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Abstract—Mobility tracking based on data from wireless Two types of measurements are usually used: pilot signal
cellular networks is a key challenge that has been recently inves- strength from different BSs measured at the mobile unit and
tigated both from a theoretical and practical point of view. This the corresponding propagation times.
paper proposes Monte Carlo techniques for mobility tracking in
wireless communication networks by means of received signal The Kalman-filtering algorithms developed in [2] for real-
strength indications. These techniques allow for accurate estima- time tracking of a MS in cellular networks have limitations
tion of Mobile Station’s (MS) pOSItlon and Speed. The command due to the necess|ty for ||near|sat|on Th|s |eads to the

process of the MS is represented by a first-order Markov model - g, 0o mings in accuracy caused by this approximation. The
which can take values from a finite set of acceleration levels.

The wide range of acceleration changes is covered by a settWO algorithms proposed in [2] use the pilot signal strengths
of preliminary determined acceleration values. A particle fiter from neighbouring BSs (i.e., th®eceived Signal Strength
and a Rao-Blackwellised particle filter are proposed and their Indication (RSS)) although signal measurements such as

performance is evaluated both over synthetic and real data. A time-of-arrival (TOA) are also suitable. The model of the
comparison with an Extended Kalman Filter (EKF) is performed MS is considered to be linear, driven by a discrete command

with respect to accuracy and computational complexity. With a . .
small number of particles the RBPF gives more accurate results Process corresponding to the MS acceleration. The command

than the PF and the EKF. A posterior Cramér Rao lower bound process is modelled as a semi-Markov process over a finite
(PCRLB) is calculated and it is compared with the filters’ root-  set of acceleration levels. The first algorithm in [2] consists

mean-square error performance. of an averaging filter for processing pilot signal strength
Index Terms— Mobility tracking, wireless networks, hybrid ~measurements and two Kalman filters, one to estimate the dis-
systems, sequential Monte Carlo methods, Rao-Blackwellisation. crete command process and the other to estimate the mobility
state. The second algorithm employs a single Kalman filter
without pre-filtering the measurements and is able to track a
MS even when a limited set of pilot signal measurements is
available. Both proposed algorithms can be used to predict
OBILITY tracking is one of the most important fea-future mobility behaviour, which can be utilised in resource
tures of wireless cellular communication networks [1]allocation applications.
Data from two types of station are usually usbese stations  Yang and Wang [7] developed an MC algorithm for joint
(BSs) the position of which is known, anuobile stations mobility tracking and hard handoff detection in cellular
(MSs) or mobile users for which location and motion arfietworks. In their work, mobility tracking involves on-line
estimated. estimation of the location and speed of the mobile, whereas
Mobility tracking techniques can be divided in twohandoff detectioinvolves on-line prediction of the pilot signal
groups [2]:i) methods in which the position, speed andtrength at some future time instants. The optimal solution of
possibly the acceleration are estimated, &jcconventional both problems is prohibitively complex due to the nonlinear
geo-location techniques, which only estimate the positigiature of the system. The MC joint mobility tracking and
coordinates. Previous approaches for mobility tracking rely @randoff detection algorithm designed in [7] is compared with a
Kalman filtering [2]-[4], hidden semi-Markov models [4]-[6]modified EKF and it is shown that the MC technique provides
and sequential Monte Carlo (MC) filtering [7]. much better accuracy than the EKF.

In this paper we focus on mobility tracking based on signal
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rn]_ [11] for tracking targets in military systems, the Singer model
—l a has served as a basis for developing effective manoeuvre mod-
m2 . K els for various applications (see [12] for a detailed survey),
. including user mobility patterns. In the original Singer model
° there is no control process and the acceleration is considered
m J u r as a random process, which has a time autocorrelation. The
M K k Singer-type model from [2] includes a command process in
explicit form. Yang and Wang consider a simpler form of this
mobility model [7]. In our previous paper [13] we investigated
the Singer-type model adopted for mobility tracking by [2].
However, we found that the model of [7] gives better results
and at the same time is simpler since it enables a more efficient
calculation of the PCRLBSs. In this paper we adopt their model.
The structure of the paper is as follows. Section Il formu- 1he state of the moving mobile at time instanis defined
lates the problem. Section Iil presents the mobility state aRy the vectore, = (zx, &x, &y, yx, gx. )" Wherea andyy,
observation models. A particle filter for mobility estimatiorsPecify the position:; andy, specify the speed, ang}. and
in wireless cellular networks is presented in Section IV arf§ SPeCify the acceleration in theandy directions in a two-
a Rao-Blackwellised particle filter is designed in Section \Aimensional space. N _
Section VI considers the relevant PCRLB. The performance of "€ motion of the mobility user can be described by the
the designed algorithms is evaluated using synthetic and régHation
fjata in Sectipn VI Finglly, cor_wclusions and ongoing research xp = A(T, Q) xy_1 + By (T)uy + By(Twy,  (3)
issues are highlighted in Section VIII.

commands time correlated
random acceleration

Fig. 1. Structure of the mobility acceleration chain.

wherewuy, = (ug.x, uy,x) IS a discrete-time command process

Il. PROBLEM FORMULATION and the respective matrices in (3) are of the form
We consider the problem of mobility tracking in cellular A(T,q) = A 033 Bi(T) = B, 0351
networks within the sequential MC framework. The dynamics T 033 A T 05«1 B; /)’
of the mobility unit is described by the equation (4)

i = f(Tp_1, My, g, W), (1) T2/2 T?/2 T%/2

1 T
wherex; € R"= is the systenbasestate,u; € R" specifies A=|0 1 T ,B,=| T ,B,=| T
the command process, amg, € R™ is the state noise, with 0 0 « 0 1
k € N being the discrete time anN is the set of natural (%)
numbers. Themodal (discrete) staten; characterising the The subscript in the matrix B(T) in (4) stands foru or w
different system modes (regimes), can take values over a fifi@spectively. The random process is a2 x 1 vector,T' is the
setM, i.e.,my € M. discretisation period. The parametets the reciprocal of the
The measurement equation is of the form manoeuvre time constant and thus depends on how long the
manoeuvre lasts. Sinaey, is a white noiseE[wkaHj] =0,
2z, = h(@k, vi), © for j # 0. The covariance matrig of wy, is Q = o2 I, where
where z, € R": is the observation, and, € R™ is the I denotes the unit matrix and, is the standard deviation.
measurement noise. Functiofi§.) and h(.) are nonlinear in The unknown command processes; andu,  are mod-
general. elled as a first-order Markov chain that takes values from a
It is assumed that the observations are taken at discré@ of acceleration level31, and M,, and the process
time points Tk, with a discretisation time stef. The ac- takes values from the sbf = M, x M, = {my,...,mun},
celerationu;, of the mobile unit is usually highly correlated,with transition probabilitiesr;; = P(ui, = m;|ur—1 = m;),
but sometimes it undergoes rapid changes caused by varibus = 1,...,M and initial probability distributionu;, =
reasons such as traffic lights and road turns. Following [3[{m = m;} for modesm; € M such thaty;o > 0 and
[7], [8], the motion of the moving user can be modeled as@;—; ii,0 = 1.
dynamic system driven by a commang = (. x, uy,x)" and
a correlated random acceleratiop = (r, 5,7y x) attimek, A. Observation Model

i.e., the total acceleration i#, = ux + 71 (see Fig. 1). A commonly used model [2], [7] in cellular networks for
the distance between a mobile and a given base station (BS)
lIl. M OBILITY STATE AND OBSERVATION MODELS relies on the RSSI, which is the pilot signal strength received

Different state mobility models have previously been used at the mobile. Denote by, ; the RSSI signal received by
cellular networks such as the constant acceleration model g@piven mobile from the-th BS with coordinatega;, ;) at
and Singer-type models [2], [4], [10]. In this paper we choogdane k. The RSSI can be modelled as a sum of two terms: path
a discrete-time Singer-type model [7] because it capturless and shadow fading. Fast fading is neglected assuming that
correlated accelerations and allows for prediction of positioa, low-pass filter is used to attenuate the Rayleigh or Rician
speed and acceleration of mobile users. Originally proposedf@ade. Therefore, the RSSI (measured in dB) that the mobile
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unit receives from a particular BSat time k£ can be modelled associated with a weight which characterises the belief that the
as the following function object is in this state. An estimate of the variable of interest
is obtained by the weighted sum of particles. Two major
2hi = 20,0 — 10010Gy0(di.i) + ki ©) stages can be distinguisheprediction and update During
wherez ; is a constant characterising the transmission powie prediction each particle is modified according to the state
of the BS, depending on factors such as wavelength, anternadel, including the addition of random noise in order to
height and gain of cell; n is a slope index (typicallyy = 2 simulate the effect of the noise on the variable of interest.
for highways andp = 4 for microcells in a city);d,, = Thenin the update stage, each particle’s weight is re-evaluated
V/(zr —a;)? + (yr — b;)? is the distance between the mobildased on the new sensor data.résampling procedure is
unit and the base statiori;, b;) is the position of thei-th dealing with the elimination of particles with small weights
BS; vx; is the logarithm of the shadowing component, whicand replicates the particles with higher weights.
was found in [3] to be a zero mean, stationary Gaussian
process with standard deviatian, ;, typically from 4 — g /- A Particle Filter for Mobility Tracking
dB. The shadowing component can considerably worsen thelhe developed particle filter (PF) is based on multiple
estimation process as it is shown in [2], [4]. This difficultynodels for the unknown acceleratian A detailed scheme
can be overcome by pre-filtering the measurements (e.g. bydirthe PF is given below, wheré/ denotes the number of
averaging filter [2]) in order to reduce the observation nois@articles.

To locate the mobile station (MS) in a two-dimensional
plane, a minimum of three distance measurements to neigh- A particle filter for mobility tracking
bouring BSs are sufficient to enable triangulation. Within
the GSM system the MS is constantly monitoring up to 7 Initialisation
neighbouring BSs in order to establish the need for handovers!. ¥ =0, for j = 1 N, }

For the considered problem the observation vector consiggnerate samplege; G) Np(mo) m) ~ Py(m) },
of the three largest RSSI denotegl;, 2 2, 21 3. Hence, the where Py(m) are the initial mode probabilities for the

measurement equation is of the form accelerations and set initial weightg (/) = 1/N.
zr = h(zy) + v, ™ WFork=12. .,

with h(zy) = (hi(xk), ha (z1), ha(xy))’s hi(zin) = 204 — 1) Prediction Step

10nlog(dk,;), a measurement vectet, = (zk.1, 2k,2, 2k,3) Forj=1,..., N, generate samples

shadowing components;, = (v 1, Vg2, Uk,3) assumed to 4 _ _
be uncorrelated both in tlme and space and having Gaussian a:,(c )= A(T, a):c(]) +B, (T)u(ﬁ)(mg))jLBw(T)w,(j),
distribution, vy, ; = (0,07 ;).

Wherew NN(O Q), and under the constraint:
IV. MOBILITY TRACKING AND PREDICTION WITHIN

BAYESIAN FRAMEWORK it V=1/E"2+ @9)2 > Vi, (10)
We now consider the sequential estimation of the mobility a, = arctan{s (j)/fr(g)}
of a user within the Bayesian framework. Since the command (cj) v Y G .
processu is unknown, we are considering a hybrid particle d = Vinaxcos(ac), g5 = Vmaxsin(ac),
x; = (z},m}) that fully characterises the target state ) eNn{M W M for {—mb) -
mJSm=1> VT Syttt - kl!

and mode. The mobility state; can be evaluated at each
time instant from the conditional probability density function

p(xk|z1x) and a set of measurements., 2 {z1,..., 2.} Measurement Updatevaluate the importance weights

up to time instant via the Chapman-Kolmogorov equation 2) forj=1,..., N,.on the receipt of a new measurement,
compute the weights
p(Xk|Z1;k71)=/an p(Xp|Xp—1)p(Xp—1|21:6—1)dxt—1. (8) w9 = w9 £(z]a?). (11)
After the arrival of the measuremest at timek, the posterior The likelihood ﬁ(Zkwaf)) is calculated using (7)

state probability density function (pdf) can be updated via E(ka(cj)) NN(h(:cgf)),ov).
Bayes rule
p(zk|xK)p(Xk|Z1:6-1) ©) 3) for j =1,..., N, normalise the weights,
o , N ,
p(zk|Z1:6-1) ’ ngj) = ngj)/ijl ngj)-

wherep(zi|z1.,—1) IS @ normalising constant. The analytical

solution to the above equations is intractable. Hence, we utilise

the MC technique [14] which has proven to be very suitable

and powerful for dealing with nonlinear system dynamics. . < G) ()
The MC approach relies on a sample-based construction of &y = Elmp|zia] = Y Wz, 12)

these probability density functions. Multiple particles (sam- 7=1

ples) of the variables of interest are generated, each one Calculate posterior mode probabilities

p(Xk|Z1:k) =

Output
4) The posterior mea® [z |z1.x]

N
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5) for j=1,...,N, 0 0 The mobility model (1)-(2) is rewritten in the form
P(my, =llz1) = ZN:l 1(m;” = W, ’
wherel(.) is an indicator function such that wif _(1 A mZL + B
kf 0 Ak kf BES U
1, if ¢ “ e ‘
_ ) mp =t f
1(my,) = { 0, otherwise. + (g%}) wy,  (13)

Compute the effective sample size
6) Negs =1/ X0, (W), 2z = h(@}’) + vy, (14)

Selection step (resampling) N7 < Ninresn where zP! = (x,y)', ‘pf" is short for particle filter,z"/ =
e . res N A P . .
&) (])} with high/ low (&,2,9,9), 'kf" is short for Kalman filter andw is assumed

& Mult|ply/ supprgss Se}n(]ﬁle{?z’“ M, . Gaussian. Equations (13)-(14) have the same properties as
importance weightdd*/, in order to obtainN new equations (1)-(2). Since the noise, is Gaussian,

random samples approximately distributed according to
the posterior state distribution. The residual resampling wgf _ Q" M
algorithm [15], [16] is applied. This is a two step process “* ~ ir ) EN~(0,Q),Q = M Q) (15)

making use of sampling-img)ortanc_e-resampling scheme. . . i i
*Forj—1,....N, setW,gj _ Wéj) —1/N. The mobility model is a Singer-type model which accounts

for correlations between the state vector components. Hence,
we cannot assume that the process neigé is uncorrelated
with w*7, i.e. M # 0.

The PF takes into account the fact that the speed of thenstead of directly estimating the p¢;wk LZ”“)’ with the
mobile unit cannot exceed certain values (Eq. (10)). Othgptire state vector, consider the pelfz? wkﬂzl:k)_ Using
refined schemes for accounting for constraints can also {p@ Bayes rule, this pdf can be factorised into two parts

applied [17]. ,
o) M ozi)p(aPf|ziy).  (16)

k
p(iL‘k ,a:kf|z1:k) = p(:ckf\a:
Since the measurements.;, are conditionally independent on
x'7 the probabilityp(}/ |2/, z,.,) can be written as

V. A RAO-BLACKWELLISED PARTICLE FILTER FOR

k k
MOBILITY TRACKING p(@l @t zy.) = p(atf |2t 17)

. . e , Consider now the system
A major drawback of particle filtering is that it can become

prohibitively expensive when a large number of particles is ahl = AM gk 4 BM oy + BR !l
used. However, the complexity can be reduced by a procedure zp = Apwa)il i Bzfuk n Bfufwzf7 (18)

called Rao-Blackwellisation [17]-[23].

Rao-Blackwellisation is a technique for improving particlavhere z,, = =/ — f(x?/). Since the system (18) is linear
filtering by analytically marginalising some of the variablesnd Gaussian, the optimal solution is provided by the KF. We
(linear, Gaussian) from the joint posterior distribution. Thean assume a Gaussian form of the pdf (17), i.e.
linear part of the system model is then estimated by a Kalman
filter (KF), an optimal estimator, whilst the nonlinear part is p(miﬂmif) ~ N(ﬁc’;{k,pPQ{k,l)v (19)
estimated by a PF. This leads to the fact that a KF is attached
to each particle. In the mobility tracking problem the positionghere the estimate vect(:(fv:’,j‘fk_1 and the corresponding

of the mobile unit are estimated with a PF, whilst the spee@gvariance matrixP,”, , are calculated by the Kalman filter.

and accelerations with a KF. Since the measurement equatiothe second pdf from (16) can be written recursively [19]
is highly nonlinear, the particle filter is used to approximate

this distribution. After estimating the positions, these estimates of of
are given to the KF as measurements. As a result of thg z p(zklzy )p(ey’ |27 _1) (mpf 211).
marginalisation, the variance of the estimates can be reducé p(zk|Z1:6-1) Lik—117

compared with the standard PF. (20)

Similarly to the Rao-Blackwellisation approach, the mixtur Due to the nonllnegr measuremenF equation we apply a PF
M : solve (20). The weights are recursively calculated based on
Kalman filtering approach proposed by Chen and Liu [2

ikali pf,(5) i i
represents the system in a linear conditional dynamic mode.e likelihoodsp (2|} of (25 The particles will be sampled

In this way the problem is solved by multiple Kalman filter&ccording tOp(wa"’NwL,;;l_). Using the state equation for
run with the MC sampling approach. A formulation of thdhe @*/ from (13) and having in mind (19), the prediction
Rao-Blackwellisation problem is given in [25], [26] in a Way'step in the particle filter can be performed as follows
different from that in [20]. In the implementation of our Rao-

Blackwellised PF for mobility tracking we follow the approach pf.(3) pf,(4) pf 4k f.(5) pf, (9
proposed in [19] and [20]. In contrast to these works we design ~ ~ *+! N(w'_“ TATE B

a RBPF which has a command process in the system model. A”fPZ{,;(fi(Apf)' + By QY (BY ). (21)

pf

Zf|z1:k‘,) -
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For each particle, one Kalman filter estlmaﬁg”k, j= Forj=1,2,....N
, N. It should be noted that the prediction of the non- &
1.(9) ~kf,(5) (49) kfa, ()
Ilnear variables is used to improve the estimates of the linear T 0k = Dz Tyt Cz; + B, (mk+1) (32)

state variables.
Next, we present the developed RBPF. Note that in the
KF update and prediction steps, the filter gaki,, the

predicted and estimated covariance matrchéf , P’,zf 1k

Measurement Updateevaluate the importance weights
5) Compute the weights

@) _ @) 15(5)
are calculated once, which reduces the computatlonal load. Wki-l =W’ E(zk+1|”’i+1j )- (33)
The likelihood E(zk+1|w£§_§j)) is calculated from (7)
A Rao-Blackwellised PF for mobility tracking Lz |2y) ~ N (R(22D D), 0,).
Initialisation 6) Normalise weightsW,ﬁfB1 = k+1/2; 1 k+1
1) k=0, forj=1,....N, ‘ 7) Output
generate sample{smpf D~ p@t?), m§) ~ Py(m) }, oS 70 oph () 34
where Py(m) are the |n|t|al mode probabilities for the L1 ™ Z k+1xk+1 ) (34)
accelerations. Initialise the Kalman filters I@ngj‘f (f)
N( Pt )} and set initial weightsV?) =1/N. . .
) A Lk,
Fol-1 Tl iyl = Zwéil AT (35)
Particle Filter Prediction Step Calculate posterior mode probabilities
2) Forj=1,...,N 8) P — N 4 (mY = w9
) REREEAE ) P(mys1 |Z1:k41) Z]:1 (mk+1 ) k+1
Predict the particles where1(.) is an indicator function such that
; k .
D N 4 AT« Bl tm = {0 omas
k) — .
AprZ{k—l(Apf) Bprpf (Bpf) ), (22) 0, otherwise.
) " 0. Selection step (resampling)
wherem' [y ~ {7 by for £ =m;"; 9) If Nepp < Ninresh resample{azzﬁj), a:',jﬁ]/)k, ;jll}
_ in the same way as in the PF.
3) Update step of the Kalman filters 10) Setk = k + 1 and return to step 2.
Ky, =Pyl (AY)(Sp)7!, (23)

A. Mobility Prediction

i X Based on the approximation of the filtering distribution
Py =P _ - KAV P (24)  p(xx|=z1.£) We seek to estimate thestep ahead prediction

S, — AP PFf (APf B QY (BMY, (25 fjlstrlbuuon.éf > 2). Ir_1 a general pr_ed|ct|on problem we are
b ’“"“1( '+ BUQU(BLY), (25) interested in computing the posteritstep ahead prediction

Forj=1,2,...,N distribution p(xx-|z1.x) given by [7], [25]
k k &
mklfk(J) _ mklfk(q + K, ( _ APT 4 f (J))’ (26) k+t
_ P(Xktt|z18) = pxilz1w) | [] dXkmie-1|. (36)
wherez!”) = mifr’?) — 2”9 and under the constraint: e i=k+1
_ e e where  xj4¢ = {xk,uk, ..., Tptt, Uptt}. Then
it V =/ (&0)% + (010)2 > Vinax, (27) the solution to the ¢t step ahead prediction can

@) 120) be given by performing the following steps.
Q. = arctan{y,jlk/xkjlk}

l’;(cﬁ Vinaxcos(ae), y,(cﬂc Vimaxsin(ae), 1 step ahead prediction

end *Forz_l ,t, Forj=1,2,..., N, sample

o . () j (4)
4) Prediction step of the Kalman filters ) =A(T, 04)‘”k+7 1+ Bu(T)ul) (my)+ B (T)wy),
Wherew(j) ~ N(0,Q),

kf kf n kf Akl pkfy
Piip = DPyp D+ By Q" (By), (28) m,(jll ~ {mm}é‘il, m=1,....,M for ¢ = m,(jjZ b
where
C - M’(pr)‘l, (29) Then the predicted state estimate of the mobile unit is equal to
D = A¥ —cA’, (30)

ch
- J)..(9)
- Erre =y W2l 37)
k _
QY = Q" — m'(@Q") ' M, (31) et
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VI. POSTERIORCRAMER-RAO LOWER BOUND (PCRLB) 11500 p
trajectory -
The posterior CRLB (PCRLB) [17], [27], [28] characterises —_ Lo EKF
the best achievable theoretical accuracy in nonlinear filtering.!° éﬁ T PN ]
This is of paramount importance for assessing the level of g BPF:N=300
approximation introduced by the algorithms. 10500 ’._g 1
Consider a sequence of target states (a traject&ry)= ‘g AT
{z1, 29, ...,z } estimated based on the set of measurementsooo - ; ‘\ s 1
z1.5. Since the hybrid estimation problem deals with joint BS<> //
estimation of the state vectar, and the mode variablen;,, 9500 | // ot i
the PCRLB is the inversd,. of the information matrix and {{
is defined as follows [29] 9000 | / |
N 713
4 ) ) / 4 ~
Jir = E{[Vy,og p(Yk, z1.£)][Vy,log p(Yk, z1.%)] }(738) ssool 7 x coordinate, [m] |
where Y, = [Xy, M|, with My = {m4,...,my} being 3500 4000 4500 5000 5500 6000 6500 7000 7500

the random regime sequence;y, is the first-order partial
Fig. 2. Centres of the base stations, the actual trajectory of the mobile unit,

Qerlvatlve operator with resP.eCt . Th? an.alytl.cal de.“‘fa' estimated trajectories by the EKF, PF and RBPF from a single realisation.
tion of the PCRLB for hybrid state estimation is a difficult

problem. In the derivation of the PCRLB we follow the

approach from [17] (Ch. 4, p. 76). After partitioning the state vector according to (13) within
When the target trajectory is generated in a deterministife RBPF scheme the respective matrices of the PF and KF

way and the sequence of modes is deterministic, then thequire the form:

PCRLB is identical to the covariance matrix propagation of 9 9

the Extended Kalman Filter (EKF) with Jacobians evaluatedt?’ — (T /2 0 20 > ,BPT = (T /2 0 )

at the true state vectar; and true regimes. This is a very 0 0 T T°/2

“optimistic” bound. This bound is often calculated in practicerf _ <QI1 0 ) o2 MP — <Q12 R U >

[17] and most tracking system specifications consider purely 0 qu) ™ 0 0 q2 qu3)’

deterministic trajectories. In our work we also calculate the

PCRLB for a deterministic trajectory. If the target trajectory 17 00 T o
is deterministic, but the sequence of modes is random, theqrs _ |0 @ 0 0 mpp 100
PCRLB can be calculated in a similar way [17]. o o0 1 17| " UAN I

0 0 0 « 0 0

VII. PERFORMANCEEVALUATION 711 8 g22  G23 8 8
Example 1The developed MC algorithms have been eval- By = o Tl QY = qSB q83 . o0,
uated over a conventional hexagonal cellular network (similar 0 1 0 0 ¢33 qs3
to those in [7]). It is supposed that a map of the cellu- , ,
lar network is available and the centre coordinates of the B = B,
base stations are known. The simulated service area contgips, .o @i, i,j = 1,2,3 have the formgy; = T%/4,
64 base stations with cell radius of 2 km, as shown i —T3/2 —T2/2 — 2 _ 1
. . 12 » 413 y 422 » 423 » 433
Fig. 2. The mobile can move to any cell of the network
with varying speed and acceleration. The sequence of modes
in the testing scenario is generated in a deterministic way. Table 1. Simulation parameters
S_hort-tlm_e manoeuvres are followed by uniform motions. The Discretisation ime stefi’ 05 [5]
discrete-time command processes; andu, ; can change Correlation coefficient 0.6
within the range[—5, 5] [m/s?]. The command process, Path loss index 3
in the filters is assumed to be a Markov chain, taking valugsBase station transmission powsa,; 90
between the following acceleration levé¥§ = M, x M, = | Covariancesy, of the noisew;. in (3) 0.5 [m/s’]?
{(0.0,0.0), (3.5,0.0), (0.0,3.5), (0.0,—3.5), (—3.5,0.0)}, Maximum Speed imax 45 [m/s]
in units of m/s?]. The simulated trajectory of the mobile i IT_r_ansmon probabilities; , __ 08 _
L . . \ nitial mode probabilities.; o 1/M,i=1,...M, M =5

generated _deter_mlnls_tlcally according to_ the mobility modet Threshold for resampling Niwresn = NJ10
(3) and, with this trajectory, the RSSI signals are randomty ——Number of Monte Carlo runs N,.. = 100
generated according to the observation equation (7) wjth Covariances? of the noisev; x [47] [dB]?

different random noise realisations for each simulation rum. . _ . . .
The randomness of the RSSI comes from the randomness 0}'he estimated and actual trajectories of the mobile unit over
the shadowing component. At any sampling time, the obser\/%d;'ﬂgle reg_hsauon are given in Fig. 2. RMSE) [30
RSSI signal is chosen to be the three largest signal powersT € position root-mean-square error ( ) [30]

among all 64 BSs in the network. The simulation parameters 1 Nme .
are summarised iffable 1 RMSE = N Zmzl[(ﬂfk — )2+ (9r —yk)?] (39)
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Fig. 3. Agtual speed Of_ the moving unit. This figure shows the abrulI;—tig. 5. RMSE ofz andy speeds combined of the EKF, PF and RBPF (with
manoeuvre in the MS motion. N = 300) for Nyne = 100 runs. '
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Fig. 4. RMSE ofz andy positions combined of the EKF, PF and RBPF_ . ) )
for Ny = 100 runs. The PF and RBPF particles ave= 300. Fig. 6. PF Position RMSEz( and y combined) of the PF withV. =
100, 200, 300 and 1000.

is used to assess the closeness of the estimated trajectory
{#y, 9%} to & given trajectory{xy, yi} over N,,. = 100 MC  PF is working with N = 500 particles, and the RBPF with
runs. The location PCRLB is determined as 200 particles, the average computational time of the RBPF is
, reduced by60% compared with the PF. If the RBPF operates
location PCRLB = \/(Py(1,1) + Pi(4,4),  (40) \ith 100 particles, the reduction of its computational time
whereP is the covariance matrix of the EKF having Jacobiarpmpared with the PF witdV' = 500 is more than70% with
evaluated for the true state vectey. reduced accuracy.

Figures 4-5 present the position and speed RMSE of theln conclusion, the developed RBPF has similar accuracy to
PF and RBPF, respectively, with =300 particles. The RBPF the PF with respect to the position and speed, with decreased
and PF outperform the EKF. This is very pronounced durirgpmputational time when we use a small number of particles,
the manoeuvres where the EKF peak dynamic errors are thg.,/N = 200. The PF accuracy is worsen wheén < 500.
highest. Figures 6-9 presents results from the PF and RBPFigure 10 shows the accuracy of the algorithms for
with a different number of particles. The position RMSE of thdifferent numbers of particles and the average computational
PF increases witt = 100 compared with the case witN = time for one cycle of the algorithms over 100 MC runs. It
500 (Figures 6-7). The RBPF, on the other hand exhibits veoan be seen from the table, that position RMSEs of the RBPF
good performance with a small number of particles (Figuregith N=200 particles is nearly the same as the position RMS
8-9, N = 200) which is his advantage. errors of the PF with N=300. Thus, a similar performance

The trade-off between accuracy and complexity is an incan be achieved by the RBPF with decreased computational
portant issue and for marginalised PFs has been analysedeisources.

[31]. On average, for these 100 Monte Carlo runs, when the
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350 RBPF PF EKF
N 100 | 200 |300 |500 |1000 100 |200 |300 |500 {1000

RMSE pos, [m] | 2285 | 204.1| 1935|1932 | 1924 3038|2232 | 199.7 | 1842 | 177.0 | 3035
RMSE speed, | 182| 168| 158| 15.7|1527 | 1764| 155 1472|1402|1375 | 200
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Time, [§ 0097 10191 ] 0.301 | 0517] 107 0.097 | 0.185 | 0.284 | 0467 | 0.9994 | 0.0011
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Fig. 10. Table containing RMSEs (averaged over the whole time period) of
the MC algorithms for different numbers of particles, from the EKF, and the
respective computational time. All results are from 100 MC runs.

N
o
o

The robustness of the algorithms to outliers and miss-
ing data can be increased when the measurement error is
] modeled with a mixture of Gaussians [32]. In this partic-

0 50 100 150 200 250 300 ular implementation, we present results with one Gaussian
Time, [s] component,p(vy) = N(u,,o2), where the nonzero mean
Fig. 8.  Position RMSE £ and y combined) of the RBPF withV = p, and the Covariancw% are Calcqlated from RSS| data
100, 200,300, 500 and 1000. (1, = (—1.96,—4.66, —3.23)', o, = diag{3.93,6.99, 6.20}).
The other parameters of the filters arg; = 0.00015, o =
0.1, n = 4, Vipax = 10 [m/s] andM = M, x M, =

Example 2.The performance of the mobility tracking al-{(0-0,0.0), (5.5,0.0), (0.0,5.5), (0.0,-5.5), (—5.5,0.0)}.
gorithms has been investigated with real RSSIs, collectedThe advantages of the MC methods compared to the EKF
from BSs in Glasgow, United Kingdom. The mobile statioinclude their ability to easily incorporate constraints (e.g.,
was a vehicle driving in the city centre. More than 400 BS3peed, road constraints) and to deal efficiently with high level
are available in the area where the car operated. Howew@nlinearities.
only data from the six with the highest RSSIs were provided The behaviour of the MC filters is similar in both examples.
to the algorithms. Figure 11 presents the map of the urbBased on the above results we draw the following conclusions:
environment, with the nearest base stations and the trajectjrifhe PF is sensitive to changes in the motion of the mobile
of the car (shown augmented in Figure 12). The vehiclmit. This sensitivity of the PF leads to higher peak-dynamic
trajectory contains both patterns with sharp manoeuvres aors during abrupt manoeuvres. In the presence of a sequence
rectilinear motion, including a stretch at the end where tred abrupt manoeuvres a divergence of the PF is not excluded
vehicle is parked. Additional information for the road idf it operates with a small number of particles. The probability
included as position constraints in the algorithms. The MG@F divergence could be reduced if a high number of particles is
algorithms have shown efficiency in all these conditions. Apaused which, however, increases the computational complexity.
from the signal strengths, a GPS system collected the actiiplThe RBPF exhibits better accuracy during the periods with
positions of the moving MS, with the sampling peridd,= abrupt changes. The ‘measurements’ at time instaior the
0.5 s. Figure 13 shows the actual MS trajectory together witkalman filter in the RBPF represent the difference between
the estimated trajectories and Figure 14 gives the respectiie estimated and predicted locations of the particles at time
position RMSEs. instances: — 1 andk, respectively. This is one of the reasons

%
o
T

Postion RMSE (x and y combined), [m]

N=1000
I
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Fig. 13. Actual trajectory (from the GPS), and estimated trajectories by the

. . . . L . EKF, PF and RBPFN = 1000 particles are used in the MC algorithms.
Fig. 11. The area in Glasgow, United Kingdom, where the vehicle is moving.

The nearest BSs, the start and destination positions are indicated on the map. "

RMSE position, [m]

‘ ffj:ixa-'
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Time, [s]
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Fig. 12. The vehicle trajectory (from the left to the right side). The start

and destination positions are indicated on the map.
Fig. 14. Position RMSE of the EKF, PF and RBRW. = 1000 particles

are used in the MC algorithms.

for these particularities of its performance. Both MC filters

outperform the EKF. Open issues for future research include road-map assisted

mobility tracking of single and multiple mobile units, inves-
VIII. CONCLUSIONS tigation of different measurement models (including varying

This paper has presented two Sequentia| MC techniquggasurement time interval) and the fusion of data from
for mobility tracking, namely a particle filter and a Raodifferent modalities.
Blackwellised particle filter. An assessment of their best
achievable theoretical accuracy has been made. They have
shown efficient mobility tracking in wireless networks over We would like also to thank the anonvmous reviewers and
both synthetic and real received signal strength measuremeRts y

The designed filters are compared with the EKF techniquéssoc'ate Editor for their constructive comments and sug-

and their enhanced performance with respect to the ke stions. This research is sponsored by the Tracking Cluster

demonstrated over scenarios with abrupt manoeuvres. Advﬁnﬁ%fri;tlijc:rllz?:-:—Jgi/ocnslli)Pgelrﬁ (()é '\Il'\gizhhr:?)ﬁ) UKC(Z?]?rE t?]ztaEF?g?? c
tages of the RBPF compared with the PF djedecreased gy '

computational complexity because it exhibits similar accura&OJeCt EP/E027253/1 and partially by the Bulgarian Science
with smaller number of particlesi) smaller peak-dynamic und MI-1506/05 and Center of Excellence BIS21++, 016639.
errors during abrupt manoeuvres which is very important for

the practice. Posterior Cr@amRao lower bounds have been REFERENCES

calculated that characterise the lower limit for the averagf)] «Location is everything: positioning in wireless networks (a special
mean-square error of the state estimates. issue),”|EEE Signal Processing Magvol. 22, no. 4, July 2005.
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