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Abstract—In this paper, we propose a novel approach to un-
supervised and online data classification. The algorithm is based
on the statistical analysis of selected features and development of
a self-evolving fuzzy-rule-basis. It starts learning from an empty
rule basis and, instead of offline training, it learns “on-the-fly”.
It is free of parameters and, thus, fuzzy rules, number, size or
radius of the classes do not need to be pre-defined. It is very
suitable for the classification of online data streams with real-
time constraints. The past data do not need to be stored in
memory, since that the algorithm is recursive, which makes it
memory and computational power efficient. It is able to handle
concept-drift and concept-evolution due to its evolving nature,
which means that, not only rules/classes can be updated, but
new classes can be created as new concepts emerge from the
data. It can perform fuzzy classification/soft-labeling, which is
preferred over traditional crisp classification in many areas of
application. The algorithm was validated with an industrial pilot
plant, where online calculated period and amplitude of control
signal were used as input to a fault diagnosis application. The
approach, however, is generic and can be applied to different
problems and with much higher dimensional inputs. The results
obtained from the real data are very significant.

Index Terms—classification, data streams, unsupervised, evolv-
ing systems, autonomous learning, real-time, TEDA, typicality,
eccentricity, clustering, fuzzy classification, soft-labeling.

I. INTRODUCTION

Classification of multidimensional data is a computational
intelligence problem that has gaining considerable atten-
tion for the last few decades. The vast majority of ap-
proaches presented in literature focus on the the problem of
supervised/semi-supervised/unsupervised classification based
on the traditional modeling of large data sets, where classifica-
tion is performed only after extensive training and/or complex
parameter configuration.

Among the many strong classification algorithms in litera-
ture, one can mention support vector machines (SVMs) [1],
neural networks [2], k-nearest neighbohrs (k-NN) [3], [4] and
so on. Although there are many consolidated techniques, for
obvious reason, in general, they are not suitable for the specific
problem of classification of data streams, where one needs
to handle continuous-flow and high-dimensional data under
strong computational and time constraints.

Techniques for the specific problem of data stream classi-
fication have been proposed by [5], [6], [7] and many others.
However, most of the proposed approaches are not able to
deal with the problems of concept-drift and concept-evolution,
where the algorithm must continuously adapt to cope with the
natural and dynamic change of the data and, moreover, be
able to recognize new classes that might emerge when new
data samples are read.

As possible solutions to the mentioned problem, one can
mention the works of [8], [9] and [10]. Still, some of the
presented approaches might not be considered as fully online,
since they often require offline batch training and/or processing
of “data windows”, resulting in increasing computational cost.

As another major requirement for the proposed classifier,
soft-labeling should be considered. Instead of the traditional
mutually exclusive labels, soft-labeling classifiers designate
different fuzzy membership degrees from a particular data
sample to all existing classes. This approach is very desirable
and, many times preferable over strictly automatic classifi-
cation, in several challenging real-world problems, such as
medical diagnosis [11], fault detection and identification in
industrial processes and so on.

Traditional offline fuzzy classifiers have been largely pro-



posed by [12], [13], [14] and many others. However, similarly
to the examples previously mentioned, in the vast majority of
times, they are not suitable for classification of real-time data
streams.

Here we propose a new class of unsupervised fuzzy classi-
fier that builds upon the family of evolving classifiers proposed
by [15], [16], [17] and [18]. In general, this new classifier
should aggregate the main characteristics of the state-of-the-art
evolving classifiers and be able to perform fuzzy classification
of real-time data streams in a fully online manner, recursively,
with very low computational cost, starting from an empty
knowledge basis and developing with each newly arrived data
sample, handling concept-drift and concept-evolution without
the need of any prior knowledge about the data (e.g. number
of classes, labels, data distribution);

The remainder of the paper is organised as follows. In
Section II, the proposal is presented in details. Section III
presents the experiments and results obtained. Finally, Section
IV concludes the paper.

II. PROPOSAL DETAILS

The proposed approach to unsupervised classification of
data streams relies on the recently introduced concept of
Typicality and Eccentricity Data Analytics (TEDA). TEDA
was recently introduced by [19] and, since then, applied to
different real-world problems, such as fault detection [20],
[21]. Since it is an unsupervised approach, the, the data are
grouped considering the spatial distance in the n-dimensional
feature space. However, instead of the traditional clusters, the
proposed algorithm works with the concepts of data clouds.

Data clouds are granular structures with no pre-defined
shape or boundaries. They directly represent all previous
data observations. An example of two data clouds on a 2-
dimensional feature space is illustrated in Figure 1.
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Fig. 1. Data clouds. Data points from cloud c1 are linked with the data item
x1 using dotted lines and, respectively, the data points from cloud c2 are
linked with the data item x2 using dashed lines. It is obvious that data clouds
(unlike clusters) have no specific shape.

A. Knowledge basis of the classifier

A fuzzy classifier can be viewed as set of fuzzy inference
rules. For a zero-order Takagi-Sugeno fuzzy system, the i-th
rule of the rule basis R has the format of

Ri : if (x1 is Ai,1 and . . . and xn is Ai,n)

then yi = “Class i”

where A is the set of fuzzy values for the input variables and
y is the output of the system.

The rule basis of the proposed classifier, however, is based
on the concept of AnYa fuzzy systems [22]. The main
advantage of AnYa is that it is free of parameters, logical
connectors, aggregation operator or membership functions in
the antecedent part of the fuzzy rule. Unlike Mamdani and
Takagi-Sugeno systems, in which the antecedent part (if ) is
represented by a fuzzy set, in AnYa systems, the antecedent
part relates the analyzed information to a data cloud.

The consequent part (then) of a rule in AnYa fuzzy systems
can be the same as in Mamdani or Takagi-Sugeno. Consider-
ing, again, a zero-order Takagi-Sygeno system, the i-th rule
of the rule basis R is represented by

Ri : (~x ∼ ci) then yi = “Class i”

where ∼ denotes the fuzzy membership expressed linguisti-
cally as “is associated with” and ci ∈ Rn is the i-th data
cloud defined in the input space ~x = [x1, x2, . . . , xn]

T is the
input vector.

B. Updating the rule basis

Consider a dataset X = {x1, x2, . . . , xk, . . .} delivered as
a data stream. The membership of a data sample xk to a
particular data cloud ci is given by the normalized eccentricity
ζ from the sample to the data cloud.

The proposed approach derives all equations from the tradi-
tional form of TEDA [19] to a generalized form, where each
data cloud is handled, independently, as a distinct data set. The
eccentricity ξ(xk)i, normalized eccentricity ζ(xk)i, typicality
τ(xk)

i and normalized typicality t(xk)
i of a particular data

observation xk in relation to the data cloud ci after k samples
are given by
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where [sik]
′, [µi

k]
′ and [[σ2]ik]

′ are temporary variables that
represent the weight (i.e. the number of data points), mean and
variance of the data cloud ci, respectively. These temporary
variables are calculated as

[sik]
′ = sik−1 + 1 (5)
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For each newly arrived data sample xk, one compares if the
eccentricity ζ(xk)

i of the data sample xk in relation to the
data cloud ci is high. If so, it means that xk is significantly
different from all the data samples of ci, which causes no
practical effect to the structure of ci. If ζ(xk)i is low, which
means the data sample has a high typicality in relation to ci,
the weight, mean and variance (sik, µi

k and [σ2]ik, respectively)
are updated with the values of [sik]

′, [µi
k]
′ and [[σ2]ik]

′. Finally,
if xk is significantly different from all existing N data clouds,
a new cloud cN+1 is generated.

The threshold for deciding whether a data sample should
affect a particular data cloud is based on the Chebyshev
inequality [23], which states that, under any data distribution,
no more than 1/m2 of the data observations are more than
mσ away from the mean, where σ represents the standard
deviation of the data. Therefore, the condition to define if a
data sample xk is close to a data cloud ci is

ζ(xk)
i <=

m2 + 1

2sik
(8)

Figure 2 illustrates the influence of a newly acquire data
sample xk over three existing data clouds c1, c2 and c3, at the
k-th time instant (Figure 2(a)). The normalized eccentricity of
xk in relation to each data cloud is calculated. In this example,
it is easy to see that c1 and c3 are directly affected by xk (i.e.
eccentricities are low and equation 8 holds) and, thus, updated.
However, xk has no influence on c2, since the equation 8 does
not hold. Therewith, c1 and c3 are updated, while c2 remains
unaltered (Figure 2(b)).
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Fig. 2. Data cloud updating: (a) clouds c1, c2, c3 and a newly arrived data
sample xk (b) clouds after updating.

If, for all N existing data clouds, the equation 8 does not
hold, a new cloud cN+1 is generated. The cloud cN+1 is
initialized as

sN+1
k = 1, µN+1

k = xk, [σ2]N+1
k = 0

Figure 3(a) presents, again, the data clouds c1, c2 and c3 and
a newly arrived data point xk. In this case, the eccentricity of

xk is significantly high for all existing data clouds. Therefore,
a new cloud c4 is created, as illustrated in Figure 3(b).
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Fig. 3. Creation of a new cloud: (a) three existing clouds, c1, c2, c3 and a
newly arrived sample xk and (b) a new cluster c4

At this point, it is easy to observe that the knowledge
basis of the proposed classifier is evolving and developing as
new data are available. Thus, concept-drift is well is naturally
adressed, as the antecedent part of the fuzzy rules (data clouds)
are in constant update, as well as concept-evolution, since
new classes (consequent part of the rules) are created as new
concepts emerge from the data.

The size of the rule basis is autonomously managed with
merge operations. At the end of each iteration, two classes
(two data clouds) are merged if the number of intersection
data points is higher than the actual weight of a cloud when
excluding the intersection data points. Therefore, given two
data clouds ci and cj , merge is performed if, at least, one of
the following conditions holds:

sik ∩ s
j
k > sik − sik ∩ s

j
k (9)

sik ∩ s
j
k > sjk − s

i
k ∩ s

j
k (10)

C. Output from the classifier

The proposed classification algorithm is based on the con-
cept of soft-labeling instead of the traditional crisp labels
and mutually exclusive classes. Since it is fully online (i.e.
there is an output for each input xk and offline processing of
“data windows” or “data chunks” are not necessary), a vector
of membership degrees to all existing (or known) classes is
generated at each iteration.

The membership of each data sample xk to a particular
class ci is given by the equation 4 and relies on “how
typical/similar” a data point is from a cloud. The normalized
fuzzy membership γ of a data sample xk to a class ci is given
by

γci(xk) =
t(xk)

i

N∑
j=1

t(xk)
j

(11)

where N is the number of existing classes/data clouds.
For crisp-labeling, the inference can also be produced using

the well-known “winner-takes-it-all” rule [24]:

Class = Classl∗, l∗ = argmaxNl=1(γcl(xk)) (12)



III. EXPERIMENTS AND RESULTS

The experimental setup and results obtained are presented
in this section. The proposed classification algorithm was
designed and developed to meet with many particular require-
ments, such as:

(a) be fully online and able to deal with real-time applications;
(b) be fully autonomous, parameter-free and based on unsu-

pervised learning;
(c) start from an empty knowledge basis, without the need of

offline training;
(d) be based on a fuzzy rule basis and able to perform soft-

labeling;
(e) be able to deal with dynamic data, concept-drift (rule

update) and concept-evolution (rule creation and merge);
(f) recursively updated, without the need of storing previous

data samples in memory.

In this sense, the proposed classifier is quite unique, which
would result in an unfair comparison with the existing tra-
ditional parameterized and offline approaches. Moreover, the
available benchmark data sets in literature may not be very
suitable for validation of the proposed classifier since they
are not formatted as proper data streams nor are suitable for
soft-labeling.

Based on these problems, the algorithm was applied to a
recently introduced benchmark for fault diagnosis in industrial
processes. The benchmark was used for validation of many
anomaly detection and autonomous classification approaches
[17], [25], [26].

The data set was obtained from a real-world industrial
laboratory pilot plant [27], which is presented in Figure 4. The
plant consists of two tanks, two valves, a centrifugal pump,
a heater/cooler and a piping system. The plant is controlled
by a programmable logical controller and provides data from
several sensors, such as level, flow, pressure, and temperature.
All sensors and actuators are real-size devices and often used
in real industrial environments.

Fig. 4. Laboratory pilot plant.

The data used for validation corresponds to a stream with
four faulty periods interspersed with periods of normal op-
eration. The faulty data represents the occurrences of three
different faults (different locations and causes) in different
severity degrees.

The normal operation was ignored (handled by a fault
detection system) and the faulty data were distributed in a
2-dimensional feature space, where the features correspond
to online calculations of amplitude and period of the control
signal on the plant under faulty conditions.

Considering the traditional crisp classification after the
output generated by equation 11, the “winner-takes-it-all rule”
described in equation 12 and strictly unsupervised learning
(i.e. no class labels are available), the results obtained from
the application of the proposed classifier to mentioned data set
after the time instant k = 3254 are shown in Figure 5.

Fig. 5. Results for crisp classification and unsupervised learning after the
time instant k = 3254.

For this specific experiment, the algorithm returned five
classes. Four of them are very representative, while “Class 5”
can be consided as an outlier. The first class (red) represents
a mild tank leakage fault. The second (blue) represents a
negative offset on the actuator in different degrees. The third
class (green) represents a severe tank leakage. Finally, the
fourth class represents a positive offset on the actuator.

It should be stressed that the classification task was per-
formed fully unsupervised, online, with no pre-defined pa-
rameters or offline training. That explains why classes 1 and
3 are different while they represent the same type of fault –
different degrees (mild and severe) and, thus, distant in the
2-dimensional space.

For many types of application, soft-labeling is often pre-
ferred over strict classification. In the case of fault diagnosis,
unless in the case of fault recovery, a probable indication of
the type/location/severeness might be more adequate than the
tradicional automatic labeling. Although not easy to represent,
the fuzzy output and soft-labeling of the proposed classifier



work very well. Figure 6 illustrates an example of fuzzy
membership of the data sample x1801 to three existing data
clouds/classes.

Fig. 6. Example of membership for fuzzy classification and unsupervised
learning at the time instant k = 1801.

Note that the fuzzy membership is calculated by equation
11 and directly based on the typicality of the data sample
to each of the existing classes. Although closer to “Class 1”,
the data sample x1801 is slightly more similar to “Class 2”,
since the latter data cloud is heavier (i.e. higher number of
data samples) and, thus, it exerts more influence over the data
point.

Although able to work in a fully unsupervised manner, both
for crisp and fuzzy classification, as shown in Figures 5 and
6, the proposed approach is also suitable for semi-supervised
classification. It actually makes much sense in the specific case
of fault diagnosis, since it could benefit from the expertise of
the operator. Re-labeling and merge operations can easily be
performed manually, without the need of prompt/syncronized
action. From the scenario presented in Figure 5, two merge and
three re-labeling operations result in a much more accurate
fault diagnosis overview. Figure 7, then, illustrates the final
classification resulted from fully unsupervised classification
followed by a few actions from the operator.

It is important to highlight in the latter example that,
even though the system correctly handled classes 2 and 3 as
different faults (positive and negative offsets on the actuator,
respectively), they are still close together, since both faults
concern the actuator. Note also, that faults 1 and 2 are also
close to each other, since leakage is logically closer to a
negative change. On the other hand, classes 1 and 3 are distant
from each other since they concern logically different types of
problems. It is clear that, one of the main advantages of the
proposed approach is that it is easily interpretable, unlike many
traditional “black box” frameworks, such as neural networks.

Fig. 7. Final overview of the fault classification with semi-supervised learning.

IV. CONCLUSION

In this paper, we presented a new approach to unsupervised
classification of online data streams. The algorithm is based
on a fuzzy framework, works in a fully online manner, without
the need of offline processing of data windows, requiring only
the newly acquired data sample and a very small number of
statistical information about the data instead of the actual past
data samples.

The proposed algorithm can be seen as a generalized version
of the recently introduced concept of TEDA. It is recursively
updated and it does not require any offlline training – instead,
it learns “on-the-fly”, as new data are available. It requires
very low computational cost, time- and memory-wise, making
it very suitable for real-time applications. It works with the
concept of data clouds, which are structures with no specific
shape or boundaries, unlike the traditional data clusters. Fi-
nally, it does not require pre-defined models or user-defined
parameters as standard techniques do, and it is completely
data-driven.

The approach was validated with a fault diagnosis appli-
cation. Instead of the traditional data sets in literature, the
classifier was used for online and unsupervised classification
of a 2-dimensional data stream acquired from different fault
operation modes of a real-world industrial plant. The results
obtained are very significant and encouraging, both with
unsupervised learning and also with minor interaction of the
human operator, in a semi-supervised manner.
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