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Abstract

We study low-dimensional quantum systems with analytical and computational methods.

Firstly, the one-dimensional extended t-V model of fermions with interactions of �nite

range is investigated. The model exhibits a phase transition between liquid and insulating

regimes. We use various analytical approaches to generalise previous theoretical studies.

We devise a strong coupling expansion to go beyond �rst-order perturbation theory. The

method is insensitive to the presence or the lack of integrability of the system. We extract

the ground state energy and critical parameters of the model near the Mott insulating

commensurate density. A summary of the methods used is provided to give a broader view

of their advantages and disadvantages.

We also study the possible charge-density-wave phases that exist when the model is at

the critical density. A complete description of phase diagrams of the model is provided:

at low critical densities the phases are de�ned analytically, and at higher critical densities

we tackle this problem computationally. We also provide a future outlook for determining

the phases that occur at non-zero temperature.

Secondly, we investigate Mott-Wannier complexes of two (excitons), three (trions) and

four (biexcitons) charge carriers in two-dimensional semiconductors. The fermions interact

through an e�ective interaction of a form introduced by Keldysh. Our study also includes

impurity-bound complexes. We provide a classi�cation of trions and biexcitons in trans-

ition-metal dichalcogenides, which incorporates the di�erence of spin polarisation between

molybdenum- and tungsten-based materials. Using the di�usion Monte Carlo method,

which is statistically exact for these systems, we extract binding energies of the complexes

for a complete set of parameters of the model. Our results are compared with theoret-

ical and experimental work on transition-metal dichalcogenides. Agreement is found for

excitonic and trionic results, but we also observe a large discrepancy in the theoretical

biexcitonic binding energies as compared to the experimental values. Possible reasons for

this are outlined. Simple interpolation formulas for binding energies are provided, that can

4



be used to easily determine the values within the accuracy of 5% for any two-dimensional

semiconductor. We also calculate contact pair densities, which in the future can be used

in the determination of the contact interaction.
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Introduction

In the last century, quantum physics has mysti�ed and perplexed the world's greatest

minds. Some of them refused to believe that a theory that has such counter-intuitive

predictions could ever be true. However, nowadays it is a cornerstone of modern physics

and technology. We now know that when we approach nanoscale systems, they may exhibit

unusual behaviour that could never be explained by classical theory. Additionally, in the

last couple of decades, we have made serious progress in harnessing the extraordinary

properties that quantum systems exhibit to our technological advantage. Nanotechnology

is a new prominent direction, which not only gives us promise of future advancement, but

already delivers materials and devices that we can use today.

After the experimental discovery of graphene in 2004, a two-dimensional carbon allo-

trope with atomic thickness, scientists have realised that low-dimensional quantum systems

may not only be used as toy models, but can be manufactured in real life, together with all

their interesting properties. Materials with low dimensionality may have possible applic-

ations in all areas of our lives, such as pushing the technological limit of Moore's law into

beyond-silicon electronics.

Theoretical understanding of low-dimensional materials is crucial in determining their

future use and discovering their properties. With today's advancement of computational

power, we can not only tackle this problem analytically, but also solve quantum systems

using computer simulations.

In this work, we have chosen to work with two quantum systems with low dimensionality

that exhibit very interesting properties. Firstly, we study a system of fermions on a one-

dimensional lattice in which fermions have long-range interactions and which displays

an insulator�conductor phase transition. Solving this very general model can give us insight

into a full range of one-dimensional systems and can show us which methods have advant-

ages and disadvantages in a system with interactions that go beyond nearest neighbours.

Secondly, we investigate a few-particle bound system of fermions in a two-dimensional
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semiconductor. This will advance us towards understanding and utilising the opto-elec-

tronic properties of two-dimensional materials.

The content of this work is as follows. The �rst part of this thesis deals with

a one-dimensional quantum system that exhibits both insulating and conducting regimes.

Chapter 1 introduces the concept of Luttinger liquids and Mott insulators and talks about

the generalised t-V model, its known properties and previous results. Chapter 2 shows

attempts to solve the model under various conditions. Here we use analytical and numer-

ical methods in order to provide a successful description of the critical behaviour near

the transition between insulating and conducting phases. In Chapter 3, we try to assess

the properties of the Mott insulating phases that can occur in the generalised t-V model

and show phase diagrams of the system.

In Part II, we investigate a model of charge carrier complexes in two-dimensional

semiconductors, in particular in transition-metal dichalcogenides. Chapter 4 contains the

theoretical background. Chapter 5 gives a brief overview of the quantum Monte Carlo

framework � the method we use to simulate the system. Finally, Chapter 6 presents binding

energies of charge carrier complexes and compares our results with other experimental and

theoretical work.
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Part I

Luttinger liquids
and Mott insulators
in one dimension



Chapter 1

Theoretical background

1.1 Luttinger liquids and criticality

The usual description of interacting fermions in metals at low temperatures is done using

the Fermi liquid theory [1]. The ground state of such a system is composed of fermions

occupying all momentum states up to the Fermi momentum (assuming isotropy), and

excitations are quasi-particles, which carry both charge and spin and obey Fermi statistics.

However, Fermi liquid theory breaks down in one dimension and another theory is needed

[2].

The correct theory describing interacting electrons in a one-dimensional conductor is

the Tomonaga-Luttinger liquid [3]. Here, the elementary excitations are bosonic �uctu-

ations of two kinds: charge density waves (plasmons) that carry charge, and spin density

waves that carry spin and propagate independently from the former. This spin-charge

separation is the most prominent di�erence from Fermi liquid theory [4].

For a spinless case, the Hamiltonian of the diagonalised Luttinger liquid model is [4, 5]:

HLL= vS
X
k

jk jbk
ybk+

�
2L

(vNN2+ vJJ2); (1.1)

where bk are bosonic charge density excitations with momentum k= 2�i

L
; i=�1;�2; :::, L

is the system size, N is the particle number operator (or total charge) and J is the current

number operator. Any bosonic excitation can be thus labelled by quantum numbers N and

J . For simplicity ~ in the equation above is set to unity.
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There are three parameters present in Equation (1.1) which have dimensions of velocity:

vS is sound velocity, similar to Fermi velocity, which is related to bosonic excitations; vN

is charge velocity, which measures the changes in chemical potential; and vJ is the current

velocity, which is a measure of the energy needed to create a charge current throughout

the chain. The charge velocity vN can be de�ned as

vN =
L
�
@2E0
@N2 ; (1.2)

where E0 is the ground state energy. By introducing a �ux of particles � going throughout

the system, we can calculate the current velocity,

vJ=
�
L
@2E0
@�2

����
�=0

: (1.3)

The sound velocity can be determined using the scaling relation of the Luttinger liquid [5],

vS= vN vJ
p

: (1.4)

In case of a non-interacting model, all the velocities are the same, vS= vN= vJ, and equal

to the Fermi velocity.

In a spinful case of the model, due to spin-charge separation, the Hamiltonian will

consist of Eq. (1.1) and a similar part corresponding to spin density waves. That additional

part will be similarly described by three analogous velocities.

According to Refs. [6, 5, 7], every spinless, gapless and interacting system of fermions in

1D is a Luttinger liquid. Thus, its low-energy physics can be described by two parameters:

the sound velocity vS and a dimensionless parameter K,

K = 1
2
vS
vN

= 1
2
vJ
vS
; (1.5)

which is usually called the Luttinger liquid parameter. The value of K describes the

e�ective strength of interactions in the chain and also fully characterises all critical expo-

nents of the system, i.e. one can calculate the power-law decay of all local correlation

functions.

The theory of Luttinger liquids has already proven to be applicable in experiments

dealing with electrons in carbon nanotubes [8], edge states in the fractional quantum Hall

e�ect [9, 10], and crystals of trapped ions [11].
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1.2 Mott insulators

Many low-dimensional systems show interesting behaviour, such as the presence of phases

that cannot be explained using classical theory [12]. One example of such a phase is a

Mott insulator. If one considers only conventional band theory within the nearly free

electron approximation [13, 14], then a material in a Mott insulating phase should conduct

electricity. In other words, there is a non-zero density of charge carriers in the system,

however the system behaves like an insulator. Among the �rst experimentally observed

Mott insulators were some transition metal oxides [15] (e.g. nickel oxide), which have odd

number of electrons in a unit cell and should therefore be conductors. However, Mott [16,

17] proposed a theory in which those materials behave like insulators due to electron�

electron interactions that prevent the electrons from moving.

Mott insulators have applications ranging from high-temperature superconductors [18]

to a new type of energy-e�cient �eld e�ect transistor with fast switching times [19].

Research into the subject of one- and two-dimensional Mott transistors is currently ongoing

[20�22]. However, to make an e�cient Mott insulating device we �rst need an accurate

description of the underlying physics of the system.

1.3 The generalised t-V model

1.3.1 Description of the model

The generalised t-V model of spinless fermions in one dimension was introduced by

Gómez-Santos [23] as an example of a model exhibiting both Luttinger liquid and Mott

insulating regimes. The Hamiltonian of the model on a periodic chain of L sites is

H =¡t
X
i=1

L

(ci
yci+1+ h.c.)+

X
i=1

L X
m=1

p

Umnini+m; (1.6)

where ci and ci
y are fermionic annihilation and creation operators on site i, ni= ci

yci is the

particle number operator on site i, t is the hopping amplitude describing the kinetic part,

Um is the potential energy between two fermions m sites apart from each other, and p

is the maximum range of interactions (8m>pUm = 0). There are no on-site interactions,

i.e. U0= 0, and all the non-zero interactions are repulsive, i.e. Um> 0. The Hamiltonian
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of the t-V model is easily recovered by setting p= 1. In this case the model is integrable

(solved by the Bethe ansatz [24] in Refs. [26, 27]) and equivalent to the XXZ Heisenberg

model after a Jordan-Wigner transformation (see Chapter 1.3.3). For p=2, the model is

sometimes called the t-V -V 0 model or the t-U -V model.

The kinetic part is assumed to be signi�cantly smaller than the potential:

t�Um; (1.7)

and can be treated as a perturbation.

Gómez-Santos [23] introduces one more important assumption,

8
m
Um<

Um¡1+Um+1
2

: (1.8)

If the fermion-fermion distance is required to be less than p sites (due to high density

in the system), then the particles will want to be as spread out as possible. One can for

example consider two similar systems, both in Fock states, which are di�erent only by

fermion chains: (�������) and (�������), where � and � denote occupied and empty sites

respectively. Assumption (1.8) tells us that the �rst system will always have lower energy

regardless of the maximum range of interactions, if p>1. By converting condition (1.8) into

8
m

Um+1+Um¡1¡ 2Um
a2

> 0; (1.9)

where a is the lattice constant, we can immediately see that this assumption is a discrete

version of the (continuous) inequality

lim
�r!0

U(r+�r)+U(r¡�r)¡ 2U(r)
(�r)2

= d2U(r)
dr2

> 0; (1.10)

or that the potential must always fall with a decreasing

rate, i.e. the potential U(r) is strictly convex.

One can easily check that assumption (1.10) holds

for Coulomb and dipole potentials, and all potentials

of a form (see Fig. 1.1):

U(r)= C

rk
; k2/ [¡1; 0]: (1.11)

However, in principle, a potential that does not sat-

isfy such a condition could also be considered (such as

the Pöschl-Teller potential [28] used in the description

of ultracold atomic gases).

Figure 1.1. Plot of U 00(r) for

U(r)= r¡k. Red region shows where

the assumption (1.10) does not hold.
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1.3.2 Motivation

The extended t-V model of fermions has one prominent feature that makes it of theoret-

ical interest: its description is rather general, as the values of the potentials are not set.

Therefore, it could describe an experimentally realisable one-dimensional system. With

the recent nanotechnological advancements, it has become possible to engineer condensed

matter systems using ultracold atoms in optical lattices [29, 30]. Additionally, because the

system exhibits the Luttinger liquid�Mott insulator phase transition, it may be relevant

to the experimental production and the operation of a one-dimensional Mott transistor.

Finally, the investigation of the generalised t-V model may serve as a theoretical exercise

that helps in the development and classi�cation of usefulness of analytical and numerical

methods that can deal with quantum systems with long-range interactions.

1.3.3 Formulation as a chain of spins

Every one-dimensional1.1 system of spinless fermions can be formulated as an equivalent

system of spins (spin-half). One way to do this is to use the Jordan-Wigner transformation

[31], in which fermionic creation and annihilation operators are rede�ned as chains of spin

operators, 8<: ci = e¡i�
P

k=1
i¡j�k

+�k
¡
�i
¡

ci
y = ei�

P
k=1
i¡j�k

+�k
¡
�i
+

; (1.12)

where �i
�=(�ix� i�i

y)/2 and �x; �y; �z are the Pauli spin matrices:

�x=
�
0 1
1 0

�
; �y=

�
0 ¡i
i 0

�
; �z=

�
1 0
0 ¡1

�
: (1.13)

We can see that

ci= e
¡i�

P
k=1
i¡j�k

+�k
¡
�i=

Y
k=1

i¡1
e
¡i�

�
1 0
0 0

�
k�i
¡=

Y
k=1

i¡1 � ¡1 0
0 1

�
k

�i
¡=

Y
k=1

i¡1
(¡�kz)�i¡; (1.14)

1.1. Although the same procedure can be used in higher-dimensional systems, the transformation will produce

multiple non-local terms that require keeping track of many non-local quantum numbers. In one dimension all the

non-local terms (see Eqs. (1.19�1.20)) include the number of particles N , which is usually �xed during the setup of

the system.
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and the transformation is simply(
ci =

Q
k<i (¡�k

z)�i
¡

ci
y =

Q
k<i (¡�k

z)�i
+ : (1.15)

Therefore one can calculate the following relations:

ci
yci+1 =

Y
k<i

(¡�kz)�i+
Y
l<i+1

(¡�lz)�i+1¡ (1.16)

= (¡�1z)���(¡�i¡1z )�i
+(¡�1z)���(¡�i¡1z )(¡�iz)�i+1¡

= ¡�i+�iz�i+1¡ =¡
�
0 1
0 0

�
i

�
1 0
0 ¡1

�
i

�i+1
¡

= �i
+�i+1

¡ ;

ci+1
y ci =

Y
k<i+1

(¡�kz)�i+1+
Y
l<i

(¡�lz)�i¡ (1.17)

= (¡�1z)���(¡�i¡1z )(¡�iz)�i+1+ (¡�1z)���(¡�i¡1z )�i
¡

= ¡�iz�i¡�i+1+ =¡
�
1 0
0 ¡1

�
i

�
0 0
1 0

�
i

�i+1
+

= �i+1
+ �i

¡;

ni= ci
yci =

Y
k<i

(¡�kz)�i+
Y
l<i

(¡�lz)�i¡ (1.18)

= (¡�1z)���(¡�i¡1z )�i
+(¡�1z)���(¡�i¡1z )�i

¡

= �i
+�i

¡=
�
0 1
0 0

�
i

�
0 0
1 0

�
i

=
�
1 0
0 0

�
i

= Pi
"=(1+�z)/2;

where Pi
" is the projector operator to the spin-up subspace on site i. In a periodic chain

the hoppings over the boundary must be calculated independently,

cL
y c1 =

Y
k<L

(¡�kz)�L+�1¡=(¡�1z)(¡�2z)���(¡�L¡1z )�L
+�1

¡ (1.19)

= ¡
�
1 0
0 ¡1

�
1

�
0 0
1 0

�
1

Y
k=2

L¡1
(¡�kz)�L+=�1¡�L+(¡1)

P
k=2
L¡1nk

= �1
¡�L

+(¡1)N¡1;

c1
ycL = �1

+
Y
k<L

(¡�kz)�L¡=�1+(¡�1z)(¡�2z)���(¡�L¡1z )�L
¡ (1.20)

= ¡
�
0 1
0 0

�
1

�
1 0
0 ¡1

�
1

Y
k=2

L¡1

(¡�kz)�L¡

= �1
+�L

¡(¡1)N¡1;

where N =
P

k nk is total number of particles. Terms describing hopping across the

boundary can be treated as an e�ective �ux1.2 going through the chain.
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The Hamiltonian (1.6) of the generalised t-V model becomes:

H =¡t
X
i=1

L¡1

(�i
+�i+1

¡ )¡ t (¡1)N¡1�L+�1¡+h.c.+
X
i=1

L X
m=1

p

UmPi
"Pi+m
" ; (1.21)

or

H =¡t
X
i=1

L¡1

(�i
+�i+1

¡ )¡ t (¡1)N¡1�L+�1¡+ h.c.+1
4

X
i=1

L X
m=1

p

Um(1+�iz)(1+�i+mz ): (1.22)

In case of p= 1, the model becomes equivalent to the XXZ Heisenberg model with back-

ground e�ective �eld, pierced by the magnetic �ux.

1.3.4 Solution for the in�nite potential

Here we summarise the solution of the generalised t-V model given by Gómez-Santos in

Ref. [23]. This solution presents a very simple e�ective picture of the system, which never-

theless gives a lot of physical insight. Assumption (1.8) will hold during this consideration.

Firstly, let us consider the case of low energies, when any two fermions are never close

enough to incur a potential energy penalty. The system loses some degrees of freedom,

namely every particle e�ectively occupies (p+1) sites. A particle can therefore be thought

of as a fermion with a hard core or a hard rod occupying (p+1) sites (see Fig. 1.2a). Thus,

the system can be imagined as a chain of N free fermions on

L~ =L¡Np=L(1¡Qp) (1.23)

sites, where Q=N /L is the density of the original system. The energy can be calculated

to be simply:

E(fk~g)=¡2t
X
i=1

N

cos k~i; k~i=
2�n~i
L~

; n~i2f0; :::; L~¡ 1g; (1.24)

where fk~g denotes a set of all particle momenta k~i in the system, and index i labels the

particles. The ground state energy density can be calculated by occupying the lowest-

1.2. Since (¡1)N¡1 = ei�(N¡1), the �ux is � = �(N ¡ 1)/L. Therefore, in a system with an odd number of

particles, there is no additional phase shift acquired while hopping, and in a system with even N , there is a ¡1= ei�

phase factor that needs to be included in the bosonic Hamiltonian.
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energy momentum space and taking the in�nite volume limit:

E
L
=¡2t

L

X
n~i=¡N/2

N/2

cos k~i ! ¡ 2t 1¡Qp
�

sin
�Q

1¡Qp: (1.25)

Figure 1.2. (a) Low-energy subspace. Fermions are mapped to hard rods. (b) High-energy sub-

space. Overlapping rods (domain walls) are mapped to free fermions (red).

Let us now squeeze the system by removing empty sites one by one. We notice that

there is a critical density (also called commensurate density), at which particles cannot

move, otherwise it would cost them Up energy,

Q=1/(p+1): (1.26)

At this density, the system is a Mott insulator and no fermion can move without inducing

a huge energy penalty; hard rods �ll the system completely (see Fig. 1.3). The energy is

zero and all Luttinger liquid velocities also go to zero. By shaking this chain, one can create

a charge-quasiparticle (an overlap of hard rods) moving through the system. A coherent

superposition of such quasiparticles is called a charge-density-wave (CDW).

Figure 1.3. Commensurate densities at which the system is a Mott insulator.

Squeezing this chain even more will necessarily add a potential energy Up. A quasi-

particle that is created in the squeezing process will behave as a free particle in a tight-

binding model (see Fig. 1.2b), with particle hopping by p sites. If we shorten the chain even
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more, then either a new quasiparticle is created or the existing quasiparticle incorporates

the new instability. However, the latter is forbidden by Assumption (1.8), and therefore,

by squeezing the chain, we will always create new quasiparticles. Any number of those

instabilities will behave like particles in a tight-binding chain, until there are so many

instabilities they �ll the whole system. We again reach an insulating density, this time at

Q=1/p.

A similar trend continues until the chain becomes half-�lled. The rest of the insulating

densities can easily be recovered using the particle-hole symmetry: a system with density

1¡ Q, Q 2 [0; 0.5] exhibits the same physics as the system with density Q. In short, the

system is a Mott insulator at critical (commensurate) densities

Q= 1
m
; m= p+1; p; :::;M ; (1.27)

and is a Luttinger liquid at other, incommensurate densities. M = max (bp / 2c + 1; 2)

designates the last density Q = 1/M , where the potential Ubp/2c does not contribute to

the potential energy of the system1.3.

The energy of the system in the high-energy subspace can be calculated by noticing

that the system is now of the e�ective size L~ = L Q and the number of quasiparticles is

N~ =L(1¡Qb1/Qc). Similarly to Eq. (1.25), the energy in the in�nite volume limit is:

E
L
!¡2 t Q

�
sin�

�
1
Q
¡
�
1
Q

��
: (1.28)

Using Eqs. (1.25) and (1.28), the parameters of the Luttinger liquid were assessed to be:

vS=

8><>:
2t

1¡Qp sin
�Q

1¡Qp forQ6 1

p+1
;

2t

Q

���sin �

Q

��� otherwise;
and K=

8<:
1

2
(1¡Qp)2 forQ6 1

p+1
;

1

2
Q2 otherwise:

(1.29)

This simple yet rich solution gives us the energy spectrum shown in Fig. 1.4. The sound

velocity vS is plotted in Fig. 1.5, which also shows the densities at which Luttinger liquid

(blue) and Mott insulator (red) phases are formed. At the insulating density, all Luttinger

liquid velocities go to zero.

1.3. Going beyond the density Q=1/M may not be an issue if the potential energy decreases rapidly. In such

a case, one can expect a Mott insulating phase at densities Q=1/m;m= p+1; p; :::; 2.
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Figure 1.4. Spectrum of the potential energy of the generalised t-V model in Gómez-Santos's

solution. The scale is logarithmic and it is assumed that 0�Up�Up¡1���� and that condition

(1.8) holds.
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Figure 1.5. Sound velocity vS as a function of density Q. Example for p=4.

1.3.5 Non-Bethe ansatz solution for the system with nearest-neigh-

bour interactions

Here we summarise method alternative to the Bethe ansatz of solving the t-V model (p=1).

The method was developed by Dias in Ref. [32]. The main motivation behind developing

a di�erent method is that, although the Bethe ansatz is a very powerful tool, it is still
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based on an educated guess and therefore misses a lot of the underlying physics.

Firstly, the kinetic part of the Hamiltonian (1.6) is assumed to be much smaller than

the potential (t� U1). If t = 0, the Hilbert space consists of degenerate subspaces with

states of constant values of
P

i=1
L nini+1. For t�U1 this degeneracy is lifted, but in order

to calculate the eigenvalues up to the �rst perturbation order, we can diagonalise the

Hamiltonian within each of the degenerate subspaces. The projected Hamiltonian (1.6) is:

H = ¡t
X
i=1

L

((1¡ni¡1)ci
yci+1(1¡ni+2)+h.c.) (1.30)

¡ t
X
i=1

L

(ni¡1ci
yci+1ni+2+ h.c.)+U1

X
i=1

L

nini+1:

Now we proceed by observing which hoppings are allowed and which are forbidden in the

projected Hamiltonian. The operators (1¡ni¡1); (1¡ni+2); ni¡1 and ni+2 ensure that the

hopping between sites i and (i+ 1) is only possible, if sites (i ¡ 1) and (i+ 2) are either

both occupied or both empty. Table 1.1 shows all possible hoppings and chains in which

hoppings should not be allowed.

Hopping Decomposition into two-site chains Mapping

(����) (��)(��)(��) #�
(����) (��)(��)(��) �#

(����) (��)(��)(��) �"
(����) (��)(��)(��) "�

No hoppings should be allowed

(����) (��)(��)(��) #� "
(����) (��)(��)(��) ��
(����) (��)(��)(��) �
(����) (��)(��)(��) "#

Table 1.1. All possible hoppings from the second to the third site in a four-site chain in a p=1

system. Two-site chains are mapped according to Eq. (1.31).

In order to simplify the problem, we now decompose each four-site chain into two-site

chains. The two-site chains are then named according to the following mapping:

(��) = " (occupied site, spin-up) (1.31)
(��) = # (occupied site, spin-down)
(��) = � (empty site).

Notice that in order to make the mapping unambiguous, the (��) chain is always discarded

during the mapping. To maintain the properties of the system, the mapping must also
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preserve which states are allowed to hop and which are forbidden to hop. The spin-up

occupied site " is only allowed to hop with the empty site �. Similarly, the spin-down

occupied site # can only hop with the empty site �. However, no other hoppings are

allowed.

Using the rules above, we notice that there is one four-site chain, which introduces

a problem: in (����) chain the hopping should not be possible, but after the mapping the

chain becomes (# � "), in which the empty site � can either hop with the # site or the

" site. We notice that this problem is due to the two-site chain (��) acting as a domain

wall between empty sites �������� and occupied sites ��������. Therefore, in order to recover

unambiguity of the mapping, we are forced to remove any chain (��), which acts as a

domain wall between sites # and ".

Example. A chain (with periodic boundary conditions)

���������� (1.32)

can be decomposed into two-site chains

(��)(��)(��)(��)(��)(��)(��)(��)(��)(��) (1.33)

and mapped into

###�""###: (1.34)

Notice that because the empty site � was acting as a domain wall, it must be removed

during the mapping.

Example. A chain

�������������� (1.35)

can be decomposed into the following two-site chains

(��)(��)(��)(��)(��)(��)(��)(��)(��)(��)(��)(��)(��)(��) (1.36)

and mapped into

###���""###: (1.37)

Again, one of the empty sites � was acting as a domain wall between # and ", and

therefore it must be removed during the mapping.
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So, if in the system there is a spin down # state followed by empty site(s) � and a spin

up ", one of the empty sites needs to be removed, because it acts as a domain wall:

���#������"���: (1.38)

Finally, let us consider a periodic system, which begins with two-site chain that will be

discarded during the mapping (it can be either a (��) chain or a (��) that acts as a domain

wall). Notice that the mapping is no longer unique: translating the system by one site to

the left will result in a system with the same mapping. To mend this situation, we have

to translate the system �rst, so that the �rst two-site chain can be mapped.

Example. The periodic system

������� (1.39)

starts with a (��) chain. Therefore, we use a translation operator T ,

T (�������); (1.40)

and now we can map the system:

T (�#�""): (1.41)

Notice that if before the mapping the system has L sites, after the mapping the system

has length:

L~ =L¡N�¡ 2NDW; (1.42)

where N� is the number of mapped empty sites � and NDW is the number of empty sites

acting as domain walls �. The number of fermions after the mapping is

N~ =N"+N#: (1.43)

If the initial states were designated by positions ai of the fermions,

ja1; :::; aN i=
Y
i=1

N

cai
y j0i; (1.44)

then in the mapped system, the states will be designated by positions of fermions, a~i, and

their spins, �i,

ja~1; :::; a~N~;�1; :::; �N~ i=
Y
i=1

N~

c~a~i�i
y j0~i: (1.45)
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Example. One can map

��������� (1.46)

into

"#���": (1.47)

A spinless chain of N =5 fermions on L=9 sites is therefore mapped into a spinful chain

of N~ = 3 fermions on L~ = 5 sites. The initial state is

j1; 2; 5; 7; 9i (1.48)

and after mapping it becomes

j1~; 2~; 5~; "; #; "i: (1.49)

Example. The system from Eq. (1.41) corresponds to the following state:

j1; 3; 6; 7i¡!T j2~; 3~; 4~; #; "; "i: (1.50)

Now, we create new states that are invariant by translation and have total momentum

P :

jfa~g; f�g; P i= jfag; P i= 1
L
p

X
j=1

L

eiPjT j¡1jfagi: (1.51)

Due to the requirement that the �rst two-site chain must be possible to map (see the

example state from Eq. (1.50)), the Hamiltonian elements that correspond to jumps 1~!L~

and 2~! 1~, will give additional e�iP factors, that can be incorporated into the hopping

constant t. A detailed table of all these elements is shown in Ref. [32] p. 7795. The

Hamiltonian H1=H ¡U1N" becomes

H1(P )=¡
X
i~;�

ti~�(1¡ni~�)c~i~�
y c~i~+1;�(1¡ni~+1;�)+h.c.; (1.52)

with tL~"= t(¡1)L¡N ; tL~#= t eiP(¡1)L¡N ; t1~"= t e�N~iP and ti~� = t otherwise. This is the

Hamiltonian of a U!1 Hubbard chain pierced by a magnetic �ux1.4.

1.4. The Hubbard model is a model of spinful fermions with the following Hamiltonian:

H =¡t
X
hi;ji;�

¡
ci;�
y cj;�+h.c.

�
+U

X
i=1

N

ni"ni#: (1.53)

Notice that the sites can be doubly occupied, unless U!1.
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Now, we consider a subspace of states in the Hamiltonian, with the same con�guration

of f�g:

H1(P ; f�g)=¡t
X
i~=/L~

c~
i~+1
y c~i~¡ t1~�1c~1~

yc~2~¡ tL~�1c~L~
y c~1~Q+h.c.; (1.54)

where Q is the cyclic spin permutation operator, that permutes f�g in a state. We will

now do the following gauge transformation,

8a~1>2 ja~1; :::; a~N~; "; :::; �N~ i! e�N~iP ja~1; :::; a~N~; "; :::; �N~ i: (1.55)

The Hamiltonian (1.54) in the subspace of the same spin con�guration will now have the

same form as in Eq. (1.52), but with tL~�=(¡1)L¡Nt e
1

2
(1+�1��N~)iP and ti~�= t otherwise. If

we now hop a fermion across the boundary, it will induce a cyclic permutation of f�g with

the same phase factor that is included in tL~�. Now, we want to de�ne states that remain

invariant under such cyclic permutations:

Qf�g

 X
i=1

r�c

a~iQijf�gi

!
= ei�

0/r�c

 X
i=1

r�c

a~iQijf�gi

!
; (1.56)

where r�c is the periodicity of the spins f�g (notice that r�c must be a divisor of N~), �c

is a number designating a possible spin con�guration, Qf�g is de�ned by

Qf�gj�1; :::; �N~ i=
tL~�
t
Qj�1; :::; �N~ i; (1.57)

and �0 is the e�ective �ux through the newly rede�ned system.

Example. Spin periodicity of some example systems:

(�"�"")! j2~; 4~; 5~; "; "; "i ! r�c=1; (1.58)
(##��"�#��#�")!j1~; 2~; 4~; 6~; 9~; 10~ ; #; #; "; #; #; "i ! r�c=3;

T (�#�"")! T j2~; 3~; 4~; #; "; "i ! r�c=3:

We want the system to become a one-particle tight-binding model with r�c sites and

hopping constant t e
1

2
(1+�1��N~)iP and with one-particle states de�ned as

Qi¡1jf�gi� jii: (1.59)

To achieve all that, the following gauge transformation is needed,

t e
1

2
(1+�1��N~)iP! t ei�1/r�c; (1.60)

where the total �ux �1 through this tight-binding chain is found to be

�1= r�c
N~ ¡ 2NDW

N~
P ; (1.61)
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where NDW is the number of (��) chains that are treated as domain walls (�). The chain

now is a Hubbard model with �ux �1 and its eigenstates are Bloch states j�c; qci, where

qc is a momentum of the Bloch state in the cyclic permutations of the f�g con�guration,

qc=
2�n�c
r�c

; n�c=0; :::; r�c¡ 1: (1.62)

Following Ref. [33], the energy (for odd N) is given by

E(fk~g; qc; P )=¡2t
X
i=1

N~

cos
�
k~i+�

P

L~
+ qc

L~

�
; (1.63)

with � = 2L~ ¡L
N~

= N~ ¡ 2NDW

N~
, while for even N there is a + �

L~
correction under the cosine.

There is also the following condition on the total momentum that needs to be satis�ed:

P
L

L~
=
X
i=1

N~

k~i+N~
qc

L~
(mod 2�): (1.64)

To calculate the ground state energy, we assume that there are no (��) chains, and thus

no spin-down particles in the mapped system. Then, the spin periodicity is r�c = 1, and

thus qc=0. Particles occupy the lowest momentum states, and thus
P

ik
~
i=0. The ground

state energy can be therefore evaluated to be:

E=

8>>><>>>:
¡2t

sin �N

L~

sin �

L~

for odd N;

¡2t
sin �N

L~

sin �

L~

cos �
L

for even N:
(1.65)

In short, by using the mapping (1.31), one can change the spinless system into a spinful

chain with magnetic �ux. Then, by alternating gauge transformations and rede�nition of

states, so that the new states are invariant by translation (in a mapped position space and

mapped spin space), we obtain a simple Hubbard model with a known solution.

We would like to use a similar method to solve the generalised (p =/ 1) t-V model of

fermions, since this method provides a more complete description of the system than, for

example, Bethe ansatz. In contrast to Gómez-Santos' solution summarised in Chapter

1.3.4, this method also considers domains of high energy, that can be present in the system.

For example, the chain (��������) is never considered in Gómez-Santos' solution, but is

present in Dias' solution. Thus, we could not only achieve more physical understanding,

but also include the full spectrum of possible states.
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Secondly, the ground state behaviour described in the Gómez-Santos' solution is only

considered with the in�nite volume limit: comparing Eqs. (1.25) and (1.65) shows a dis-

crepancy, but one can see that they match if L!1:

lim
L!1

EDias=Ep=1Gómez-Santos: (1.66)
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Chapter 2

Solving the generalised t-V model

2.1 Finite volumes with any interaction range and with
in�nite potential

2.1.1 Low-energy subspace

Similarly to the solution presented in Chapter 1.3.5, we can introduce a mapping of the

original states into a system of lower length. Let us consider a small subchain of p + 1

consecutive sites. Of course there are 2p+1 possible con�gurations of such a chain. In the

low-energy subspace though, there are no (p+1)-site subchains which include more than

one particle, because otherwise there would be energy penalty >Up. Thus we are left with

the following possible (one-particle and no-particle) chains:

(�������); (�������); (�������); ���; (�������); (�������): (2.1)

However, to have a unique one-to-one mapping (similarly to mapping (1.31)), we forget

about all other subchains except (�������) and (�������). Therefore, we are left with only

two subchains, which we will name for the sake of simplicity

(�������) = ~ (occupied site); (2.2)
(�������) = � (empty site):

Notice that in the whole system with N particles, there are exactly L~=L¡Np subchains

like these and thus the size of the mapped system is L~.

2.1.1.1 One particle

Of course, with only one particle the solution is quite simple and we expect to have a free

particle that can propagate through the system with momentum k= 2�n

L
; n=0; :::; L¡ 1.

However, this case serves as an example of how to proceed in the many-particle case.
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Firstly, a state with a particle on site i in the original chain can be written as:

jii= ci
yj0i: (2.3)

Using mapping (2.2), we can rename those states to:

ji~i= ci+p
y j0i= c~

i~
yj0~i; (2.4)

where c~
i~
y is the creation operator of subchain ~ and j0~i is the �empty space� state ������

of length L~ = L ¡ p. However, some states jii are not included in this new set, namely

states for i� p. We can use translation operator T to de�ne them:

ci
yj0i=T¡p+i¡1cp+1

y j0i=T¡p+i¡1c~
1~
yj0~i for i� p: (2.5)

The Hamiltonian in the new notation is therefore

H
¡t =

X
i=p+1

L¡1

c
i~
yci~+1+ cL

y c1+ c1
yc2+ ���+ cp

ycp+1+h.c. (2.6)

=
X
i~=1~

L~¡1

c~
i~
yc~i~+1+ c~

L~
y c~1~T

p+T¡pc~
1~
yc~1~T

p¡1+ ���+T¡1c~
1~
yc~1~+ h.c.

=
X
i~=1~

L~¡1

c~
i~
yc~i~+1+ c~

L~
y c~1~T

p+
X
m=1

p

T¡p+m¡1c~
1~
yc~1~T

p¡m+h.c.

Following Dias [32], we introduce an over-complete set of states invariant by translation

and with momentum k:

ji~; ki= 1
L
p

X
j=1

L

eikjT j¡1ji~i: (2.7)

Creation and annihilation operators of these states will be designated as c~
i~;k
y and c~i~;k

respectively. The Hamiltonian becomes:

H
¡t =

X
k

0@X
i~=1~

L~¡1

c~
i~;k
y c~i~+1;k+ e

ikpc~
L~;k

y c~1~;k+
X
m=1

p

e¡ikc~
1~;k
y c~1~;k+h.c.

1A (2.8)

=
X
k

0@X
i~=1~

L~¡1
c~
i~;k
y c~i~+1;k+ e

ikpc~
L~;k
y c~1~;k+ h.c.+(2p cos k) c~

1~;k
y c~1~;k

1A
=
X
k

0@X
i~=1~

L~¡1

c~
i~;k
y c~i~+1;k+ e

ikpc~
L~;k

y c~1~;k+ h.c.

1A:
This is the Hamiltonian of a tight-binding model with �ctitious �ux eikp. Eigenvalues are

given by

E(k~; k)=¡2t cos
�
k~¡ k p

L~

�
; (2.9)
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with condition

k~= kL
L~

(mod 2�): (2.10)

This �nal condition comes from the fact that eigenstates of Hamiltonian (2.8) are combina-

tions of the over-complete set of states from Eq. (2.7) and are non-zero only if Eq. (2.10) is

ful�lled. Finally, combining condition (2.10) and equation (2.9) for the energy, we recover

the expected value for the energy of a particle with momentum k:

E(k)=¡2t cos k: (2.11)

2.1.1.2 Many particle case

Let us now consider a general case of N particles. We must remember that any (p + 1)

subchains must contain at most one particle. A speci�c realisation of our system can be

written as:

ja1; :::; aN i=
Y
i=1

N

cai
y j0i; (2.12)

where faig are the consecutive positions of particles in our system, ai 2 f1; :::; Lg. There

is an additional condition on the �rst number, a1> p. This means that the �rst particle

cannot occupy sites from 1 to p and thus there are states not included in this naming.

However, we can represent them using the translation operator T :

c1
Y
i=2

N

cai
y j0i = T¡pjp+1; a2+ p; :::; aN + pi; (2.13)

c2
Y
i=2

N

cai
y j0i = T¡p+1jp+1; a2+ p¡ 1; :::; aN + p¡ 1i;

���

cp
Y
i=2

N

cai
y j0i = T¡1jp+1; a2+1; :::; aN +1i:

Now, we will use mapping (2.2) and rename states (2.12) to

ja~1; :::; a~N i=
Y
i=1

N

c~a~i
y j0~i; (2.14)

where fa~ig are now consecutive positions of subchains ~, j0~i is the �empty� system ������

of size L~=L¡Np and c~a~i
y creates a subchain ~ at position a~i. We can now create a state

invariant by translation, with momentum P = 2�n

L
; n=0; :::; L¡ 1:

ja~1; :::; a~N ; P i=
1
L
p

X
j=1

L

eiPjT j¡1ja~1; :::; a~N i: (2.15)
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The creation and annihilation operators of the new states will be designated as c~
i~;P
y and

c~i~+1;P . The Hamiltonian between the new states is thus:

H(P )
¡t =

X
P

 X
i~=/L~

c~
i~;P
y c~i~+1;P + e

ipPc~
1~;P
y c~L~;P

!
+h.c. (2.16)

This is a Hamiltonian of a tight-binding chain with L~ sites and �ctitious �ux pP . The

energy spectrum is given by:

E
¡�
k~i
	
; P
�
=¡2t

X
i=1

N

cos
�
k~i¡

pP

L~

�
; (2.17)

where k~i =
2�n~i

L~
; n~i = 0; :::; L~ ¡ 1 is the pseudochain momentum. However, not all

combinations of
�
k~i
	
and P are possible, and thus we get the following condition, similar

to Eq. (2.10): X
i=1

N �
k~i¡

pP

L~

�
¡P =0 (mod 2�); (2.18)

or

P
L

L~
=
X
i=1

N

k~i (mod 2�): (2.19)

The ground state energy can be calculated by assuming that only the lowest-momentum

states are occupied and is given by an equations similar to Eq. (1.65), but with L~=L¡N p:

EoddN = ¡2t
sin
�
�N

L~

�
sin
�
�

L~

� ; (2.20)

EevenN = ¡2t
sin
�
�N

L~

�
sin
�
�

L~

� cos
�
�
L

�
: (2.21)

2.1.1.3 Luttinger liquid parameters and comparison with Gómez-Santos

results

We can compare our results to the ones calculated by Gómez-Santos and summarised in

Chapter 1.3.4. To do that we need to �nd the in�nite volume limits of the Luttinger liquid

parameters. Using equations (2.20�2.21) for the ground state energy and the de�nitions

(1.2�1.3), we �nd the following expansions for the Luttinger liquid velocities for L!1:

vN(Eodd) �
2t

(1¡ pQ)3 sin
�Q

1¡ pQ (2.22)

+ t
(�2¡ 2p2(1¡ pQ)2) sin �Q

1¡ pQ ¡ 4�p(1¡ pQ) cos
�Q

1¡ pQ
3(1¡ pQ)5

1
L2

+O
�
1
L4

�
;

Solving the generalised t-V model 35



vN(Eeven) �
2t

(1¡ pQ)3 sin
�Q

1¡ pQ (2.23)

+ t ¡(�
2(2¡ 6pQ+3p2Q2)+ 2p2(1¡ pQ)2) sin �Q

1¡ pQ
¡ 4�p(1¡ pQ) cos �Q

1¡ pQ

3(1¡ pQ)5

1
L2

+O
�
1
L4

�
;

vJ(Eodd) � 2t(1¡ pQ) sin �Q
1¡ pQ + t �2

3(1¡ pQ) sin
�

�Q
1¡ pQ

�
1
L2

+O
�
1
L4

�
; (2.24)

vJ(Eeven) � 2t(1¡ pQ) sin �Q
1¡ pQ (2.25)

+ t �
2(¡2+ 6pQ¡ 3p2Q2)

3(1¡ pQ) sin
�

�Q
1¡ pQ

�
1
L2

+O
�
1
L4

�
:

The Luttinger liquid parameters are calculated using Eqs. (1.4) and (1.5):

vS(Eodd) �
2t

1¡ pQ sin
�Q

1¡ pQ (2.26)

+ t
(�2¡ p2(1¡ pQ)2) sin �Q

1¡ pQ ¡ 2�p(1¡ pQ)cos
�Q

1¡ pQ
3(1¡ pQ)3

1
L2

+O
�
1
L4

�
;

vS(Eeven) �
2t

1¡ pQ sin
�Q

1¡ pQ (2.27)

+ t
¡(�2(2¡ 6pQ+3p2Q2)+ p2(1¡ pQ)2) sin �Q

1¡ pQ
¡ 2�p(1¡ pQ)cos �Q

1¡ pQ

3(1¡ pQ)3
1
L2

+O
�
1
L4

�
;

K� 1
2
(1¡ pQ)2+ 1

12
p(1¡ pQ)

�
p(1¡ pQ)+2� cot �Q

1¡ pQ

�
1
L2

+O
�
1
L4

�
: (2.28)

Notice that critical parameter K has the same form for both even and odd N .

All the results agree with Gómez-Santos results up to the �rst order expansion in L.

2.1.2 Domain walls � high energy subspace

A similar method can be used for the densities beyond the �rst critical density of the

system, in which charge density waves will be necessarily present and can be treated

as particles moving throughout the chain. We will use a picture similar to that which

Gómez-Santos introduced in Ref. [23]: charge quasiparticles with higher potential energy,

e�ectively occupying a smaller chain, will be identi�ed as occupied sites and quasiparticles

with lower potential energy, e�ectively occupying a larger chain, will be treated as empty

sites. Therefore, the mapping is:

(������
p¡d+1

�) = � (empty); (2.29)

(�����
p¡d
�) = ~ (occupied);
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where d is the number of insulating phases that occurred during squashing of the chain

(see Fig. 2.1).
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Figure 2.1. Example of how to assign values of d for p=3 and p=4.

Example. The following mapping can be done, if p¡ d=3:

��������������������������!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mapping

��~~����: (2.30)

The new chain has ND=(p¡d+2)N ¡L fermions and a length of LD=N . Using the

steps from Section 2.1.1.2 with the following modi�cations,

p! (p¡ d); N!ND; L~!LD; (2.31)

the ground state energy of the system is calculated to be:

EoddN = ¡2t
sin�

�
p¡ d¡ 1

Q

�
sin
¡ �
N

� ; (2.32)

EevenN = ¡2t
sin�

�
p¡ d¡ 1

Q

�
sin
¡ �
N

� cos
�
�
L

�
: (2.33)

Using Eqs. (1.2�1.5), the Luttinger liquid parameters in the limit L!1 are found to be

(for odd N):

vN � ¡
2t
Q3

(¡1)p+d sin �
Q
+ t (¡1)p+d

3Q5

�
4�Q cos �

Q
¡ (�2 ¡ 2Q2) sin �

Q

�
1
L2

+ O

�
1
L4

�
;

(2.34)

vJ � ¡2t Q(¡1)p+d sin
�
Q
¡ �

2t
3Q

(¡1)p+d sin
�
�
Q

�
1
L2

+O
�
1
L4

�
; (2.35)

vS �
2t
Q

����sin �Q
����¡ t

3Q3

�
¡�2+Q2+2�Q cot

�
Q

�����sin �Q
���� 1L2 +O

�
1
L4

�
; (2.36)

K � 1
2
Q2+ 1

12
Q

�
Q+2� cot �

Q

�
1
L2

+O
�
1
L4

�
: (2.37)
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Parameters vS and K are to be consistent with previous results [23] up to the �rst order2.1.

Figure 2.2 shows the comparison of the sound velocity obtained in Eqs. (2.26) and (2.36),

and its in�nite volume limit obtained in the Gómez-Santos picture.
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Figure 2.2. Sound velocity vS for di�erent values of p and L. Notice the di�erence between the

in�nite volume limit (yellow line) and �nite L values for odd (blue) and even (green) N .

2.1.3 General solution

Similarly to Dias' solution of the t-V model from Chapter 1.3.5, we would like to develop

a solution for the extended case (p > 1). A full solution would include states that belong

to the high-energy subspace, and thus would give a more complete physical picture than

the results presented in Chapters 2.1.1 and 2.1.2.

Firstly, one needs to know the projected Hamiltonian to �rst order in t/V . Similarly

to Eq. (1.30), the Hamiltonian of the extended t-V model is found to be:

H =¡t
X
i=1

L X
fjmg

 Y
m=1

p

Ri¡m
jm

!
ci
yci+1

 Y
m=1

p

Ri+1+m
jm

!
+h.c.+

X
i=1

L X
m=1

p

Umnini+m; (2.38)

2.1. Velocities vN and vJ were not given in Ref. [23] for the high-energy subspace.
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where Ri
j is an operator making sure the site i is occupied (j=0) or empty (j=1), i.e.:

Ri
j= j+(¡1)jni=

�
ni for j=0 (sitemust be occupied)
1¡ni for j=1 (sitemust be empty)

; (2.39)

where ni is the particle operator.
P
fjmg

is a sum over all possible sets of jm, e.g. fj1=0;

j2= 1; j3= 1; :::g is one possible set. As an example, for p= 3 one of the elements in the

Hamiltonian is

¡t
X
i=1

L

(1¡ni¡3)(1¡ni¡2)ni¡1ci
yci+1ni+2(1¡ni+3)(1¡ni+4): (2.40)

So, in short, if we want to hop the particle across a pair of sites, it is only possible if the

preceding p sites are exactly a mirror image of the p sites following the pair.

Now, we would like to create a mapping similar to Eq. (1.31), where we renamed two-site

chains. To do this, let us analyse the requirements that need to be ful�lled in order to

have an unambiguous mapping. Let us look at Table 2.1 (adapted from Table 1.1 for the

reader's convenience), which shows two possible hoppings that are allowed by the projected

Hamiltonian from Eq. (1.30), and four chains in which hoppings should not be allowed.

Hopping Decomposition into two-site chains Mapping Final mapping

(����) (��)(��)(��) AC #�
(����) (��)(��)(��) CA �#

(����) (��)(��)(��) CB �"
(����) (��)(��)(��) BC "�

No hoppings should be allowed

(����) (��)(��)(��) ACB #�"
(����) (��)(��)(��) CC ��
(����) (��)(��)(��) C �
(����) (��)(��)(��) BA "#

Table 2.1. All possible hoppings from the second to the third site in a four-site chain in a p=1

system. We show how to produce a unique mapping, equivalent to the mapping from Eq. (1.31).

From the decomposition of both possible hoppings, we can immediately see that (��)

and (��) switch places with (��)(��) and (��)(��) respectively, and therefore should be

uniquely mapped in a new system: (��)=A; (��)=B. Now we arrive at a choice: we can

either map (��) or (��) into the third mapped one-particle operator. Either choice is equally
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valid, but for the sake of consistency with Eq. (1.31), we map (��) = C. By considering

which hoppings are allowed, we can see thatA can hop withC only, and so canB. However

chain (����), in which a hopping should not be allowed, is mapped into ACB and to make

the mapping uniquely de�ned, we treat C in this case as a �domain wall�. Natural naming

for A;B and C are #;" and � (empty site), and therefore we arrive exactly at the mapping

(1.31).

The situation is much more complicated, however, if one considers p> 1. The possible

number of hoppings is 2p due to Eq. (2.38) and thus grows exponentially with p. Addi-

tionally, the number of chains in which we should not be allowed to hop is 22p+1¡ 2p+1.

Let us �rst consider p=2 and see if one can systematically devise a mapping for a general

case of any p.

No. Hopping Decomposition into three-site chains Example mapping

1 (������) (���)(���)(���)(���) AC
(������) (���)(���)(���)(���) CA

2 (������) (���)(���)(���)(���) ED
(������) (���)(���)(���)(���) DE

3 (������) (���)(���)(���)(���) CE
(������) (���)(���)(���)(���) EC

4 (������) (���)(���)(���)(���) DB
(������) (���)(���)(���)(���) BD

Table 2.2. Possible hoppings for p=2.

The decomposition of possible hoppings into three-site chains (see Table 2.2) shows

that (���) and (���) must necessarily be mapped, (���) = A; (���) = B. However, no

map from three-site chains to one-site operators exists, so that the map de�nes a one-to-

one correspondence between hops in the original chain and the mapped chain. We could,

in principle, additionally use four-site chains (example mapping (���) = C; (���) = D;

(����) or (����) = E is shown in Table 2.2), but this does not ensure that the map is a

bijection, or that it preserves the inability to hop.

We conclude that if a mapping similar to (1.31) exists for the extended model, it is too

complicated to de�ne it for any p. The number of possible mappings and rules that would

need to be applied to have a one-to-one correspondence increases exponentially. Therefore,
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in the next section, we present a di�erent approach that can be used to determine the

critical parameters of the model.

2.2 Strong coupling expansion � going beyond the �rst
order perturbation

2.2.1 Formulation of the strong coupling expansion

In the article by Hamer [34], he introduced a method to truncate the basis according to how

states were connected to the unperturbed initial subspace. The method is to reorder the

basis (usually this is the Fock basis � particle number basis), �rstly writing the desired2.2

subspace of unperturbed states that we want to approximate (0th step), then states con-

nected to them via the Hamiltonian (1st step), then states connected to the 1st step

states (2nd step) and so on. It is easy to see that this results in a tri-block-diagonal

Hamiltonian. We truncate the basis to the step of our choice, resulting in a smaller,

truncated Hamiltonian, which will describe the full system up to a speci�c perturbation

order. However, the truncated basis is still usually quite big, thus we will use an altered

version of this method, called the strong coupling expansion (SCE), and commonly used in

investigations of the Schwinger model [35, 36, 37], a one-dimensional analogue of quantum

electrodynamics. This method is also equivalent to the block Lanczos method [38].

We start by writing the Hamiltonian of the system as an unperturbed Hamiltonian Ĥ0

and a perturbation V̂ , with � being a small parameter:

Ĥ = Ĥ0+�V̂ : (2.41)

For example, for the generalised t-V model given by the Hamiltonian (1.6), we identify:

Ĥ0=
X
i=1

L X
m=1

p

Umnini+m; V̂ =¡
X
i=1

L

(ci
yci+1+h.c.); �= t: (2.42)

The method proceeds as follows. Firstly, let us select the desired initial subspace of

unperturbed states that we want to approximate. Usually that will be the ground state, but

if one is interested in the temperature dependance, it could be �rst excited states, second

2.2. Notice that we can choose what states we are interested in, be it the ground state or any of the excited states.
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excited states, etc. We will designate states in this subspace by j0ii; i=1;2; :::;Ninit, where

Ninit is the number of initial unperturbed states. Number 0 designates the 0th step of the

expansion.

Secondly, to create states of the next step in the SCE, we will act with perturba-

tion operator V̂ on the states from the previous step, V̂ jnii. V̂ jnii will be, in general,

a linear combination of states from orders n¡1, n and n+1. It will not include lower

orders, because V̂ jnii by de�nition does not include orders higher than n+1, which means

8m>n+1hmj jV̂ jnii=0 and 8n<m¡1hnijV̂ jmji=0. This shows that the Hamiltonian in such

a basis is tri-block-diagonal, as it was in the original Hamer method. To properly de�ne

states in the order n+1, we have to separate states in V̂ jnii according to their unperturbed

energy; the states must be eigenstates of H0. Thus, the new states are:

V̂ jnii=
X
j

Cj jn¡1ji+
X
k

Ck jnki+
X
l

jn+1li; (2.43)

where Cj ;Ck are normalisation constants. The new states jn+1li are not yet orthonormal

to each other and to the previous states (which is why we use a tilde to distinguish them

from states that are included in the new basis). After Gram-Schmidt orthonormalisation

[39] they become:

jnji=Cn~;j jn~ji¡
X

m=n¡2

n¡1 X
k=1

kmax(m)

Cn~;j;m;k jmki¡
X
k=1

j¡1

Cn~;j;n;kjnki; (2.44)

where the coe�cient Cn~;j is a normalisation constant and other coe�cients include norm-

alisation and projection: Cn~;j;m;k=Cn~;jhmkjn~ji.

If we continue this procedure in�nitely long, we may not however produce the full

basis spanning the whole Hilbert space. Thus, there may be states not producible by

this procedure, which we will call j�i, and which will form together with states jnii an

orthonormal non-truncated basis of the system. However, we can easily see that using

(2.43) and then (2.44):

h�jV̂ jnii = h�j
 X

j

Cj jn¡1ji+
X
k

Ckjnki+
X
l

jn+1li
!

(2.45)

= h�j
X
j

Cj jn¡1ji+ h�j
X
k

Ckjnki+ h�j
X
l

1
Cn+1;l

�

 
jn+1li+

X
r=n¡1

n X
k=1

kmax(r)

Cn+1;l;r;kjrki+
X
k=1

l¡1

Cn+1;l;n+1;k jn+1ki

!
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=
X
j

Cjh�jn¡1ji+
X
k

Ckh�jnki+
X
l

1
Cn+1;l

�

 
h�jn+1li+

X
r=1

n X
k=1

kmax(m)

Cn+1;l;r;kh�jrki+
X
k=1

l¡1

Cn+1;l;n+1;kh�jn+1ki

!
= 0:

This proves that states j�i are in fact part of a completely di�erent subspace of the

Hamiltonian than states jnii. Therefore, eigenvalues of the desired subspace that we will

be approximating will not depend on j�i and neither will any averages over states from

the desired subspace.

The Hamiltonian is now in the tri-block-diagonal form:

Ĥ=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Ê0+�V̂00 �V̂01 0 0 ���

�V̂01
y Ê1+�V̂11 �V̂12 0 ���

0 �V̂12
y Ê2+�V̂22 �V̂23

��� 0

0 0 �V̂23
y Ê3+�V̂33 ���

��� ��� ��� ��� ���

0
Hamiltonian

elements between
states fj�ig

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(2.46)

where V̂n;m are projections of V̂ between states jnii and jmji and Ên are projections of

Ĥ0 between states jnii, i.e.

V̂n;m=
X
i

X
j

jniihnijV̂ jmjihmj j; Ên=
X
i

jniihnijĤ0jniihnij: (2.47)

Finally, we use a Hamiltonian truncated to a speci�c SCE step to calculate the energy

and behaviour of the desired subspace of states. Notice that the method itself has no

limitation on the size of the original basis of the system, so one can consider systems with

�nite or in�nite basis sizes (the Schwinger model falls into the latter case, for example).
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2.2.2 Direct relation to the perturbation theory

We can now use the standard degenerate perturbation theory (see e.g. Ref. [40]) to show

which Hamiltonian elements contribute to the m-th order correction of the desired sub-

space. For a small perturbation � the projected Hamiltonian can be written as:

Ĥ = Ĥ0+�
X
n

PnV̂Pn+�2
X
n

X
k=/n

PnV̂PkV̂Pn

En¡Ek
+ ���; (2.48)

where Pn is a projection operator into the subspace unperturbed states with energy En.

In general, the m-th order correction in � will include matrices of the form:

PnV̂Pk1V̂Pk2���V̂Pkm¡1V̂Pn: (2.49)

In the Hamiltonian (2.46), we can identify the following:

PnV̂Pk=

8>>>><>>>>:
V̂n;n if k=n
V̂n;n+1 if k=n+1
V̂n¡1;n
y if k=n¡ 1

0 otherwise

; (2.50)

and therefore:

PnV̂Pk1V̂Pk2���V̂Pkm¡1V̂Pn= V̂n;k1V̂k1;k2���V̂km¡1;n; (2.51)

since V̂k;n= V̂n;k
y . To calculate the corrections of order m to the desired subspace of states,

we set n=0. The term including the highest number of V̂n;k matrices is

V̂01V̂12���V̂p;p+1V̂p+1;p���V̂21V̂10; p=
l
m
2

m
¡ 1; (2.52)

and we can immediately conclude that for the perturbation correction of order m in the

desired subspace of states, we need the following matrices:

Ê0+�V̂00; �V̂01; Ê1+�V̂11; :::; Êp+�V̂pp;
¡
�V̂p;p+1

�||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
mmatrices

: (2.53)

Last matrix is only included if m is even.

Therefore, in every step of Hamer's procedure, by including more states in the Hamilto-

nian matrix, we increase the accuracy of the desired subspace of states by two perturbation

orders. More strictly, results obtained in step k of the SCE results will be accurate to order

2k+1.
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Additionally, the method goes beyond the usual perturbation theory: in SCE step k, we

not only include all the terms up to order 2k+ 1, but also terms such as V̂01V̂10V̂01V̂10���,

which belong to higher orders of perturbation.

2.3 Strong coupling expansion on the extended
t-V model near critical densities

2.3.1 Selected systems

Although the strong coupling expansion has many advantages, such as insensitivity to

integrability (or the lack of it), it has also one prominent drawback: one needs to know the

unperturbed subspace of states that will be approximated. However, in the generalised t-V

model, we know that near the Mott insulating densities, the degeneracy of the ground state

is very small [23] and the Hamiltonian can be diagonalised analytically. Thus, we will �rstly

select three critical densities that will be studied: Q=1/(p+1), p=1 (integrable), p=2

(nonintegrable), and p= 3 (nonintegrable). Then, we will try to generalise our results to

any p. Secondly, we will select near-critical densities, in order to assess critical parameters

of the model. Our results will be compared to known values.

Due to �nite computer resources, we choose to use SCE step 3 for the critical densities

and SCE step 1 for near-critical densities. While for critical densities our results are ana-

lytical, the near-critical densities require numerical estimates.

2.3.2 Results at critical densities Q=1/(p+1)

Interestingly, at the Mott insulating density, the size of truncated Hamiltonian was found

to be constant for a given p and Q and completely independent of the system size L. The

system size is incorporated into the Hamiltonian. Additionally, due to the translational

symmetry of the system, the truncated Hamiltonian contains (p + 1) equal subspaces, if

the system size is bigger than L> (2�SCE step)(p+1).
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2.3.2.1 Q=1/2 (half-�lling), p=1 (integrable), SCE step 3

The truncated Hamiltonian for this case is of dimension 16 � 16, but for a very large

system size L it can be separated into two equal subspaces of dimension 8 � 8, which can

easily be diagonalised,

H =

0BBBBBBBBBBBBBBBBBBB@

� L
p

� � � � � �
L

p
U1 2 2L¡10

p
� � � �

� 2 U1 � 2 L¡6
p

� �
� 2L¡10

p
� 2U1

2
L¡5

q
(L¡7) 8

(L¡6)(L¡5)

q
8(L¡7)

(L¡6)(L¡5)

q
3(L¡7)(L¡8)

L¡5

q
� � 2

2
L¡5

q
U1 � � �

� � L¡6
p

(L¡7) 8
(L¡6)(L¡5)

q
� 2U1 � �

� � � 8(L¡7)
(L¡6)(L¡5)

q
� � 2U1 �

� � � 3(L¡7)(L¡8)
L¡5

q
� � � 3U1

1CCCCCCCCCCCCCCCCCCCA

;

(2.54)

where for the sake of clarity zeros are represented as dots and every o�-diagonal element

should be multiplied by (¡t). The ground state2.3 is therefore 2-fold degenerate and the

ground state energy was calculated assessed every step:

1st step ¡ Lt2

U1
+ L2 t4

U1
3 ¡ 2L3t6

U1
5 + 5L4t8

U1
7 ;

2nd step ¡ Lt2

U1
+ Lt4

U1
3

+ (¡2L+L2+L3)t6
2U15

+ (L¡3L2¡19L3¡3L4)t8
4U17

;

3rd step ¡ Lt2

U1
+ Lt4

U1
3

+ 0 + (¡30L+29L2+6L3+6L4)t8

6U17
:

(2.55)

We can clearly see that indeed with every step we increase the accuracy of our result by

two orders in t/U1. The ground state energy is thus:

E0=¡
Lt2

U1
+ Lt4

U1
3
+O(t8): (2.56)

The density-density correlation functions Nm= h
P

i=1
L nini+mi were found to be:

N1 = L
t2

U1
2
¡ 3L t4

U1
4
+O(t8); (2.57)

N2 = L
2
¡ 2L t2

U1
2
+7L t4

U1
4
+O(t6); (2.58)

N3 = 2L t2

U1
2
¡ 5L t4

U1
4
+O(t6); (2.59)

N4 = L
2
¡ 2L t2

U1
2 +2L t4

U1
4 +O(t

6); (2.60)

N5 = 2L t2

U1
2
¡ 2L t4

U1
4
+O(t6): (2.61)

2.3. For the formulas of ground states and truncated Hamiltonians see Appendix A.1�A.3.
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This particular case of the generalized t-V model can be mapped to the Heisenberg XXZ

spin model with background magnetic �eld, which is solved analytically by Orbach [26]

and Walker [27]. On closer inspection we can see that the analytical expressions for the

ground state energy and the density-density correlator N1 (in the language of spins it is

the spin-spin correlator) presented in Ref. [27] match our results.

Furthermore, the XXZ model for t /U1 ! 0 is equivalent to the Ising model [41] for

which the long-range density-density correlators are:

Nm=

(
0 form odd
L

2
form even

; (2.62)

which is fully consistent with our results.

The current density is given by

J =¡i t
*X
i=1

L

ci
yci+1¡h.c.

+
; (2.63)

and was found to be zero up to orderO(t8) for large systems. The p=1model was inspected

thoroughly in the �rst-order approximation in Refs. [23, 32] and the ground state energy

and current density were found to vanish for the case of half �lling; this also agrees with

our results.

2.3.2.2 Q=1/3; p=2 (non-integrable), SCE step 3

For p>1 the model is non-integrable. In step 3 (7th order of perturbation), the Hamiltonian

is of dimension 36 � 36; however it can be divided into three equivalent subspaces of

dimension 12�12. The ground state is therefore 3-fold degenerate and its energy was found

to be:

E0=¡
2L
3U2

t2+
�
2L
3U23
¡ 2L
U1U2

2

�
t4+

�
16L
3U1U24

¡ 17L
3U12U23

¡ 10L
3U13U22

�
t6+O(t8): (2.64)

The density-density correlators are:

N1 = 2L
U1
2U2

2 t
4+
�

10L
U1
4U2

2 +
34L
3U13U23

¡ 16L
3U12U24

�
t6+O(t8); (2.65)

N2 = 2L
3U22

t2+
�

4L
U1U2

3 ¡
2L
U2
4

�
t4+

�
20L
3U13U23

+ 17L
U1
2U2

4 ¡
64L
3U1U25

�
t6+O(t8); (2.66)

N3 = L
3
¡ 4L
3U22

t2+
�
¡ 16L
3U12U22

¡ 8L
U1U2

3 +
13L
3U24

�
t4+O(t6); (2.67)

N4 = 2L
3U22

t2+
�

10L
3U12U22

+ 4L
U1U2

3
¡ 7L
3U24

�
t4+O(t6); (2.68)

N5 = 2L
3U22

t2+
�

10L
3U12U22

+ 4L
U1U2

3
¡ L

3U24

�
t4+O(t6): (2.69)
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As in the case of Eq. (2.62), we expect the density-density correlation functions to take

the form

Nm=

(
L

p+1
for m divisable by (p+1)

0 otherwise
; (2.70)

in the limit as t/Um! 0 when Q=1/(p+1). This is indeed true for our results.

Again, the current density is zero up to order O(t8) for large systems.

2.3.2.3 Q=1/4; p=3 (non-integrable), SCE step 3

This is another non-integrable case. The Hamiltonian is of dimension 52�52, but it consists

of four equal subspaces of dimension 13� 13. The ground state is thus 4-fold degenerate

and has energy:

E0 = ¡ L
2U3

t2+
�

L

2U33
¡ 3L
2U2U32

�
t4 (2.71)

+
�

4L
U2U3

4
¡ 17L
4U22U33

¡ 5L
2U23U32

¡ 5L
U1U2

2U3
2

�
t6+O(t8):

The density-density correlation functions are:

N1 = 5L
U1
2U2

2U3
2
t6+O(t8); (2.72)

N2 = 3L
2U22U32

t4+L
�

15
2U24U32

+ 17
2U23U33

¡ 4
U2
2U3

4 +
10

U1U2
3U3

2

�
t6+O(t8); (2.73)

N3 = L

2U32
t2¡L

�
3
2U34
¡ 3
U2U3

3

�
t4+L

�
5

U2
3U3

3 +
51

4U22U34
¡ 16
U2U3

5 +
10

U1U2
2U3

3

�
t6+O(t8);

(2.74)

N4 = L
4
¡ L

U3
2
t2+L

�
13
4U34
¡ 4
U2
2U3

2
¡ 6
U2U3

3

�
t4+O(t6); (2.75)

N5 = L

2U32
t2+L

�
2

U2
2U3

2
+ 3
U2U3

3
¡ 2
U3
4

�
t4+O(t6): (2.76)

Again, our results for correlators are consistent with equation (2.70).

For a large system size the current density was calculated to be zero up to perturbation

order O(t8).

2.3.2.4 Collecting the results for Q=1/(p+1), any p

Interestingly, if one exchanges the system size L for corresponding values of N and p

using L=N(p+1), formulas in Eqs. (2.56), (2.64) and (2.71) for the ground state energies

become more systematic and we can easily write the following equation that incorporates
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them all

E0 = ¡2N
Up

t2+

 
2N
Up
3 ¡

6N
Up¡1Up

2

!
t4 (2.77)

+

 
16N

Up¡1Up
4
¡ 17N
Up¡1
2 Up

3
¡ 10N
Up¡1
3 Up

2
¡ 20N
Up¡2Up¡1

2 Up
2

!
t6+O(t8);

where for p = 1; 2 we have to remove terms in which Up¡1 or Up¡2 is zero. This energy

comes directly from the fact that the truncated Hamiltonian does not change for p>3 and

it is always in the following form2.4:

H=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

� 2N
p

� � � � � � � � � � �
2N

p
Up 3

p
2 4N¡10

p
� � � � � � � �

� 3
p

Up¡1 � � 10
3

q
1
3

q
2N¡ 17

3

q
5
3

q
� � � �

� 2 � Up � � 1 � 9
5

q
2 2N¡7

p 1
5

q
�

� 4N¡10
p

� � 2Up � � 2(6N¡17)
2N¡5

q
8

5(2N¡5)

q
2

2N¡5

q
8(2N¡7)
2N¡5

q
¡ 2

5(2N¡5)

q
6(N¡4)(2N¡7)

2N¡5

q
� � 10

3

q
� � Up¡2 � � � � � � �

� � 1
3

q
1 � � 2Up � � � � � �

� � 2N¡ 17
3

q
� 2(6N¡17)

2N¡5

q
� � Up¡1+Up � � � � �

� � 5
3

q
9
5

q
8

5(2N¡5)

q
� � � Up¡1 � � � �

� � � 2
2

2N¡5

q
� � � � Up � � �

� � � 2N¡7
p 8(2N¡7)

2N¡5

q
� � � � � 2Up � �

� � � 1
5

q
¡ 2

5(2N¡5)

q
� � � � � � Up¡1 �

� � � � 6(N¡4)(2N¡7)
2N¡5

q
� � � � � � � 3Up

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

(2.78)

We can see that the energy is proportional to the system size, and therefore it is

an extensive quantity.

Lastly, the correlator Np+1 is found to be:

Np+1=N ¡ 4N
t2

Up
2
+

 
13N
Up
4
¡ 16N
Up¡1
2 Up

2
¡ 24N
Up¡1Up

3

!
t4+O(t6); (2.79)

which agrees well with the prediction from Eq. (2.70). We also expect the other correlators

to be zero up to the �rst perturbation order. The behaviour of the correlators in the zeroth

order re�ects the arrangement of fermions in the unperturbed ground state: fermions will

be spread evenly throughout the system, p+1 sites away from each other.

2.3.3 Near-critical densities

At the critical insulating density all Luttinger liquid velocities [23] go to zero. However,

we may evaluate near-critical behaviour by choosing densities not exactly equal to the

insulating one. To determine the charge velocity vN from Eq. (1.2), we need a change in

2.4. Again, the dots are zeros and all o�-diagonal elements should be multiplied by (¡t).
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the number N of particles in the system. Let us assume that the system is at the critical

density Q= 1/(p+ 1). By adding one particle to the system, we increase the number of

domain walls (which will now behave like free particles) by more than one. For example,

in a p=3 system,

(���������������)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
N+1

(���������������)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
equilibrate

(�� �� �� ���������); (2.80)

by adding one particle, we create three domain walls. This greatly increases the degeneracy

of the unperturbed ground state. Instead, we propose to change the density of the system

by changing the system size. By adding none, one, and two empty sites to the insulating

system, we can induce the following densities:

Q0�=
L

L(p+1)
; Q1�=

L¡ 1
L(p+1)

; Q2�=
L¡ 2

L(p+1)
: (2.81)

Notice that Q2�<Q1�<Q0�. The change in the density is always

�Q=¡ 1
L(p+1)

: (2.82)

One and two empty sites will behave like free fermions in the system and the unperturbed

ground state will be L-fold degenerate for one additional hole and L(L ¡ 2p ¡ 1)/2-fold

degenerate for two holes2.5. We can now rewrite Eq. (1.2) for the charge velocity:

vN =
L
�
@2E

@N2
= 1
�L

@2E

@Q2
; (2.84)

or, in a discrete form:

vN =
1
�L

E0�+E2�¡ 2E1�
(�Q)2

= L(p+1)2

�
(E0�+E2�¡ 2E1�); (2.85)

where E0�; E1�, and E2� are ground state energies at densities Q0�; Q1�, and Q2� respect-

ively.

2.3.3.1 Numerical calculation

Due to higher degeneracy of the unperturbed ground state (�L or �L2), we may not be

able to obtain analytical results as easily as in the calculation at the critical density in

Chapter 2.3.2. Sometimes, numerical estimates will need to be used, especially for higher

orders of perturbation.

2.5. The two holes can be either next to each other, or will be separated by a fermion:

� �������
p+2

� �����
p

� �����
p

��� or � ������
p+1

� �����
p

� �����
p

���� ������
p+1

� �����
p

� �����
p

���: (2.83)

Simple combinatorics can be used to calculate that the �rst case can be realised in L ways, and the second case

can be done in L(L¡ 2p¡ 3)/2 ways.
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For the �rst-order perturbation correction, E(1), we can use the results from Eqs. (2.20)

and (2.21) obtained using the altered Dias' method. To extract the second- and third-order

corrections, we will use strong coupling expansion numerically, obtain the ground state

energies E(num) for �nite values of t/Up�� and use the following formulas:

E(2)= lim
�!0

E(2)(�)= lim
�!0

E(num)¡E(1)�

�2
; (2.86)

E(3)= lim
�!0

E(3)(�)= lim
�!0

E(num)¡E(1)�¡E(2)�2

�3
: (2.87)

One can therefore plot E(2)(�) and E(3)(�) as a function of � and then extract the �= 0

value by �tting a polynomial.

2.3.3.2 System with one additional empty site and its �ux dependence

In order to calculate the current velocity vJ from Eq. (1.3), we need to assess the depend-

ence of the energy on a small external �ux. One can introduce the �ux in the Hamiltonian,

by changing the kinetic energy to include a phase factor ei�:

¡t
X
i=1

L

(ci
yci+1+ ci+1

y ci)!¡t
X
i=1

L

(ei�ci
yci+1+ e¡i�ci+1

y ci): (2.88)

This is a small magnetic �ux piercing our chain, with values �=
�
¡ �

L
;
�

L

�
.

The second order correction to the energy, E1�
(2), was determined numerically. Its

dependencies on N and p are shown in Figs. 2.3 and 2.4 respectively. For odd N , this

dependence is only present in the additive term ¡2N . For even N , there is an addi-

tional dependence that can be incorporated in the �ux: �!�/L¡ j�j.
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Figure 2.3. Second-order correction to the energy, E1�
(2), for di�erent values of the number of

particles N .
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Figure 2.4. Second-order correction to the energy, E1�
(2), for di�erent values of the interaction

range p.

The �nal expression for the correction can be determined to be:

E1�
(2)=

(
¡2(N ¡ 2 sin2�) for odd N
¡2
¡
N ¡ 2 sin2

¡ �
L
¡ j�j

��
for even N

: (2.89)

This expression is correct within the error bars (�8 digits of accuracy).

The third-order correction has also been evaluated numerically � see Fig. 2.5. The

correction was found to be independent of interaction range p for a given value of N , within

the error bars.
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Figure 2.5. Third-order correction to the energy, E1�
(3), for odd N .

The approximate expression for the correction for odd N can be written as2.6:

E1�
(3)(N ; �)� 2¡

�
5+ 8

N

�
�2+O(�4)�F (N; �): (2.90)
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This expression gives less than 0.02% relative error near the �! 0 region.

2.3.3.3 System with two additional empty sites

We have also numerically calculated corrections for the system with two additional empty

sites. Both second- and third-order corrections, E2�
(2) and E2�

(3), are shown in Figure 2.6.
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Figure 2.6. Second- and third-order energy correction, E2�
(2) and E2�

(3) as a function of the number

of particles N .

For odd numbers of particles N , both second- and third-order corrections were found

to be independent of the range p of the interactions (within the �tting errors which were

on the 8th and 4th digit respectively) and there is only the dependence on N . Using Padé

approximants, we have devised the following �tting formulas:

E2�
(2)�¡2N + 0.651N + 56.72

N2+ 2.19N + 19.81
�A(N); E2�

(3)� 2+ 73.17
N + 12.14

�B(N); (2.91)

which give a relative error of less than 0.003% for E2�
(2), and less than 0.3% for E2�

(3). Notice

that the third-order correction for N =3 does not follow the trend, which is most likely an

artifact of a too small system size.

2.3.3.4 Calculating the critical parameter K

One can collect the energies for near-critical densities for odd N :

E0� = ¡2N t2

Up
+O(t4); (2.92)

E1� = ¡2 (cos �) t¡ 2(N ¡ 2 sin2 �) t
2

Up
+F (N; �) t

3

Up
2 +O(t

4); (2.93)

2.6. Since corrections for even N have an additional dependence on p, these results have been presented in

Appendix A.4.
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E2� = ¡4
�
cos

�
N +2

�
t+A(N) t

2

Up
+B(N) t

3

Up
2
+O(t4): (2.94)

with functions given by Eqs. (2.90) and (2.91). Then, the sound velocity vS and the critical

parameter K of the Luttinger liquid can be calculated using Eqs. (1.4) and (1.5):

vS = 4 (p+1) t sin �(p+1)
2(L+2p)

(2.95)

+ t2

4Up

�
(p+1)A(N)+2(L¡ 2)+ 16(p+1)

�
1¡ cos

�(p+1)
L+2p

��
sin¡1

�(p+1)
2(L+2p)

+O(t3);

K = �
4L(p+1)

sin¡1
�(p+1)
2(L+2p)

(2.96)

¡
�
�
(p+1)A(N)+ 2(L¡ 2)¡ 16(p+1)

�
1¡ cos �(p+1)

L+2p

��
sin¡1 �(p+1)

2(L+2p)

32L(p+1)2
�
1¡ cos �(p+1)

L+2p

� t
Up

+O(t2):

The formulas were double checked for consistency with previously calculated �rst-order

perturbation results, Eqs. (2.26) and (2.28).

2.4 Conclusions

In summary, we have shown that one can use Dias' mapping and generalise it for the

t-V model with any interaction range. Using Gómez-Santos's picture together with Dias'

mapping, one can also successfully reach the high energy subspace. However, the complete

mapping that would include states with high-energy domains has been proven to be too

complicated to devise, as its complexity increases exponentially with the maximum inter-

action range.

Therefore, we have used another method, strong coupling expansion, that allows us

to reach high perturbation orders, rather than only the �rst-order perturbation that both

Gómez-Santos' and Dias' methods are limited to. Although the method is mainly used

for numerical investigations, in the case of the generalised t-V model, we have used it

analytically. Indeed one can prove that with every expansion step, the accuracy of the

results is increased by two orders of perturbation. Since the SCE works best for states with

low degeneracy, we used it for systems with density near the Mott insulating phase. This

allowed us to extract the critical parameters of the Luttinger liquid, which were consistent

with previously calculated values.
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Method Advantages Disadvantages Chapter

Gómez-Santos Simple picture Only in�nite volumes 1.3.4
Rich physics First perturbation order
High energy subspace No high-energy domains

Dias Includes high-energy domains Complicated solution 1.3.5
Non-Bethe ansatz Only for p=1
More physical meaning extracted First perturbation order

Adapted Dias Included p> 1 No high-energy domains 2.1
for p> 1 Results for �nite L First perturbation order

High energy subspace

SCE Higher perturbation orders Only for low degeneracy 2.3
Goes beyond the perturbation theory Only one setup at a time

Table 2.3. Comparison of methods presented in Chapters 1 and 2.

All methods that we have used in our investigations are presented in Table 2.3.

Although Gómez-Santos' picture presents very rich physics using simple tools, it is very

hard to generalise for use in other fermionic models. On the other hand, a more complicated

method by Dias, presents how one can map a fermion system into another fermion system

with a known solution. A complete mapping, involving states with high-energy domains,

may be too complicated to use, but one can with little e�ort calculate the low-energy beha-

viour of the system. This method could be in principle adapted for other models involving

fermions, like in Chapter 2.1, where it was adapted to include all interaction ranges.

Finally, the strong coupling expansion is a very versatile method, that can be used

both numerically and analytically. Although analytical analysis may be only possible for a

very low degeneracy of the unperturbed target state, the method enables one to reach high

orders of perturbation relatively easily. Additionally, the results will include terms going

beyond the perturbation theory, which means the method can be insensitive to divergences

that arise from including only �nite number of perturbation orders. SCE has been already

shown to work for lattice �eld theories, spin systems, and fermion systems, and can be

used on models with both �nite and in�nite basis.
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Chapter 3
Charge-density-wave phases
in any potential

3.1 Motivation

In the picture presented in Chapter 1.3.4, at Mott insulating densities the extended t-V

model has a very simple behaviour: if the density is given by Eq. (1.27) (Q=1/m, where

m= p+1; p; :::), then the unperturbed (t! 0) ground state is of the form

� ������
1/Q¡1
sites

� ������
1/Q¡1

� ������
1/Q¡1

���; (3.1)

and the energy density is always EQ/N =QU1/Q, if m> (p+1)/2. This is however only

true, if the assumption from Eq. (1.8) holds.

By abandoning this assumption, Refs. [42] and [43] have shown a non-trivial behaviour

that cannot be explained by the simple picture from Chapter 1.3.4. Investigation was

done using models with p=2 and densities Q=1/3 and 1/2. Depending on the values of

the potentials fUmg, one can have di�erent phases in the system: there can be multiple

CDW insulating phases, a long-range bond-order phase, and even a Luttinger liquid phase,

despite the existence of a critical (�insulating�) density.

In this Chapter, we would like to generalise this result for all interaction ranges.

However, to simplify the problem, we shall assume the atomic limit (t = 0), in which

the only phases that will be encountered are CDW insulators.

3.2 Low critical densities in the atomic limit

3.2.1 Critical density Q=1/(p+1)

In the trivial case of Q=1/(p+1), the ground-state energy is always equal to zero. The

ground-state con�guration is

� ������
p

� ������
p

� ������
p

���: (3.2)
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Such a ground state is (p+1)-fold degenerate since the energy is invariant under transla-

tion.

3.2.2 Critical density Q=1/p

Let us now show how to construct the CDW phase for a system with any p and with critical

density Q= 1/ p. Firstly, assume that Up is low enough compared with the other Um to

ensure that the preferable distance between two fermions is always p and thus we can say

that Up orders the fermions in the ground state; for example a chain � ������
p¡1

� ������
p¡1

� has

lower energy than � �������
p

� �����
p¡2
�. The ground state must have the simple form:

� ������
p¡1

� ������
p¡1

� ������
p¡1

���; (3.3)

and its energy is E1=
L

p
Up=NUp.

Now, let us assume that Up¡1 is low enough to order the fermions. We could use a series

of � ������
p¡2

sections, but then we would not have the correct density 1 / p. However, by

addition of sections � ������
p

we can tailor the density without changing the energy of the

system. Thus, the ground-state con�guration is

� ������
p¡2

� ������
p

� ������
p¡2

� ������
p

� ������
p¡2

� ������
p

���; (3.4)

which gives us the correct density Q = 1 / p, and the energy is E2 = (L / 2p) Up¡1 =

(N /2) Up¡1. The boxes are present to show that we have correctly counted the energy

and particle density. In general, however, the whole subspace of the unperturbed ground

states would include Fock states in which sections with (p¡ 2) holes could be beside each

other, unless they would change the energy of the system.

If one follows this prescription, in the n-th step the following ground state is obtained:

� ������
p¡n

� ������
p

� ������
p

� ������
p

���
n¡1 times

� ������
p¡n

� ������
p

� ������
p

� ������
p

���
n¡1 times

���; (3.5)

with the energy

En=
L

1+ p¡n+(n¡ 1)(p+1)
Up+1¡n=

L
np

Up¡n+1=
N
n
Up¡n+1: (3.6)

We can now calculate the exact conditions in which an arbitrary phase (designated by step

n) will be dominant in the system:

8
k=/n

En<Ek ) 8
k=/ n

Up¡n+1<
n
k
Up¡k+1: (3.7)
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Renaming �= p¡n+1 and �= p¡ k+1,

8
�=/�

U�<
p¡�+1
p¡ �+1

U�: (3.8)

If this condition is ful�lled, then the phase with energy E(�)=
N

p¡�+1 U� is dominant and

the ground state consists of N

p¡�+1
blocks of �������

�¡1
and N p¡�

p¡�+1
blocks of �������

p

and

is f -fold degenerate, where:

f =

8>>>><>>>>:

�
N

N /(p¡�+1)

�
� p if 2�> p 

N
p¡�

p¡�+1

N /(p¡�+1)

!
� p(p¡�+1)

p¡� otherwise:
(3.9)

For 2� 6 p, the problem with assessing the degeneracy is that we need to exclude cases

where blocks of � ������
�¡1

are too close to each other and thus would increase the energy by

U2�.

3.3 Higher critical densities in the atomic limit

For Mott insulators with Q=1/m, where m=1; :::; p¡1, the number of phases and their

energies were found to be more di�cult to obtain. Rather than constructing the phases as

done in Chapter 3.2, we shall use a brute-force analysis of the basis for systems of �nite

size. Nevertheless, because we are interested in the thermodynamic limit, a periodic system

of L sites can be thought of as an in�nite system with a unit cell of L sites.3.1

3.3.1 Properties of the system

Sampling the full basis in systems with Q > 1/ p is problematic, because the dimension

of the basis grows rapidly with system size. However, many of the Fock states will have

the same energy. In particular, if two states are cyclic permutations of each other, or

cyclic permutations with inversion, then such states must have the same energy due to

the periodicity of the system. Checking the full basis for cyclic permutations would still

be computationally quite a di�cult task: �rstly, because generating the full basis would

3.1. This may not be true if one does not work in the atomic limit, since the kinetic term may introduce a �ux

in the bosonic interpretation of the model.
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take a lot of memory, and secondly, because comparing all the states to check if they are

cyclic permutations would require a large computational time (of complexity O(22L)). An

alternative approach to this problem is to consider the spaces between the fermions in our

chain and to develop rules to generate a set of Fock states that will always contain ground

states of the system.

Theorem 3.1. For any basis state, the largest space between consecutive fermions must

not be less than 1/Q¡ 1 sites.

Proof. All spaces between consecutive fermions are equal only if all particles are 1/Q¡1

sites apart, i.e., the con�guration is

� ������
1/Q¡1

� ������
1/Q¡1

� ������
1/Q¡1

: (3.10)

Any attempt to move a fermion would make the largest space bigger than 1/Q¡ 1. �

Thus, any state will have a space that is larger than or equal to 1/Q¡ 1. Due to the

system's periodicity, we can therefore �x the �rst 1/Q sites to be

� ������
1/Q¡1

: (3.11)

This leaves us with a smaller subspace of the full basis to generate: the system with size

(N ¡ 1)/Q and (N ¡ 1) particles.

Theorem 3.2. For any ground state of the system, the largest space must not exceed p sites.

Proof. Assume that there exists a ground state unit cell with the largest space equal to

(p+1) sites. We can write it as

�??���?�
BlockA

������
p sites

�: (3.12)

Let EA be the energy of the block A, so that the energy density of this ground state is

EA
N /Q

. Let us construct the following unit cell, which consists of p consecutive ground-state

unit cells (3.12):

�?? ���?�
BlockA

������
p

� �?? ���?�
BlockA

������
p

� ��� �?? ���?�
BlockA

������
p

�

p

: (3.13)
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This unit cell has the same energy density pEA
pN /Q

= EA
N /Q

as the ground-state unit cell (3.12).

Let us now move the additional empty spaces to the end of this chain, which still does not

change the energy density:

�?? ���?�
BlockA

������
p

�?? ���?�
BlockA

������
p

��� �?? ���?�
BlockA

������
p

������
p

: (3.14)

Now, let us assume that the last fermion in block A contributes to the potential energy of

this block by amount E�. If E�= 0, we can always swap this last fermion with the rest

of block A and again consider the last fermion of a new block. If we take this last fermion

out and replace it with a hole, then the energy of the block A will decrease by E�. Let us

now move the last fermion in unit cell (3.14) by p sites to the right:

�??���?�
BlockA

������
p

�?? ���?�
BlockA

������
p

��� �?? ���?�
BlockA0

�����
p¡1
� ������

p
; (3.15)

where block A0 is block A with the last fermion replaced by a hole. Block A0 has energy

EA¡E�. The last fermion does not contribute now to the overall potential energy, because

it is surrounded by p sites on both sides. Such a unit cell now has energy density

pEA¡E�
pN /Q

= EA
N /Q

¡ E�
pN /Q

; (3.16)

which is lower than the energy of the ground-state unit cell (3.12), and this leads to

a contradiction. A similar process can be used to show that a ground state cannot have

a space equal to (p+ 2) and more sites. Thus, we conclude that the largest space in any

ground state must have at most p sites. �

Using Theorems 3.1 and 3.2, we can signi�cantly decrease the number of generated

states.

3.3.2 Details of the calculation

Our calculations were performed using Mathematica [44] (see Appendix B.1). Firstly a par-

tial basis for a speci�c number of particles N , density Q and interaction range p was

generated. States of this partial basis had the �rst 1/Q sites �xed to the con�guration

shown in Eq. (3.11) by Theorem 3.1, and any states that were not in agreement with

Theorem 3.2 were removed. Then, the energy density was calculated for every state and
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this list of energies was simpli�ed by removing duplicates. In order to discard the energies

that cannot describe the ground state, the expression 8�=/�E� < E� was assessed. Some

energies however could not be compared without knowing the values of fUmg. The �nal

list contains the energies of all phases that have the lowest energy for some set values of

fUmg; these are the CDW phases of the system.

3.3.3 Results for Q=1/(p¡ 1)

Unit cells and energy densities for p= 3, 4, and 5 are presented in Table 3.1. Due to the

�nite size of the systems studied, we can only look for CDW unit cells up to a speci�c size

(designated by Lmax). Phase diagrams in Figures 3.1�3.3 show what phases are expected

to appear for di�erent values of the potentials fUmg.

System GS unit cell Energy density f

p=3; �� 1

2
U2 2 �

Q=1/2; ���� 1

4
(U1+U3) 4 �

Lmax= 28 ������ 1

6
(2U1+U2) 6 �

p=4; ��� 1

3
U3 3 �

Q=1/3; ������ 1

6
U1 6 �

Lmax= 36 ������ 1

6
(U2+U4) 6 �

��������� 1

9
(U1+2U4) 9 �

��������� 1

9
(2U2+U4) 9 �

������������ 1

12(2U2+U3) 12 �
��������������������� 1

21(2U1+3U2) 2� 21 �

p=5; ���� 1

4
U4 4 �

Q=1/4; �������� 1

8
(U3+U5) 8 �

Lmax= 32 �������� 1

8
U2 8 �

������������ 1

12(U2+2U5) 12 �
������������ 1

12 2U3 12 �
���������������� 1

16(U1+3U5) 16 �
�������������������� 1

20 2U1 20 �

Table 3.1. Ground-state (GS) unit cells and their energies in a system with Q=1/(p¡ 1). f is

the degeneracy of the ground state. Lmax is the maximum size of the unit cell that was analysed.

Colours designate phases shown in Figs. 3.1�3.3.
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Figure 3.1. Phase diagram of p=3; Q=1/2. Figure 3.2. Phase diagram of p=4; Q=1/3.

Figure 3.3. Phase diagrams of p=5; Q=1/4 with two values of U5= 0.3 and U5= 0.5.

3.3.4 Results for Q=1/(p¡ 2) and Q=1/2

Table 3.2 presents the unit cells and energy densities for p= 4 and 5 and Q= 1/(p¡ 2).

Notice that for p = 5, we have found ground-state unit cells up to (Lmax ¡ 3) and thus

potentially there could be a ground state containing an even larger unit cell that was not

found in our calculation. Phase diagram of the p=4; Q=1/2 system is shown in Fig. 3.4.

Similarly, results for Q=1/2; p=5 and 6 are presented in Table 3.3.
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System GS unit cell Energy density f

p=4; �� 1

2
(U2+U4) 2 �

Q=1/2; ���� 1

4
(U1+U3+2U4) 4 �

Lmax= 26 ������ 1

6
(2U1+U2+U4) 6 �

�������� 1

8
(3U1+2U2+U3) 8 �

�������� 1

8
(U1+2U2+3U3) 8 �

p=5; ��� 1

3
U3 3

Q=1/3; ������ 1

6
(U2+U4) 6

Lmax= 27 ������ 1

6
(U1+U5) 6

��������� 1

9
(U1+2U4+2U5) 9

��������� 1

9
(2U2+U4+U5) 9

������������ 1

12(2U2+U3+3U5) 12

��������������� 1

15(U1+2U3+4U4) 15

��������������� 1

15(3U1+U2) 15

������������������ 1

18(3U1+U3+2U4+U5) 18

��������������������� 1

21(3U1+2U3+2U4) 21

��������������������� 1

21(2U1+3U2+3U5) 21

������������������������ 1

24(4U1+3U2) 24

Table 3.2. As Table 3.1, but for a system with density Q=1/(p¡ 2). Colours designate phases

shown in Fig. 3.4.

Figure 3.4. Phase diagram of p=4; Q=1/2.
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System GS unit cell Energy density f

p=5; �� 1

2
(U2+U4) 2

Q=1/2; ���� 1

4
(U1+U3+2U4+U5) 4

Lmax= 26 ������ 1

6
(U1+U2+2U3+U4+U5) 2� 6

������ 1

6
(2U1+U2+U4+2U5) 6

�������� 1

8
(U1+2U2+3U3+3U5) 8

�������� 1

8
(3U1+2U2+U3+U5) 8

���������� 1

10(2U1+U2+4U3+3U4) 10

���������� 1

10(4U1+3U2+2U3+U4) 10

p=6; �� 1

2
(U2+U4+U6) 2

Q=1/2; ���� 1

4
(U1+U3+2U4+U5) 4

Lmax= 26 ������ 1

6
(U1+U2+2U3+U4+U5+3U6) 2� 6

������ 1

6
(2U1+U2+U4+2U5+3U6) 6

�������� 1

8
(U1+2U2+3U3+3U5+2U6) 8

�������� 1

8
(3U1+2U2+U3+U5+2U6) 8

���������� 1

10(2U1+U2+4U3+3U4+3U6) 10

���������� 1

10(4U1+3U2+2U3+U4+U6) 10

������������ 1

12(U1+4U2+3U3+2U4+5U5) 12

������������ 1

12(5U1+4U2+3U3+2U4+U5) 12

������������������ 1

18(4U1+4U2+4U3+5U4+2U5+3U6) 18

������������������ 1

18(4U1+3U2+5U3+5U4+2U5+3U6) 2� 18

Table 3.3. As Table 3.1, but for a system with density Q=1/2.

3.3.5 Discussion of the results

Our results illustrate how highly nontrivial and unpredictable the ground-state con�gur-

ations are for critical densities higher than Q=1/p. For example, for a half-�lled system

(Q = 1/2), judging only from the p = 3 case, one would naively expect a similar trend

to be present in all other cases: for all units cells to consist of a chain of occupied sites,

followed by a chain of the same length, but with empty sites. However, Table 3.2 shows

that for p=4 there exists a ground state with a unit cell (��������), that does not follow

this prediction. Therefore, it is very di�cult to create a simple set of rules describing the

ground-state properties of all the phases in the system with high critical density.

We also conclude that the number of possible CDW phases in the system grows with

the maximum interaction range p and the density Q. For example, in the system p = 5;
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Q=1/3 presented in Table 3.2, there are at least 12 di�erent CDW phases, and we expect

p=6; Q=1/4 to contain even more (preliminary results indicate 23 phases).

Q=  ¡
1/2 1/3 1/4 1/5 1/6 1/7 1/8 ���

p= 1 1
2 2 1
3 3 3 1

# 4 5 7 4 1
5 8 12 7 5 1
6 12 63 23 9 6 1
7 26 ? ? ? 11 7 1
��� ���

Table 3.4. Number of di�erent possible CDW phases in the generalised t-V model as a function

of interaction range p and density Q. Results in italic are preliminary.

For t =/ 0, we expect non-CDW phases to be present in the system. If one considers

the phase diagrams from Figs. 3.1�3.4, on the interfaces between any two phases there

are probably Luttinger liquid and bond-order phases, similarly to the �ndings of Refs.

[42] and [43]. Therefore, if our assumption that the number of phases grows quickly with

the maximum interaction range is correct, then we can predict that for high p, the phase

diagram consists of mainly non-CDW phases, while CDW insulators are only present when

certain Um are very high. Thus, a large interaction range may imply the loss of insulating

properties of the material.

3.4 Conclusions and outlook

Mott insulating phases are currently of great interest, partly because of their possible

application in future transistor technology. However, as we have shown in this chapter, the

insulating properties of the material may be altered depending on the e�ective interaction

between electrons in the system. We have shown how to construct the ground state of all the

Mott insulating phases at low critical densities in the generalised t-V model, and we have

calculated the ground-state unit cells of a few example cases for higher critical densities.

Thus, we provide a description of possible CDW phases of the system with any interaction

range and any critical density in the atomic limit. The number of possible CDW phases

increases with the interaction range and thus great care is needed in order to determine

which CDW phase will appear in a speci�c system if the interaction range is large.
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For a smoothly varying potential, the main di�culty in obtaining an insulating system

may be due to the emergence of liquid phases in the system. At a non-zero temperature

(and thus high kinetic energy) non-insulating phases may be prominent in the system,

and therefore one would need an analysis of the phase diagram of the model beyond the

atomic limit (i.e. with t > 0). For a one-dimensional system, this can be achieved using

novel renormalisation-group methods based on examination of entanglement in the system

[45]. Therefore, in the future, we propose to use the matrix product states approach [46,

47], which has proven useful in calculations of lattice models and requires relatively low

computational resources. In order to accurately describe the long-range correlations in the

system, one would need to use high bond dimension in the matrix product state. Appendix

B.2 shows the initial steps needed to use this approach on the generalised t-V model.
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Part II

Charge-carrier complexes
in two-dimensional
semiconductors



Chapter 4

Theoretical background

4.1 Transition-metal dichalcogenides

After the experimental discovery of graphene [48, 49], two-dimensional (2D) materials have

become a major focus in physics. Due to their wide potential applications, the properties of

2D materials are studied intensely nowadays. Prominent examples of those novel materials

are transition-metal dichalcogenide (TMDC) monolayers, which are stable, hexagonal 2D

semiconductors, that have one advantage as compared to graphene, namely they naturally

possess a band gap. Therefore, TMDCs can be used in optoelectronics [50�56], in the

production of transistors, photoemitters and photodetectors.

Figure 4.1. Atomic structure of a transition-metal

dichalcogenide MX2, where yellow atoms are of type

X and blue atoms are of type M.

Figure 4.2. Structure of a transition-metal

dichalcogenide as viewed from the top.

TMDC monolayers have chemical composition of MX2, where M is a transition metal

atom (e.g.molybdenumMo, or tungsten W), and X is a chalcogen atom (sulfur S, selenium

Se, or tellurium Te). Figure 4.1 shows the structure of one layer of a TMDC, where we

can see that the layer of transition metal atoms rests between two layers of chalcogen
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atoms. The thickness of the TMDC monolayer is the distance between the two chalcogen

atom layers. Viewed from the top (see Fig. 4.2), the lattice of the TMDC material is

a honeycomb, similar to graphene.

U 

T 

=&5 

=&6 

Figure 4.3. Bravais lattice of TMDCs, viewed

from the top. a~1 and a~2 are primitive vectors of

hexagonal lattice.

>,&5 

>,&6 

Gì 

Gë - -
ñ
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/ 

Figure 4.4. First Brillouin zone of TMDCs with

reciprocal lattice vectors b~1 and b~2.

The Bravais lattice of a TMDC is shown in Fig. 4.3, and Fig. 4.4 presents the cor-

responding reciprocal lattice. Many TMDCs possess a direct band gap, i.e. the energy

minimum of the conduction band has the same momentum as the energy maximum of the

valence band. Those band edges occur at the corners (K and K 0 points) of the hexagonal

Brillouin zone, where the electron states carry angular momentum and the bands exhibit

spin splitting due to spin-orbit (SO) coupling [57�61].

4.2 Motivation

The SO splitting of TMDCs is large in the valence band and small in the conduction band.

This makes the TMDC photoluminescence sensitive to the valley and spin polarisation

of charge carriers. The optical properties of these materials will be also in�uenced by the

presence of excitons and similar charge carrier complexes, and numerous observations of

the luminescence spectra of TMDCs show the presence of peaks ascribed to excitons [62�

66], trions [67�72] and biexcitons [73�75]. Recent experiments performed on higher-quality

monolayer TMDCs have shown additional structure in their spectra [76�79], that could

potentially be explained by the SO splitting and detailed classi�cation of charge carrier

complexes.
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The goal of this study is therefore to accurately describe charge carrier complexes in

two-dimensional semiconductors, and to show their classi�cation that incorporates the SO

splitting and spin/valley polarisation. Using quantum Monte Carlo methods, we will also

extract the binding energies of various charge carrier complexes, including the ones formed

around impurities in the system.

4.3 Charge carriers in 2D semiconductors

4.3.1 E�ective interaction

Instead of simulating the charge carriers ab initio as particles scattered in the hexagonal

lattice of the 2D semiconductor, one can consider the carriers in an e�ective mass approx-

imation being a�ected by an e�ective potential. This is a Mott-Wannier picture [80],

in which we assume the resulting exciton to have a radius much larger than the lattice

spacing, and the e�ective masses of (quasi)electrons and (quasi)holes include the e�ects of

the underlying lattice.

To calculate the e�ective potential, let us consider a charge density �(x; y)�(z) that

is placed in a 2D semiconductor at z=0. The electric displacement D~ due to this charge

density is then

D~ = "0E~ +P~ =¡"0r�+P~ ; (4.1)

where E~ = ¡r� is the electric �eld, P~ is the polarisation vector, � is the electrostatic

potential and "0 is the vacuum permittivity. The polarisation �eld can be expressed as

P~ (x; y; z) = P~xy(x; y)�(z), with P~xy being the in-plane polarisation and �(z) being the

Dirac delta function.

Using Gauss's law (r�D= ��(z)), we can write the following equation:

¡"0r2�+r �P~ =¡"0r2�+
¡
r�P~xy

�
�(z)= � �(z): (4.2)

However P~xy= �"0E~ (x; y; 0) =¡�"0r�(x; y; 0), where � is the in-plane susceptibility4.1

of the material (the 2D susceptibility has units of length). Equation (4.2) becomes

"0r2�=¡� �(z)¡ �"0(r2�(x; y; 0))�(z): (4.3)

4.1. 2D susceptibility can be approximated using layer separation d (of the material in bulk) and the in-plane

dielectric constant " as �= d("+1).
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Now we take the Fourier transform of Eq. (4.3), using �~ for a wave vector in the (x; y)

plane and k for a wavenumber in the z direction:

�(�~ ; k)=
1

"0
�(�~ )¡ ��2�(�~ ; z=0)

�2+ k2
: (4.4)

However, we can use another Fourier transform to write an expression for �(�~ ; z=0):

�(�~ ; z=0)= 1
2�

Z
�(�~ ; k) dk= 1

2�

�
1
"0
�(�~ )¡ ��2�(�~ ; z=0)

�
: (4.5)

Rearranging for �(�~ ; z=0) gives:

�(�~ ; z=0)= �

2"0�
�
1+ 1

2
��
�= 2��

4�"0�
�
1+ 1

2
��
�: (4.6)

One can therefore �nd the e�ective potential between charges qi and qj:

v(�)=
2�qiqj

4�"0�
�
1+ 1

2
��
�= 2�qiqj

4�"0�(1+ r��)
; (4.7)

where r� = � / 2 is a parameter with units of length, directly related to the in-plane

susceptibility of the material. Taking the Fourier transform to real space,

4�"0
qiqj

v(r) = 1
(2�)2

Z
¡1

1 Z
¡1

1 2�
�(1+ r��)

ei�xx+i�y y d�xd�y (4.8)

= 1
2�

Z
0

1Z
¡�

� 1
�(1+ r��)

ei�r cos� cos�+i�r sin� sin��d�d�

= 1
2�

Z
0

1 1
1+ r��

�Z
¡�

�

ei�r cos(�¡�)d�
�
d�

=
Z
0

1 J0(�r)
1+ r��

d�;

where Jn(x) is Bessel function of the �rst kind. Evaluating the �nal integral gives the

following equation for the potential, �rst introduced by Keldysh in Ref. [81]:

v(r)=
qiqj

4�"0 r�
�
2

�
H0

�
r
r�

�
¡Y0

�
r
r�

��
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

V (r/r�)

; (4.9)

where Hn(x) is a Struve function and Yn(x) is a Bessel function of the second kind.

For long-range behaviour or small susceptibility (r�r�), we recover the usual Coulomb

interaction:

v(r)=
qiqj
4�"0

1
r
; (4.10)

while at short-range or large susceptibility (r� r�), the potential (4.9) has the logarithmic

form:

v(r)=
qiqj
4�"0

log(2r�/r)¡ 

r�

; (4.11)
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where 
 is the Euler�Mascheroni constant. See Fig. 4.5 for a comparison of the Keldysh,

Coulomb and logarithmic potentials.

Keldysh

Coulomb

Logarithmic

10-2 0.1 1 10 100
10-2

0.1

1

10

100

r / r*

V
(r
/
r *
)

Figure 4.5. Comparison of Keldysh, Coulomb and logarithmic potentials.

In short, due to the in-plane susceptibility of the material, the Coulomb interaction

between two charge carriers is modi�ed to another form that di�ers signi�cantly from the

usual Coulomb interaction, especially in its short-range behaviour.

4.3.2 Numerical evaluation of the e�ective interaction

To evaluate the e�ective interaction, we use a Taylor expansion in r/r� at small r and an

expansion in r�/r at large r. The small-r expansion is:

v(r) = 1
r�

X
i=0

1
(¡1)i+1Q
j=1
i (2j)2

�
r
r�

�
2i
 
log

r
2r�

+ 
 ¡
X
k=1

i
1
k

!
(4.12)

+ 1
r�

X
i=0

1
(¡1)iQ

j=0
i (2j+1)2

�
r
r�

�
2i+1

:

During the calculation, elements of the �rst sum must be paired with the corresponding

element of the second sum, in order to prevent numerical errors. The most signi�cant errors

will arise due to cancellation of large elements in the sums (which can happen due to the

alternating sign in each element). Therefore, the numerical error of the �nal result can be

estimated by checking the precision of the largest element in the sum. Additionally, the

term
�

 ¡

P
k=1
i 1

k

�
, rather than being evaluated in each calculation, was tabulated for

di�erent values of i, for e�ciency purposes.
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The large-r expansion is:

v(r)= 1
r�

X
i=0

1

(¡1)i
�
r�
r

�
2i+1Y

j=0

i

(2j+1)2: (4.13)

This is an asymptotic expansion, and therefore the sum does not however converge for

�nite values of r and only a �nite number of terms should be used. The absolute value of

the element after which the sum stops converging can be used to estimate the numerical

error in the �nal result.

Figure 4.6 shows the di�erence between small-r and large-r expansions that were cal-

culated using the double-precision arithmetic and higher precision. The switch between

small-r and large-r expansion was chosen to be at r=18r�, so that the numerical precision

of the calculated potential has always over 8 digits of accuracy.
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Figure 4.6. Relative error in the numerical evaluation of the Keldysh interaction V (r/r�) from

Eq. (4.9).

4.3.3 The Schrödinger equation of a charge carrier complex

Charge carriers in 2D semiconductors can be thought of as a set of quantum particles in

an e�ective potential given by Eq. (4.9). The Schrödinger equation of this system is:24¡X
i=1

N ~2
2mi
ri2+

X
i=1

N X
j=i+1

N
qiqj

4�"0 r�
V

�
rij
r�

�35 =E ; (4.14)

where the �rst sum is the kinetic energy and the second sum is the potential. N is the

total number of charge carriers in the complex, mi2 fme; mhg is the e�ective mass of an

electron4.2 or a hole, qi is the charge of the carrier (jqij=e), V (x) is the e�ective interaction
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given in Eq. (4.9), rij is the distance between particle i and particle j, E is the energy of

the complex, and  is the wave function of the system.

We adapt the following naming for the charge carriers and their complexes. Constituent

particles can be electrons e¡, holes h+, and �xed classical ions: positive donors D+, or

negative acceptors A¡. Excitons will be designated as X, negative and positive trions as

X¡ and X+, and biexcitons as XX. Donor- or acceptor-bound complexes will be written

with D+ or A¡ in front of the corresponding complex symbol, e.g. D+XX is a donor-bound

biexciton.

The binding energy of a complex is de�ned as the energy required to divide the complex

into two smaller complexes that are energetically the most favourable, and are far away

from each other. Table 4.1 shows the decomposition of various charge carrier complexes.

Complex Symbol Decomposition

Exciton X ! e¡+h+

Negative trion X¡ ! X+ e¡

Donor-bound exciton D+X ! D+e¡+h+

Biexciton XX ! X+X
Donor-bound negative trion D+X¡ ! D+e¡+X
Donor-bound biexciton D+XX ! D+X+X

Table 4.1. Naming and decomposition of charge carrier complexes.

The binding energies are therefore de�ned as:

EX
b = EX; (4.15)

EX¡
b = EX¡EX¡; (4.16)

ED+X
b = ED+e¡¡ED+X; (4.17)
EXX
b = 2EX¡EXX; (4.18)

ED+X¡
b = ED+e¡+EX¡ED+X¡; (4.19)

ED+XX
b = ED+X+EX¡ED+XX: (4.20)

The total energy of both an isolated electron and an isolated hole is zero. Notice the

convention4.3 used: the binding energy of the exciton is a negative quantity, while other

binding energies are de�ned so that the binding energy is positive if the complex is bound.

4.2. This is not the bare electron mass, which in this work will be designated me
��9.1 �10¡31 kg. Rather, this

is a mass of a quasiparticle that arises as the electron travels through the medium (we can call it a quasielectron)

and is given as a curvature of the conduction band minimum.

4.3. This convention is used inmost of the literature dealingwith charge carrier complexes in 2D semiconductors.
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It will prove useful to do the following transformation of coordinates,

r~= r 2e2�
~2 4�"0 r�

r
; (4.21)

where � = memh / (me + mh) is the reduced mass. The Schrödinger equation (4.14)

becomes: 24¡X
i

�
mi
r~ i2+

X
i;j>i

q�iq�jV

 
r~ij

4�"0~2
2e2�r�

r !35 = 4�"0 r�
e2

E : (4.22)

where q�i� qi/e. We notice that �/mi is a dimensionless quantity that is only dependent

on the ratio of e�ective masses, me /mh. If r� is measured in the units of the excitonic

Bohr radius,

aB
� = 4�"0 ~2

�e2
; (4.23)

then the Schrödinger equation (4.22) can be written as:24¡X
i

�
mi
r~ i2+

X
i;j>i

q�iq�jV

 
r~ij
2r�/aB�

p !35 = 4�"0 r�
e2

E : (4.24)

We notice that the left-hand side of the equation is only dependent on two dimensionless

parameters: the mass ratio me/mh and the parameter related to the susceptibility of the

material, r�/aB� . Both the dimensionless parameters can range from zero to in�nity, so we

make the following transformation, in order to present all the limits on one plot:

�= me/mh

1+me/mh
; � = r�/aB�

1+ r�/aB�
; (4.25)

where � is the rescaled mass ratio and � is the rescaled susceptibility. Both parameters

take values in the [0; 1] interval.

4.3.3.1 Exciton complex

For an exciton, the Schrödinger equation (4.24) will be greatly simpli�ed, if one uses the

centre of mass as the origin of coordinates, since then the kinetic part is

¡
X
i

�
mi
r~ 2=¡

�
�
me

+ �
mh

�
r~ 2=¡r~ 2; (4.26)

where the Laplacian is taken with respect to the centre-of-mass coordinates. The left-hand

side of the Schrödinger equation (4.24) is then only dependent on r�/aB� and independent

of the mass ratio, me/mh.
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The solution for the exciton complex in the Coulomb limit is known [82, 83, 84] and

the exciton energy is:

EX=¡4Ry�=¡2
e2

4�"0 aB�
; (4.27)

where Ry� is the excitonic Rydberg energy, Ry�=e2/(2(4�"0)aB� ). The solution is identical

to the two-dimensional hydrogen atom, and the excitonic wave function can be evaluated

as:

 = 2
�

r
2
aB
� e

¡2r/aB� : (4.28)

4.3.3.2 Logarithmic limit

For the logarithmic limit, the potential is V (x) = log(2 /x) ¡ 
. Thus, the Schrödinger

equation (4.24) becomes:24¡X
i

�
mi
r~ i2+

X
i;j>i

q�iq�j

 
log

 
2
r~ij

2 r�
aB
�

r !
¡ 


!35 = 4�"0 r�
e2

E ; (4.29)

or 24¡X
i

�
mi
r~ i2+

X
i;j>i

q�iq�j

�
log
�

2
r~ij

�
+ 1
2
log
�
2 r�
aB
�

�
¡ 


�35 = 4�"0 r�
e2

E ; (4.30)

or24¡X
i

�
mi
r~ i2+

X
i;j>i

q�iq�j

�
log 2

r~ij
¡ 


�35 = 4�"0 r�
e2

E¡ 1
2

X
i;j>i

q�iq�j log
2 r�
aB
�

!
 : (4.31)

The left-hand side is now independent of r� and therefore the right-hand side is a constant

C, independent of r�:

C = 4�"0 r�
e2

E ¡ 1
2
log
�
2 r�
aB
�

�X
i;j>i

q�iq�j: (4.32)

The energy of the complex can therefore be written as

4�"0
e2

E=
C + 1

2
(
P
q�iq�j) log (2 r�/aB� )

r�
; (4.33)

which for r�!1 goes to zero. Additionally, one can notice that

X
i;j>i

q�iq�j=

8>>>>><>>>>>:

¡1 for neutral exciton;
¡1 for positive or negative trion;
¡2 for neutral biexciton;
¡2 for donor- or acceptor-bound neutral biexciton;
(n1¡n2)2¡n1¡n2

2
for complex with n1 positive and n2 negative carriers:

(4.34)
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On the other hand, if one measures the energies in units proportional to 1 / r�, the

equation reads:

4�"0 r�
e2

E=C + 1
2
¡X

q�iq�j
�
log

2 r�
aB
� ; (4.35)

which diverges as r� ! 1. However, for a binding energy (other than an exciton), the

logarithmic contribution to the energy will cancel out. For example, in the case of a trion

complex:

4�"0 r�
e2

(EX¡EX¡)=
�
CX+

1
2
(¡1) log 2 r�

aB
�

�
¡
�
CX¡+

1
2
(¡1) log 2 r�

aB
�

�
=CX¡CX¡:

(4.36)

Therefore a natural unit to measure binding energy in the logarithmic limit is

e2

4�"0 r�
: (4.37)

To summarise, in the logarithmic limit of large r�, the total and binding energies of

complexes are zero, if one uses excitonic units of energy similar to Hartree or Rydberg. On

the other hand, in the units of e2/(4�"0 r�), the total energy of the complexes (and the

binding energy of an exciton) will diverge, however the binding energy of other complexes

will be �nite.

For an exciton, one can additionally notice that the left-side of Eq. (4.31) is independent

of the e�ective masses, due to Eq. (4.26). Therefore, the constant CX is a number, and

the dependence of the excitonic energy on the mass in the logarithmic limit is completely

de�ned via the logarithmic contribution, ¡1

2
log r�

aB
� .

4.3.3.3 Units of the energy

In order to present our results, so that all the energy values are �nite, the following choice

of units is made. The excitonic binding energy will be measured in the units of

e2

4�"0 aB�
=2Ry�: (4.38)

Although the logarithmic limit is lost and will be zero in these units, if one determines the

constant CX, the energy dependence on the mass ratio will be then given by Eq. (4.35),

which has now the following form:

EX=
e2

4�"0 r�

�
CX¡

1
2
log

2 r�
aB
�

�
: (4.39)
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In the case of any other complex, the binding energy will be measured in the following

unit

e2

4�"0 (r�+ aB� )
; (4.40)

which for the Coulomb limit (r�!0) is equal to 2Ry� and for the logarithmic limit is equal

to the natural unit of the logarithmic interaction, e2/(4�"0 r�). Finally, the Schrödinger

equation (4.24) attains the dimensionless form:24¡X
i=1

Ne

(1¡ �)r~ i2¡
X
i=1

Nh

�r~ i2+
X
hi;ji

q�iq�jV

 
r~ij

1¡ �
2�

r !35 = �E ; (4.41)

where E is the energy measured in unit (4.40), Ne and Nh are the number of electrons and

number of holes in the system respectively.

4.3.3.4 Electron-hole symmetry

We also notice that the Schrödinger equation (4.14) is symmetric under electron�hole

exchange, if we also switch the e�ective masses,

m~ e=mh; m~h=me; (4.42)

where m~ e and m~h are the e�ective masses in the conjugated system. Therefore, a negative

trion system with e�ective masses me and mh is equivalent to the positive trion with

e�ective masses m~ e and m~h. Table 4.2 presents a selection of charge carrier complexes and

their conjugate equivalents.

Complex Conjugated system
Extreme mass ratios

me/mh! 0 me/mh!1

X X D+e¡ � A¡h+ �
X¡ X+ D+e¡e¡ A¡A¡h+ �
D+X A¡X D+D+e¡ � D+A¡h+ ! h+

XX XX D+D+e¡e¡ � A¡A¡h+h+ �
D+X¡ A¡X+ D+D+e¡e¡ � D+A¡A¡h+

D+XX A¡XX D+D+D+e¡e¡ D+A¡A¡h+h+

Table 4.2. Charge carrier complexes and their conjugates. Complexes in blue are their own

conjugates. Extreme mass ratio limits are also shown, with coloured symbols indicating which

complexes are equivalent.
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In the dimensionless units, the rescaled mass ratio in the conjugated system can be

obtained:

�~=1¡ �: (4.43)

Therefore, we immediately see that the exciton and biexciton complexes must be sym-

metric under electron�hole exchange, since they are their own charge conjugates. It is thus

su�cient to investigate mass ratiosme/mh2 [0;1] or �=[0;0.5] in order to cover the whole

parameter space.

4.3.3.5 Extreme mass ratios

If one of the e�ective masses of quasiparticles is much larger than the other one, we may

treat the massive particle as an ion, or a �xed particle. Such a particle will not have any

kinetic energy and will only interact via the potential energy. For extreme mass ratios, we

replace electrons with negative acceptors or holes with positive donors.

e¡ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
me/mh!1

A¡ (4.44)

h+ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
me/mh!0

D+ (4.45)

Table 4.2 shows how complexes will look at extreme mass ratios.

We notice that if we have multiple �xed ions of the same electric charge in the complex,

we will have to �nd the geometry of the system that minimises the total energy. However,

if the complex consists of �xed particles with both negative and positive charges, more

thought is needed, since a donor and an acceptor will want to overlap, which would cause

total energy to diverge.

Let us consider donor-bound complexes, where we take the mass ratio to in�nity,

causing the electrons to be very heavy, namely D+X, D+X¡ and D+XX. We need to

separate three mass scales: in�nite mass of a donor, heavy mass of an electron and light

mass of a hole.

We can write the binding energy of a donor-bound exciton as:

ED+X
b =ED+e¡¡ED+X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

me/mh!1
E(D+eheavy

¡ )¡E(D+eheavy
¡ hlight

+ ): (4.46)
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So this binding energy is that of a hole bound to a D+A¡ complex. However, the hole will

see an e�ective potential of zero, since the donor and the acceptor will coalesce.

The binding energy of a donor-bound negative trion is:

ED+X¡
b !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

me/mh!1
E(D+eheavy

¡ )+E(eheavy
¡ hlight

+ )¡E(D+eheavy
¡ eheavy

¡ hlight
+ ) (4.47)

= E(D+eheavy
¡ )+E(eheavy

¡ hlight
+ )

¡
h
E(D+eheavy

¡ )+E(D+eheavy
¡ eheavy

¡ )¡E(D+eheavy
¡ )||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=¡Eb(D+e¡e¡)

+ E(D+eheavy
¡ eheavy

¡ hlight
+ )¡E(D+eheavy

¡ eheavy
¡ )|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=E(A¡h+), since hole will only see one negative charge

i
= ED+e¡e¡

b :

However, we need to remember to convert between the units used for the D+e¡e¡ complex,

e2/
¡
4�"0~2

¡
r�+aB

(e)��, where aB(e) is the quasielectron Bohr radius, and the units of energy

from Eq. (4.40). We notice that:

e2

4�"0~2(r�+ aB� )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
me/mh!1

e2

4�"0~2
¡
r�+ aB

(h)�= e2

4�"0~2
¡
r�+ aB

(e)�
¡
r�+ aB

(e)�¡
r�+ aB

(h)�; (4.48)

where aB
(h) is the quasihole Bohr radius. The quasielectron Bohr radius is zero, since it is

inversely proportional to the quasielectron mass, and thus we need to multiply the binding

energy of the D+e¡e¡ complex by r�/
¡
r�+ aB

(h)� in order to recover the binding energy of

the D+A¡A¡h+ complex in the units from Eq. (4.40).

Similarly, for a donor-bound biexciton, the binding energy is:

ED+XX
b !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

me/mh!1
E(D+eheavy

¡ hlight
+ )+E(eheavy

¡ hlight
+ )¡E(D+eheavy

¡ eheavy
¡ hlight

+ hlight
+ ) (4.49)

= E(D+eheavy
¡ hlight

+ )+E(eheavy
¡ hlight

+ )

¡
h
E(D+eheavy

¡ )+E(D+eheavy
¡ eheavy

¡ )¡E(D+eheavy
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=E(A¡h+), since hole will only see one negative charge
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=¡Eb(A¡h+h+), since holes will again only see one negative charge

i
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=¡E

D+A¡h+
b =0, as discussed above

+Eb(D+e¡e¡)+Eb(A¡h+h+)

= Eb(D+e¡e¡)+Eb(A¡h+h+):
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For a near extreme mass, we notice that if the complex consists of two heavy particles

with the same charge, we can use the Born-Oppenheimer approximation [85] to determine

the dependence of the binding energy on the mass ratio. For example, in the limit of

me/mh!1 a negative trion will resemble a two-dimensional H2
+ ion and a biexciton will

resemble a two-dimensional H2 molecule. The correction to the binding energy can be thus

approximated as the harmonic zero-point energy of the ion-ion vibrations. We expand the

potential energy near the minimum r0,

U(r)=U(r0)+
1
2
U 00(r0) (r¡ r0)2+O((r¡ r0)3); (4.50)

and we identify the second-order correction as the vibrational energy of the ions,

1
2
U 00(r0) (r¡ r0)2=

p2jr=r0
2�0

= �0!2(r¡ r0)2
2

; (4.51)

where �0 is the reduced mass of the pair of daughter complexes (see Tab. 4.1). The binding

energy can be therefore written as

E=U(r0)+
~!
2
=U(r0)+

~
2

U 00(r0)
�0

r
: (4.52)

Let us now assume that the hole mass is in�nite, while the electron mass is �nite. We can

write the potential in Rydberg units as U(r) = U(r /aB) Ry, where U is a dimensionless

quantity. Therefore:

E = U(r0)Ry+
~
2
U 00(r0/aB)Ry

�0 aB
2

s
(4.53)

=

24U(r0)Ry 4�"0(r�+ aB� )
e2

+ ~2U 00(r0/aB)Ry
4�0 aB2

�
4�"0(r�+ aB� )

e2

�
2

s 35 e2

4�"0(r�+ aB� )
:

Since Rydberg energy is proportional to electron mass, the electron (exciton) Bohr radius

is inversely proportional to the electron (exciton reduced) mass, and me/�0�me/mh in

the limit of in�nite hole mass, then the correction to the energy is proportional to

E ¡U(r0)�
me

mh

r
e2

4�"0(r�+ aB� )
: (4.54)
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Chapter 5

Details of quantum Monte Carlo simula-
tions

5.1 Introduction to Monte Carlo methods

The problem of solving a many-body quantum system reliably and accurately is a long

standing problem of physics. Analytical solutions only exist in some special cases, or

in approximate conditions. With the advancement of the world's computational power,

numerical simulation seems to be the method of choice for numerous studies. However,

many computational methods, such as exact diagonalisation, su�er from not being truly

parallelisable and thus do not use the full potential of now-common parallel machines and

supercomputers.

Monte Carlo methods are algorithms based on repeated random updates of the system

[87]. The broad idea is that we can generate many realisations of the same system using

a speci�c probability distribution. If the �randomness� in the system is tailored correctly5.1,

then by the law of large numbers, we can calculate the physical observables by taking an

average over all generated copies of the system. The key aspect of most of the Monte Carlo

methods is that because the �nal results are calculated as averages, instead of performing

one large simulation, one can do separate uncorrelated simulations at the same time to

arrive at the answer. Thus, the methods are almost perfectly parallelisable.

Here, we are interested in the Monte Carlo methods that deal with quantum many-

body systems and bear a general name of quantum Monte Carlo (QMC). These methods

will rely heavily on evaluations of multi-dimensional integrals, which can be e�ciently done

5.1. I:e: the balance equation is satis�ed.
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using Monte Carlo integration5.2. In this chapter we brie�y summarise the main ideas of two

quantum Monte Carlo methods, variational Monte Carlo and di�usion Monte Carlo. More

detailed explanation can be found, e.g., in Ref. [88]. All our calculation were performed

using the casino code [89].

5.2 Variational Monte Carlo

The variational Monte Carlo (VMC) method relies mainly on the variational principle of

quantum mechanics [40]. If we de�ne the following functional,

E[ (R~ )] =
R
 �(R~ )H (R~ ) dR~R
 �(R~ ) (R~ ) dR~

; (5.1)

where  (R~ ) is a wave function of the system, andH is its Hamiltonian, then the variational

principle states that E[ (R~ )] reaches its global minimum only if  (R~ ) is exactly equal

to the ground state of the system, and then E[ (R~ )] is equal to the ground state energy.

Otherwise, E[ (R~ )] can only have values higher than the ground state energy.

The total energy of the system can be evaluated using the equation

E= hH i=
R
EL(R~ )j trial(R~ )j2dR~R
j trial(R~ )j2dR~

; (5.2)

where  trial(R~ ) is a trial wave function � a best guess of the wave function of the system we

want to simulate, andEL(R~ )=
1

 trial(R~ )
H(R~ ) trial(R~ ) is the local energy. One con�guration

R~ is a set of positions of all particles: R~ = fr~1; :::; r~Nparticlesg. In order to calculate this

expression, we must generate con�gurations, so that they are distributed according to

j trialj2. Then, the total energy of the system is simply an average of local energies of every

con�guration.

In order to generate con�gurations with a given distribution, Metropolis updates [90]

of the con�guration of the system are performed. Every step in the simulation consists of

proposing a move of one of the particles and randomly accepting or rejecting this move.

5.2. Actually, for any multi-dimensional integral, Monte Carlo is always a method of choice, unless one can

simplify the integral to four or less dimensions.
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The probability of acceptance of a move from R~ to R~ 0 is given by

p
¡
R~
0 R~

�
=min

(
1;

�� trial¡R~ 0���2
j trial(R~ )j2

)
: (5.3)

Here we use a symmetric transition probability density. After the Metropolis algorithm

reaches an equilibrium, we can start accumulating the results. The local energy does

not need to be evaluated at every step. Additionally, the con�gurations may be serially

correlated with each other, so we need to wait a number of moves between accumulation

steps, so that the measured con�gurations are independent.

The variance of the (Gaussian) Metropolis transition probability density is referred to as

the VMC time step �VMC and has to be carefully chosen. If �VMC is too large, then many

moves will be rejected and thus the generated con�gurations will be greatly correlated. On

the other hand, if �VMC is too small, then the new con�guration will not be much di�erent

from the old one, which again leads to unwanted correlation in con�guration space. The

time step therefore must be optimised, so that we avoid any serial correlation: usually the

value of �VMC is chosen so that the acceptance probability is equal to 50%.

5.2.1 Wave function optimisation

The accuracy of calculating the total energy relies on a good choice of  trial, the trial wave

function. This trial wave function can be either imported, for example, from an electronic

structure calculation such as density functional theory (DFT), or one can devise the form

of  trial. Any knowledge of the system in question is crucial in developing an applicable

formula for the trial wave function. After having a guess at  trial, one needs then to optimise

the unknown parameters incorporated in the form of  trial, in the spirit of the variational

principle from Eq. (5.1). Here, evaluation of the energy expectation of the system using the

Metropolis algorithm is especially useful, due to its low computational requirements. One

can quickly generate con�gurations using the trial wave function, calculate their energy,

propose a change in the parameters in the trial wave function, generate new con�gurations

and calculate the new energy of the system for comparison with the old one. This optim-

isation method is called energy minimisation [91]. To minimise the energy we diagonalise

the Hamiltonian matrix in the basis de�ned by the initial wave function and its derivatives

with respect to the parameter values. The matrix elements are calculated using VMC.
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In some cases however, we need a more robust method, as energy minimisation may

converge too slowly in our optimisation, or may have reached a local minimum. Variance

minimisation [92, 93] is preferred in this case, where we minimise the variance of the energy,

�2=
R
j trial(R~ )j2 jEL(R~ )¡E j2dR~R

j trial(R~ )j2 dR~
: (5.4)

Here the idea is that if  trial was exact, then any con�guration would have the same local

energy, and therefore the variance of the energy would be zero.

Generally in all our calculations, we have �rstly used variance minimisation in order

to make sure that we reach the vicinity of the global minimum of the energy. Secondly,

energy minimisation was used to further pinpoint the values of optimisable parameters.

In cases with a large number of particles in a complex such as a donor-bound biexciton,

variance minimisation was found to be sometimes unreliable (the energy diverged during

optimisation), and only energy minimisation could be used.

5.2.2 Numerical errors

The VMC method su�ers from two prominent sources of error. The statistical error comes

from the fact that we accumulate only a �nite number of con�gurations Ncon�g, but can

be lowered by simply increasing Ncon�g. One can easily see that this error goes as �

1/ Ncon�g
p

, just by using the error propagation formula for averages. Due to con�gurations

being correlated, there is also a problem with estimating the value of the standard error

for the energy mean. In order to remove this issue, we perform a reblocking analysis: we

gather the results in blocks and average them separately in every block. For too small

blocks, the standard error estimate is too small due to serial correlation. If the block is

big enough (the block length is bigger than the correlation length), then the averages of

di�erent blocks are uncorrelated and thus the variances are unbiased. Therefore, by plotting

the error estimates against the block size, we should see a plateau for high enough block

sizes. Of course, if the block size is too big, then the statistical error in the standard error

estimate is large since there are not enough blocks for accurate estimation. A good choice

of block size is obtained after reaching the plateau, but before the error in the estimate of

the standard error becomes too large.
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Secondly, we have an error coming from the choice of the trial wave function, which is

usually the major issue. Our chosen trial wave function is presented in Chapter 5.4.

5.3 Di�usion Monte Carlo

Let us start by recalling the Schrödinger equation for a general many-body system, that

includes a constant energy shift, E0,

i ~ @
@t
 (R~ ; t)=¡

X
i

~2
2mi
r2 (R~ ; t)+ (V (R~ )¡E0) (R~ ; t): (5.5)

We can rewrite it using the imaginary time, � = i t. The Schrödinger equation now reads:

~ @
@t
 (R~ ; �)=

X
i

~2
2mi
r2 (R~ ; �) + (E0¡V (R~ )) (R~ ; �) : (5.6)

Now, if we omit the second term of the right-hand side of Eq. (5.6), we get the following

equation:

@
@t
 (R~ ; �)=

X
i

Dir2 (R~ ; �) ; (5.7)

where Di=~/2mi. This is a di�usion equation with di�usion constant Di and  (r~; �) the

density of the di�using particles. On the other hand, if we omit the �rst term on the right-

hand side of Eq. (5.6), the equation becomes

@
@t
 (R~ ; � )= k(R~ )  (R~ ; �) : (5.8)

This is a �rst order rate equation or branching process with rate constant k(R~ ) equal to

k(R~ ) = (E0 ¡ V (R~ )) /~. Notice that if the reference energy, E0, is exactly equal to the

ground state energy of the system, then  (R~ ; �) is constant, or the density of the di�using

particles remains the same. Additionally, if �!1, then the density of di�using particles

becomes independent of � if  =  0, where  0 is the ground-state energy eigenfunction.

Therefore, in diffusion Monte Carlo (DMC) method, two processes are used (see

Fig. 5.1): a di�usion process, in which we di�use the con�gurations according to Eq. (5.7),

and a branching process, in which we randomly duplicate or destroy con�gurations

according to the rate equation (5.8). The main idea is that the average over the dis-

tribution of con�gurations after the equilibration of the di�usion process, will produce

a distribution that will re�ect exactly the ground state wave function.
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Figure 5.1. Schematic view of the DMC method in a one-parameter system (adapted from

Ref. [94]): the trial wave function  trial is used to generate the initial population, then the popu-

lation is allowed to di�use (blue) and the branching process will either create (green) or destroy

(red) the con�gurations. Averaging over the distribution of con�gurations gives us the (statistically

exact) ground state energy.

However, if the potential is very large and negative, the branching process from Eq. (5.8)

will induce a large �uctuation in the number of con�gurations, and therefore a large uncer-

tainty in  (R~ ; �) and in estimating the energy. A solution to this problem is to introduce

importance sampling, in which we de�ne an importance-sampled wave function (or a mixed

wave function),

f(R~ ; � )=  (R~ ; � ) trial(R~ ; � ): (5.9)

Then, the Schrödinger equation (5.6) becomes:

~ @f
@�

=
X
i

~2
2mi

�
ri2f ¡ri �

¡
F~i(R~ )f

��
+(E0¡EL(R~ ))f ; (5.10)
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where F~i(R~ ) =  trial
¡1 ri trial is the drift velocity. Now, if the trial wave function is close

to the ground state, the local energy EL(R~ ) is a smooth, well-behaved function, and

the branching term will not be too large to cause huge �uctuations in the number of

con�gurations [94]. Therefore, for the DMC method to work well, we need a good initial

guess of the trial wave function. This will be realised by optimising the trial wave function

using VMC.

In order to determine the probabilities of the di�usion and branching processes, we

write the Schrödinger equation using the Green's function:

f
¡
R~
0
; � + �DMC

�
=
Z
f(R~ ; � )G

¡
R~
0 R~ ; �DMC

�
dR~ ; (5.11)

where �DMC is the DMC time step, and G
¡
R~
0  R~ ; �DMC

�
is the Green's function. Its

approximate form can be chosen to be [95]:

G
¡
R~
0 R~ ; �DMC

�
=GB

¡
R~
0 R~ ; �DMC

�
GD
¡
R~
0 R~ ; �DMC

�
+O(�DMC

2 ); (5.12)

where GB and GD are Green's functions of the branching and di�usion processes respect-

ively,

GB
¡
R~
0 R~ ; �DMC

�
= exp

�
¡�DMC

2~
¡
EL(R~ )+EL

¡
R~
0�¡ 2E0��; (5.13)

GD
¡
R~
0 R~ ; �DMC

�
= 1

(2��DMC)dNparticles/2
exp

 
¡
��R~ ¡R~ 0¡ �DMCF~

¡
R~
0���2

2�DMC

!
; (5.14)

where d is the dimensionality of the system. GB and GD de�ne the rate of duplicating or

destroying the con�gurations and the rate of the di�usion process. The approximate form

of G must always be chosen so that G becomes exact as �DMC!0 and the error in G falls

o� faster than linear in �DMC.

5.3.1 Statistical, time step and population errors

Statistical error is introduced in every Monte Carlo method and comes from the central

limit theorem. It is proportional to 1/ Naccum
p

, where Naccum is the number of accumu-

lation steps that occur after the equilibration. To accurately estimate the standard error

in the mean of the results, we use the reblocking method described in Chapter 5.2.2.
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In order to make sure that the population of con�gurations does not become too small

or too large, the reference energy E0 will be varied during the calculation � this process is

called population control. However, this will introduce a small bias in the con�gurations,

which will slightly promote con�gurations with higher energies. This error is inversely

proportional to the population5.3, and thus is it necessary to extrapolate the results to

in�nite population.

There is one additional error, introduced in Eq. (5.12), which is due to non-zero DMC

time step. Similarly, we have to extract the zero-time-step value of the energy, if we want to

reduce this error. The easiest way to extrapolate our results to zero time step and in�nite

population at the same time is to perform two DMC calculations for two di�erent time

steps with population varied in inverse proportion to time step and then simultaneously

extract the zero-time-step and in�nite-population value.

To assess the relevant time step �DMC and the number of equilibration steps Nequil, we

keep in mind two characteristic lengths in the charge carrier complex system. One is the

size of the exciton in the logarithmic limit of r�!1, which is equal to:

r0=
~2 r�
2e2�

r
; (5.15)

and the second one is the excitonic Bohr radius from Eq. (4.23), which describes the size

of the exciton in the Coulomb limit.

On the other hand, during the DMC calculation, we can consider a root mean squared

di�usive distance drms, which is de�ned as:

drms=
2NDMC�DMC

m

r
; (5.16)

for a particle with mass m that was di�used through NDMC steps during the calculation.

For the time step to be small enough, this distance for one single step must be smaller than

the smallest length scale in the system. Similarly, the number of equilibration steps must

be chosen so that the di�usive distance after the equilibration procedure is always larger

than the longest length scale.

5.3. The error in the energy, will be 1/ Npopulation
p

due to central limit theorem, and the weights of each

con�guration are inversely proportional to the local energy of the con�guration, and thus the total error in weighting

will also have errors of 1/ Npopulation
p

.
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Therefore, one can use the following inequalities to determine the time step and the

number of equilibration steps:

2 �DMC
mlightest

r
� Lsmallest; (5.17)

2Nequil �DMC

mheaviest

r
� Llongest; (5.18)

where mlightest and mheaviest are respectively the e�ective masses of the lighter and heavier

of the two species of particles in the system (either me or mh), and Lsmallest and Llongest

are the smallest and longest length scales in the system (either r0 or aB� ).

The DMC method also experiences errors due to the �xed node approximation.

However, in our study the particles are distinguishable, which means there are no nodes

in the ground-state wave function of this system.

After removing both non-zero time-step and �nite population errors, the only errors

that are left are the statistical ones. Therefore, we can say that our DMC energy is stat-

istically exact, i.e. one reaches the true ground state energy of the system in the limit of

in�nite accumulation steps.

5.3.2 Observables

Finally, we show how to calculate the energy and other observables in the DMC method.

The ground state energy can be written as a mixed-estimator:

E= E h j triali
h j triali

= h jH j trialih j triali
=
R
fELdR~R
fdR~

; (5.19)

assuming the DMC wave function  is exactly equal to the ground state.

For observables that do not commute with the Hamiltonian, we can use two averages,

the VMC and the DMC mixed average:

hAiVMC = h trialjAj triali
h trialj triali

= hAi+A0[ ¡  trial] +O[( ¡  trial)2]; (5.20)

hAiDMC = h trialjAj i
h trialj i

= hAi+2A0[ ¡  trial] +O[( ¡  trial)2]; (5.21)

where A0[ ] is a functional that occurs during the expansions in ( ¡  trial). Comparing

both expansions, we extract the following equation for the extrapolated estimator [96],

hAi=2hAiDMC¡hAiVMC+O[( ¡  trial)2]; (5.22)

which is correct up to the second order in ( ¡  trial).
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5.4 Trial wave function

In this study, the only complexes considered consist of distinguishable particles, i.e. there is

always a quantum number that is di�erent for each particle. Therefore, the wave function

of the complex will always be symmetric under the exchange of two particles and will not

have any antisymmetric part or nodes. The trial wave function can therefore be written

in the Jastrow form:

 trial(R~ )= exp(J(R~ )); (5.23)

where J(R~ ) is a Jastrow factor, in a form proposed in Ref. [97],

J(fr~ig; fr~Ig) =
X
i=1

N¡1 X
j=i+1

N

u(rij)+
X
i=1

N X
I=1

Nions

�I(riI) (5.24)

+
X
i=1

N¡2 X
j=i+1

N¡1 X
k=j+1

N

h(rij ; rik; rjk)

+
X
i=1

N¡1 X
j=i+1

N X
I=1

Nions

fI(riI ; rjI ; rij)

+
X
i=1

N+Nions¡1 X
j=i+1

N+Nions

uEX2D(rij);

with N being the number of fermions in the system and Nions being the number of ions,

or �xed particles (they only enter the Schrödinger equation through the potential term).

Terms in the Jastrow factor are:

� u term, describing correlation between two fermions,

� h term, describing correlation between three fermions,

� � term, describing correlation between an ion (�xed particle) and one fermion,

� f term, describing correlation between an ion and two fermions,

� uEX2D term, that imposes cusp conditions relevant for the interaction in 2D semi-

conductors.

Terms u; h; � and f have the form [97, 98] of a general polynomial expansion in r, which

goes to zero at a cuto� length speci�c to the term used. These truncated polynomials

are continuous and have continuous �rst and second derivatives even at the cuto� point,

ensuring that the gradient of the term and the local energy EL are both continuous. Forms

of the uEX2D term will be introduced in a subsection below.
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Of course, for a given complex, only the relevant terms will be used. For example,

for a trion, u; h and uEX2D terms will be included in  trial. To additionally simplify the

problem, we assume that there is no spin dependence in the terms, e.g. the e"-h interaction

in a trion will be the same as the e#-h interaction; the e"-e#-h" interaction in a biexciton

will be the same as the e"-e#-h# interaction.

5.4.1 Kato cusp conditions

The Kato cusp conditions [99, 100] are conditions that the wave function must satisfy in

order to make sure that the local energy is nondivergent at zero distance, when two charges

coalesce. The local energy can be written as:

EL=
H trial
 trial

; (5.25)

where H is the Hamiltonian of the system. For the system of charge complexes, we simply

require that

lim
r!0

�
¡~

2(m1+m2)
2m1m2  trial

�
@2 trial
@r2

+ 1
r
@ trial
@r

�
+ q1q2
4�"0r�

�
2

�
H0

�
r
r�

�
¡Y0

�
r
r�

���
= const:

(5.26)

Notice that in general, lim
r!0

EL may not exist.

5.4.2 Devising the uEX2D term

The uEX2D term needs to satisfy two conditions: �rstly, we need to satisfy the Kato cusp

conditions for small r, and secondly, the wave function must fall to zero at large r.

Initially the following form of the uEX2D term was used:

uEX2D
eh (r) = �ehr

2 log(r) e¡c1r
2¡ c2r (1¡ e¡c1r

2
); (5.27)

uEX2D
ee (r) = �eer

2 log(r) e¡c3r
2
; (5.28)

where c1; c2 and c3 are optimisable parameters, and �eh and �ee are �xed by the Kato cusp

conditions:

�eh=
e2�

2(4�"0)~2r�
; �ee=¡

e2me

4(4�"0)~2r�
: (5.29)

Also, in order for uEX2D
eh (r) not to diverge, we must have: c1 > 0; c2 > 0 and c3 > 0. This

form was used for exciton, trion and donor-bound exciton complexes.
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A second form was devised:

uEX2D(r)=
� r2 log r+ c1r2+ c2r3

1+ c3r2
; (5.30)

where c1; c2 and c3 are optimisable parameters, and � is �xed by the Kato cusp conditions

similarly to Eq. (5.29):

�=¡ q1q2m1m2

2(4�"0)~2r�(m1+m2)
: (5.31)

In order to make sure that the term does not diverge as r�!1, the following conditions

must be applied: c2 < 0 and c3 > 0. The second form of the term was found to be much

easier to optimise, especially near the limits of extreme e�ective mass ratio of the complex.

In case of the purely Coulomb interaction, the following term was used:

uEX2D=
�r+ c1r2

1+ c2r
; (5.32)

where c1 and c2 are optimisable parameters and � is �xed by the Kato cusp condition:

�= 2q1q2m1m2

4�"0 ~2
: (5.33)

In order to make the term non-divergent for r�!1, we use c1< 0 and c2> 0.

5.4.3 Kimball cusp conditions

The Kimball cusp conditions [101] are analogues of the Kato cusp conditions, but for the

pair correlation function. Because the pair correlation function is proportional to the wave

function squared,

g(r)�  trial2 ; (5.34)

we may easily use the Kato cusp conditions to determine the behaviour of g(r). As in the

case of the wave function, we express the pair correlation in exponential form:

g(r)= exp[g~(r)]: (5.35)

The expansion of g~(r) near r! 0 using either the �rst form of the wave function from

Eqs. (5.27�5.28) or the second form of the wave function from Eq. (5.30) was calculated

to be:

g~(r)= a0+2�r2 log r+ a2r2+ a3r3+ ���: (5.36)

In case of the Coulomb interaction, the behaviour of g~(r) is

g~(r)= a0+2�r+ a2r2+ ���: (5.37)
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Chapter 6

Results

6.1 Classi�cation of trions and biexcitons in transition
metal dichalcogenides

In monolayer TMDCs the conduction-band minimum and valence-band maximum occur

at the K and K 0 points of the hexagonal Brillouin zone. In molybdenum dichalcogenides

(MoX2), within each valley the valence-band maximum has the same spin as the conduc-

tion-band minimum, while in tungsten dichalcogenides (WX2) such states have opposite

spins [102]. Figure 6.1a presents examples of how negative trions can be formed in both

MoX2 and WX2, while Fig. 6.2a presents similar examples for biexcitons.

To classify possible trionic and biexcitonic complexes, we will use the following notation:

the symbol Tk3s3
k1s1k2s2 designates a negative trion consisting of conduction band electrons

in valleys k1 and k2 and with spins s1 and s2 respectively; and of a valence band hole in

valley k3 and with spin s3. Similarly, XXk3s3k4s4
k1s1k2s2 denotes a biexciton. For example, both

trions in Fig. 6.1a can be written as TK #
K #K 0", while both biexcitons shown in Fig. 6.2a can

be designated as XXK#K 0"
K#K 0".

Recombination of trions and biexcitons may be prevented if there is no electron�hole

pair with the same spin � such a complex is called a dark trion or biexciton. Otherwise,

we are dealing with a bright complex, for which after a �nite amount of time, it will

recombine to a free electron (for a trion) or to an exciton (for a biexciton). The dark

complexes may recombine only in a higher order process, which will have a much lower

rate of recombination and will result in the emission of multiple photons � there will be

no well-de�ned light frequency.
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The complexes in which multiple charge carriers of the same spin occupy the same band

will not be considered in this work. Fermions in the system would not be distinguishable

(i.e. would not have unique quantum numbers), and such complexes (e:g: TK#
K#K#) would

be very weakly bound or not bound at all.6.1
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Figure 6.1. Classi�cation of trion recombination processes. Here E� = ET = EX ¡ ET
b is the

di�erence between the exciton and trion binding energies.

Figures 6.1b and 6.1c show the photon energies for bright trions in MoX2 and WX2,

respectively. Notice how the di�erence in spin polarisation of energy bands in molybdenum-

and tungsten-based materials changes the classi�cation of complexes. The precise photon

energies depend on whether the electrons occupy the higher- or lower-energy spin-split

bands in the initial and �nal states. Also, due to energy-momentum conservation, some

recombination processes will involve momentum exchange between the two electrons (e.g.,

the bright trion line for TK #
K 0#K " in MoX2 corresponds to a �nal state in which there is

6.1. Biexcitons with indistinguishable particles were analysed by Elaheh Mostaani and they were found to be

unbound for most of the me/mh and r� values.

Results 95



a single spin-up electron in the K 0 valley).

(c) WX2
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Figure 6.2. (a) Di�erence in polarisation in molybdenum- and tungsten-based dichalcogenides in

biexciton formation. (b,c) Classi�cation of biexciton recombination processes in MoX2 and WX2.

E�
0=EXX¡EX=EX¡EXX

b is the di�erence between the binding energies of exciton and biexciton.

Furthermore, the intensity of a bright trion line depends on the thermal occupancy of

the initial state. This intensity has the following temperature dependence,

I(T )�

8><>:
const: for no electrons in the upper spin-splitting conduction band,
e¡��

0
for one electron in the upper spin-splitting conduction band;

e¡2��
0
for two electrons in the upper spin-splitting conduction band,

(6.1)
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where �=1/(kBT ), kB is the Boltzmann's constant, T is the temperature, and �0 is the

spin-orbit induced splitting in the conduction band. For example, we expect the intensity

of the photoemission line for TK #
K 0#K" in MoS2 at low temperature to be much lower than

that of TK#
K#K 0", due to the thermal suppression coming from the e¡2��

0
factor.

Similarly, Figures 6.2b and 6.2c present a classi�cation of biexcitons in MoX2 and WX2

with respect to the recombination energy and the intensity of the emitted photon.

Finally, judging from this classi�cation, one can predict possible lines and their intens-

ities on the absorption spectrum of a transition-metal dichalcogenide monolayer. In a pho-

toabsorption or photoluminescence experiment, we expect to see energies attributed to

di�erent kinds of trions and biexcitons and emission lines of varying intensity, as presented

in Fig. 6.3.

EX¡
b

2�02�0

EXX
b

�+EX¡EX¡
b �+EX¡EXX

b �+EX

~!

X

XX

X¡

Figure 6.3. Expected photoemission/photoabsorption spectrum showing lines for various com-

plexes in MoX2. For WX2, the recombination energies will be slightly di�erent (�!�¡�0).

6.2 Numerical setup

Every charge carrier complex is de�ned by providing two parameters: the e�ective mass

ratio me/mh, and the parameter r� related to the in-plane susceptibility. We chose the

following set of possible values of r�, which would cover di�erent scales between the Cou-

lomb limit (r�! 0) and the logarithmic limit (r�!1):

r�/aB2f0.1; 0.2; 0.5; 1.0; 2.0; 4.0; 6.0; 8.0g; (6.2)

where aB = 4�"0 ~2/(me
�e2) is the electron Bohr radius, with me

� being the bare electron

mass (me
��9.1 �10¡31 kg, as opposed to the e�ective electron mass)6.2. On the other hand,
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the possible values of the e�ective masses were chosen to be:

me/me
�=1; mh/me

�2
�
1
0.1

;
1
0.2

; :::;
1
0.9

; 1
�
; (6.3)

so that the mass ratios are me/mh= f0.1; :::; 1.0g.

Additionally, we also simulate the conjugated system, with me! mh and mh! me.

The limits of the pure Coulomb and pure logarithmic interactions were treated separately

by using either the pure Coulomb or the pure logarithmic potential. The limits of extreme

mass ratios were also considered separately, by changing appropriate fermions to �xed

particles.

The �nal chosen grid of parameters is presented in Fig. 6.4. However, because one

would ideally want to use excitonic units, instead of atomic units, this grid will be skewed,

as presented in Fig. 6.5.
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Figure 6.4. Grid of chosen parameters

in atomic units.
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Figure 6.5. Grid of chosen parameters

in excitonic units.

For some example systems, we have analysed what values of time step and population

we should use in order to be in the linear extrapolation regime to zero time step (see

Figs. 6.6 and 6.7). Using condition (5.16), we have chosen the following setup: for r�/aB>

0.5, we will use �DMC2f0.01;0.04g with corresponding populations f4096;1024g, while for

r�/aB<0.5, we will use �DMC2f0.005;0.01g with corresponding populations f8192;4096g.

The number of equilibration steps was chosen to be Nequil > 200 000, which agrees with

condition (5.17).

6.2. Our usage of atomic units here was due to the casino implementation.
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Figure 6.6. Determination of the linear region

in energy vs. time step scaling for me/mh=1;

r�/aB=1 for a negative trion. The population

for every time step is changed as �1/�DMC.
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Figure 6.7. Similarly to Fig. 6.6, but for a donor-

bound biexciton with me/mh= 0.3; r�/aB= 0.1.

D+XX results for 0<r�<1 and 0<me/mh<1

were calculated by Ryo Maezono.
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Figure 6.8. Population and energy during the DMC calculation. One can see that the population

control is keeping the population near the �xed value of 1024 (black dashed line). We show reference

energy, total energy and the best estimate of the DMC energy. The system is a negative trion

with me/mh= 0.9; r�/aB=1: The equilibration phase ends after 200 000 steps.

Figure 6.8 shows an example of the reference energy, total energy of a system (de�ned

as the average over the con�guration population of the local energy at any given iteration),

and the best estimate of the DMC energy during the DMC simulation. After Nequil steps,

the system is well equilibrated and we start the accumulation stage. The average popula-
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tion in this example was set to 1024 and we can see that the population control mechanism

is working correctly, keeping the population near this number.

Finally, in Fig. 6.9 we show an example of the reblocking method. The reblocked

standard error in the energy reaches a plateau as explained in Chapter 5.3.1, and this value

is used for the standard error estimate.
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Figure 6.9. Reblocking method used on the donor-bound biexciton system with me /mh =

0.1; r�/aB = 1. The reblocking transformation number is the binary logarithm of the block size.

One can see the plateau in the reblocked error after reaching a block size of 211.

6.3 Binding energy

6.3.1 Exciton
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Figure 6.10. Exciton binding energy, EX. The plot also shows the �rst order corrections to the

energy in the logarithmic (orange) and Coulomb (green) limits.
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The binding energy of an exciton is presented in Figure 6.10 and is indeed independent

of the mass ratio if one uses excitonic units of energy as explained in Chapter 4.3.3.1. In

the Coulomb limit (r�!0), we recover the well-known excitonic energy of ¡4Ry�. In order

to determine the behaviour of the energy near the Coulomb limit, we evaluate the �rst

order correction as:

h�vi= h j�v j ih j i =
2�
R
0

1
 2�v rdr

2�
R
0
1 2 rdr

=

R
0

1
 2 vKeldysh rdrR
0
1 2 rdr

¡
R
0

1
 2 vCoulomb rdrR
0
1 2 rdr

; (6.4)

where �v = vKeldysh¡ vCoulomb is the di�erence between the full Keldysh potential from

Eq. (4.9) and its zeroth-order expansion for r! 0, i.e. the Coulomb potential, Eq. (4.10).

The excitonic wave function from Eq. (4.28) was used and the correction was found to be:

h�vi ==
r�!0

e2

4�"0 aB�
16 r�
aB
� +O(r�2); (6.5)

which is linear in r�. The correction is shown in Fig. 6.10 (green line).

The logarithmic limit constant was determined to be

CX= 0.41057748(10): (6.6)

The logarithmic limit behaviour from Eq. (4.39) is also shown in Fig. 6.10 (orange line) and

matches the DMC data near r�!1. The correction to the energy near the logarithmic

limit, if the energy is measured in the units of e2 / (4�"0 r�), was also evaluated. The

correction was evaluated numerically using VMC: �rstly the wave function was optimised

using the pure logarithmic interaction from Eq. (4.11), and then the wave function was

used to evaluate h�vi= hvKeldysh¡ vlogarithmici. The results are presented in Fig. 6.11 and

the correction was found to have a square root dependence in 1/r�.
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Figure 6.11. Correction to the energy near the logarithmic limit. The solid line is a �t to the

square root behaviour ¡a 1/r�
p

, with a= 1.154(23).
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Since the energy is independent of the mass ratio, one can easily take the limits of heavy

electron mass and light electron mass, in which the complex will look like a donor-bound

electron and an acceptor-bound hole respectively. The numerical results remain the same,

however in the units, we need to remember to exchange �!mh for a heavy electron and

�!me for a light electron.

Two interpolation formulas were devised for the exciton binding energy. The simpler

formula is accurate to 5%:

EX=
e2

4�"0 aB�
(1¡ �) ¡2+ 0.5� log(1¡ �)

1+ 1.31 �
p : (6.7)

The second, more complicated but also more accurate formula was devised:

EX=
e2

4�"0 aB�
(1¡ �) ¡2+ 16 �+ a1 �3/2+ a2 �2+ a3 �5/2+ a4 �4

1+ b1�2+ b2�5/2
: (6.8)

Fitting parameters are given in Appendix C.1.1. The formula has a relative error of 0.05%,

which can be seen on the histogram in Fig. 6.12. In the Coulomb limit, the �tting formula

recovers both the zeroth and �rst order perturbation to the energy.
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Figure 6.12. Histogram for the relative error in the exciton binding energy �tting formula from

Eq. (6.8).

6.3.2 Trion

Figure 6.13 shows the negative trion binding energy as a 3D surface plot that includes

dependence on both the mass ratio and the susceptibility. The main purpose of this plot

is to observe the general behaviour of the energy. On the other hand, Fig. 6.14 shows only

the dependence on the rescaled susceptibility for lines of constant mass ratio, but can be
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used to extract numerical values of the trion binding energy.

Figure 6.13. Binding energy of a negative trion, EX¡
b .
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Figure 6.14. Negative trion binding energy, EX¡
b , as a function of rescaled susceptibility.

The Coulomb limit results agree up to the error bar with the results of Ref. [103]. The

logarithmic limit results are taken from Ref. [104], where the DMC calculations were found

to be in agreement with the analytical results obtained using the shooting method. The

Results 103



me=mh values were also compared with the results of Ref. [105] and agreement was found.

In the heavy electron limit (me /mh! 1), the complex resembles an H2
+ molecule,

and the energy has the expected square-root behaviour in the mass ratio for a constant

susceptibility, as predicted by the Born-Oppenheimer approximation in Chapter 4.3.3.5.

Since the negative trion in this limit behaves like a complex with two acceptors and a hole,

in order to determine the total energy of this complex, it was necessary to vary the separ-

ation of the two acceptors to �nd the most energetically favourable position. See Fig. 6.15

for an example of how the minimum of energy as a function of the separation is found and

Fig. 6.16 to see the optimal separation of acceptors for each value of susceptibility.
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Figure 6.15. The distance between two acceptors

is varied, and the minimum of energy is found for

each value of r�/aB� . Example for r�/aB� =2.
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Figure 6.16. Separation of the acceptors which

minimises the energy in the A¡A¡h+ complex,

for each value of the rescaled susceptibility.

Finally, one can see that there is a steep decrease of values near the logarithmic limit.

In order to understand this decrease, we recall that for an exciton, there was a square root

dependence present near the logarithmic limit if one uses the energy units of e2/(4�"0 r�).

We conclude that a similar behaviour must be present in case of a trion, and this is why

we observe the steep decrease. This also suggests that previous studies that used only

the logarithmic limit to determine the binding energy of complexes in 2D semiconductors

greatly overestimated the values.

The DMC data was �tted (to an accuracy within 5%) using the interpolation formula,

EX¡
b = e2

4�"0 aB�
(1¡ �
p

) (6.9)

�
h
(0.73¡ 0.58 �

p
+ 0.22 �2)(2¡ �)¡ (1.2¡ 1: �

p
+ 0.32 �2) 1¡ �

p i
:
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Alternatively, one can use a general �tting ansatz:

EX¡
b = e2

4�"0 (r�+ aB� )

 X
i

X
j

aij �
i( 1¡ �
p

)j
!
; (6.10)

with �tting parameters given in Appendix C.1.2, that gives results with relative error of

0.5% (see the histogram in Fig. 6.17). The �tting has the correct square root behaviour in

the Born-Oppenheimer limit.
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Figure 6.17. Histogram of the relative error of the trion binding energy �tting formula from

Eq. (6.10).

6.3.3 Donor-bound exciton

We present the binding energy of a donor-bound exciton complex in Figs. 6.18�6.19. One

can see that for me/mh&1, the binding energy reaches values close to zero. In this region,

the calculations were especially di�cult, since the complex would tend to unbind very easily

thus producing not a ground state energy, but a local minimum. During the wave function

optimisation, the cuto� lengths (see Ch. 5.4) were set to small values, in order to keep the

complex bound. The region where we expect the complex to be either very weakly bound

or completely unbound is shown in Fig. 6.20.
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Figure 6.18. Binding energy of the donor-bound exciton complex, EDX
b . Logarithmic limit results

are taken from Ref. [104].

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

r* / (r* + aB
* )

E
D
+
X

b
[e
2
/
(4
�
�
0
(r
*+
a
B*
))
]

me / mh

0

0.1

0.2

0.5

1

2

5

�

Figure 6.19. Binding energy of the donor-bound

exciton complex, EDX
b , as a function of the rescaled

susceptibility for di�erent values of the mass ratio.

Figure 6.20. Contour plot of the binding

energy EDX
b , showing the region that is probably

unbound (in blue).

In the extreme mass ratio limit of a very heavy hole (me/mh!0), the complex consists

of two positive donors and an electron, and it has the same binding energy values as the

negative trion in the limit of in�nite electron mass (cf. Figs. 6.13�6.14). On the other hand,
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in the limit of me/mh!1, the complex is unbound, as explained in Ch. 4.3.3.5.

6.3.4 Biexciton

Figure 6.21. Biexciton binding energy, EXX
b , as a function of the rescaled mass ratio and rescaled

susceptibility. The surface is the interpolation formula from Eq. (6.12). The Coulomb limit, the

logarithmic limit, extreme mass ratio limit of me/mh! 0, equal mass ratio results and results for

r�/aB= f0.03; 60g were calculated by E. Mostaani.

The biexciton binding energies are presented in Figs. 6.21�6.22. Since EXX
b in our units

of choice should be invariant under electron�hole exchange, the plot is symmetric in the

plane of me/mh=1, and only results with me/mh6 1 need to be shown.
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Figure 6.22. Biexciton binding energy as

a function of rescaled susceptibility for set values

of the mass ratio.
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Figure 6.23. Histogram of the relative error of

the interpolation formula from Eq. (6.12).

In the extreme mass ratio of me/mh! 0, the complex resembles the H2 molecule, and

near the limit we can use the Born-Oppenheimer approximation to see that the binding

energy should have a square root behaviour in the mass ratio (cf. Ch. 4.3.3.5), which is

indeed observed on the plot in Fig. 6.21. Since we expect the binding energy to be a smooth

function of parameters me/mh and r�, and because it is symmetric at the line me/mh=1,

we conclude that at me/mh=1 the biexcitonic binding energy must have zero slope.

A �tting formula was devised that incorporates the behaviour of the biexcitonic binding

energy described in the previous paragraph,

EXX
b = e2

4�"0 aB�
(1¡ �
p

)
¡
1¡ 1.2 �(1¡ �)

p �
(6.11)

�
h
2:¡ 17: �+ 43:(�3/2+ �2)+ 15.7 �5/2

i
:

The formula is accurate up to 5% for 0.26me/mh6 5.

A more accurate formula was also devised, which correctly reproduces all the limits,

EXX
b = e2

4�"0 (r�+ aB� )

X
i

X
j

aij[(1¡ �)i/2+ �i/2] � j; (6.12)

with the �tting coe�cients given in Appendix C.1.3. The relative error histogram from

Fig. 6.23 shows that the estimated values have �2% accuracy.

6.3.5 Donor-bound trion and donor-bound biexciton

In Fig. 6.24 we present the binding energies in the logarithmic limit of all previously
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considered complexes, and the donor-bound trion and donor-bound biexciton complexes.

The D+X¡ complex in the limit of in�nite hole mass resembles an H2 molecule and

we can see that there is a square root behaviour in the mass ratio near this limit, in

agreement with the Born-Oppenheimer approximation. We can also see that there seems

to be a square root behaviour in the limit of a very heavy electron.
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Figure 6.24. Binding energy of charge carrier complexes in the logarithmic limit. Excitonic

energy does not include the logarithmic divergence. Trion and donor-bound exciton results are

taken from Ref. [104], biexciton results were calculated by Elaheh Mostaani, and the donor-bound

trion results were obtained by Cameron Price.

The donor-bound biexciton in the limit of heavy electrons has already been discussed

in Ch. 4.3.3.5. In the limit of heavy holes (me/mh! 0), this complex consists of three

�xed donors and two light electrons and there is a question of how the three donors can

be positioned with respect to each other. The most natural position that three particles

of the same sign would assume is an equilateral triangle. To check if this assumption is

correct we �rst determined how the total energy changes if we distribute the three donors

in the corners of equilateral triangle and then vary the triangle side. Figure 6.25 shows an

example case of r�/aB� =1.
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Figure 6.25. Total energy of the complex of three donors and two electrons, with the donors

placed in the corners of an equilateral triangle. Example for r�/aB� =1.

Figure 6.26. Total energy of the complex of three donors and two electrons. Left plot shows the

zoom. We �x two of the donor atoms and change the position of the third one.

After �nding the side length amin that minimises the total energy of the system, we

then change the position of one of the donor atoms (�x the remaining two to (0; 0) and

(amin;0) coordinates) and again observe the e�ect on the total energy. Figure 6.26 presents

the results, which clearly show that the preferred structure is indeed an equilateral triangle.

6.4 Contact pair correlation density

The Mott�Wannier model of charge carrier complexes is valid provided the complexes

extend over many unit cells of the underlying crystal. However, when charge carriers are
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present at the same point of space there is likely to be an energy penalty due to exchange

e�ects and the distortion of the same set of unit cells. We may represent this e�ect by

introducing additional contact interactions Aee �(r~e"¡ r~e#) and Aeh [�(r~e"¡ r~h) + �(r~e#¡

r~h)], where Aee and Aeh are constants and r~e", r~e#, and r~h are the two electron positions

and the hole position in a negative trion. Determining Aee and Aeh by ab initio calculations

would be extremely challenging, and so we leave them as free parameters to be determined

in experiments. If we evaluate the additional, small contact interaction within �rst-order

perturbation theory then we �nd that the correction due to the contact interaction in

a negative trion can be written as Aeh �eh
X¡(0) +Aee �ee

X¡(0), where the electron�hole pair

density is

�eh
X¡(r~)= h�(r~ ¡ r~e"+ r~h)+ �(r~ ¡ r~e#+ r~h)i; (6.13)

and similarly for the electron�electron pair density. The pair density can be evaluated

by binning the interparticle distances sampled in VMC and DMC calculations and using

extrapolated estimation (see Ch. 5.3.2).
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Figure 6.27. Example of extrapolation of the exciton pair density gehX (r) to zero separation using

Eq. (5.36) (black line). Example for r�=8aB;me/mh= 0.3.

Contact pair-density data have been calculated by extrapolating the electron�hole and

electron�electron pair densities to zero separation for eachme/mh and r� value considered.

The model functions from Eqs. (5.36) and (5.37) were �tted to our pair-density data with

small r (less than 0.1aB�1aB, depending on the noise in the data), with the data being

weighted by 2�r � see Fig. 6.27 for an example. Figure 6.28 presents the calculated values

of contact electron�hole pair-density for a negative trion.
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Figure 6.28. Contact exciton pair density geh
X , contact electron�hole pair density geh

X¡ for a

negative trion. The black line is the interpolation formula from Eq. (6.14). The contact elec-

tron�electron pair density gee
X¡ for a negative trion is shown in an inset. The blue line is the

interpolation formula for geeX
¡
from Eq. (6.16).

We devised the following interpolation formulas for the contact pair densities,

geh
X � 8:

(aB� )2
1¡ �

1+ 20: �
p ; (6.14)

geh
X¡ � geh

X ; (6.15)

gee
X¡ � 0.11

(aB� )2
1¡ �
p

1+ �
p (1¡ �2); (6.16)

which can be used to extract values with up to 5% error. Equation (6.15) is valid if the

trion wave function can be approximated as a product of spatially separated exciton and

electron wave functions (see Appendix C.2 for details).
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Figure 6.29. Electron�hole contact pair density

for the biexciton complex. The black line is 2gehX

(Eq. 6.17). Results for gXX were obtained by

E. Mostaani.
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Figure 6.30. Electron�electron (ee), and

hole�hole (hh) contact pair densities for

the biexciton complex.
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A similar procedure can be used to extract contact pair densities for biexcitons. The

results are presented in Figs. 6.29 and 6.30. The electron�hole contact pair density can be

approximated as (for explanation see Appendix C.2):

geh
XX � 2 gehX : (6.17)

6.5 Conclusions and comparison with experiments

Using the DMC values for binding energies of excitons, trions, donor-bound excitons, and

biexcitons, we compiled Table 6.1, which compares our results with the previous theoretical

and experimental work.

We can clearly see that the logarithmic limit results overestimate the values of the

binding energies: near r�!1, the energy has a square root behaviour (see Fig. 6.11 and

its discussion), so the energy values for �nite r� are much smaller that the logarithmic limit

values.

Exciton and trion binding energies match well with the experimental values. Our res-

ults are also consistent with the subsequent DMC calculations [106], the results from the

stochastic variational method [107], and the theoretical work that uses path-integral Monte

Carlo [108]. However, values obtained using density functional theory with the random

phase approximation (DFT+RPA) seem to underestimate the binding energies. We also

notice that the positive trion (X+) energies are slightly smaller than the negative trion

(X¡) energies for a given material.

In addition to TMDCs, we have also calculated binding energies for phosphorene, to

see if the theory considered in this work goes beyond the description of TMDCs only. We

can see that although the results seem to match the experimental values, the spread in the

experimental data is high enough that we cannot conclude yet if the match is real.
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Eb [meV]

Material
me

mh
r� [Å] This work Theory Log Experiments

X MoS2 0.7 41.5 580 540 [109], 550 [107, 106] � 570 [66], 500 [73]
MoSe2 0.7 51.7 500 470 [109], 480 [107, 106] � 550 [110]
MoTe2 0.8 60.0 450 �
WS2 0.6 37.9 560 500 [109], 520 [107, 106] � 320 [111], 700 [112]
WSe2 0.6 45.1 500 450 [109], 470 [107, 106] � 370 [113]
WTe2 0.4 53.9 440 �
Phosphorene 1.1 3.66 1460 �

X¡ MoS2 37 26 [109], 33.8 [106] 50 34 [68], 35[114], 40[115, 116]
MoSe2 32 21 [109], 28.4 [106] 40 30 [117, 118]
MoTe2 28 34 25 [119]
WS2 37 26 [109], 34.0 [106] 55 20�40 [120], 34[121], 36[111]
WSe2 32 22 [109], 29.5 [106] 46 30 [69, 72, 122]
WTe2 29 40
Phosphorene 132 553 100 [123], 90�190 [124]

X+ MoS2 37 49
MoSe2 31 39 30 [117]
MoTe2 28 34
WS2 37 53
WSe2 32 45 30 [69], 24 [72]
WTe2 29 38
Phosphorene 130 556

D+X MoS2 10.1 18
MoSe2 9.1 14
MoTe2 6.7 10
WS2 12.0 23
WSe2 10.9 19
WTe2 15.3 22
Phosphorene 7.3 105

XX MoS2 23 22.7 [106], 22.7(5) [108] 27 60 [125], 70 [126]
MoSe2 19 17.7 [106], 19.3(5) [108] 22
MoTe2 16 14.4(4) [108] 18
WS2 25 23.3 [106], 23.9(5) [108] 30 65 [127]
WSe2 21 20.2 [106], 20.7(5) [108] 25 52 [75]
WTe2 19 23
Phosphorene 135 300

Table 6.1. Exciton (X), negative and positive trion (X¡ and X+), donor-bound exciton (D+X)

and biexciton (XX) binding energies for selected TMDCs and phosphorene. We show our numerical

DMC results, previous numerical calculations using the DFT+RPA method [109], the stochastic

variational method [107], subsequent (to our work) DMC results [106], and results from the

path-integral Monte Carlo method [108]. We also show logarithmic limit results (�Log�, valid

for r� ! 1), and various experimental values. For the trion, donor-bound exciton and biex-

citon, the appropriate values of me /mh and r� are the same as for an exciton and thus are

left blank. Parameters for TMDCs are taken from Refs. [104, 109, 128�131]. Phosphorene para-

meters can be found in Ref. [132].

Although the results for biexciton (XX) binding energy seem to agree between all

theoretical works, there is a huge discrepancy with the experiments. The experimental
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values seem to be three times higher than the theoretical ones (compare for example the

expected spectrum in Fig. 6.3 with the one from Ref. [75]). We provide a few possible

explanations of this disagreement. Since the DMC method is statistically exact for these

systems, either the model is inappropriate or there is an issue with the experimental results.

Firstly, the determination of which absorption/luminescence peak matches a speci�c

charge carrier complex may be impossible or very hard in some types of experiment, and

therefore the mismatch in the binding energies may be simply due to misclassi�cation of

the peaks. For example, the biexciton peak may actually be a trion peak and vice versa. If

this is the case, then the theory underestimates the binding energies roughly twice, which

could be due to the contact interaction not being included in our calculations.

Secondly, it may be that the contact interaction for a biexciton complex has very high

values of the constants Aij (from Chapter 6.4). However, there is no physical reason why

the contact interaction should be much di�erent for excitons, trions and biexcitons, and

therefore we would rather expect to see similar discrepancy for all the complexes.

If the Mott-Wannier model breaks down for the system of charge carrier complexes,

then we should not be able to describe accurately binding energies of excitons and trions.

However, the sizes of the complexes are much bigger than the lattice constant, and therefore

the Mott-Wannier model should be valid in our considerations.

Lastly, there is one prominent di�erence between Fig. 6.3 and any experimental spec-

trum: due to �nite temperature in the experiment, the peaks will always have a non-zero

thickness (spread), and therefore if two peaks are close to each other, it is very hard to

experimentally distinguish the two unless high precision is obtained. Hence, the XX peak

may be obscured in the data by the background noise and the trion peaks. The peak that

is now identi�ed as the XX peak may then be another complex, for example a biexciton

bound to an impurity (as Fig. 6.24 suggests that the donor-bound biexciton has a higher

binding energy than a trion). Ref. [107] also shows that an excited biexciton state may be

responsible for this peak.

The contact interaction may be determined in the future using our contact pair density

results. Either one has to calculate the values of the contact interaction constants ab initio,

or they could be determined through the experiment. Ref. [133] also suggests that instead

of approximating the e�ective interaction as a combination of the Keldysh interaction and
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a Dirac delta contact interaction, one can treat the in-plane dielectric constant " as function

to be determined ab initio. However, that approach requires determination of the dielectric

function " for each 2D material separately. The method used in this work is much more

general, and our results can be used for any known or as yet unknown 2D semiconductor

for which the Mott-Wannier approximation with the Keldysh interaction is valid.

To summarise, using di�usion Monte Carlo we have studied charge carrier complexes in

2D semiconductors, in particular in transition-metal dichalcogenides. The binding energies

obtained are statistically correct and were calculated for a full range of mass ratios and

in-plane susceptibilities. Excitonic and trionic energies match the experiments very well,

but biexcitonic binding energies are greatly underestimated. We provided possible explan-

ations of this behaviour. A classi�cation of trions and biexcitons is also presented. Finally,

we have given results for the contact pair densities, which may be used in the future to

determine the contact interaction between charge carriers.
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Epilogue

Although nanotechnology provides a prospect of expanding our technological capabilities,

the theoretical understanding of quantum systems is a crucial �rst step on this road. In

this work, we have studied low-dimensional quantum systems with properties that could

be used to advance current technology beyond its present limits.

Firstly, a one-dimensional generalised t-V model of fermions on a lattice was invest-

igated. The fermions have finite-range interactions that cause the existence of Mott

insulating densities in the system. Otherwise, the model behaves as a Luttinger liquid.

We have succeeded in showing how to extend previous analytical analysis past nearest-

neighbours interactions. We have also adapted a new method, the strong coupling expan-

sion, usually used in investigations of lattice �eld theories, and used it to determine

higher-order corrections to the ground-state energy and critical parameters of the extended

t-V model near the insulating phase. The method is insensitive to the presence or absence

of integrability and goes beyond perturbation theory. It works best for systems with low

degeneracy of the unperturbed ground state, and was shown in this work to be very

versatile, as it can be used both analytically and numerically. We have also summar-

ised the strong and weak points of all the methods that were used on the generalised

t-V model, in order to provide guidance in choosing the correct methodology for future

investigations of models with long-range interactions.

Phase diagrams that include possible charge density waves of the system were also

studied. We have shown how to determine analytically all possible phases and their energies

in low Mott insulating densities for any value of the interaction range. Higher densities

were investigated using brute-force analysis and example systems were used to show that

the number of possible insulating phases grows quickly with the range of interactions. At

�nite temperature, this may indicate the loss of insulating properties of the system.
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Due to the generality of this model (i.e. the potentials considered have no given values),

it may describe an experimental one-dimensional system of fermions in an optical lattice.

Otherwise, it provides a theoretical framework for how to deal with and what to expect

from systems with �nite-range interactions.

The second model investigated was a system of charge carrier complexes in two-dimen-

sional semiconductors. In transition-metal dichalcogenides, complexes of two (excitons),

three (trions) and four (biexcitons) charge carriers were found experimentally to have large

binding energies that are prominently visible on the photoluminescence and photoabsorp-

tion spectra. These complexes are crucial in the understanding of the optoelectronic proper-

ties of the 2D semiconductors. We have provided a classi�cation of trions and biexcitons

in transition-metal dichalcogenides that incorporates the di�erence in spin polarisation

for molybdenum- and tungsten-based materials, and that can be used to explain the �ne

structure in the spectra of those materials. Using di�usion Monte Carlo, a numerical

method that is statistically exact for the charge carrier complexes, we have calculated

the binding energies of complexes with distinguishable particles. Our investigations also

include a case where a complex is bound to a charged impurity. The results were found

to be consistent with other theoretical and experimental work. Our results are however

much more complete: we provide a full range of results that are calculated using the

Mott-Wannier model with the Keldysh interaction.

There is however a disagreement between the theory and experiments on the biexciton

binding energy. We suggest some resolutions of this issue: it may be either an e�ect of

misclassi�cation of the peak in the experiment, underestimation of the contact interaction

in the theory, or the combination of both. We have also extracted contact pair densities,

which in the future may be used to determine the strength of the contact interaction.

Our results have one major advantage: due to the full spectrum of input parameters

(e�ective masses and the in-plane susceptibility of the material) that were investigated,

they can be used to determine properties of charge carriers in a wide range of systems,

rather than being focused on just a number of existing materials. We have also provided

interpolating formulas that can be utilised to easily extract binding energies for any

two-dimensional semiconductor, for which the Mott-Wannier model is applicable.
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In conclusion, our work provides a major theoretical advancement in the understanding

of one- and two-dimensional quantum systems that have possible applications in electronic

devices and it is our hope that it will be used in the near future to advance our technological

progress.
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Appendix A

Strong coupling expansion

A.1 Truncated Hamiltonians

Truncated Hamiltonians from Chapter 2.3.2. For the sake of simplicity, the zeros in the

truncated Hamiltonians are represented as dots. O�-diagonal elements should be multiplied

by (¡t).

Q=1/2 (half-�lling), p=1 (integrable), SCE step 3:
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Q=1/4, p=3 (non-integrable), SCE step 3:
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A.2 Ground states formulas

Here we present the ground states that diagonalise the truncated Hamiltonians from the

previous section.

Q=1/2 (half-�lling), p=1 (integrable), SCE step 3:
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Q=1/3, p=2 (non-integrable), SCE step 3:
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Q=1/4, p=3 (non-integrable), SCE step 3:

jGSi=
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A.3 Correlators

Here we present the fermion�fermion correlators for critical densities, see Chapter 2.3.2.

Q=1/3, p=2 (non-integrable), SCE step 3:

N̂1 = diag(0; 0; 1; 0; 0; 0; 1; 1; 0; 0; 1; 0) (A.7)
N̂2 = diag(0; 1; 0; 1; 2; 2; 1; 0; 1; 2; 0; 3) (A.8)

N̂3 = diag
�
L
3
;
L¡6
3

;
L¡8
3

;
L¡6
3

;
(L¡9)(2L¡21)
3(2L¡15) ;

L¡9
3

; (A.9)
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(A.10)

N̂5 = diag
�
0; 1; 5

3
; 2; 4L¡ 39

2L¡ 15
; 2; (A.11)

16L¡ 156
3(2L¡ 17)

; 1; 2; 6(L¡ 12)
2L¡ 21

; 1; 3(2L
2¡ 54L+ 369)

(2L¡ 21)(L¡ 12)

�
Q=1/4, p=3 (non-integrable), SCE step 3:

N̂1 = diag(0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0) (A.12)
N̂2 = diag(0; 0; 1; 0; 0; 0; 0; 1; 1; 0; 0; 1; 0) (A.13)
N̂3 = diag(0; 1; 0; 1; 2; 0; 2; 1; 0; 1; 2; 0; 3) (A.14)

N̂4 = diag
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;
L
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¡2; L

4
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(A.16)
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A.4 Near-critical ground state energies for even number
of particles

For even N , the energies will have an additional correction, due to additional phase factor

that is acquired during hopping of the particle in its bosonic spin-half formulation (cf.

footnote in Chapter 1.3.3). The ground state energies were calculated to be:

E0� = ¡2N t2

Up
+O(t4); (A.17)

E1� = ¡2
�
cos

�
�
L
¡ j�j

��
t ¡ 2

�
N ¡ 2 sin2

�
�
L
¡ j�j

��
t2

Up
+ 2F 0(L) t

3

Up
2
+ O(t4);

(A.18)

E2� = ¡4
�
cos

�
N +2

cos
�
L

�
t + A(N) A0(N; L) t2

Up
+ B(N)B 0(N; L) t3

Up
2
+ O(t4);

(A.19)

where functions A(N) and B(N) are taken from Eq. (2.91) and other approximations are

A0(N;L)� 1¡ 1
(0.139639L2¡ 0.0358L+ 0.8911)(0.1683N + 0.354)

; (A.20)

B 0(N;L)� 1+ 2.44N +1
0.76L2¡ 5:L+ 68:

; (A.21)

F 0(L;N ; �)� 2+ 2.81105
�
1¡ cos

10.2633
L

�
+F10(L;N)j�j+F20(L;N)j�j2: (A.22)
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Appendix B

Charge density waves

B.1 Higher critical densities: Mathematica code

We start by generating a partial basis for a speci�c density Q and interaction range p.

Particle number n is set to one, and will be increased after every iteration. Basis is gener-

ated according to Theorem 3.1.

(* System setup *)

Q = 1/3; (* Particle density *)

p = 4; (* Maximum interaction range *)

U = {U1,U2,U3,U4}; (* All non-zero potential energies *)

n = 12; (* Number of particles in the system *)

(* Generate partial basis *)

f[n_,k_] := Permutations[Join[ConstantArray[1, k], ConstantArray[0, n-k]]]

Possibilities = Map[Join[{1}, Table[0, {m, 2, 1/Q}], #]&, f[(n-1)/Q, n-1]];
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0 5 10 15

T
im

in
g

s 
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Number of particles

For loop

Table

Simplify

FullSimplify

Reduce

Figure B.1. E�ciency of setting up tables (For[] loop and Table[] function) and running

simpli�cation (Simplify[], FullSimplify[] and Reduce[] functions) for an example system p=4;

Q=1/2. Dotted lines show exponential scaling.
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We calculate energy density for every state and then the list of energies is simpli�ed

by removing any duplicates. For n > 1, we also need to make sure that the list consists of

energies calculated in previous iterations. Instead of using loop statements to �ll in tables,

it was found that the Mathematica's Table[] function was more e�cient and the time

consumption scaled exactly exponentially with the system size (see Fig. B.1).

Energies = Table[0,{Length[Possibilities]}];

(Energies = Table[

ene = 0;

Do[

If[Possibilities[[i,k]] == 1 &&

Possibilities[[i, Mod[k + j, Length[Possibilities[[1]]], 1]]] == 1,

ene = ene + U[[j]]

]

,{j,1,p}, {k,1,Length[Possibilities[[1]]]}

];

ene

,{i,1,Length[Energies]}

]) //AbsoluteTiming (* Print timing for efficiency check *)

Energies = DeleteDuplicates[

FullSimplify[Join[PreviousEnergies,Energies/Length[Possibilities[[1]]]]]

];

Next step is to assess whether the condition 8�=/�E�<E� is false (c.f. Chapter 3.3.2)

for a given E�. The list of energies E� that do not render this condition false must de�ne

the phases of the system. Mathematica provides three simplifying statements that can be

used in this case:

� Simplify[], which uses algebraic and other simple transformations to �nd the

simplest form possible;

� FullSimplify[], which uses much more advanced transformations, that could

involve elementary and special functions; the �nal form is at least as simple as

the one returned by Simplify[];

� Reduce[], which solves equations or inequalities and eliminates quanti�ers in the

statement provided.
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Mathematica's Reduce[] function was found to give the most reliable simpli�cation

results, however it also needed much higher computational resources. Simplify[] and

FullSimplify[] were found to be quite similar in resource consumption (see Fig. B.1)

and the latter was chosen due to higher reliability for simplifying complicated conditions.

a = U1>0 && U2>0 && U3>0 && U4>0;

len = Length[Energies];

Row[{ProgressIndicator[Dynamic[len], {0, len}], " ", Dynamic[len]}] (* Show progress

*)

For[i = 1, i <= Length[Energies], i++,

b = a;

For[j = 1, j <= Length[Energies], j++,

If[i != j,

b = b && Energies[[i]] < Energies[[j]]

]

];

If[Not[FullSimplify[b]],

Energies = Drop[Energies,{i}];

i--

];

len = Length[Energies]

] //AbsoluteTiming (* Print timing for efficiency check *)

PreviousEnergies = Energies

Another simpli�cation followed, this time using Reduce[] function. Final step consists

of checking the generated states against Theorem 3.2.

B.2 Matrix product states

B.2.1 Brief introduction

In the matrix product states approach, the idea is that the ground state of the desired

system can be represented as a tensor product of matrices (matrix product state, MPS)

residing separately on each site, i.e.:

j i=
X
f�ig

A�1A�2 ���A�Lj�1�2����Li; (B.1)
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or in a diagrammatic form presented in Figure B.2a. j�1�2����Li are states of the computa-

tional basis (can be a Fock basis or a spin basis). A are matrices that reside on sites, and

may be rectangular. Their dimensions are such that by contracting them, A�1A�2 ���A�L,

we recover a scalar.

Figure B.2. (a) State j i as a matrix product state. Every leg denotes tensor index, line con-

necting two tensors is a contraction. (b) The Hamiltonian or any other operator in a matrix product

operator form. (c) Calculation of the energy in the system, h jH j i, as an application of MPS

on both sides of an MPO. Notice that one can locally contract the tensors (green box).

Similarly, the Hamiltonian of the model can be represented as a matrix product oper-

ator (MPO),

H =
X
f�ig

X
f�j0g

M�1�1
0
M�2�2

0 ���M�L�L
0 j�1�2����Lih�10�20 ����L0 j; (B.2)

or diagrammatically on Figure B.2b. The ingenuity of the matrix product states approach

lies in the fact that one can locally contract an application of the Hamiltonian on a state �

see Fig. B.2c. This makes computational algorithms, such as density matrix product state

(DMRG) approach much more e�cient.

B.2.2 MPO representation of the Hamiltonian

We will now devise an MPO representation of the Hamiltonian of the generalised t-V

model. Firstly, we start with the spin equivalent of the Hamiltonian in a p = 2 case, in

which there is now the following potential term:

U1
X
i=1

L

Pi
"Pi+1
" +U2

X
i=1

L

Pi
"Pi+2
" : (B.3)

To represent the Hamiltonian as an MPO, we shall consider the action of the automaton,

presented in Fig. B.3.
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Figure B.3. Automaton for the p=2

generalised t-V model.
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"
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Figure B.4. Automaton for the generalised t-V

model with any interaction range p.

Such an automaton can be written as the following one-site matrix:

M [i]=

0BBBBBBB@

I 0 0 0 0 0
S+ 0 0 0 0 0
S¡ 0 0 0 0 0
P" 0 0 0 0 0
0 0 0 I 0 0
0 ¡tS¡ ¡tS+ U1P

" U2P
" I

1CCCCCCCA; (B.4)

where each row/column is a transition between speci�c automaton state. Additionally, for

open-boundary conditions, we have:

M [1]=
¡
0 ¡tS¡ ¡tS+ U1P

" U2P
" I

�
; M [1]=

0BBBBBBB@

I
S+

S¡

P"

0
0

1CCCCCCCA: (B.5)

A similar automaton (see Fig. B.4) can be devised for the Hamiltonian with any interaction

range p. The corresponding one-site matrix is:

M [i]=

0BBBBBBBBBBBBBBB@

I 0 0 0 0 0 ��� 0 0 0
S+ 0 0 0 0 0 ��� 0 0 0
S¡ 0 0 0 0 0 ��� 0 0 0
P" 0 0 0 0 0 ��� 0 0 0
0 0 0 I 0 0 ��� 0 0 0
0 0 0 0 I 0 ��� 0 0 0
��� ��� ��� ��� ��� ��� ��� ��� ��� ���
0 0 0 0 0 0 ��� 0 0 0
0 0 0 0 0 0 ��� I 0 0
0 ¡tS¡ ¡tS+ U1P

" U2P
" U3P

" ��� Up¡1P" UpP
" I

1CCCCCCCCCCCCCCCA
: (B.6)

For a periodic system, the problem is much more complex. For example, an automaton of

a periodic XY model is presented in Fig. B.5. The corresponding one-site representation is:
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Figure B.5. Automaton for a simple periodic

XY model.
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1
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M

Figure B.6. Automaton for a one-site

operator M .

M [i]=

0BBBBBBBBBBB@

I � � � � � � �
� � � � � � � �
S+ � � � � � � �
S¡ � � � � � � �
� S+ � � I � � �
� S¡ � � � I � �
� � S¡ S+ � � I �
� � � � S¡ S+ � �

1CCCCCCCCCCCA
; (B.7)

M [1]=
¡
� � S¡ S+ S¡ S+ I �

�
; M [L]=

0BBBBBBBBBBB@

I
�
S+

S¡

S+

S¡

�
�

1CCCCCCCCCCCA
; (B.8)

where zeroes are represented as dots for clarity.

One-site operators, such as the particle number operator
P

i n̂i, can be always rep-

resented as an MPO using the automaton from Fig. B.6 and the following matrix represent-

ation:

M [i]=
�

I 0
M I

�
: (B.9)
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Appendix C

Quantum Monte Carlo

C.1 Fitting formulas

C.1.1 Exciton

Fitting parameters from Eq. (6.8) are given in Table C.1.

Parameter Estimate Standard error

a1 ¡55.566 0.024
a2 102.45 0.14
a3 ¡99.57 0.25
a4 43.06 0.16
a5 ¡4.380 0.029
b1 ¡4.718 0.013
b2 3.718 0.013

Table C.1. Fitting parameters for the exciton binding energy.

C.1.2 Trion

Fitting parameters from Eq. (6.10) are given in Table C.2.
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Parameter Estimate Standard error

a00 0.8210 0.0015
a01 ¡1.76 0.16
a02 1.5 1.5
a03 0.4 5.8
a04 0.2 11.
a05 ¡4: 13.
a06 4. 8.
a07 ¡1.5 1.9
a10 ¡6.31 0.05
a11 13.2 0.6
a12 ¡10: 4.
a13 ¡11: 13.
a14 26. 19.
a15 ¡19: 14.
a16 5. 4.
a20 38.6 0.6
a21 ¡66.5 2.1
a22 58. 7.
a23 ¡8: 17.
a24 ¡22: 21.
a25 17. 14.
a26 ¡3.3 4.0
a30 ¡148.6 3.6
a31 187. 7.
a32 ¡140: 10.
a33 40. 11.
a34 0. 8.
a35 ¡2.8 2.5
a40 360. 11.
a41 ¡302: 15.
a42 172. 11.
a43 ¡35: 6.
a44 2.8 1.8
a50 ¡550: 19.
a51 279. 18.
a52 ¡107: 7.
a53 9.9 1.6
a60 518. 20.
a61 ¡137: 12.
a62 27.3 2.1
a70 ¡273: 12.
a71 27.6 3.1
a80 62.2 3.0

Table C.2. Fitting parameters for the trion binding energy.

C.1.3 Biexciton

Fitting parameters from Eq. (6.12) are given in Table C.3. Notice that a2j parameters are
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missing, since they can be incorporated into a0j.

Parameter Estimate Standard error

a00 6.9 2.3
a01 ¡40: 11.
a02 161. 21.
a03 ¡460: 32.
a04 900. 50.
a05 ¡1170: 70.
a06 1010. 60.
a07 ¡514: 37.
a08 118. 9.
a10 ¡3.3 0.7
a11 20.2 3.9
a12 ¡82: 10.
a13 195. 20.
a14 ¡265: 31.
a15 189. 26.
a16 ¡54: 8.
a30 ¡3.7 2.9
a31 12. 11.
a32 ¡17: 13.
a33 12. 8.
a34 ¡4.5 3.1
a40 1.3 1.3
a41 ¡4: 4.
a42 2.7 3.5

Table C.3. Fitting parameters for the biexciton binding energy.

C.2 Contact pair density

Here we present calculations that justify approximations of the contact pair density for

a negative trion and a biexciton from Eqs. (6.15) and (6.17).

The contact pair density for a trion is de�ned as:

�eh
X¡(0)= h�(r~e1¡ r~h1)+ �(r~e2¡ r~h1)i: (C.1)

Let us assume that the trion wave function  can be separated into exciton wave function

� and a free electron wave function ', that are spatially separated:

 (r~e1; r~e2; r~h1)= �(r~e1; r~h1)'(r~e2): (C.2)

Quantum Monte Carlo 132



We can write the normalisation constant of the wave function  as:

C =
Z
j j2 dr~e1dr~e2dr~h1 (C.3)

=
Z
j�(r~e1; r~h1)j2dr~e1dr~h1|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

C�

Z
j'(r~e2)j2dr~e2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

C'

= C�C':

Now, we can evaluate the trion contact pair density:

�eh
X¡ = 1

C

Z h
�(r~e1¡ r~h1)+ �(r~e2¡ r~h1)

i
j j2dr~e1dr~e2dr~h1 (C.4)

= 1
C

Z
j�(r~e1; r~e1)j2 j'(r~e2)j2dr~e1dr~e2

+ 1
C

Z
j�(r~e1; r~e2)j2 j'(r~e2)j2dr~e1dr~e2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

�0, since the wave functions � and' are spatially separated
(exciton and free electron are distant from each other)

� 1
C�

Z
j�(r~e1; r~e1)j2 dr~e1

= �eh
X ;

which explains Eq. (6.15).

Similarly, the biexciton contact pair density is:

�eh
XX(0)= h�(r~e1¡ r~h1)+ �(r~e1¡ r~h2)+ �(r~e2¡ r~h1)+ �(r~e2¡ r~h2)i: (C.5)

We separate the biexciton wave function  into two exciton wave functions � and ':

 (r~e1; r~e2; r~h1; r~h2)= �(r~e1; r~h1)'(r~e2; r~h2): (C.6)

The normalisation of  is:

C =
Z
j j2 dr~e1dr~e2dr~h1dr~h2 (C.7)

=
Z
j�(r~e1; r~h1)j2dr~e1dr~h1|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

C�

Z
j'(r~e2; r~h2)j2dr~e2dr~h2|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

C'

= C�C':

Finally, we evaluate the biexciton contact pair density:

�eh
XX = 1

C

Z h
�(r~e1¡ r~h1)+ �(r~e1¡ r~h2) (C.8)

+ �(r~e2¡ r~h1)+ �(r~e2¡ r~h2)
i
j j2dr~e1dr~e2dr~h1dr~h2

= 1
C

Z
j�(r~e1; r~e1)j2 j'(r~e2; r~h2)j2 dr~e1dr~e2dr~h2

+ 1
C

Z
j�(r~e1; r~h1)j2 j'(r~e2; r~e1)j2dr~e1dr~e2dr~h1|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

�0, since the wave functions � and' are spatially separated
(the two excitons do not occupy the same space)
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+ 1
C

Z
j�(r~e1; r~e2)j2 j'(r~e2; r~h2)j2dr~e1dr~e2dr~h2|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

�0, as above

+ 1
C

Z
j�(r~e1; r~h1)j2 j'(r~e2; r~e2)j2dr~e1dr~e2dr~h1

� 1
C�

Z
j�(r~e1; r~e1)j2 dr~e1+

1
C'

Z
j'(r~e2; r~e2)j2 dr~e2

= �eh
X1+ �eh

X2

= 2�ehX ;

which justi�es Eq. (6.17).
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