3.1

to the column generation RNBI method. Column generation is typically used for

problems that cannot be practically solved by standard linear optimisation algo-

rithms due to a large number of variables. When applying column generation

RNBI to these problems, one also needs to solve the reference point bounding

problem with column generation. Therefore, to assess how reference point bound-

ing can be affected by column generation, reference point bounding is firstly solved

to optimality (with the bixel intensity based formulation) and then solved using

column generation (with the segment intensity based formulation). The column

generation process terminates when the number of positive segments exceeds 40.

The objective function values for reference point bounding are shown in Table

6.3. We can see that the minima and maxima produced using column generation

are close to the corresponding minima and maxima solved to optimality, with a

maximum absolute difference of 0.4494. In fact, using either set of minima and
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Table 6.1: Objective values and average computation time (rounded to
seconds) of RNBISub and CG-RNBISub with 40 positive segments (CG-
40) and 100 positive segments (CG-100).

Reference point Standard CG-40 CG-100

1 1.7450 1.9880 1.8140
2 2.6806 2.9661 2.7525
3 0.4216 0.7765 0.5019
4 1.7451 2.0407 1.8215
5 4.0186 4.2616 4.0875
6 2.6941 2.9738 2.7695
7 1.5498 1.9892 1.7157
8 1.5417 1.9638 1.7104
9 1.8497 2.2986 1.9810
10 4.0186 4.2959 4.0916
11 3.8230 4.2212 3.9890
12 3.8108 4.1933 3.9770
13 3.8108 4.2176 3.9943
14 3.8112 4.2856 3.9865
15 3.8153 4.3023 3.9846
16 6.0843 6.4450 6.2286
17 6.0843 6.4846 6.2481
Average time 17 43 553

maxima, we are able to eliminate 67 out of 91 (73.63%) reference points. Out of

the remaining 24 reference points, only 7 lead to RNBISub infeasibility.

We also test the performance of Farkas pricing in concluding the infeasibility of

RNBISub instances. Note that we have 91 reference points in total, with 74 lead-

ing to RNBISub infeasibility. Table 6.4 shows that Farkas pricing is capable of

concluding the infeasibility of 66 out of 74 RNBISub instances with 10 or fewer

iterations. The average computation time for these 66 instances is 0.4 seconds.

However, Farkas pricing is not capable of concluding infeasibility within 150 iter-

ations for the remaining 8 instances. The computation time for each of these 8

instances ranges from 1179 to 7084 seconds, with an average of 4396 seconds and a

standard deviation of 1676 seconds. For comparison, we apply column generation

with the big-M initialisation to 10 reference points leading to RNBISub infeasibil-

ity. With a termination condition of 150 column generation iterations, the average

computation time for solving each of the 10 reference points is 1213 seconds, with
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Table 6.2: Total monitor units of intensity patterns generated by RNBI and
CG-RNBI with 40 positive segments (CG-40) and 100 positive segments
(CG-100).

Reference point Standard CG-40 CG-100

1 494 97.8 155.4
2 474 82.2 146.6
3 444 79.1 138.0
4 493 97.2 152.3
5 494 97.8 155.4
6 469 72.9 136.8
7 341 66.4 119.7
8 354 70.0 116.3
9 446 79.7 135.6
10 493 87.1 144.8
11 343 65.8 103.6
12 350 67.2 94.6
13 350 60.8 106.5
14 351 68.9 95.9
15 354 77.9 108.0
16 350 65.7 98.8
17 350 66.7 96.3
Average MU 408.8 76.7 123.8

Table 6.3: Minimum (min.) and maximum (max.) value for each objective
based on the reference point bounding solved to optimality and solved by
column generation (CG).

Optimal min. Optimal max. CG min. CG max.

Objective 1 -7.5352 3.9529 -7.2641 3.5035
Objective 2 -4.4038 9.159 -4.0101 8.9119
Objective 3 -4.5379 9.1226 -4.2902 8.8587

a standard deviation of 71 seconds. The results suggest that Farkas pricing can

potentially be quite time consuming. Thus, if Farkas pricing cannot identify the

infeasibility of a RNBISub instance in a small number of iterations, it would be

beneficial to change the initialisation method to another approach.
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Table 6.4: Number of iterations required for Farkas pricing to identify
RNBISub infeasibility.

Iterations used to identify infeasibility 2 3 4 5 10 >150

Number of RNBISub instances 48 10 1 6 1 8

6.4 Discussion and conclusion

In this study we apply the column generation RNBI method to an MOLP formu-

lation of a radiotherapy treatment design problem, which can be solved by both

the standard RNBI and the column generation RNBI method. Column generation

allows us to use variables representing segment intensities, as opposed to bixel in-

tensities which are used in the conventional formulation. Because the number of

possible segment shapes is much greater than the number of bixels, there is not

yet a practical approach to solve segment-based model to optimality. Instead, one

must consider trade-offs between plan quality and plan complexity (i.e. number of

segments). In this study, we demonstrate with a test case that the plans generated

by column generation are near-optimal and can be delivered with dramatically

lower monitor units than the corresponding optimal ones followed by segmenta-

tion. Although these plans require longer computational time than those generated

with a bixel-based model, the resulting reduced delivery complexity is desirable in

practice due to shorter treatment time and lower radiation leakage from the MLCs

(hence better delivery accuracy) (Broderick et al., 2009, Carlsson and Forsgren,

2014). To adopt the method clinically, further investigation on the performance of

column generation is needed. In particular, one should check the robustness of the

method, i.e., if the benefits of using column generation technique (near-optimality

with delivery efficiency) are consistently observed for different treatment cases.

Fredriksson and Bokrantz (2013) introduce a concept of non-dominance called the

“n-aperture Pareto set”, which is a set of efficient plans given that each plan is

formed by only n segments. However, to our knowledge, there is no practical

method available to generate the n-aperture Pareto set. The concept of the n-

aperture Pareto set can be generalised to the n-column non-dominated set for

problems solved by column generation. Further research is required to extend the

column generation RNBI method to ensure n-column non-dominance. Another
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topic for future research is the extension of the column generation RNBI method

to nonlinear multi-objective optimisation problems. This will, for example, allow

us to consider other formulations of the radiotherapy treatment design problem.
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Multi-objective navigation of

external radiotherapy plans based

on clinical criteria

In this chapter we consider the process of finding the most preferable plan from a

set of plans generated by an a posteriori approach. As the number of treatment

plans in the set can be large, it can be time consuming to examine the quality

of every plan in the set. Instead, a navigation method that effectively guides the

planner toward the most preferable plan is needed (Allmendinger et al., 2016).

Essentially, a navigation method should allow the planner to move from one plan

to another with more desirable planning trade-offs until the most preferable plan is

found. Desirable planning trade-offs can be expressed as a navigation query which

specifies desirable improvements in certain criteria while allowing other criteria to

deteriorate.

The navigation methods proposed for radiotherapy treatment planning so far are

based on solving interactive multi-objective optimisation problems on the con-

vex hull of a set of efficient solutions generated by a sandwiching method (see

Subsection 3.1.3). In these methods, navigation queries are specified in terms of

optimisation criteria, i.e., the objective functions used in the optimisation. These

criteria are convex functions so that optimisation algorithms can be used to find

100
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an optimal solution efficiently. Convex criteria along with a convex feasible set

preserve convexity, hence allowing continuous navigation of treatment trade-offs.

However, optimisation criteria are only surrogates used to generate treatment plans

and may not necessarily be relevant to plan evaluation (Li et al., 2012). In this

study, we also show that the optimisation criterion values may not correctly reflect

the plan quality, thus can mislead a planner to select a “locally optimal” plan. In-

stead, we propose a navigation method that uses planner-specified clinical criteria,

which are criteria used to evaluate plan quality in clinical practice, to specify a

navigation query. While many clinical criteria are convex or can be reformulated

as convex functions (see, e.g., Hoffmann et al. (2008), Romeijn et al. (2004)), some

clinical criteria are non-convex and non-continuous, for example, the dose-volume

parameters (Deasy, 1997, Llacer et al., 2003) and treatment time (where changes

in beam orientation and/or the number of segments result in discrete changes in

treatment time, see, e.g., Bortfeld and Schlegel (1993)). For a non-continuous

set, continuous navigation, as implemented in existing navigation models, is not

applicable.

Instead, in this study we consider navigation on a discrete set of deliverable plans

of which the beam orientation, segment shapes and segment weights of each plan

are specified. The clinical criterion values are extracted from the plans and form

the underlying data for the navigation model. A few studies propose naviga-

tion/decision support methods with such a set of deliverable plans. Rosen et al.

(2005) propose to fit the dose-volume parameters of a set of plans to linear func-

tions. Navigation is conducted based on the linear functions that estimate how the

DVHs change with regards to a navigation query. However, due to the use of fitted

linear functions, i.e., by fitting the data with linear functions at the centre of the

data spread, the dose-volume parameters are the most preferred “average” values

instead of the actual most preferred values. Ehrgott and Winz (2008) propose a de-

cision support system based on filtering out plans with inferior criterion values. To

conduct navigation in this method, the planner needs to iteratively impose, relax

or tighten filters in a trial-and-error manner, which can be a cumbersome process.

Ripsman et al. (2015) propose a ranking based navigation system in which the

planner assigns weights to the clinical criteria and rank the plans with the sum of

the weighted criterion values. However, the change of weight vector required to
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move from one efficient plan to another is unknown and can only be discovered

through a trial-and-error process.

Our proposed navigation method is inspired by DEA. To allow intuitive navigation,

clinical criteria are categorised into inputs or outputs where decreases in inputs and

increases in outputs are considered favourable. This is in contrast to optimisation-

criteria based navigation methods where all optimisation criteria are considered

favourable with lower values although some of the corresponding clinical criteria

may be considered favourable with higher values. In our navigation method, the

planner sets aspiration values for the clinical criteria and an optimisation model

is solved to identify a plan that best satisfies the aspiration values. These aspira-

tion values are specified as soft constraints for the optimisation model, hence the

planner can freely set the ideal clinical criterion values, without the risk of gen-

erating an infeasible model. The planner can then inspect the plan identified by

the navigation method and iteratively adjust the aspiration values until the most

preferable plan is identified.

The contribution of this study is two-fold. Firstly, we propose a DEA based navi-

gation model that allows a decision maker to freely express his or her preferences

in criterion values. Secondly, we propose a clinically oriented navigation practice

that uses clinical criteria, instead of identifying the most preferable plan from a set

using optimisation criteria. In Section 7.1, we introduce and interpret the proposed

navigation model. In Section 7.2, we present an implementation of the proposed

model which is applied to a prostate planning problem. Discussion and conclusion

then follow in Section 7.3.

7.1 Method

Typically, given a set of DMUs, the decision maker would prefer DMUs that are

characterised as efficient. A DMU is efficient if and only if none of its inputs or

outputs can be improved without deteriorating some of its other inputs or outputs

(Definition 2.8). Under the context of a set of DMUs, we consider efficiency as

a relative measure. That is, a DMU is considered efficient if no other points in

the production possibility set indicate that some of its inputs or outputs can be
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improved without worsening some of its other inputs or outputs. In this study,

we consider a production possibility set referred to as the FDH (see Section 2.2),

which represents a set of DMUs assuming free disposability, i.e., each DMU can

consume extra inputs while producing the same levels of outputs or produce less

outputs with the same levels of inputs.

Consider a set of N DMUs that are evaluated by the decision maker based on a set

of criteria. The criteria are categorised into I inputs and O outputs where inputs

are considered as costs to produce outputs. The decision maker wants to identify

the most preferable DMU out of the set. Given a large set, it can be impractical

to examine each DMU from the set. Instead, the decision maker can propose a

set of aspired criterion values (or aspiration values) and identify a DMU that best

satisfies the aspiration values. In the following, we propose a model that allows

the decision maker to accomplish such a task while at the same time ensuring the

DMU identified by the model is efficient.

Let r ∈ RI
> and w ∈ RO

> represent the aspiration values for the inputs and outputs,

respectively. In addition, let the criterion values of the N DMUs be grouped into

the input matrix R ∈ RI×N
≥ and the output matrix W ∈ RO×N

≥ in which the ith

columns of R and W contain the criterion values of the ith DMU. Once the decision

maker specifies the aspiration values, the following model is solved to identify a

DMU that best satisfies (rT , wT )T :

max β + ε
(
eT s− + eT s+ ) (7.1a)

s.t. Rλ 5 (1− β)r − s− (7.1b)

Wλ = (1 + β)w + s+ (7.1c)

eTλ = 1 (7.1d)

λ ∈ {0, 1}N (7.1e)

s+, s− = 0, (7.1f)

where β ∈ R, λ ∈ {0, 1}N , s− ∈ RI , s+ ∈ RO are the decision variables. e represents

a vector of ones with an appropriate dimension and ε > 0 is a very small number.

In practice, there is no need to determine the value of ε. Instead, model (7.1) can be

implemented using a 2-step lexicographic optimisation, as described in Subsection

7.1.1. Since the production possibility set of model (7.1) is defined by the FDH
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of the set of DMUs, the efficient DMU identified by the model must be one of the

existing DMUs.

Proposition 7.1. Model (7.1) is always feasible.

Proof. Let j∗ ∈ {1, . . . , N} and let λj
∗ ∈ RN be a vector with one in the j∗th entry

and zeros in the other entries. Clearly λj
∗

satisfies constraints (7.1d) and (7.1e).

By setting λ = λj
∗

and re-arranging the variables, constraints (7.1b) and (7.1c)

can be equivalently expressed as

β ≤ Ri,j∗ − ri + s−i
−ri

, i = 1, . . . , I

β ≤ Wo,j∗ − wo − s+o
wo

, o = 1, . . . , O. (7.2)

Let s−∗ and s−∗ be zero vectors of dimension I and dimension O, respectively and

let βj∗ := min

{
Ri,j∗ − ri
−ri

,
Wo,j∗ − wo

wo
: i = 1, . . . , I, o = 1, . . . , O

}
. It is obvious

that β = βj∗ , s
− = s−∗, s+ = s+∗ satisfies (7.2) and thus (βj∗ , λ

j∗ , s−∗, s−∗) is a

feasible solution of (7.1).

The model can be interpreted as a mechanism that adjusts the aspiration values to

identify a best matching DMU. The adjusted aspiration values are expressed as the

right-hand side of constraint (7.1b) and (7.1c), i.e., (1−β)r−s− and (1+β)w+s+.

Constraints (7.1d) and (7.1e) specify that only one element in vector λ can have a

value of 1 with the rest of the elements having a value of zero. Thus, essentially,

the model specifies that there must be one DMU with inputs and outputs better

than or equal to the adjusted aspiration values.

Two types of adjustments are used in the model: directional and additive. Di-

rectional adjustment is inspired by Chambers et al. (1996, 1998) in which the

directional distance function Rλ ≤ (1−β)δr and Wλ ≥ (1 +β)δw allows the deci-

sion maker to specify a direction (−δrT , δwT )T for the adjustment of the aspiration

values. In model (7.1) the direction is specified as (−rT , wT )T and β represents the

magnitude of adjustment in the specified direction. As model 7.1 is always feasible
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(Proposition 7.1), the decision maker can choose the aspiration values freely even if

the values are out of the production possibility set. The model simply deteriorates

the aspiration values with a negative β value, which is penalised in the objective

function.

The other adjustment mechanism, additive adjustment, adjusts the individual as-

piration values through s− and s+. In contrast to directional adjustment, which

adjusts all criteria simultaneously, additive adjustment applies to each input/out-

put independently and the adjustment only improves the aspiration values. Since

the cost coefficient for additive adjustment, ε, is a very small value, additive ad-

justment is applied to the aspiration values with a lower priority than directional

adjustment. Hence, the adjustment of aspiration values in model (7.1) can be

considered as a two step process where directional adjustment is conducted first,

followed by additive adjustment. Directional adjustment moves a point to the pro-

duction frontier where at least one input or one output cannot be further improved.

The point on the boundary is then adjusted by individual input/output through

additive adjustment of s+ and s−. Additive adjustment ensures that the adjusted

aspiration values equal the criterion values of one of the DMUs (since s+ and s−

are maximised in the objective function, thus making constraints (7.1b) and (7.1c)

binding). In addition, the DMU corresponding to the adjusted aspiration values

must be efficient (Proposition 7.2).

Proposition 7.2. The DMU selected by the optimal solution of model (7.1) must

be efficient.

Proof. If the selected DMU is not efficient, there must be another DMU from the

set with better input/output values. Thus the adjusted aspiration values can be

further improved, resulting in a better objective function value, which is contrary

to the optimality of the solution.

Figure 7.1 illustrates the use of model (7.1), in which a two-criteria problem with

one input and one output is considered. In the figure, points A, B, C and D repre-

sent a set of efficient DMUs and points a, b and c each represents a set of aspiration

values specified by the decision maker. Directional adjustment of aspiration values

moves points a and b to points a∗ and b∗. Notice that directional adjustment is
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Figure 7.1: Illustration of model (7.1) with points A, B, C and D repre-
senting DMUs and points a, b and c representing aspiration values.

determined by the corresponding aspiration values. Directional adjustment cannot

be applied to point c as the point is already on the production frontier. Additive

adjustment is then applied to points a∗, b∗ and c to identify the corresponding

efficient DMUs. β, s− and s+ values for points a, b and c are shown in Table 7.1.

Table 7.1: β, s− and s+ values for the adjustment of points a, b and c in
Figure 7.1.

Point a(6, 3) b(4, 10) c(7, 10)
β 0.5 -0.2 0
(s−, s+) (0, 3.5) (1.8, 0) (0, 2)
Identified DMU B B C

Directional adjustment, which can be specified as β(−rT , wT )T , allows the multi-

ple inputs and the multiple outputs of the aspiration values to remain in the same

proportion after adjustment. This is illustrated in Figure 7.2a where a two-criteria

problem with only inputs is considered. In the figure, directional adjustment only

moves aspiration points d and e along the corresponding ray emanating from the

origin (shown in the dotted line) where any point on the ray has the same pro-

portion in inputs as the corresponding aspiration point. Hence model (7.1) can be
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interpreted as a two step mechanism. The first step finds a point on the produc-

tion frontier such that the point has criterion values in the same proportion among

inputs and among outputs as the aspiration point. The second step then improves

the adjusted aspiration point such that it equals one of the efficient DMUs.

With a slight modification, our navigation model can also be applied to a con-

vex set where convex combinations of a set of DMUs are considered attainable.

This convexity property is used in other navigation methods where a convex com-

bination of plans (or precisely, bixel intensities) is also a valid plan. To apply

(7.1) to a convex set, one simply replaces the binary constraint of λ, (7.1e), to

0 ≤ λi ≤ 1 ∀i = 1, . . . , n. When (7.1) is applied to a convex set, the majority of

aspiration values would be adjusted to the efficient set through directional adjust-

ment (and hence no additive adjustment is required) since the production frontier

is mainly composed of the non-dominated set. This is illustrated in Figure 7.2b

where aspiration values represented by points d and e are adjusted to efficient

points d∗ and e∗ while maintaining the same proportion in inputs. Additive ad-

justment is needed only when a set of aspiration values is projected to the weakly

non-dominated set of the production frontier.

(a) (b)

Figure 7.2: Illustration of proportional adjustment with a two-input prob-
lem (a) with the assumption of FDH (b) with the assumption of convexity.



Chapter 7 108

7.1.1 Implementation

In practice, it can be non-trivial to determine the value of ε. Instead of solving

model (7.1) directly, one can solve models (7.3) and (7.4) sequentially to get the

same optimal solution without defining ε. Model (7.3) maximises β solely, without

considering s− and s+, to obtain the optimal β value β∗. Model (7.4) maximises

eT s− + eT s+ with the β value in the constraints equal to β∗.

β∗ := max β

s.t. Rλ 5 (1− β)r

Wλ = (1 + β)w

eTλ = 1

λ ∈ {0, 1}n.

(7.3)

max eT s− + eT s+

s.t. Rλ 5 (1− β∗)r − s−

Wλ = (1 + β∗)w + s+

eTλ = 1

λ ∈ {0, 1}n

s+, s− = 0.

(7.4)

Proposition 7.3. Models (7.3) and (7.4) are always feasible.

Proof. Let j∗ ∈ {1, . . . , N} and let λj
∗ ∈ RN be a vector with one in the j∗th entry

and zeros in the other entries and let

βj∗ := min

{
Ri,j∗ − ri
−ri

,
Wo,j∗ − wo

wo
: i = 1, . . . , I, o = 1, . . . , O

}
.

Following the proof of Proposition 7.1, it is easy to see that λj
∗

and βj∗ is a feasible

solution for model (7.3). Consequently, given β∗ and λ∗ that satisfy constraints in

model (7.3), constraints in model (7.4) will always be satisfied by s+ and s− equal

to zero vectors.
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7.1.2 Navigation mechanism with hard constraints

While the use of soft constraints in model (7.1) allows a decision maker to freely

express the aspired criterion values, soft constraints do not allow exploration of

alternative DMUs. In practice, changing the aspiration values may result in iden-

tifying the same DMU and the changes in (one or more) aspiration values required

to identify a neighbouring DMU are not trivial. Instead, alternative DMUs can

be accessed through the use of hard constraints. In this subsection, we illustrate

the use of hard constraints in navigation. For convenience, we express the hard

constraints for inputs only since extending the constraints to outputs is trivial.

Let the ith DMU be the DMU currently identified by the navigation system and

let ej ∈ RI be a vector with one in the jth entry and zeros in the other entries.

Constraint (7.5a) or (7.5b) can be added to model (7.1) in order to move from the

current DMU to an alternative DMU where the kth input criterion is improved by

εk or worsened by εk, respectively.

eTkRλ 5 Rk,i − εk (7.5a)

eTkRλ = Rk,i + εk. (7.5b)

In our implementation (see Subsection 7.2.2), εk is the step size of the criterion

slider bar defined as 1% of the value range of the kth input criterion, i.e.,

εk = 0.01× (max{Rk,j : j = {1, . . . , I}} −min{Rk,j : j = {1, . . . , I}}) .

While navigating, the decision maker may only be interested in DMUs with a

certain set of input criteria, L, better than or equal to certain values. This can be

achieved by constraints of the form

eTl Rλ 5 bl ∀l ∈ L, (7.6)

where vector b records the upper bounding values for input criteria l ∈ L. The

decision maker may also wish to combine the two navigation mechanisms together
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so that neighbouring DMUs with input criteria l ∈ L better than or equal to

certain values can be found.

Model (7.1) with constraints (7.5) and (7.6) forms the complete navigation model

for this study. Notice that when hard constraints are imposed, soft constraints

(7.1b) and (7.1c) still apply. That is, the navigation model still relies on the

directional adjustment and the additive adjustment to identify an efficient DMU,

although now the production possibility set is restricted by the hard constraints.

In other words, the navigation mechanism still finds a DMU that best matches

the aspiration values among DMUs that satisfy the hard constraints. Notice that

the navigation model can be infeasible when one or more hard constraints exclude

all DMUs from the feasible set. When infeasibility occurs, the decision maker will

have to accept that the hard constraint(s) cannot be satisfied and should consider

weakening the constraint(s) in order to find a solution. In our implementation,

the hard constraints can only be imposed one at a time (by pressing a slider bar

arrow button or by clicking a constraint check box) and the navigation model is

solved when a new hard constraint is added. Hence if a new constraint results in

an infeasible model, the decision maker will be immediately notified.

7.2 Application to radiotherapy treatment plan-

ning

We apply the proposed navigation method to the set of prostate radiotherapy

treatment plans generated by the column generation RNBI method (as described

in Chapter 6). The clinical criteria used in this case study are shown in Subsec-

tion 7.2.1. Subsection 7.2.2 presents the graphical user interface of the proposed

navigation system and demonstrates the functionality of the system.
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7.2.1 Navigation criteria as inputs and outputs

The navigation criteria, in terms of inputs and outputs, used for the navigation

process are shown in Table 7.2. Left femur head and right femur head are abbre-

viated as LFH and RFH. For dose conformity, we use the CI proposed by Lomax

and Scheib (2003)

CI =
V(T,d)
Vd

, (7.7)

where V(T,d) is the d Gy isodose volume of the target and Vd is the d Gy isodose

volume of the total patient volume. The CI value is considered as an output as

higher values of CI are preferable (with a maximum value of 1). For target dose

homogeneity, we use the HI proposed by Yoon (2007)

HI =

√∑
i

(Di −Dmean)2 × vi
V
, (7.8)

whereDi and vi are the dose and volume of voxel i of the target, respectively. Dmean

is the mean dose and V is the volume of the target. Essentially, (7.8) measures

the standard deviation of dose in the target volume. Hence HI is considered as an

input where smaller dose deviation in the target is considered preferable.

Table 7.2: Navigation criteria used in the planning problem in terms of
inputs and outputs.

Inputs Outputs

PTV HI PTV D95

Rectum gEUD PTV CI
Rectum D5

Bladder D50

Bladder D25

LFH D10

RFH D10

Number of segments

It can be seen from Figure 7.3 that optimisation criteria may not correctly reflect

the quality of clinical criteria. Ideally, a clinical criterion value, if plotted against

the corresponding optimisation criterion value, should be either strictly increasing

or strictly decreasing. That is, an improvement in the optimisation criterion value
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(a) PTV D95 against Tumour dose
deviation.

(b) Rectum gEUD against rectum dose
deviation.

(c) Bladder D25 against bladder dose
deviation.

Figure 7.3: Plots showing that optimisation criterion values may not be
appropriate quality indicator for clinical criteria.

should always lead to an improvement in the clinical criterion value. However, Fig-

ures 7.3a to 7.3c show that this is not the case. Thus when conducting navigation

with optimisation criteria, it is possible for a planner to conclude optimality of

a plan prematurely when a “locally optimal” plan, where further improvement in

optimisation criteria does not lead to improvements in clinical criteria, is identified.



Chapter 7 113

7.2.2 Graphical user interface

A screen shot of the navigation system is shown in Figure 7.4. Three main com-

ponents are used to conduct navigation: criterion slider, aspiration slider and

constraint check box. The value range of each slider is limited by the maximum

and minimum of the corresponding criterion in the database. The user can use

either the slider or the text box below each slider to change the corresponding

criterion or aspiration value. When any of the aspiration values change, model

(7.1) is updated accordingly and solved to obtain the best plan that satisfies the

aspiration values. When the value of a criterion slider is changed, a hard constraint

of the form of equation (7.5a) or (7.5b) is imposed on model (7.1) and the model

is solved to obtain a plan that best satisfies the change of criterion value with

respect to current aspiration values. If a current plan is replaced by an alternative

plan, the values of criterion sliders are changed to the values of the alternative

plan. When a constraint check box is activated, hard constraints of the form of

(7.6) are added into model (7.1). If an aspiration value is/is not satisfied by the

corresponding criterion value, the background colour of the criterion text box ap-

pears green/red. Similarly, the “Feasibility” text box shown on the top-left corner

indicates if a navigation step is feasible (with green background colour) or not

(with red background colour).

The navigation system is implemented in MATLAB and the optimisation models

are solved with Gurobi. Clinical criterion values are extracted with CERR (Deasy

et al., 2003). As the optimisation problem size is small, the optimisation is solved

in real time, hence allowing immediate interaction between the planner and the

navigation system.

7.2.3 Demonstration of the navigation system

To demonstrate the use of the navigation system, we show a sequence of navigation

steps. The navigation steps are composed of the following actions:

a Enter aspiration values

b Click on the right arrow of PTV D95 criterion value slider bar
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Figure 7.4: Screen shot of the navigation system showing plan 77 with a
set of aspiration values and constraints.

c Click on rectal D5 constraint check box

d Click on bladder D25 constraint check box

The action(s) performed and the plan identified in each step are shown in Ta-

ble 7.3. Action(s) in brackets represent action(s) imposed from previous steps.

The aspiration values used and the criterion values of the plans identified by the

navigation system from the steps are shown in Table 7.4.

In step 1, aspiration values for each criterion are set and the navigation system

identifies plan 5 as the most preferable plan. All the criterion values of plan 5

succeed the corresponding aspiration values except for PTV D95. Thus in step
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Table 7.3: Action(s) in each of the navigation step and the identified plan.

Step Action(s) Plan ID

1 a 5
2 (a), b 66
3 (a), c, d 5
4 (a, c, d), b infeasible
5 (a, c, d), d, b 9
6 (a, c, b), b 26
7 (a, c, b, b), b 60

Table 7.4: Aspiration values used and plans identified by the navigation
steps in Table 7.3. Criterion values worse than the corresponding aspiration
values are shown in bold.

Criteria Aspiration Plan 5 Plan 66 Plan 9 Plan 26 Plan 60

PTV D95 74 73.18 75.83 73.78 73.93 74.13
PTV CI 0.6 0.77 0.59 0.67 0.67 0.65
PTV HI 1.7 1.62 1.32 1.80 1.80 1.81

rectum gEUD 67 63.54 68.05 64.83 64.35 63.68
rectum D5 74 73.03 76.18 73.63 73.28 73.13

bladder D50 45 36.13 35.58 41.93 41.93 44.43
bladder D25 65 63.53 67.68 66.43 65.33 66.18

LFH D10 35 15.78 17.58 7.98 8.33 9.23
RFH D10 35 28.63 8.23 15.68 18.68 19.73

#Segments 70 40 72 42 50 70

2, action b is used to find a plan with an improved PTV D95 value, which re-

sults in plan 66 being identified. Although plan 66 achieves the aspired PTV D95

value, many of the criterion values become worse than the corresponding aspira-

tion values. In particular, we want to achieve the aspired values for rectum D5 and

bladder D25. This can be specified by action c and d. It is not surprising that plan

5 is identified by step 3 since from step 1 we know plan 5 is the most preferable

plan for the given aspiration values while at the same time satisfying the aspired

rectum D5 and bladder D25 values. In step 4, an attempt to find a plan with a

better PTV D95 is conducted through action b, however, the navigation system

returned infeasibility as the output. The infeasibility suggests that one cannot

further improve the PTV D95 value without sacrifice the aspired value for rectum

D5 or bladder D25. In step 5, we relax the constraint on bladder D25 and try to
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improve PTV D95 through actions d and b, respectively. An improvement in PTV

D95 is achieved, as shown by plan 9, although the aspired PTV D95 value is still

not achieved. Further improvement in PTV D95 value is conducted in step 6 and

7, resulting in plan 26 and 60, respectively. Plan 60 shows that the aspired PTV

D95 value is achieve at the cost of sacrificing the aspired values for inhomogeneity

index and bladder D25.

7.3 Discussion and conclusion

Previously proposed navigation methods are designed for commercial MCO-based

planning in which the feasible set is the convex hull of a set of efficient fluence

maps. By doing so, one can quickly generate a large number of feasible fluence

maps using interpolation with modest computational expense. However, fluence

maps generated by linear interpolation are not efficient and may be further im-

proved (Bokrantz and Miettinen, 2015). The potential improvement in plan quality

of these plans are sacrificed in order to reduce the computational expense. In addi-

tion, linear interpolation of fluence maps does not consider plan delivery. Thus, a

plan selected from the approximated efficient set needs to go through the segmen-

tation step, which can significantly deteriorate the plan quality (McGarry et al.,

2014, Rocha et al., 2012). Furthermore, linear interpolation cannot be applied to

different beam angle configurations, thus plans generated from interpolation are

subjected to the same beam angle configuration. However, the best beam configu-

ration to achieve different treatment trade-offs can be different (see, e.g., Cabrera

et al. (2016)). Excluding the search of different beam configurations in the plan

generation process prevents the identification of the best-quality plans. The over-

all effect of these limitations may lead to generation of plans with considerable

improvement potential.

An alternative MCO practice is to generate a finely-sampled discrete representation

of the efficient set in which each plan is generated to achieve a specific treatment

trade-off. Using this approach, each plan is given freedom in beam angle configu-

ration, segment shapes and segment intensities and hence the method allows one
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to achieve the best-quality plans for different treatment trade-offs. Plan genera-

tion with this approach can be computationally expensive, especially for problems

with many optimisation criteria. However, recent advancement of high perfor-

mance computing, such as Jia et al. (2014), Tian et al. (2015) and Ziegenhein

et al. (2013), alleviates this potential drawback. To further reduce the computa-

tional expense, one can also consider a two-stage planning practice where in the

first stage, a coarser sample of the efficient set is generated and navigation is used

to identify a close-to-ideal plan, followed by fine-tuning (see, e.g., Otto (2014),

Ziegenhein et al. (2014)) of dose distribution in the second stage. The navigation

method proposed in this study best facilitates this MCO practice where navigation

is conducted on a discrete set of plans.

The proposed navigation method uses soft constraints to set the aspiration val-

ues, hence allows the decision maker to freely express his/her preferences without

resulting in an infeasible model. This is in contrast to previously proposed nav-

igation methods. In Monz et al. (2008), navigation queries are specified by hard

constraints. To avoid specifying an infeasible navigation query, the maxima and

minima of individual objective functions are calculated when the upper bound

constraints of the individual objective functions change. Navigation queries are

restricted to be within the individual maxima and minima. In Craft and Monz

(2010) and Craft and Richter (2013), navigation queries are specified by changing

the value of a reference point that lies on the convex hull of individual minima.

The reference point projects in a direction to the non-dominated set to find a cor-

responding non-dominated point. However, as the projection of the convex hull

of the individual minima does not cover the whole non-dominated set, as shown

in Shao and Ehrgott (2007), some portions of the non-dominated set may be ne-

glected during the navigation process. Our proposed model allows the decision

maker to specify the desirable aspiration values freely and the model returns a

DMU (or a solution in terms of MCO) that best matches the aspiration values.

Consequently, this flexibility in specifying aspiration values allows us to apply the

model to a discrete set, which previous navigation methods are not capable of.

In this study we apply the navigation model on a set of discrete points each rep-

resenting a radiotherapy treatment plan with certain beam angle configuration,
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segment shapes and segment intensities. As the set for navigation consists of dis-

crete plans, one can extract any planner-defined clinical evaluation criteria from

each plan, including the commonly used DV parameters, which are known to be

non-convex. This is in contrast to previous navigation methods which use convex

optimisation criteria for navigation. It is shown in this study that optimisation

criteria can be misleading in determining plan quality and may lead to a “sub-

optimal” plan during navigation. Instead, using clinical criteria enables the plan-

ner to assess plan quality and conduct navigation (including setting constraints)

in a more intuitive manner. The knowledge derived from the navigation steps can

then be used to form new preferences and the iterative process of navigation and

forming new preference continues until the most preferable plan is identified.
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Conclusion

In this thesis, we first review planning approaches for managing treatment trade-

offs between tumour control and normal tissue sparing. The a priori approaches

generate plans based on pre-determined planning protocols. The a posteriori ap-

proaches first generate a set of plans featuring different treatment trade-offs, fol-

lowed by a planner who selects the most preferable plan from the set. The inter-

active approaches involve a planner who iteratively adjusts treatment preferences

and re-optimises the current plan.

We propose a quality control method based on DEA, which assesses the quality of a

plan by comparing it to other reference plans and searches for evidence of improve-

ment potential. The quality control method integrates well with other planning

approaches by providing a means to reassure plan quality and thus improves the

planning efficiency. Application of the method to prostate cases demonstrates the

capability of DEA in correctly identifying plans with further improvement poten-

tial.

We integrate column generation in the RNBI framework to generate an approxi-

mated representative set of non-dominated points for an MOLP. Since RNBI sub-

problems may be infeasible, we attempt to detect this infeasibility early to reduce

computational expense. First, a reference point bounding method is proposed to

eliminate reference points that lead to infeasible RNBI subproblems. Furthermore,

119
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different initialization approaches for column generation are implemented, includ-

ing Farkas pricing. The quality of the representation obtained by the method is

also investigated.

The column generation RNBI method is applied to an MOLP in radiotherapy

treatment planning. In contrast to the commercial MCO-based planning method,

which uses convex interpolation of fluence maps to generate plans, the column

generation RNBI method produces a discrete set of plans with each plan featuring

a certain treatment trade-offs. By doing so, each plan can have a unique beam

configuration and segments, thus allowing one to fully utilise the treatment po-

tential. As demonstrated by our results, column generation RNBI produces plans

that are near-optimal and can be delivered with dramatically lower total fluence

than the corresponding optimal plans generated by the standard RNBI method

followed by segmentation. Such plans are desirable as they can be delivered with a

shorter treatment time. We also note that reference point bounding dramatically

reduces the number of RNBI subproblems that need to be solved.

Given a set of radiotherapy plans, one requires an effective method to search for

the most preferable plan in the set. Previous navigation methods are conducted

based on optimisation criteria. We show that optimisation criterion values may

not accurately reflect plan quality, thus can mislead a planner to overlook other

preferable plans. Instead, we propose to conduct navigation with planner-defined

clinical criteria. The proposed navigation model specifies the aspiration values

as soft constraints, thus enables the planner to freely express his or her prefer-

ences without leading to an infeasible model. Consequently, the soft constraints

enable navigation among a discrete set, which previous navigation methods are

not capable of.
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R. G. Chambers, Y. Chung, and R. Färe. Profit, directional distance functions,

and nerlovian efficiency. Journal of Optimization Theory and Applications, 98

(2):351–364, 1998.

T. C. Chan, T. Craig, T. Lee, and M. B. Sharpe. Generalized inverse multiobjective

optimization with application to cancer therapy. Operations Research, 62(3):

680–695, 2014.

V. Chanyavanich, S. K. Das, W. R. Lee, and J. Y. Lo. Knowledge-based IMRT

treatment planning for prostate cancer. Medical Physics, 38(5):2515–2522, 2011.

A. Charnes and W. W. Cooper. Programming with linear fractional functionals.

Naval Research Logistics Quarterly, 9(3-4):181–186, 1962.

A. Charnes, W. W. Cooper, and E. Rhodes. Measuring the efficiency of decision

making units. European Journal of Operational Research, 2(6):429–444, 1978.

A. Charnes, W. W. Cooper, and E. Rhodes. Short communication: Measuring the

efficiency of decision making units. European Journal of Operational Research,

3(4):339, 1979.

H. Chen, D. L. Craft, and D. P. Gierga. Multicriteria optimization informed VMAT

planning. Medical Dosimetry, 39(1):64–73, 2014.

H. Chen, B. A. Winey, J. Daartz, K. S. Oh, J. H. Shin, and D. P. Gierga. Ef-

ficiency gains for spinal radiosurgery using multicriteria optimization intensity

modulated radiation therapy guided volumetric modulated arc therapy planning.

Practical Radiation Oncology, 5(1):49–55, 2015.

W. Chen, D. Craft, T. M. Madden, K. Zhang, H. M. Kooy, and G. T. Herman. A

fast optimization algorithm for multicriteria intensity modulated proton therapy

planning. Medical Physics, 37(9):4938–4945, 2010.

R. Cheung, S. L. Tucker, A. K. Lee, R. de Crevoisier, L. Dong, A. Kamat, L. Pis-

ters, and D. Kuban. Dose–response characteristics of low-and intermediate-risk

prostate cancer treated with external beam radiotherapy. International Journal

of Radiation Oncology Biology Physics, 61(4):993–1002, 2005.



Bibliography 125

J. A. Chilingerian and H. D. Sherman. Health-care applications: From hospitals

to physicians, from productive efficiency to quality frontiers. In W. W. Cooper,

L. M. Seiford, and J. Zhu, editors, Handbook on Data Envelopment Analysis,

pages 445–493. Springer, New York, 2011.
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