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Abstract—In many applications of industrial wireless sensor
networks, sensor nodes need to determine their own geographic
position coordinates so that the collected data can be ascribed
to the location from where it was gathered. We propose a
novel intelligent localization algorithm which uses variable range
beacon signals generated by varying the transmission power
of beacon nodes. The algorithm does not use any additional
hardware resources for ranging and estimates position using only
radio connectivity by passively listening to the beacon signals.
The algorithm is distributed, so each sensor node determines its
own position and communication overhead is avoided. As the
beacon nodes do not always transmit at maximum power and
no transmission power is used by unknown sensor nodes for
localization, the proposed algorithm is energy efficient. It also
provides control over localization granularity. Simulation results
show that the algorithm provides good accuracy under varying
radio conditions.

Index Terms—Localization; wireless sensor networks;
multilateration; energy efficiency; location intelligence.

I. INTRODUCTION

IN many applications of industrial wireless sensor networks,
sensor nodes need to determine their own geographic

positions. Examples of such industrial applications include
gas leakage detection, industrial IoT, industrial fire detection,
underground pipeline inspection, target tracking, habitat
monitoring and area surveillance [1]–[3]. In such cases,
unknown sensor nodes need to employ an intelligent
localization algorithm to estimate their geographic position
coordinates usually with the assistance of a few beacon nodes.
The beacon nodes know their positions a priori either because
these are placed at pre-determined locations or are equipped
with location finding device, such as, global positioning
system (GPS) receiver. Due to energy and size limitations,
all unknown sensor nodes cannot be equipped with such extra
piece of hardware.

Location information of industrial sensor nodes is important
because of two major reasons. First, the sensor nodes must
send their geographic position coordinates with the sensed
data because data alone without location information may
not be useful. For example, in the case of an industrial
fire detection application, the sensor node should send the
geographic coordinates along with the event information so
that location of fire is known. Second, there are many services
and protocols that use location information to work. For
example, certain routing protocols, [4], [5], sensing coverage
[6], [7], topology management [8] and clustering strategies [9]
depend upon location information of sensor nodes.
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Localization algorithms may be classified as range based
[10] or range free [11]–[14], anchor based [10]–[12] or
anchor free [15] and single hop [14] versus multihop
[16]. Localization algorithm may be designed for outdoor
unconstrained [11]–[17] or indoor constrained environment
[18]. Similarly, a localization algorithm may use central [19]
or distributed processing [11]–[14]. In localization with mobile
anchor using trilateration (LMAT) [20], a moving beacon
node is used to help unknown nodes estimate their positions.
A single beacon node moves in a zig zag fashion along a
trajectory following the shape of interconnected equilateral
triangles in the sensor field to help localize unknown nodes.
In the Centroid algorithm [21], an unknown sensor node
determines its connectivity with neighbor beacon nodes and
estimates its position at their centroid. In concentric anchor
beacon (CAB) localization scheme [13], beacon nodes use
two transmission levels. An unknown node chooses three most
distant beacon nodes by calculating the areas of triangles
of all possible combinations. Next, it calculates points of
intersection of annular rings around these beacons by selecting
two beacon nodes at a time. It then isolates valid points of
intersection which are points that fall within all the annular
rings. The unknown node localizes itself at the centroid of the
region bounded by the points of intersection. Convex position
estimation (CPE) [19] algorithm formulates localization as an
optimization problem and then uses linear programming for
position estimation.

In this paper, we present a localization algorithm which
is distributed so that each unknown node can localize itself
passively by just listening to beacon nodes. The algorithm
employs multiple power levels [11]–[13] and annular rings
around beacon nodes and uses multilateration in sensor nodes
to achieve a novel but simple localization technique. The
algorithm is intelligent in two aspects. First, the proposed
algorithm enables a node to estimate position in an intelligent
manner by using passive information from beacon nodes.
Second, it provides sensing intelligence to the sensor network.
For example, after estimating positions, the nodes can make
many intelligent decisions, such as routing based on location
information. The algorithm does not require any extra piece
of hardware to estimate range and position. Based on the fact
that the algorithm sends out a ripple of beacon signals, we
call it ripple localization algorithm (RLA) for convenience
of reference. We also show quantitatively that the algorithm
is energy efficient compared to localization techniques which
transmit beacon signals at fixed radio range. Approximately
92% of the upper limit of energy efficiency can be attained
by using 10 quantization levels of transmission power.

This paper makes four major contributions. First, we present
a novel, intelligent, distributed and energy efficient localization
algorithm which gives good localization accuracy. Second,
we give a quantitative analysis of energy efficiency of the
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proposed algorithm. Third, we implement and simulate our
intelligent localization algorithm with practical irregular radio
conditions. Our localization algorithm is also compared with
two related algorithms – Centroid [21] and CAB [13]. Fourth,
we introduce three new metrics, error momentum, degree of
location intelligence (DOLI) and localization efficiency, for
the evaluation of localization algorithms. Simulation results
demonstrate that our proposed localization algorithm achieves
localization error which is much lower than both Centroid and
CAB. Time complexity of our ripple localization algorithm is
much lower than that of CAB and only marginally higher than
that of Centroid.

II. RIPPLE LOCALIZATION ALGORITHM

In this section, we start with assumptions of the sensor
field and then describe the ripple localization algorithm. The
algorithm consists of two parts – one part is executed by
beacon nodes and the other by the unknown nodes.

A. Sensor Field

We consider an outdoor wireless sensor network in a two
dimensional unconstrained sensor field with finite geographic
boundaries in which the sensor and beacon nodes are deployed.
Radio range of unknown nodes is longer compared to their
sensing range so that sensing granularity of nodes is higher
and sensed data can be transmitted to longer distances.
Communication range of beacon nodes is longer than that of
unknown sensor nodes. As a result, the beacon signal reaches
a large number of unknown sensor nodes at greater distances
and a fewer number of beacon nodes are required to localize
a large number of unknown sensor nodes. We assume that all
nodes are equipped with omnidirectional antennas, designed
for sensor networks such as the one described in [22], so
that nodes communicate equally in all directions. We also
assume that orthogonality of beacon signals is handled by
a medium access control protocol. To discuss and explain
the algorithm, we assume a perfectly circular radio range.
However, for performance evaluation and simulation, we use
a more practical irregular radio model [14] as shown in Fig. 1.
Degree of irregularity (DOI) is used to denote the extent of
irregularity in radio pattern and is defined as the maximum
radio range variation per unit degree change in the direction
of propagation.

(a) DOI = 0 (b) DOI = 0.1 (c) DOI = 0.2

Fig. 1. Irregular radio pattern and degree of irregularity.

B. Algorithm for Beacon Nodes

In majority wireless networks, beacon nodes transmit
multiple beacon signals at regular intervals using the same
transmission power. As a result, all of these beacon signals
have the same fixed transmission radius. In ripple localization
algorithm, a beacon node transmits beacon signals at different
power levels corresponding to different transmission radii so
that these radii fall into certain pre-determined quantized
intervals1. The beacon nodes are tested and calibrated so that
transmission radii corresponding to different power levels are
recorded for embedding in beacon messages. Hence, unknown
nodes receive more information each time they receive a
beacon message. The unknown nodes use this information to
achieve better accuracy in location estimation.

Transmission of successive beacon signals with incremental
values of transmission power and hence different transmission
radii is shown in Fig. 2. This is analogous to a ripple in
water. It emanates from the center and travels outwards. In the
same manner, each beacon node generates a ripple of beacon
signals. A beacon node sends its first beacon signal with some
set minimum transmission power. For each successive beacon
signal it increments the transmission power in such manner
that the transmission radius of the beacon signal is longer
by a step dr from the previous beacon signal. Beacon node
increments transmission power with each successive beacon
signal until maximum transmission power is reached, at which
point, the beacon node resets and starts this process all over
again. A typical beacon message is shown in Fig. 3. In this
beacon message, t0 is the time stamp. (Xb, Yb) are the position
coordinates of the beacon node. Pti is the transmission
power used. Ri is the corresponding radio range. dr is the
beacon signal step. Rmin is the minimum transmission radius
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Fig. 2. A ripple of beacon signals.

Fig. 3. A typical beacon message.

1Many sensor node platforms allow the transmission power to be set
dynamically. For example, when using CC2420, an IEEE-802.15.4 compliant
RF transceiver, transmission power for each packet can be set using
CC2420PacketC.setPower() command under TinyOS.
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corresponding to the minimum transmission power Pmin.
Rmax is the maximum transmission radius corresponding to
the maximum transmission power Pmax.

Algorithm 1 Algorithm for beacon nodes
1: while (true) do
2: transmit power = minimum transmit power
3: while (transmit power ≤ maximum transmit power) do
4: prepare beacon message
5: transmit beacon message
6: increment transmit power
7: end while
8: end while

C. Algorithm for Unknown Nodes
Multiple unknown nodes lying within the communication

range of a beacon node receive its beacon signals as shown
in Fig. 2. By extracting information from all the beacon
messages that an unknown node receives from a particular
beacon node, it can determine the radii of the inner and outer
circles of the annular ring around the beacon node in which
it lies. For example, the first beacon signal that unknown
node U1 receives is beacon signal number 4. Therefore, it
can ascertain that outer radius of the annular ring in which
it lies is the same as that of beacon signal 4. Note that,
of all the beacon messages that unknown node U1 receives
from that particular beacon node, first beacon signal has the
smallest radius. Knowing the beacon signal step dr from the
beacon message, and by subtracting it from the radius of the
outer circle, it can also determine the radius of the inner
circle. Next, it estimates its distance from the beacon node
by calculating average of the radii of the inner and outer
circles around the beacon node. Having estimated its distances
from three or more neighbor beacon nodes, the unknown node
then constructs and solves a set of multilateration equations
to estimate its own position.

To further explain position estimation, consider an unknown
sensor node having k neighbor beacon nodes with position
coordinates (x1, y1), (x2, y2), ..., (xk, yk). The unknown node
gets current transmission radius Ri and beacon signal step
dr of a neighbor beacon node from the beacon message and
estimates its range ri from the beacon node as under:

ri =
Ri +Ri−1

2
(1)

where Ri−1 is calculated as below:

Ri−1 = Ri − dr (2)

Ri and Ri−1 are radii of the outer and inner circles of the
annular ring around the beacon node in which the unknown
node lies. Using position coordinates of beacon nodes as
centers and range estimates as calculated above as radii, a
set of following equations of circles around beacon nodes can
be obtained: 

(x− x1)2 + (y − y1)2
(x− x2)2 + (y − y2)2

...
(x− xk)2 + (y − yk)2

 =


r21
r22
...
r2k

 (3)

Expanding square terms on the left side and rearranging, we
get: 

x2 + y2 − 2x1x− 2y1y
x2 + y2 − 2x2x− 2y2y

...
x2 + y2 − 2xkx− 2yky

 =


r21 − x21 − y21
r22 − x22 − y22

...
r2k − x2k − y2k

 (4)

Subtracting last row from each of the rows above it:
2(xk − x1)x+ 2(yk − y1)y
2(xk − x2)x+ 2(yk − y2)y

...
2(xk − xk−1)x+ 2(yk − yk−1)y



=


r21 − r2k + x2k − x21 + y2k − y21
r22 − r2k + x2k − x22 + y2k − y22

...
r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1

 (5)

Separating the unknowns (x, y), this can be rewritten in matrix
form as below:


(xk − x1) (yk − y1)
(xk − x2) (yk − y2)

...
...

(xk − xk−1) (yk − yk−1)


[
x
y

]

=
1

2


r21 − r2k + x2k − x21 + y2k − y21
r22 − r2k + x2k − x22 + y2k − y22

...
r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1

 (6)

Using matrix notation, this can be written as:

Az = R (7)

where z =
[
x y

]T
and

A =


(xk − x1) (yk − y1)
(xk − x2) (yk − y2)

...
...

(xk − xk−1) (yk − yk−1)

 (8)

R =
1

2


r21 − r2k + x2k − x21 + y2k − y21
r22 − r2k + x2k − x22 + y2k − y22

...
r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1

 (9)

Using least squares approximation, we get the following
closed-form and unique solution to (7).

z = A+R (10)

where
A+ = (ATA)−1AT (11)

and is pseudoinverse of matrix A.
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Algorithm 2 Algorithm for unknown nodes
1: /* Step 1 */
2: construct a list of neighbor beacon nodes
3: /* Step 2 */
4: for all neighbor beacon nodes do
5: sort beacon signal radii of received signals
6: signal with smallest radius is the outer circle
7: radius of inner circle = radius of outer circle – signal

step
8: estimated range = average of radii of inner and outer

circles
9: end for

10: /* Step 3 */
11: if number of neighbor beacon nodes ≥ 3 then
12: estimated position = multilaterate using all neighbor

beacon nodes
13: end if

D. Proof of Concept

To give a proof of the basic concept used in ripple
localization algorithm, we perform a simple experiment
which can be easily replicated. We use a D-Link DIR-605
IEEE 802.11 wireless router operating at 2.4 GHz and a
Huawei Ascend Y300 Android smartphone for our experiment.
The wireless router allows its transmission power to be set
at different levels through its administrative interface and is
equipped with omnidirectional antennas. The WiFi Analyzer
application is downloaded and installed on the smartphone
from the Google Play Store. We place the wireless router
in the center of a large and unobstructed open field. The
power is supplied by an uninterrupted power source. Using
the administrative interface, we set the transmission power
of the wireless router to 15% which is the minimum level
it allows. The smartphone is moved away from the wireless
router until the WiFi Analyzer on the smartphone reads -95
dBm. This is the threshold power for which the smartphone
provides connectivity. Further decrease in RSS results in loss
of connectivity. The distance between the router and the
smartphone is recorded. We repeat the same experiment every
30o making a total of 12 recordings circling 360o around the
wireless router. We then set the transmission power of the
wireless router to 35% which is the next level that it allows. We
repeat the experiment described above and take another set of
12 readings each 30o apart. We plot both sets of data in Fig. 4.
The first set of data gives the inner circle corresponding to 15%
transmission power whilst the second set of data constitutes
the outer circle corresponding to 35% transmission power. It
can be seen that the radio coverage is nearly circular. It is
also evident that practical irregularity in radio is comparable
to DOI used in our simulation experiments.

In the second part of our experiment, we download and
install the WiFi Alarm application on the smartphone and set
an alarm to sound when the WiFi network provided by the
wireless router is detected. We place the smartphone in the
area bounded by the transmission circles corresponding to 15%
and 35% power levels. We first set the transmission power
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Fig. 4. Experimental verification of radio connectivity.

to 15%. As the smartphone is not within range, the alarm
does not sound. Next, we set the transmission power to 35%.
The smartphone receives and detects the wireless signal and
sounds the alarm. This is repeated by placing the smartphone
at 10 different positions in the annular region bounded by the
two transmission circles. The alarm did not sound only once
when the smartphone was placed at the outer periphery of the
annular region. Experiment verifies the basic concept used in
the ripple localization algorithm.

III. ENERGY EFFICIENCY

We give a quantitative analysis of the energy efficiency of
the proposed ripple localization algorithm in this section. We
show that a beacon node achieves 92% of the upper limit of
energy efficiency with 10 quantization levels of transmission
power. The unknown sensor node expends zero transmission
energy for localization.

We assume that the relationship between transmitted power
Pt and received power Pr between two nodes in the outdoor
unconstrained sensor field is governed by the following path
loss model:

Pt
Pr

= Kdα (12)

where
K =

1

GtGr
(
4π

λ
)2 (13)

Gt and Gr are gains of transmitter and receiver antennas
respectively, λ is the wavelength of radio waves, d is the
distance between transmitter and receiver antennas, and α is
the path loss exponent.

Let us now successively increment the transmitted power
from its minimum value Pmin to maximum value Pmax
corresponding to beacon signal minimum radio range Rmin
and beacon signal maximum radio range Rmax respectively
so as to generate a ripple of beacon signals as shown in
Fig. 2. The power is increased in such a manner that with
each increment of power, increase in beacon signal radio
range remains the same i.e. the difference between radii of
two consecutive beacon signals remains constant. We call this
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beacon signal step and denote it by dr. Furthermore, let us also
assume that beacon signal minimum radio range Rmin is equal
to beacon signal step dr for simplicity. Let the transmitted
power of an ith beacon signal be denoted by Pti and the
corresponding radio range of the beacon signal be Ri. As the
difference between the radii of two consecutive beacon signals
dr is constant, therefore

Ri = i× dr (14)

If the total number of beacon signals in the ripple generated
by the beacon node is n, then

Rmax = n× dr (15)

According to (12), transmitted power Pti for ith beacon signal
is given as:

Pti
Pr

= KRαi (16)

Similarly, maximum transmitted power Pmax is given by

Pmax
Pr

= KRαmax (17)

Received power Pr is the same in (16) and (17). Substituting
(14) in (16) and (15) in (17), we get:

Pti
Pr

= K(idr)
α (18)

Pmax
Pr

= K(ndr)
α (19)

Dividing (18) by (19), we get:

Pti = (
i

n
)αPmax (20)

The above relation gives us the transmission power required to
transmit ith beacon signal with radius Ri in a ripple. To get the
upper bound on the energy saved, we use α = 2. Therefore,
total power PT transmitted by a beacon node for sending a
ripple of n beacon signals is given by:

PT =
Pmax
n2

n∑
i=1

i2 (21)

Summation term on the right is the sum of squares of first n
natural numbers, which is given by:

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
(22)

Substituting this in (21), we get

PT =
(n+ 1)(2n+ 1)

6n
Pmax (23)

If a beacon node transmits 5 beacon messages, all at maximum
power, transmit power used is 5Pmax. However, if a ripple of 5
beacon messages is transmitted by varying the transmit power,
so that n = 5, the total transmitted power, as calculated using
(23) is 2.2Pmax , which is less than half of the power required
to transmit usual beacon messages at maximum power. Power2

saved is 5Pmax – 2.2Pmax = 2.8Pmax and energy efficiency

2Time required to transmit beacon signals in both cases is the same.
Therefore, power implies energy and vice versa.

of 100×2.8/5 = 56% is achieved. In general, transmit power
saved PS in transmitting a ripple of n beacon signals is given
by:

PS = nPmax −
(n+ 1)(2n+ 1)

6n
Pmax (24)

This can be simplified to arrive at the following result:

PS =
(4n+ 1)(n− 1)

6n
Pmax (25)

This gives us the energy saved when a ripple of beacon
messages is sent instead of sending beacon signals at fixed
radio range. If n beacon messages are transmitted at fixed
power, the transmitted power used is nPmax. Percentage of
power saved or energy efficiency ηP achieved is given by:

ηP =
PS

nPmax
× 100 =

(4n+ 1)(n− 1)

6n2
× 100 (26)

Note that for n = 1, i.e. beacon messages with only one power
level, (25) and (26) result in zero implying that no energy is
saved. For n = 5, ηP is 56% which is the same as calculated
earlier using (23). A plot of (26) for the interval 0 ≤ n ≤ 10 is
shown in Fig. 5. As can be seen, greater the number of beacon
signals n, greater is the energy saved. In the limit, when a
beacon node uses an infinite number of beacon signals in a
ripple, maximum energy efficiency ηPmax is achieved and is
given by:

ηPmax = lim
n→∞

(4 + 1
n )(1−

1
n )

6
× 100 = 66.67% (27)

This shows that the upper bound on the energy saved by a
beacon node is 66.67% when the number of beacon signals in
a ripple approaches ∞.

Using (26), we calculate that for 60% and 65% energy
saving, the number of beacon signals in a ripple is
approximately 8 and 30 respectively. For n = 10 in a ripple, we
get 61.50% energy saving i.e. we attain approximately 92%
of the upper limit of energy efficiency.

The above calculations show the energy that is being saved
by beacon nodes only. The proposed algorithm does not
require an unknown node to transmit anything. It estimates
the position passively by merely receiving and processing
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Fig. 5. Energy saving with increase in beacon signals in a ripple.
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information from beacon nodes. Therefore, unknown nodes
utilize zero transmission energy for the purpose of localization.
We assert that the only energy an unknown node expends
for localization is the processing energy. However, note that
a complete assessment of total energy consumption of a
sensor node can only be made after analysis of all the related
information. This includes energy spent on receiving and how
duty cycling is done for the particular application for which
the sensor network has been deployed. It is further added that
we are concerned only with energy used by the localization
algorithm and not the overall energy used by a sensor node
for various other tasks.

IV. PERFORMANCE METRICS

In this section, we describe metrics used for performance
evaluation and comparison of ripple localization algorithm. We
also introduce and explain three new metrics, error momentum,
localization efficiency and degree of location intelligence
(DOLI), for performance evaluation of localization algorithms.

Localization error is the distance between actual and
estimated positions. Localization error is normalized to sensor
node radio range Rs for the purpose of uniform comparison
of results. Localization time is the time taken by a localization
algorithm for position estimation of a sensor node. To quantify
the combined effect of localization time and localization error,
we introduce a new metric which we call time momentum
of localization error or simply error momentum. We define
error momentum as the product of localization error and
localization time. If localization time of 1 second results in
a localization error of 1 meter, we have unit error momentum
of 1 meter-second. As localization times are usually in the
range of milliseconds, meter-second is a large unit for our
purpose and we, therefore, use milli meter-second instead. If
localization error or time is appropriately traded off, value of
error momentum will be more closer to the low value.

A localization algorithm may sometimes be not able to help
all the unknown nodes localize and settle down. For example,
in the case of CAB, if neighbor beacon nodes do not fulfill the
set of constraints laid down by the algorithm, the sensor node
fails to estimate position. This node is called an unsettled node.
A node which is able to localize is called settled or location
intelligent node. If number of settled nodes is represented by
Ns and number of total unknown nodes by Nu, we can define
localization efficiency ηl as following:

ηl =
Ns
Nu
× 100 (28)

A sensor node which does not know its position is a dumb
node or unknown node. When it has estimated its position
with the help of a localization algorithm, it has acquired
location intelligence. Degree of location intelligence (DOLI)
of a sensor node depends upon the extent of accuracy with
which it has estimated its position. An unknown or dumb node
which does not know its position has a DOLI of 0. A node
which knows its exact position with zero estimation error has

a DOLI of 1. We represent DOLI using Greek symbol δ and
formally define it as:

δ =

{
0, if el

Rs
≥ Rs

Rs−
el
Rs

Rs
, otherwise

(29)

where Rs is the radio range and el is the localization error of
the unknown sensor node. If an unknown node has normalized
localization error greater than or equal to its radio range, δ = 0
for such cases and for all other cases 0 ≤ δ ≤ 1.

V. PERFORMANCE EVALUATION

We begin this section with a description of simulation
settings. We then present, describe and analyze results of
experiments carried out for the performance evaluation of the
ripple localization algorithm (RLA) and its comparison with
two other algorithms – Centroid [21] and CAB [13]. Both
Centroid and CAB are designed for unconstrained environment
and are closely related to our work.

A square sensor field of size 100 m× 100 m with 100
randomly deployed sensor nodes is used for the simulation
experiments. Transmission power of beacon nodes is changed
such that they have a minimum 10 m and maximum 100
m transmission radius with a beacon signal step of 10 m.
As a result, the beacon nodes use 1 to 10 transmission
power levels. A practical irregular radio model as depicted
in Fig. 1 is used for performance evaluation. Degree of
irregularity (DOI) is used to denote the extent of irregularity
and noise in radio pattern and is defined as the maximum
radio range variation per unit degree change in the direction
of propagation. To simulate irregular radio range of a beacon
node, we use a Gaussian random variable with mean (µ)
equal to the current transmission radius (Ri) of the beacon
node and standard deviation (σ) equal to the product of DOI
and mean. In other words, µ = Ri and σ = µ×DOI . For
performance evaluation and comparison, number of beacon
signals in a ripple, number of beacon nodes in the sensor
field and DOI of beacon signals are varied in a number of
simulation experiments and results are recorded and plotted.
We use a computer with Intel Core i3-3110M CPU @2.40
GHz processor and 4 GB RAM to run the simulations. We use
the same platform to simulate all the compared algorithms.

A. Localization Error

1) Localization granularity and number of beacon signals
in a ripple: We vary the number of waves in the ripple
i.e. the number of beacon signals from 1 to 10 and record
the localization error. The number of the beacon nodes used
is 20%. Results are plotted in Fig. 6. As more and more
beacon signals are added in the ripple, the width of annular
ring becomes smaller. As a result, the estimate of the range
between an unknown node and a beacon node, calculated
as the average of radii of inner and outer circles of annular
ring, becomes better thereby resulting in a smaller localization
error. This gives ripple localization algorithm ability to control
granularity of position estimation. The higher the number of
beacon signals n, the finer the location granularity.
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Fig. 6. Effect of number of beacon signals in a ripple on localization error.

2) Number of beacon nodes: Under adverse radio
conditions, with DOI = 0.2, localization error is recorded
while number of beacon nodes in the sensor field is varied
from 3% to 30%. Results, plotted in Fig. 7, show that RLA
performs better than both Centroid and CAB over the entire
range of the number of beacon nodes. Better performance of
RLA can be attributed to three other reasons in addition to
its usage of multiple power levels. First, the only source of
error in RLA is due to least squares approximation, which in
turn is due to error in estimation of distances. In the case of
CAB, there are two sources of error – estimation of distances
in terms of concentric rings and estimation of node position
at the centroid of intersected region which is only a guess.
Second, RLA constructs a mathematical model and solves a set
of equations for position estimation. Third, instead of making
a selection, it uses all neighbor beacon nodes for localization
of sensor node resulting in a better position estimate.

3) Cumulative error distribution: CDF of the localization
error of the three compared algorithms is plotted in Fig. 8 for
DOI = 0.1 using 10% beacon nodes in the sensor field. There
are at least four observations that we can make from these
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Fig. 7. Localization error of Centroid, CAB and RLA.
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Fig. 8. Comparison of cumulative error distribution.

plots. First, there is a large difference in the error distribution
of the three algorithms. Second, the error distribution of
Centroid is spread over large values. When using Centroid,
almost 50% nodes have localization error between 2Rs and
4.5Rs, and remaining 50% have error between 4.5Rs and
7Rs which are quite large values. Third, CDF plot for RLA
algorithm is relatively vertical compared to the other two
algorithms. It means that there is comparatively smaller spread
in localization error and accuracy of localization can be
predicted with more certainty in the case of RLA algorithm.
100% nodes are able to localize with error below Rs and
approximately 90% nodes have error below 0.75Rs using
RLA algorithm. Fourth, in the case of CAB algorithm,
approximately 40% nodes have localization error below Rs.
All other nodes using CAB have localization error greater
than Rs. Localization errors above Rs imply that the node
has localized itself beyond its area of radio coverage and the
estimated position may lie in the area of coverage of another
sensor node.

B. Localization Time

In Fig. 9, we compare average localization times of
Centroid, CAB and RLA algorithms when DOI = 0.
Localization time of CAB algorithm causes large values
along vertical axis and the marginal difference in localization
times of Centroid and RLA is not visible in Fig. 9. It is
evident that the localization times of Centroid and RLA vary
linearly with change in the number of beacon nodes and have
linear computational complexity O(k) with respect to neighbor
beacon nodes. The time required by CAB algorithm increases
rapidly in a nonlinear fashion with an increase in the number
of the beacon nodes. As is shown in Fig. 7, localization error
reduces for all three algorithms as the number of beacon nodes
is increased. However, in the case of CAB, this reduction is at
the cost of higher localization time and processing energy.
CAB requires repetitive and extensive computation for the
selection of three most distant neighbor beacon nodes and
calculation and isolation of valid points of intersection. This
results in longer localization time and processing energy. On
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the other hand, RLA gives better location accuracy without
any significant increase in time, as it does not need repetitive
computation for position estimation. It is to be noted that,
while CAB requires significantly higher amount of processing
energy, it needs the same amount of transmission energy as
used by RLA when transmitting beacon signals using the same
number of power levels.

C. Error Momentum

In Fig. 9, the three algorithms are compared with respect
to localization time, and in Fig. 7, the same algorithms
are compared with respect to localization error. In terms
of localization error, CAB algorithm performs better than
the Centroid. However, with respect to localization time,
performance of Centroid algorithm is better than CAB. We can
use error momentum to determine which of the two algorithms
makes better use of localization time and error trade off. In
Fig. 10, we plot error momentum of the three algorithms for
different values of DOI as the number of beacon nodes in
the sensor field is increased. CAB performs better when the
number of beacon nodes is between 5% to 23%. However,
Centroid algorithm makes better use of time and error trade
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Fig. 9. Comparison of localization times.
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Fig. 10. Change in error momentum with DOI and number of beacon nodes.

off when the number of beacon nodes is below 5% or is greater
than 23%. RLA performs better than both Centroid and CAB.

D. Localization Efficiency

In Fig. 11, we plot localization efficiency of the three
compared algorithms for DOI = 0.2. Centroid and RLA
algorithms achieve 100% localization efficiency when the
number of beacon nodes is increased beyond 5%. CAB
algorithm also achieves almost 100% efficiency beyond
this point with occasional exceptions. In the case of CAB
algorithm, a node has to first calculate points of intersection of
transmission circles of neighbor beacon nodes and then isolate
valid points of intersection. Due to irregular radio pattern,
isolation of valid points of intersection may not be possible
sometimes thereby resulting in lower localization efficiency.

E. Degree of Location Intelligence

DOLI for the three algorithms is plotted in Fig. 12 for
DOI = 0.2. Sensor nodes have better DOLI when using RLA
compared to either Centroid or CAB for the entire range of
beacon nodes. Beyond 10% beacon nodes, DOLI of RLA
remains above 0.95.
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Fig. 11. Localization efficiency.
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Fig. 12. Performance comparison using DOLI.
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F. Node Density

In Fig. 13, we plot localization error as side of the square
sensor field is increased from 50 m to 200 m while using
100 sensor nodes, 20% beacon nodes and DOI = 0.2. As the
size of the sensor field increases, the beacon node density
decreases. Consequently, a sensor node has fewer and distant
neighbor beacon nodes, and as a result, higher distance
estimation and localization error while using any of the three
compared algorithm.

G. Variation in Beacon Signal Step

In a practical situation, it is possible that beacon signal step
(dr) does not remain constant as the transmission power is
increased successively. We add an error to the beacon signal
step dr in each wave in a ripple in a 100× 100 sensor field
with 100 sensor nodes and 20% beacon nodes using n = 10.
The error is random over the interval [−βdr +βdr], where β
specifies bound on the random error. We vary error bound β
from 0% to 100%, and record localization error. The results
are plotted in Fig. 14. The addition of the random error in
dr may cause a sensor node to incorrectly estimate itself
lying in a wrong annular ring around a neighbor beacon node,
thereby yielding a faulty distance estimate, and hence, higher
localization error. Transmission power of sensor node can be
calibrated to minimize error in the beacon signal step.

H. Performance Comparison with Improved CAB

It may be considered to modify CAB to give improved
performance. CAB can be modified in two ways. First, it
can either use only three farthest beacon nodes or select all
neighbor beacon nodes for position estimation. When using
all neighbor beacon nodes, an unknown node does not test for
the farthest three nodes. it simply selects all neighbor beacon
nodes and then estimates position as in original CAB. Second,
the number of transmission power levels can be kept as in CAB
or increased to such levels as proposed in RLA. This gives us
the following four possibilities of CAB.
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Fig. 13. Localization error for different sizes of sensor field.
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Fig. 14. Effect of variations in beacon signal step on localization error.

1) CAB: Use the same transmission power level as in
CAB and select three farthest beacon nodes for position
estimation. This is original CAB algorithm.

2) CAB-A: Use a higher number of transmission levels but
only three farthest beacon nodes.

3) CAB-B: While keeping the number of power levels same
as in CAB, use all neighbor beacon nodes for position
estimation instead of the farthest three.

4) CAB-C: With a higher number of power levels, use all
neighbor beacon nodes for localization.

We investigate all these forms for performance comparison.
We plot localization times in Fig. 15 and localization error in
Fig. 16 against the number of beacon nodes for RLA and
the original and the modified form of CAB using n = 10
for DOI = 0.2 with 100 sensor nodes deployed in 100× 100
sensor field. Accuracy of modified versions of CAB is better
as localization error is lower. The two factors i.e. inclusion
of all neighbor beacon nodes for position estimation and
the usage of higher number of transmission levels result in
smaller area bounded by points of intersection, and hence,
lower localization error. However, both these factors also
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Fig. 15. Localization time of modified forms of CAB.
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Fig. 16. Localization error of modified forms of CAB.

result in increased localization times which are plotted in
Fig. 15, and lower localization efficiency which is plotted
in Fig. 17. Complexity of CAB-B and CAB-C increases as
the number of beacon nodes increases because a sensor node
has to calculate a higher number of points of intersection and
then determine valid points among them. Maximum number
of points of intersection contributed by k beacon nodes is
8k(k−1)

2 = 4k(k−1) resulting in time complexity of the order
of O(k2). Each of these points of intersection is tested against
k annular rings around k beacon nodes. Hence, total number
of tests performed by an unknown node to determine valid
points is 4k2(k − 1) giving a time complexity of O(k3).

All modified versions of CAB are unable to localize a
large number of unknown nodes, as shown in Fig. 17. Due
to irregular radio, a sensor node may incorrectly determine
itself lying in a different annular ring than the one it actually
lies in around a beacon node. As required by CAB, a point
of intersection must fall within the annular rings of all
participating neighbor beacon nodes for it to be a valid point
of intersection. Due to a single incorrect annular ring, no point
of intersection can satisfy this condition resulting in failure to
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Fig. 17. Localization efficiency of modified forms of CAB.

isolate valid points. Therefore, node is unable to localize and
remains unsettled. Ripple localization algorithm, however, has
the advantage that it absorbs an incorrect annular ring during
position estimation. When using Centroid or RLA, an incorrect
annular ring results in a wrong range estimate, and hence it
merely contributes to localization error. However, it does not
block a node from localization.

VI. CONCLUSION

We have presented an intelligent, energy efficient and
distributed localization algorithm for industrial wireless sensor
networks. The algorithm is able to estimate position without
using any additional piece of hardware thereby saving cost,
size and energy. The algorithm is energy efficient. It does not
require unknown nodes to expend any transmission energy and
they can localize passively in an intelligent manner using only
processing energy by merely listening to the beacon messages.
It achieves 100% localization efficiency with a high degree
of location intelligence within a short localization time by
using only 5% beacon nodes. It also provides control over
localization granularity.
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