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Abstract

It is vital to modern intelligence operations that the cycle of gathering, analysing

and acting upon intelligence is as efficient as possible in the face of an ever in-

creasing volume of available information. The collection, processing and subse-

quent analysis aspect of the intelligence cycle is modelled as a novel finite horizon

Bayesian stochastic dynamic programming problem, namely the multi-armed ban-

dit allocation (MABA) problem. The MABA framework models the efforts of a

processor to search for intelligence items of the highest importance by making

sequential samples from a collection of intelligence sources. Through Bayesian

learning the processor learns about the importance distributions of the available

sources over time, select a source from which to sample at each decision epoch, and

decides whether or not to allocate sampled items for analysis. For source selec-

tion, a novel Lagrangian based index heuristic is developed and its performance is

compared to existing index heuristics including knowledge gradient and Thompson

sampling methods. The allocation policy is handled by thresholds which act as

Lagrangian multipliers of the original MABA problem. Both a discrete Dirichlet-

Multinomial and a continuous Exponential-Gamma-Gamma implementation of the

MABA problem are developed, where the latter also models uncertainty in the pro-

cessor’s own ability to accurately assess the importance of sampled items.
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Chapter 1

Introduction

Ranging from terrorist threats and security affairs in countries of interest to the

health status of certain political leaders, gathering and analysing intelligence plays

a key role in shaping the course of action in situations of national interest. While

enormous resources are spent with the goal of providing timely and accurate in-

telligence in response to requests for information, the vast volume and type of

information emanating from intelligence sources often makes it difficult to achieve

these goals.

The intelligence process consists of three stages: Collection, processing, and

analysis. In response to a list of information requests, items are collected through a

variety of means: human, signals, imagery, and open source. The processing phase

is designated to transform the raw information that was collected into products

that may be used in the analysis phase. The nature of the collected raw material

dictates the type of operations to be included in the processing effort, as well as

the required analysis capabilities. Common processing operations include data

reduction, noise reduction, decryption, language translations, context clarification

and more. In the analysis phase, the processed intelligence is evaluated and put

in perspective with respect to current assessments.

The key measures of effectiveness of an intelligence operation are timeliness and

accuracy. Timeliness is important because the information requests generally have

an explicit deadline or the situation on the ground may develop rapidly. Accuracy

1



CHAPTER 1. INTRODUCTION 2

is manifested by the correctness and precision of the information provided to the

decision makers. At a lower resolution, the value of single information items also

depends on the impact they have on the overall intelligence analysis.

This thesis is concerned with the collection phase of intelligence operations.

Since the impact of each source of intelligence is by and large not known in advance,

we take a Bayesian learning approach that takes into account the past performance

of each intelligence source to evaluate which source is the most promising. Every

situation requires an exploration of the available options, which must necessarily

converge on the most appropriate information providers.

This short introductory material serves to motivate the rest of the thesis. We

begin by talking about the nature of intelligence operations research and the types

of operational problems that are considered. We then outline the structure and

contributions of this work.

1.1 Intelligence operations research

Incorporating operations research methods into a problem of military interest is

nothing new. In fact the origins of operations research (OR), previously known

as operations analysis (OA), as a formal field of study during World War II are

well known. A review of some of the techniques that arose during that particular

conflict are given in [McCloskey, 1987a] and [McCloskey, 1987b].

As we move towards the modern era and the changing nature of warfare that

this brings, the increase in international terrorism and attacks by small groups

and individuals as opposed to nations and large scale armies [Cronin, 2002] has

increasingly placed importance on intelligence gathering operations to tackle these

less visible threats. As such, there has been increased interest in applying OR type

thinking to applied intelligence problems.

In the 2010 Philip McCord Morse lecture, archived in [Kaplan, 2012], a review

of the interface between operations research and intelligence operations was given

using the term ’intelligence operations research’ for this particular branch of OR.
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The ’terror queues’ problem [Kaplan, 2010] models undetected terror plots as

customers in a collection of queues, where the service corresponds to intervention

measures to foil these plots. In queueing terms, an abandonment is an event where

a customer leaves a queue before they are served. In this context of these queues, an

abandonment represents a failure to detect an aggressor and therefore a successful

terror attack. The problem is to dynamically allocate the attention of servers

to minimise the number of abandonments and maximise service completions to

prevent terrorists from carrying out their activities.

The servers could be human agents infiltrating terror cells, in which case switch-

ing costs would be high to reflect that agents are committed for long term oper-

ations. The different queues could also represent geographical locations at any

scale, which could affect the ease of re-allocation of committed resources. It is also

possible to capture the ongoing learning process concerning the various queues

given the efforts of past investigations or a history of previous attacks.

A Bayesian learning methodology guides allocation in a dynamic fashion. Ad-

versarial game theoritcal elements can be introduced where the terrorists wishing

to evade detection have partial or complete knowledge of the allocation policy that

is in use by the counter-terror organisation.

As well as protecting infrastructure and ’soft-targets’ such as transport hubs,

it may also be in the interests of government to delay or disrupt the prolifera-

tion of technologies and projects such as nuclear weapons programmes by other

nations. The model of [Brown et al., 2009] assumes that in order for an enemy

nation to achieve a major goal such as developing a nuclear weapon, various sub-

goals need to be achieved, and a dependency structure will exist for this group of

tasks. Being able to model this structure in a reasonable way and having sufficient

knowledge of the progress that has been made so far in achieving each of the tasks

is key. However, the intelligence on these topics is usually a mixture of actual and

imprecise information so once more, the proliferating nation will be acting in an

adversarial manner in order to detect and mitigate the effects of the disrupting



CHAPTER 1. INTRODUCTION 4

Figure 1.1: Source: https://www.cia.gov/library/publications/additional-
publications/the-work-of-a-nation/images/intel%20cycle-2.jpg.

activity, including the gathering of intelligence. The idea that certain pieces of

intelligence or sources of intelligence are more reliable and precise than others is

one that I would wish to capture in the models developed in this work.

On the subject of intelligence gathering itself, Kaplan describes the overall

intelligence operations process as the ’intelligence cycle’, which consists of plan-

ning. collection, processing, analysis, and dissemination processes in continuous

feedback as shown in Figure 1.1.

Kaplan frames the discussion of intelligence operations research efforts in these

terms and many other papers explicitly mention this concept when they are defin-

ing what they understand by the real world intelligence gathering process. In a

section of the lecture regarding ideas for future work in intelligence operations

research, Kaplan highlights the tension between the rates at which data can be

collected, processed and then analysed, making particular mention of signals and

satellite imagery based intelligence. It is possible for agencies to collect a very

large amount of data which is far in excess of the same agency’s ability to provide

enough technical processing effort to actually use all of it. Further, the processing

rate is likely to be faster than the rate at which the processed intelligence can be

contextually analysed and prepared for dissemination. This motivates the need to

be selective about which pieces of raw intelligence one should commit further pro-
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cessing effort to such as language translation, for example. It is for this particular

open problem that I wish to develop models in my PhD project.

Contributions towards this problem have since been made on the subject of

selective intelligence gathering and analysis by students of the Naval Postgrad-

uate School of Moneterey California. Selective analysis of large communication

networks is considered in [Nevo, 2011] and [Ellis, 2013] where the goal is to focus

surveillance efforts on node pairs where one or both of the nodes are considered

to have high relevance to a particular intelligence objective or set of keywords.

The search for important information becomes an exploration-exploitation prob-

lem over the graph of individual people within an organisation. This problem set-

ting does not necessarily require the graph theoretic setting and could be adapted

to the general problem of sampling information from many distinct sources.

The work of [Zlatsin, 2013] considers the application of detecting the location

of drug smugglers at any given time and considers the problem of consolidating

many different types of intelligence together (such as human and signals intel-

ligence) that can have varying degress of plausibility considered separately and

collectively. It is worth considering that not all intelligence types are of equal

reliability or importance and defining the worth of intelligence items will be a nec-

essary part of the modelling process. The NPS theses referenced here all include

a Bayesian learning framework that guides future decisions based on the current

state of knowledge at any time. In the case of Zlatsin, a particular quantity of

interest, e.g. the location of smugglers’ boats is explicitly sought after as opposed

to the more abstract concept of ’relevance’ in general. In this work, we took the

approach to keep the real world intelligence operatives in mind in the models that

have been developed, but to keep said models as general as possible. Adequate

extensions to the new theory should be reasonably easy to add to the base model

should a particular application call for additional or modified assumptions and

features.
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1.2 Outline of thesis

This section sets out the structure of the thesis and highlights the nature and

placements of the major contributions of this document.

Chapter 2 serves as the literature review for this document. In addition to

covering a range of topics that are of relevance to the contributions made in this

thesis.

In Chapter 3 we develop and discuss a single source intelligence operations ex-

emplar problem. The purpose of this material is to illustrate how the methodolo-

gies explored in Chapter 2 can apply to a simple model of intelligence operations.

It is the introduction and development of the multi-armed bandit allocation

model (MABA) which forms the major contribution of this thesis. It is a model of

the relationship between the processing and analysis parts of the intelligence cycle

during a time critical investigation. It allows for an abstraction of intelligence

operations that incorporates the time pressures of a true investigation in a way

which has not previously been done. Chapter 4 outlines the MABA problem

setting, which will be our chosen framework for modeling intelligence operations

in the numerical work carried out in Sections 5 and 6.

Chapter 5 approaches the MABA problem using a Dirchlet-multinomial model

and compares the performance of various combinations of source selection and

allocation policies, including those based on knowledge gradient and Thompson

sampling methods. A full account of the numerical work carried out is given.

Moreover, we develop a Lagrangian relaxation of the model and implement that

numerically in some select cases.

In Chapter 6 we generalise the solution approach to a continuous setting and

also incorporate the key operational consideration of processor judgement uncer-

tainty into the model. An account of preliminary numerical work is provided. We

also set up the theoretical model for a Lagrangian relaxation of the model under

this setting which is analogous to that set out in Chapter 5.

The numerical work carried out in Chapters 5 and 6 demonstrates the viability
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of the MABA model to be used in practice and also provides insights into which

heuristic solutions have the most consistent performance so that practitioners can

select which method to use in their own time critical investigations. Chapter 7

contains concluding remarks regarding the project as a whole and makes recom-

mendations for future work.



Chapter 2

Literature Review

This chapter forms the literature review of this thesis and finishes the process

that the introductory material started which is to cover a breadth of material that

frames the specific operations research areas to which this document contributes.

Here we also cover the various methods and models from which the later material

inherits much of its ideas and intuition.

Chapter 1 contained references to relevant literature in the burgeoning field of

intelligence operations research. We begin this chapter with a recent contribution

towards developing models of intelligence operations, which we take as a starting

point as we consider our own models.

In Section 2.1 we examine the tandem queue model of the processor-analyst

relationship in the intelligence cycle. The model, developed by Yinon Costica

(2010), is a relatively recent contribution most closely reflects that relationship

that we will eventually come to model using the MABA framework. In particular,

the tandem queue model expresses the demand of expediency from a processor

who is burdened with a large amount of intelligence materials to filter through for

the most crucial information.

8
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2.1 Costica’s tandem queue model

In this subsection we take a look at a recent existing model of the intelligence

processing problem using a queue theoretical approach. Costica’s work introduces

us to two useful characters, who are the processor and the analyst.

The processor is a technician who performs tasks such as language translation

and image refinement to prepare incoming intelligence items so that they are read-

able by our second character, the analyst. The analyst is assumed to be perfectly

capable of placing items that she receives within the context of the broader intelli-

gence objectives of her organisation using her knowledge of other information that

she has seen. We use Costica’s work as the starting point for modelling intelligence

operations.

The model itself is presented in [Costica, 2010]. It is here that we first encounter

items of intelligence modelled as customers in a queue. There is no consideration

to the size and complexity of the intelligence item itself. All intelligence items are

assumed to be processed at the same rate.

Intelligence items are assumed to arrive at a processing station at rate λ1

forming an M/M/1 queue where items are processed at rate µ1. The arrival rate

λ1 is formed from the sum of two independent homogeneous Poisson processes

with rates λP and λN which respectively denote arrivals of items that are classed

as positives (P ) and negatives (N) where P -type items are of importance and

N -type items are not. No middle ground exists, i.e. importance classification is

purely binary. The value λ1 is known whilst the values λP and λN are unknown.

Costica writes of classification processes that are characterised by their sensi-

tivity p and specificity q which respectively denote the proportion of the P items

that are classified as being positive and the proportion of rejected items that are

truly of type N . The processing station then passes along items to the analysis

station with an overall rate of λ2 = pλP + (1 − q)λN at which point the analysts

are able to perfectly determine the importance of the items in the M/M/1 queue

that forms at their station with rate µ2. It is assumed that the more time that a
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particular item is studied by processing staff, the more accurate their evaluation

of its importance will be. The way in which the incoming items progress through

the system in shown in Figure 2.1.

Figure 2.1: The flow of intelligence items in the tandem queue model

The tandem queue is stable if the arrival rate of items at each station is less

than the service rate. The long-run waiting times for an item at the processing

and analysis stations of the queue are respectively denoted by W1 and W2. The

rate of processing µ1 is directly linked to the quality ε of the classifications at the

processing station which affects the values of both p and q and therefore λ2.

The task under this model is to choose an optimal processing station service

rate µ1 for the processing staff to maximise an objective function based on p and q

as performance measures and the mean waiting time W̄ as a constraint, the details

of which will follow. Operationally this corresponds to finding the best tradeoff

between classification accuracy and timeliness.

The objective in Costica’s model involves use of Receiver Operating Charac-

terstic (ROC) curves, which are described in [Parpucea et al., 2011] and [Ahmadi

et al., 2010], to characterise the behaviour of any kind of item classification system.

ROC curves have an x-axis which is the false positive rate 1−q of the classification

method and the y-axis is the false positive rate p of the classification method.

The ROC space is the feasible region [0, 1] × [0, 1] of an ROC curve where

the point (0, 1) represents a perfect classification system with no chance of false

positives or true negatives. The ROC curve in this space is the true positive rate

p modelled as a function of the false positive rate (1− q) so we have p = f(1− q).
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A particular classification policy is characterised by its ROC curve where the

worst case scenario for any policy is for its ROC curve to be the line p = 1 − q

which corresponds to performance which is just as effective as random guessing.

For any given classification method the sensitivity of the ROC curve to changes

in the classification quality of items was of interest to Costica. A parameter ε was

introduced to model the classification quality where ε ∈ [εmin, εmax], where εmin

represnts the best classification quality. The general parametric form for the ROC

curve is

p = fε(1− q, ε). (2.1)

If we denote by λ2 the arrival rate of items to the analysis station, one has that

λ2 = pλP + (1− q)λN (2.2)

= fε(1− q, ε)λP + (1− q)λN , (2.3)

where we substitute (2.1) for p in (2.2) to obtain (2.3). One can adjust the clas-

sification quality ε to control the output rate λ2. It should be noted that as we

increase ε towards its maximum, mathematically feasible, value εmax the proces-

sors are effectively spending less time with each item and worsening the quality of

classification towards the worst case scenario possible for that particular method,

which may or may not be at the level of random guessing. The opposite applies

as we decrease ε towards εmin.

To ensure that the parameter ε has this property one assumes that it is mono-

tone increasing in the rate of service µ1 at the processing station as it is assumed

a lesser mean time spent processing each item corresponds to an overall decrease

in classification quality. For a given processing rate µ1 the corresponding quality

parameter ε is a function of the rate, which we express as ε(µ1).

For a given classification policy there is a level of classification quality known as

the complete test which corresponds to the best possible classification quality which
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can arise from implementing that policy. This realistic ceiling on classification

quality has the value ε where εmin ≤ ε ≤ εmax. For this complete test there must

also be a fastest rate, µ1, at which ε can be achieved such that ε(µ1) = ε.

Working in the other direction we assume that there is a maximum rate of pro-

cessing µ̄1 that can be achieved which will result in the worst possible classification

quality εmax. Unlike εmin it is always possible to reach this theoretical bound. We

let µ̄1 ≥ µ1 be the least value of µ1 we can choose such that ε(µ̄1) = εmax.

We now have a one to one function between the feasible classification qualities

and their corresponding service rates so by substitution we can adapt (2.3) to

obtain

λ2 = f(1− q, µ1)λP + (1− q)λN (2.4)

where µ1 ∈ [µ1, µ̄1]

Although the processors do not know whether each individual item is of im-

portance or not, it is assumed that the relative rates of arrival of the two kinds of

item are known so one can write the output rate λ2 from the processing station

in terms of values that we have some level of control over. In (2.4) one need only

specify the required average processing service rate µ1 and the false positive rate

1 − q of the classification policy which is decided by the choice of classification

method.

Maximising specificity p over the stable region of choices for µ1 is not the

complete picture. There is also a desire for a certain level of timeliness so a limit is

set on the mean overall delay W̄ for an item from entering the system to reaching

the analysts, assuming the item reaches that station. Assuming stability in the

queue, the mean delay time for an individual item is

W =
1

µ1 − λ1
+

1

µ2 − λ2
=

1

µ1 − λ1
+

1

µ2 − f(1− q, µ1)λP − (1− q)λN
. (2.5)

So as long as we impose some upper limit, W̄ on the overall delay for a fully
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worked intelligence item we can achieve the optimal value of µ1 under whichever

delay constraint is chosen by the client. The optimisation problem is set up as

follows:

max
q,µ1

f(1− q, µ1)

Subject to:

µ1 ≥ λ1

µ2 ≥ f(1− q, µ1)λP + (1− q)λN

q ∈ [0, 1]

µ1 ∈ [µ1, µ̄1]

1

µ1 − λ1
+

1

µ2 − f(1− q, µ1)λP − (1− q)λN
≤ W̄

(2.6)

where the constraints ensure the stability of the system, the feasibility of the

classification method and the timeliness of the entire process. This model returns

a recommendation for a processing service rate which is best suited for the situation

it is given. I refer the reader to [Costica, 2010] for the full sensitivity analysis of

this optimisation model.

This model provides some useful ideas on how to think about modelling in-

telligence items and also the relationship between the processor, who is burdened

with a heavy workload and imperfect classification ability, with the ’all knowing

analyst’ who receives the filtered selection from the processor.

Key ideas from this model that are used in the core contributions of this the-

sis are the processor/analyst dynamic and the modelling of intelligence items as

individual entities that attribute identical processing times.

As shall be seen in Chapter 3, when we develop a single source model of our

own, we choose to develop the processor’s character so that she can refuse to

process items according to some bespoke policy rather than having to process all

items that she encounters.
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For now, we explore further topics considered central to the intelligence pro-

cessing problem and the work carried out in later chapters in this document.

2.2 Markov Decision Processes

A feature of the Costica and Ellis models of the previous section is that they

operate within a framework based on continuous time. However it may be more

appropriate in certain models to consider discrete time formulations. The frame-

work supplied by Markov decision processes (MDPs) allow for such formulations.

MDPs have been known in some form or another since the works of Bellman (see

[Bellman, 1957a] and [Bellman, 1957b]) and model discrete time stochastic pro-

cesses with control. The control aspect of this description refers to the inclusion

of a problem solver that interacts with the process at decision epochs that occur

at discete time intervals.

At each of the decision epochs in an MDP, the process is in a state i and the

problem solver must choose an action a from the set of actions that are available

whilst in state i to advance the process to the next decision epoch. When the

action a is chosen, the state then randomly advances to a new state i
′

which also

depends on the choice of a according to the state transition function Pa(i, i
′
) of

the process. The Markovian property of MDPs refers to the fact that the process

is conditonally independent of all preceding states and actions so only knowledge

of the current state i and current action a are necessary. The decision aspect of

MDPs are made meaningful with the inclusion of rewards as motivation for the

problem solver. The reward Ra(i, i
′) is earned by the problem solver taking action

a whilst in state i and subsequently transitioning to state s′. It is the plurality

or actions and their associated rewards which give the problem solver’s decisions

meaning. The special case MDP where there is only one action for each state,

and all associated rewards are the same is the standard Markov chain described

in [Meyn and Tweedie, 1993].

The problem solver makes use of a policy to make decisions based on the
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situation in which she finds herself in any given decision epoch. More formally,

a policy π is a function that maps states to actions. Since we’re working with

Markovian provlems, the policies we are concerned only require the current state

as an input. We have at = π(it) for all t. An optimal policy π
′

maximises rewards

over any instance of the problem horizon and the problem solver would prefer to

seek out such policies and deploy them.

Application of MDPs are numerous and diverse. A review of their applications

has been published by [White, 1933]. The applications areas cover traditional

operations research applications [Gluss, 1959], finance and investment [Rosenfield

et al., 1983] and queueing theory [Low, 1974]. There are many more obscure areas

covered such as pub darts strategy [Kohler, 1982] and patient admissions to nursing

homes [Lopez-Toledo, 1976].

The scope of topics that MDPs cover is demonstrably vast so we now focus

on particular sub-topics which lie closer to the the types of problems we wish to

solve, and we begin this narrowing of focus by considering stochastic dynamic

programming.

2.3 Stochastic Dynamic Programming

Stochastic dynamic programs (SDPs) are a class of optimisation problems that

crucially involve uncertainty. As well as the uncertain state transitions that were

described in relation to MDPs in the previous section, SDPs are also concerned

with uncertainty relating to the problem state i itself. Key parameters relating to

the decision at hand (e.g. the probability that a customer defaults on a loan) are

unknown and the problem solver must forge ahead with her decision making with

imperfect knowledge of the problem state.

A classic stochastic dynamic programming problem is the example of selling a

house on the market subject to a fixed deadline, with the objective of maximising

the final selling price. The decision epochs correspond to the times at which offers

are received, at which time the seller has a one-time opportunity to accept the
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offer. If the offer is accepted then the problem ends and the homeowner takes the

sum of money offered, otherwise the offer is lost.

It is reasonable to reframe the house selling problem in terms of a processor

receiving offers to process intelligence items. Moreover, these offers correspond to

individual decisions as to how to react to incoming intelligence items.

In such multi-stage problems an a priori static policy may be appropriate

depending on the parameters of the problem. It is worth putting thought into

whether a dynamic approach will make a significant improvement over the best

static policy available, given the additional complexity that the dynamic structure

imposes.

With a dynamic policy the decision maker can benefit from learning behaviours

as new information arises through the problem horizon. In [Kall and Wallace, 1994]

there is a simple example problem of a land developer who needs to decide whether

to develop land at a cost and then decide whether to build on the land before or

after knowing what the value of doing so would be. There is also the condition

that it would cost more to build if you wait to find out the value of building there.

The construction of the example shows us that only the dynamic policy provides

the best expected gain and outperforms any static strategy.

Dynamic formulations of sufficiently complex problems incur the famous Curse

of Dimensionality described in [Bellman, 1957b] whereby solving most dynamic

programs in their fullest sense is often rendered intractables because of the compli-

cations of working with high dimension state spaces. Approximate and heuristic

solutions to the full DP using the full formulation as a starting point can often

result in significant gains over the best available static policy by making an ade-

quate trade-off between capturing the complexity of a problem and reducing the

overall demand for computational resources.
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2.3.1 The Bellman Equation

The basic concept that underpins most of stochastic dynamic programming is the

Bellman equation. It is used to solve decision problems with discrete time decision

epochs which count down from a specified initial start time t to the terminal time

0, where no actions can be taken. A value function V for a general problem setting

recursively defines the optimal reward as a function of the current information state

i and also constructively prescribes the actions that should be taken to achieve

this reward. The action space A contains all available actions and depends on the

current information state.

The notation used in [Ross, 1983] is used to set up the general form of the

Bellman equation. The value of state i with t time periods remaining is Vt(i). The

immediate expected reward earned by taking action a ∈ A of available actions,

when in state i is denoted as R(i, a). When t = 1 there is only one decision left to

be made so we can only earn immediate rewards so the following relation holds

V1(i) = max
a∈A

R(i, a), (2.7)

where for completeness one has that V0(i) = 0.

For each state i and action a there is a probability transition matrix Pi(a)

governing which state we begin the next time phase in given that the action a is

taken next. When more than one time period remains we must choose the action

that maximises the expected combination of immediate and future rewards. In

general we have for t > 1

Vt(i) = max
a∈A

[
R(i, a) +

∑
j

Pij(a)Vt−1(j)

]
(2.8)

where Pij(a) is the probability of moving from state i to state j if action a is chosen

next. The value function V needs to be evaluated recursively using the t = 1 cases

such as in (2.7) first and then working in reverse from there. This can be difficult

even when the state space is only moderately large so it is often the case that
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the value function needs to be approximated in some other way via some heuristic

method.

In stochastic dynamic programming terminology, a policy, denoted by π, is

a rule that recommends an action to take if the problem is in state i at time

t. Such policies have a sequence of states Xn that arise which have the Markov

property that the transition probabilities are the Pij as before. When working with

policies we can interpret the value functions as the expected reward Vπ earned when

implementing the policy π.

Vπ(i) = Eπ

[ n∑
k=0

R(Xk, ak)|X0 = i

]
(2.9)

where ak denotes the action taken at the kth decision phase. This approach allows

a manager to specify an exhaustive set of instructions for a process. Thinking of

solutions to stochastic dynamic programming problems as policies is a standard

way of evaluating competing policies and comparing the performances of competing

solutions and the contributions made by this thesis will be expressed in these terms.

The applied intelligence problem of information collection is such that the role of

a stochastic dynamic programming approach is clear since one wishes to learn in

a sequential fashion under uncertainty.

Discounting of future rewards as in [Veinott, 1979] is often incorporated into

model formulations, where a power of a discounting factor 0 < γ < 1 is applied to

rewards for each time epoch after the current one. Such factors are motivated by

the economical assumption that a reward earned sooner is more valuable than the

same reward earned later and the smaller the value of γ is, the more strongly we

place value on more immediate gains. Since timeliness of intelligence delivery is

one of the challenges faced by the intelligence community this could be one way of

incorporating this, particularly if the time horizon is modelled as infinitely long.

We obtain the discounted value function, also known as the Bellman Equation by

including this discounting factor for t > 1
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Vt(i) = max
a∈A

[
R(i, a) + γ

∑
j

Pij(a)Vt−1(j)

]
(2.10)

and when we consider a policy π

Vπ(i) = Eπ

[ n∑
k=0

γkR(Xk, ak)|X0 = i

]
(2.11)

where we find the value, for a fixed γ, of being in state i from this perspective is

by maximising (2.11) over all policies π. These discounting factors also give us

the option of creating greater sense of urgency by discounting future rewards more

heavily. However one must be wary of discounting future rewards so harshly that

one acts too hastily by passing along inferior information to the analysts from the

processing station for the sake of timeliness in such a way that critically inhibits

exploration.

We now look at a specific species of MDP, namely multi-armed bandits.

2.3.2 Multi-armed bandit problems and index policies

In this thesis, we develop models of intelligence operations where the processor

has access to many competing sources of intelligence items. From these, exactly

one source is to be sampled during each decision epoch. All of this occurs against

a backdrop of uncertainty as to the quality of the items that are drawn from each

source. Multi-armed bandit theory offers a suitable framework for modelling this

kind of scenario.

In the language of bandit theory, the competing alternatives of a decision prob-

lem are referred to as projects and the sequential allocation of effort between these

projects is a process which is to be optimised over several decision epochs. Using

what are known as index theorems these sequential allocation problems can be

solved with computational efficiency and with near optimal performance. Such

index policies are the focus of this subsection.

I shall use the language of [Ross, 1983] to introduce the concept of a bandit
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from the perspective of stochastic dynamic programming. For a single project we

can decide at each discrete decision epoch to allocate effort to that project for

the coming time period or retire from the project permanently. Given that we

are currently in some state i the immediate reward for operating the project for

the next time period is R(i) and the state also changes to k with state transition

probability Pik. Retiring at any time earns us a fixed retirement reward M .

We apply a discounting factor, 0 < γ < 1, to the problem and let V (i : M)

be the maximum expected discounted reward earned given that we are currently

in state i and the retirement reward for the problem is M . The value function V

therefore satisfies

V (i : M) = max

{
M,R(i) + γ

∑
k

PikV (k : M)

}
. (2.12)

For a fixed state i, it is easy to prove by induction that V (i : M)−M is decreasing

inM . Since M is constant there must exist a value M̄(i) such that we are indifferent

between operating the project and retiring from it in the next time period. Such

a value is defined as

M̄(i) = min[M : V (i : M) = M ]. (2.13)

We now have a critical value policy which instructs us how to act at each decision

epoch. We simply need to evaluate M̄(i) at every state and then continue to

operate if M < M̄(i) and retire if M̄(i) < M where we can decide arbitrarily for

the case where the two quantities are equal.

We would want to be able to optimise the same kind of decision problem

for multiple projects of the type discussed so far. So we assume that we have L

identical projects, noting that it can be shown that this can be done without loss of

generality. We also assume that we can retire from the problem permanently at any

decision epoch and earn the reward M for doing so and zero rewards can be earned

thereafter. If we denote the state of the problem at any time as i = (i1, . . . , iL),
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where ij denotes the state of the jth project we can write the maximum expected

γ-discounted return if we choose to operate on project j next as

Oj(V (i : M)) = R(ij) + γ
∑
k

PijkV (i1, . . . , ij−1, k, ij+1, . . . , iL : M) (2.14)

where R(ij) is the one-step reward for operating the project j when it is in state

ij. Then we can write the value function V in state i as

V (i : M) = max[M,max
j
Oj(V (i : M))] (2.15)

so (2.14) provides us with a theoretically sound decision policy for the action we

should take next. However computing each of the Oj(V (i : M)) rapidly becomes

very difficult because the number of states can easily get out of control now that we

are working in L dimensions, so a direct numerical solution may not be reasonable

to attain using this route. However it can be shown that the multi project version

of the problem can be decomposed into its constituent projects and we obtain

a policy in terms of the indifference values, M̄(ij) for each of the projects when

considered as single project problems.

We find that we should retire from the problem if and only if we have that

M̄(ij) < M for j = 1, . . . , n and otherwise we should choose the project with the

greatest indifference value as long as that value is greater than M also. The proof

of why this decomposition is known, at least in its original form, as Gittin’s index

theorem where a proof is provided in [Gittins, 1979] and Chapter 2 of [Gittins

et al., 2011], and the reader can also find an alternative proof in [Ross, 1983]. The

single project case is also covered by this theorem.

The class of bandit problem Gittins set out in [Gittins, 1979] and [Gittins and

Jones, 1979] is referred to as the standard multi-armed bandit problem and it was

this set-up that Gittins used to prove the optimality of the index that bears his

name. Although Gittins indices can be used whether we are working with Bayes



CHAPTER 2. LITERATURE REVIEW 22

type thinking or not, it is sometimes more useful to approach certain problems

with a Bayesian outlook if uncertainty plays a prominent role in the real world

problem.

The way to picture a standard multi-armed bandit problem is to think of a

one-armed bandit machine with L distinct levers, or arms. The lth arm, when

pulled will deliver a unit reward with probability pi so each of the arm pulls is

essentially a single draw from a Bernoulli distribution with a parameter particular

to the arm pulled. The complication lies in the fact that we do not necessarily have

complete information about the success probabilities pi, but even with little or no

prior information we still have motivation to maximise our expected discounted

rewards in this situation. We also assume that these probabilities remain constant

between decisions.

In the standard version of the problem, the true probability pi of a non-zero

reward being earned from arm i is constant over the decision horizon. A naive

approach to reward maximisation would be to always pull the arm that we believe

to have the highest probability of success and continue to do so forever. However

this approach ignores the possibility that our lack of information about other

arms could lead to the discovery of a more reliable reward stream should we pull

alternative arms and learn that one of the other arms has a higher true probability

of delivering non-zero rewards.

The key to dealing with this is to view the knowledge we have about an arm as

its current state and take a Bayesian approach to learning about each of the arms.

By conjugacy, since we’re concerned with Bernoulli rewards we assign Beta priors

to each of the arms and update these beliefs as pulls are made. If we consider the

lth arm of a bandit after t pulls then we know that the success probability pl has

the following pdf

(αtl + βtl + 1)!(αtl !β
t
l !)
−1p

αtl
l (1− pl)β

t
l

where if there have been r successes, αtl is equivalent to α0
l +r and βtl is updated to
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be β0
l +t−r. Before discounting, the expected reward from the next pull of an arm

that has been pulled t times already is the expected value of the beta distribution

that governs it which is equal to (αtl + 1)/(αtl + βtl + 2).

We can generalise the standard multi-armed problem by allowing there to be

rewards that aren’t necessarily unital and follow all manner of known distributions.

Indeed, Gittins produced indices that are optimal for bandits with Gaussian re-

wards.

To make the problem technically explicit for the multi-armed bandit with L

arms and exponentially distributed rewards, we say that each arm has an asso-

ciated belief about the value of the λl parameter of the exponential distribution

governing the rewards obtainable from the arm with the information available. We

have that our initial estimate λl ∼ Gamma (α0
l , β

0
l ) where α0

l > 1 and β0
l > 0 for

all l. We sequentially pull arms and update our posterior beliefs after the (t+ 1)st

pull made such that λl ∼ Gamma (αt+1
l , βt+1

l ).

If we denote by lt ∈ 1, ..., L the choice of the (t + 1)st arm to be pulled and

the reward obtained from that pull as Y t+1
l , we update the shape parameter in the

following way:

αt+1
l =

α
t
l + 1 if lt = l

αtl otherwise.
(2.16)

We also update the scale parameter as follows:

βt+1
l =

β
t
l + Y t+1

l if lt = l

βtl otherwise.
(2.17)

So at after t arm pulls we have the vectors αt = (αt1, . . . , α
t
L) and βt = (βt1, . . . , β

t
L)

which together form the knowledge state st = (αt, βt) which gives at time t the

complete summary of the beliefs we have for the collection of L bandits.
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A policy τ for sequentially choosing arms under this set-up consists of a se-

quence, (Xτ,t)∞t=0 of decision rules which maps knowledge states, st to one of the

L alternative arms. The challenge here is to maximise expected rewards. The ex-

pected reward at time t is (λXτ,t(st))−1. For the T stage bandit setup, the problem

is to find τmax where

τmax = max
τ

Eτ
T∑
t=0

γt

λXτ,t(st)
(2.18)

for the discount factor γ. The notation Eτ denotes the expected rewards receieved

where we always use decision rules of the policy τ . Just as we needed Gittins indices

to escape the high dimensionality problems of the bandit problems discussed in

the previous section, we should also have a computationally cheap heuristic or

approximation for these multi-armed bandit problems.

We briefly discuss complexity of bandits problems in general. In the intro-

ductory section of [Gittins et al., 2011] the authors motivate their discussion of

bandit processes with seven example problems. One of these is a sequential de-

cision problem concerning allocation of several competing medical treatments to

patients. The authors go on to show that the SDP cannot solve this problem in

polynomial time.

Using an index based policy however, the number of individual computations

and the amount of storage space can be respectively reduced to being quadratic

and linear in the problem size which is a great saving in both quantities. In the

particular case given in the text, the problem can still be solved optimally. The

intelligence operation problems that we formulate in this thesis are complex enough

to require some kind of heuristic approach to render them solvable in a reasonable

amount of time.

That is not to say that bandit problems can’t be solved efficiently in some

cases. It was shown in [Gittins and Jones, 1974] that a standard MAB can be

solved efficiently using index policies and is at most NP-hard depending on the

formulation. There is also the concept of a restless bandit, where the states of in-
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dividual arms do not necessarily remain unchanged if they are not pulled. Finding

optimal policies for such problems was proven to be PSPACE hard in [Bertsimas

et al., 1995] and therefore it is more likely that heuristic solutions are required to

find optimal solutions.

However it is not always best practice to jump directly to approximation. If

your SDP problem is intractable, it is worth investigating whether a Lagrangian

relaxation can provide a route to a direct solution first, and then exploit the

properties of the relaxed, probably easier proxy problem, if this can’t be done.

2.4 Lagrangian Multipliers

Formal optimisation problems tend to consist of an objective function, which is

to be minimised or maximised, and a set of constraints, which are not to be

violated. Problems such as these can be made easier to solve by using the technique

of Lagrangian multipliers, originally developed in [Lagrange, 1811]. The basic

premise of the multiplier method is to incorporate one or more of a given problems

constraints into its objective function. In doing so, the problem can be often be

solved in such a way that directly accommodates the constraints directly, rather

than having to verify solutions after the fact.

We proceed by giving an example. We want to minimise

min f(x, y) = x2 − 8x+ y2 − 12y + 48

subject to

x+ y = 4. (2.19)

We can rewrite this problem, taking the constraint into the objective by means of

a Lagrangian multiplier.

minF (x, y, λ) = x2 − 8x+ y2 − 12y + 48− λ(x+ y − 4) (2.20)
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and we now take partial derivatives and set them to zero

Fx(x, y, λ) = 2x− 8− λ = 0

Fy(x, y, λ) = 2y − 12− λ = 0

Fλ(x, y, λ) = x+ y − 4 = 0

which yields

x = 1

y = 3

λ = −6

to yield a minimum of 10 when substituting back into 2.19. Observe how we were

able to find a valid candidate solution for the original problem directly with no

need to explicitly solve the conditions and use them to eliminate extra variables.

Even if a solution does not arise directly out of using a Lagragian multiplier to

incorporate constraints into the objective of a problem, the act of manipulating

the constraints in this way can still make the problem easier to solve by other

means. This is commonly referred to as Lagrangian Relaxation.

The use of Lagrangian multipliers is commonplace in the world of optimisa-

tion and remains a powerful technique. Problems concerning traditional defense

operations too have made use of Lagrangian relaxation techniques. Whether it

concerns the allocation of defense assets ([Pugh, 1964] and [Cheong, 1985]), min-

imising the costs associated with weapon use ([Kwon et al., 1999]), or optimising

the layout of communication networks on challenging terrain ([Ibrahim and Alfa,

2015], Lagrangian relaxation techniques have found their use in OR problems for

a long time. It would not be out of the question to apply Lagrangian techniques

to the relatively new field of intelligence operations research.
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The work of [Everett, 1963] remarks that although a Lagrangian multiplier

method can’t always guarantee that a solution can be found directly, any solu-

tion that is found this way is guaranteed to be a valid solution that satisfies all

constraints. The relaxation process doesn’t always yield a solution, but it can

certainly pave the way toward a solution by some other means. In such a case we

must resort to an approximate solution method. In the case of a hard stochas-

tic dynamic programming problem, we can make a Lagrangian relaxation of the

problem first and then employ one of many heuristic methods, some of which are

discussed in the next section.

2.5 Approximate Dynamic Programming

When an SDP problem is intractable or otherwise prohibitively costly to solve, and

a corresponding Lagrangian approach fails to allievate such obstacles, approximate

solutions can often help provide servicable solutions.

The point is made in [Powell, 2011] that dynamic programming problems gen-

erally suffer from a vulnerability to high dimensionality of the state and action

spaces. However real-world operations require good solutions that exact methods

can’t provide in reasonable lengths of time and approximate dynamic programs

(ADPs) occupy the space left behind by exact and otherwise relaxed methods.

The heuristic nature of solutions to approximate dynamic programming prob-

lems almost always incurs a degree of suboptimality in the resulting policies. How-

ever, choosing the right heuristic for the right problem can often mean that the

perplexed problem solver can access a workable solution for their problem, whilst

minimising the negative impact on solution quality. In this section we showcase

some examples of currently applied approximate solution types in ADP problems.
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2.5.1 ε-Greedy Methods

Any discussion on heuristic methods would be incomplete without talking about

the greedy approach. The so called ε-greedy approach in [T, 2010] states that the

problem solver in state i should choose the action a that maximises the immediate

expected reward Ra(i, i
′
) with probability 1− ε and choose a random action with

probability ε. When ε = 0, we simply call this special case the greedy approach.

The principle of the ε-greedy approach is that the best looking action at any

given time is probably the best one, so the problem solver should just go ahead and

select it. However when we’re dealing with a state space that has any degree of

uncertainty about its underlying parameters, we run the risk of becoming trapped

in a locally optimal solution by not exploring the action space thorougly enough to

find the true best actions for each state. What ε-greedy does is force the problem

solver to randomly try any of the apparently suboptimal actions with probabiity

ε in an effort to strike a balance between exploitation of the ’best’ actions and the

exploration of possibly better actions over time.

Locally optimal solutions occur in practice even when there isn’t uncertainty if

the problem is complicated enough [Hougardy and Kirchner, 2006] and optimisa-

tion problems that deploy greedy type solutions need to find workarounds for this

phenomenon. Randomly choosing suboptimal actions and repeating the problem

from a series of random starting points are but two of the ways to hunt for other

local optima that surpass the best known current local optima.

We must also bear in mind that it is not always possible to deploy such tactics

in real operations. If we consider the intelligence operations application in the con-

text, acting completely at random or restarting the problem endlessly aren’t likely

to be viable approaches. Nor can we rely on methods which are only proven to

converge on a good solution over an infinite horizon only. If it is generally expen-

sive to explore suboptimal actions it is worth refining our approach to exploration

so that we do it economically.

In the next subsection we discuss a ’greedy-like’ heuristic that is designed to
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explore in a fashion that is more targeted than electing to act at random some of

the time.

2.5.2 Knowledge gradient methods

There is an argument put forward in [Ryzhov and Powell, 2010] and [Ryzhov and

Powell, 2011] for the use of knowledge gradient (KG) or one-period look ahead

policies for such problems to be used in certain multi-armed bandit problems.

One reason given in [Ryzhov and Powell, 2010] is that Gittins indices, although

proven to be optimal for indexable problems, can be difficult to compute. Also,

some experimental evidence is provided to show that KG policies can outperform

Gittins index approximation based policies when the rewards are exponentially

distributed as opposed to say, Gaussian.

The knowledge gradient method places value on information from decisions

that will inform us how to obtain higher expected rewards. Suppose that we have

already made t arm pulls of a multi-armed bandit and are told that after the next

pull there will be no information gain recieved from any future pulls. At time t+1

onwards it is clear that we would continue to keep pulling the arm with the highest

expected immediate return forever as it would always be our best available choice.

In this situation we would wish to make our (t+ 1)st pull such that the highest

expected immediate return for arms at time (t+ 1) improves most from the same

value at time t. Explicitly we write what is called the KG factor, for the lth arm

at time t as

νKG,tl = Et

[(
max
j

βt+1
j

αt+1
j − 1

)
−

(
max
j

βtj
αtj − 1

)]
(2.21)

where the right hand side of (2.21) is the expected improvement in our estimate

of the maximum expected reward from time t to time t+ 1

Now to state the overall KG policy we need to balance the immediate expected

gains with the total future gain in information that would be obtained from all

subsequent pulls given that we pull the lth arm next. We can obtain the policy for
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the infinite horizon case by first considering the finite case and taking limits. If

we recall that the KG method assumes that we adopt a greedy approach after the

next arm is pulled, for the decision at time t we select the arm, XKG,t according

to the following decision rule.

XKG,t(st) = arg max
l

βtl
αtl − 1

+ (T − t)νKG,tl . (2.22)

However we also need to take into account the discount factor γ for the remaining

rewards to be completely accurate so we rewrite (2.22) for the finite case as follows

XKG,t(st) = arg max
x

βtx
αtx − 1

+ γ
1− αT−t

1− α
νKG,tx , (2.23)

and by letting T →∞ we obtain the infinite horizon decision rule

XKG,t(st) = arg max
l

βtl
αtl − 1

+
γ

1− α
νKG,tl . (2.24)

So in this way the KG policy always chooses the arm that delivers the best combi-

nation of achieving immediate reward and attempting to gain new valuable infor-

mation about the arms. The researchers setting out the case for KG in [Ryzhov

and Powell, 2010] and [Ryzhov and Powell, 2011] also include computational ex-

periments in their work to compare the performance of the KG policy against

some other policies, including Gittins indices, for the exponential reward setting

and their work would suggest that the KG method outperforms or at least fares

well against them.

The Gittins index used in the comparison is set up to deal specifically with

Gaussian rewards whereas it is exponential rewards that are used for the test

studies so there may be some inadequacy in the experiment design, ergo the topic

should be revisited. However, the relative computational cheapness of KG and the

reasoning behind its construction are both appealing so KG should still be more

than appropriate for use in studies carried out in this thesis.
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2.5.3 Thompson sampling and Optimistic Bayes sampling

A problem with the standard greedy approach, and other deterministic policies,

is that they are prone to becoming trapped in locally optimal decisions patterns.

In a bandit problem, if a particular arm has the highest expected overall reward

according to a given policy and belief state, but the arm in question isn’t truly

the optimal arm to choose, then the policy in question is likely to continue its

exploitation of that arm as long as it performs reasonably well, neglecting to

explore other arms often enough to discover the true best arm. The purpose

behind the two heuristics in this subsection is to incorporate exploration into the

decision process in a random fashion in such a way as to favour the arms which

are believed to be better but not to choose them deterministically.

The first of these is the Thompson sampling (TS) approach, described in

[Thompson, 1933]. When faced with a multi-armed bandit problem, TS first in-

structs us to randomly sample from the posterior reward distributions of each arm

and use the results of these samples as the indices for the arms at that point in

time. TS then says we should choose the arm with the highest index and re-

draw new indices at each time point. It’s simplicity and effectiveness has seen TS

sampling policies being implemented in web design and analytics.

Optimistic Bayesian sampling (OBS) (see [May et al., 2012]) is a variant of the

TS approach which places value on the posterior beliefs about arms in the event

that an arm with a good posterior reward distribution produces a bad random

draw during a TS style index creation process. As with the TS approach, one

makes a random sample for each arm based on its posterior reward distribution.

However in the OBS approach, this random integer is compared to the expected

immediate return for that arm and the greater of these two values acts as the index

for that source. The policy is asymmetric in that is apparently shuns bad draws

from good arms, and embraces good draws from bad arms and great draws from

good arms. Hence, the ’optimistic’ part of the name.



Chapter 3

Single source allocation model:

Exemplar Problem

This chapter serves to explore how the material from the literature review of

Chapter 2 may be applied to a general intelligence gathering problem. A single

source allocation model is formulated here and draws on knowledge from the fields

of dynamic programming, Bayesian statistics and multi-armed bandit theory.

Where later chapters of this document are concerned with managing multiple

intelligence sources which compete for the attention of intelligence processing staff,

the discussion here looks at the behaviour of a single stream of intelligence items

and related sampling policies.

Suppose that there is an incoming stream of intelligence items and that it

is the job of an intelligence processor to evaluate the importance of these items

with respect to an operational objective specified by an analyst, who receives

intelligence items passed along by the processor. The processor draws items from

the pool sequentially and before they can draw another item from the pool the item

currently held must be either permanently discarded or passed along for analysis.

The processor can discard the currently held item if it is deemed to be unim-

portant or the item can passed further along the chain of command to analysts

if the item in question is clearly pertinent to the objective at hand. If the value

32
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judgement is not so simple to make for the item, it is also possible to choose to de-

vote more time and effort into scrutinizing it further to better understand its level

of importance. Over a finite time horizon the goal of the processor is to submit a

collection of items with the greatest combined importance values possible.

Here a model for the described problem is given and a dynamic program is

formulated to solve the processor’s problem of maximizing the overall value of

submitted items.

3.1 Modelling the Items

Items discussed in the context of the studies in this document all have some form

of importance score associated with them. In this single source model, the distri-

bution of these scores in the processor’s pool of items is assumed to be Normal

with some unknown mean µ. If we briefly assume that µ is known and denote by

X the importance score of a single item drawn from the pool we assume that

X|µ ∼ N(µ, σ2) (3.1)

where the variance σ2 is known. When it comes to deciding the fate of the next item

drawn from the pool, for simplicity we always deal with the posterior distribution

for µ that was current just before the currently held item was drawn from the

pool. We write this as

µ ∼ N(ξ, ν2) (3.2)

and both parameters are updated simultaneously to include any new information

about µ when and only when we discard an item or when we pass an item along

for analysis. The processor is assumed to have an imperfect ability to assess the

true importance scores of items. The rationale for this is that the processor sees

the items in relative isolation in comparison to the analysts who have a more

comprehensive view of the intelligence landscape. When the processor records
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their ’best educated guess’ of an item’s importance, we say that this observed

value is the random variable Y . We have that

Y |X ∼ N(X, τ 2) (3.3)

where τ 2 is known and represents the degree of imprecision which the processor

tends to exhibit when making judgements about the true importance value of the

item that they are inspecting. The variances σ2 and τ 2 are common across all

items.

Since it is possible for the processor to make multiple observations of a single

item, we use the random variable Y(n) to denote the sample mean of n observations

(assumed independent given their true score X) made of an item, hence we have

Y(n)|X ∼ N

(
X,

τ 2

n

)
. (3.4)

Suppose a request for information concerns the progress made towards the devel-

opment of nuclear weapons in a certain country of interest, here represented by

µ. In this context X could represent signal intelligence (often vast in volume and

noisy) about the quantity of highly enriched uranium already created, and the Yi’s

are observations resulting from the processors doing a preliminary analysis of the

signal intelligence.

From the above we can then infer the unconditional X-distribution by writing

X = µ+ ε (3.5)

where µ ∼ N(ξ, ν2) and ε ∼ N(0, σ2) are independent r.v.s. We therefore infer

that

X ∼ N(ξ, σ2 + ν2). (3.6)

Further, we can write

Y ∼ X + ζ (3.7)
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where X ∼ N(ξ, σ2 + ν2) and ζ ∼ N(0, τ 2) are independent r.v.s. We then infer

that

Y ∼ N(ξ, σ2 + ν2 + τ 2). (3.8)

We now have unconditional distributions for both the value of an item drawn from

the processor’s pool X and the observed value of the item Y as reported by the

processor.

3.2 Dynamic Program

Formally, the finite time horizon for this problem consists of T discrete decision

epochs. We assume that the processor begins the problem with T epochs remaining

having already drawn an item from the pool and also already having made on

observation of that item. We let V be the value function for the problem and give

the general form

Vt(ξ, ν
2, y(n), n) (3.9)

where

� t := the number of decisions remaining in the problem.

� ξ := the posterior mean for µ which was current before the current item was

drawn from the item pool.

� ν2 := the corresponding posterior variance for µ.

� y(n) := the mean value of the observations made of the current item so far.

The subscript indicates that the sample mean is taken for the n observations

of the current item

� n := the number of observations, that have already been made, of the current

item.

At any decision epoch there are three actions one could take:
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� Discard (D) := Cease looking at the current item and draw a new item from

the item pool. Immediately make one observation of this new item.

� Pass (P ) := Cease looking at the current item and pass it to the analysts,

earning a reward (X −C) for doing so where C is some user specified global

constant. Immediately draw a new item from the pool and make one obser-

vation of it.

� Re-Assess (R) := Make an additional observation of the current item.

For clarity, all of the above actions reduce the decision counter t to t− 1. We can

condition on these actions to formulate the dynamic program. First we have that

Vt(ξ, ν
2, y(n), n) = max[Vt(ξ, ν

2, y(n), n|D), Vt(ξ, ν
2, y(n), n|P ), Vt(ξ, ν

2, y(n), n|R)]

(3.10)

so the formulation is now reduced to evaluating the three conditional value func-

tions in (3.10).

To obtain V given that we take action D we use

Vt(ξ, ν
2, y(n), n|D) =

∫ ∞
−∞

Vt−1(ξ+, ν
2
+, y(1), 1)φ

(
y(1) − ξ+

(σ2 + ν2+ + τ 2)
1
2

)
dy(1) (3.11)

where the function φ refers to standard Normal cdf and the notation y1 refers to

the new observation of the new item. We also use the subscript notation ’+’ to

make it clear that we have updated the posterior mean and variance for µ on the

right hand side of (3.11).

We compute the updated posterior mean and variance for µ

ξ+ =
ξ( τ

2

n
+ σ2) + ν2y(n)

τ2

n
+ σ2 + ν2

(3.12)

ν2+ =
ν̂2( τ

2

n
+ σ2)

τ2

n
+ σ2 + ν2

(3.13)

For the passing action (P ) the conseqences of said action are the same as if we

discard (D) with the additional immediate reward earned E[X|Y(n)]− C where C
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is a client defined hesitation constant which is used as a quality controlling tuner

in the system.

The distributions of X and Y are known to us but we need to use the random

variable X|Y(n) in order to include all the information the processor knows about

the currently held item from their observations. We have that

X|Y(n) = y(n) ∼ N

(
(σ2 + ν2)y(n) + τ2

n
ξ

σ2 + ν2 + τ2

n

,
(σ2 + ν2) τ

2

n

σ2 + ν2 + τ2

n

)
(3.14)

and from this we obtain

Vt(ξ, ν
2, y(n), n|P ) = Vt(ξ, ν

2, y(n), n|D) + E[X|Y(n)]− C. (3.15)

In the next section it will be shown more explicitly how C acts as an effective

quality control.

We now have the recursive value functions conditional on the discarding (D)

and passing (P) actions so we just need to state the V conditional on the remaining

action of re-assessing (R) the currently held item.

When re-assessing occurs, it is important that processors use the information

obtained from the observations y(n) to inform their prediction for the value of the

(n + 1)st observation yn+1. The reader is advised to note the subtle difference in

notation. We also need to make use of the previously unmentioned r.v. Yn+1|Y(n)

and notice that we can rewrite this r.v. in the following way

Yn+1|Y(n) = X|Y(n) + ζ|Y(n) (3.16)

and note that the observation error ζ for the (n+ 1)st observation is independent

of both X and Y(n). Since ζ|Y(n) ∼ N(0, τ 2) we deduce that

Yn+1|Y(n) ∼ N

(
(σ2 + ν2)y(n) + τ2

n
ξ

σ2 + ν2 + τ2

n

,
(σ2 + ν2) τ

2

n

σ2 + ν2 + τ2

n

+ τ 2
)
. (3.17)
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So we can now explicitly state the value function Vt(ξ, ν
2, y(n), n|R) conditional on

taking the re-assessing action.

Vt(ξ, ν
2, y(n), n|R) =

∫ ∞
−∞

Vt−1

(
ξ, ν2,

ny(n) + yn+1

n+ 1
, n+1

)
φ

(
yn+1 −

(σ2+ν2)y(n)+
τ2

n
ξ

σ2+ν2+ τ2

n(
(σ2+ν2) τ

2

n

σ2+ν2+ τ2

n

+ τ 2
) 1

2

)
dyn+1

(3.18)

It is now theoretically possible for us to evaluate Vt by exhaustive recursion and

choosing the action that maximises total expected rewards. A reward is earned

when an item is passed along for analysis. We discourage the passing of low quality

items by subtracting the fixed parameter C from all individual rewards earned by

single items.

The resulting effect is that the processor tends not to submit items which have

an expected score which is less than the hesitation constant C. We discuss this

further in the next section.

3.3 The hesitation constant as a performance tuner

In this section some key results underpinning the discussion in this section are set

out. The first result shows us that the hesitation constant C has the property

whereby we can increase its value in order to reduce the rate at which items are

passed for analysis.

If we have a set Π of allowable policies our goal then is to choose π ∈ Π which

maximises the Bayes return

Eπ
[( N∑

i=1

Xi

)
−NC

]
(3.19)

where N is the total number of items passed along for analysis and is a random

variable with properties determined by the choice of π. It has been stated that we

can use the constant C as a tuner to control the quantity of items passed along for

analysis. For a fixed time period T we write N(T ) for the number of items passed
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for analysis by time T .

Let C1 > C2 and suppose π(C1), π(C2) are the optimising policies for C1 and

C2 respectively. We have,

Eπ(C2)

[∑N(T )
i=1 Xi

]
− Eπ(C2)

[
N(T )

]
C1

≤ Eπ(C1)

[∑N(T )
i=1 Xi

]
− Eπ(C1)

[
N(T )

]
C1

≤ Eπ(C1)

[∑N(T )
i=1 Xi

]
− Eπ(C1)

[
N(T )

]
C2

≤ Eπ(C2)

[∑N(T )
i=1 Xi

]
− Eπ(C2)

[
N(T )

]
C2

→ (C1 − C2)Eπ(C1)

[
N(T )

]
≤ (C1 − C2)Eπ(C2)

[
N(T )

]
(3.20)

and hence that Eµ(C)

[
N(T )

]
is decreasing in C. Informally, one can reach the final

implication by writing the above inequality as A ≤ B ≤ C ≤ D and deducing that

C −B ≤ D − A.

The first and third inequalities in (3.20) follow as π(C1) and π(C2) are re-

spectively the optimising policies for C1 and C2, and the second inequality holds

because the optimising policy for C1 results in an even greater value for the ob-

jective when C2 is the cost per allocation instead of C1.

This analysis supports the use of C as a tuning parameter to control the mean

rate at which items are passed to the analyst.

3.4 Bayesian updating

It is important that it is understood how the Bayesian updates such as those in

(3.12) and (3.13) are derived. For ease of the discussion that follows, we use the

notation ξ0 and ν20 to respectively denote the initial prior mean and prior variance

for µ before any observations are made on any item at the very start of the problem

horizon.

For µ, a Normal (ξ0, ν
2
0) prior is assumed and we have a Normal likelihood
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function for observed data y(n). If n observations have been made of the 1st item

drawn, the posterior density for µ is

p(µ|y(n)) ∝ exp

{
− 1

2ν20
(µ− ξ0)2

}
exp

{
− 1

2( τ
2

n
+ σ2)

(y(n) − µ)2
}

(3.21)

where if we expand the exponent terms in (3.21) we obtain a quadratic of the form

−1
2
(aµ2 − 2bµ + c) where c is a function of known constants only. We obtain the

quadratic and linear terms

a =
1

ν20
+

1
τ2

n
+ σ2

, b =
ξ0
ν20

+
y(n)

σ2 + τ2

n

(3.22)

where algebraic manipulation gives us that the posterior distribution is also in the

correct Normal form:

p(µ|y(n)) ∝ exp

{
− 1

2
(aµ2 − 2bµ)

}
= exp

{
− 1

2
a

(
µ2 − 2bµ

a
+
b2

a2

)
+
b2

2a

}
∝ exp

{
− 1

2
a

(
µ− b

a

)2}
= exp

{
− 1

2

(
µ− b/a
1/
√
a

)2}
. (3.23)

So we have that the posterior distribution for µ has a normal density with variance

parameter

a−1 =
ν20(σ2 + τ2

n
)

τ2

n
+ σ2 + ν20

(3.24)

and mean parameter

b/a =
ξ0(

τ2

n
+ σ2) + ν20y(n)

τ2

n
+ σ2 + ν20

(3.25)

where a and b are as in (3.22). The equations in (3.24) and (3.25) explicitly show

how updates of belief state about µ occur as items are trashed or passed. An

induction argument is now given showing that any of our Bayesian updates in our
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model take a general form arising from this method.

For ease of notation I define the sets

Ki,j = ([1, i]− {j}) ∩ N. (3.26)

In words, Ki,j is the set of the first i natural numbers with the exception of j.

We also need to make use of the notation nj which denotes the number of

observations that were made on the jth item drawn. We also temporarily alter our

notation and let ȳj denote the sample mean of the observations made of the jth

item.

Claim: When we discard or pass the ith item in the problem and when i ≥ 2,

the following holds when we update to obtain ξi and ν2i from ξ0 and ν20 .

ξi =
ξ0
∏i

j=1(
τ2

nj
+ σ2) + ν20

∑i
j=1 ȳj

∏
k∈Ki,j(

τ2

nk
+ σ2)∏n

j=1(
τ
nj

+ σ2) +
∑i

j=1 ν
2
0

∏
k∈Ki,j(

τ2

nk
+ σ2)

(3.27)

ν2i =
ν20
∏i

j=1(
τ2

nj
+ σ2)∏i

j=1(
τ
nj

+ σ2) +
∑i

j=1 ν
2
0

∏
k∈Ki,j(

τ2

nk
+ σ2)

(3.28)

Proof: The derivation of the posterior mean part of the claim will be shown first

and then the proof will be completed by showing the posterior variance part of the

proof.

Proceeding by induction, it is trivial to show that the posterior mean and

variance we would obtain after we have discarded or passed the second item take

the forms above. Now if I assume that the claim holds for every natural number

from 2 to i I just need to show the inductive step which gives us the (i+ 1)st case

from the ith. When we pass or discard the ith item we update to our posterior
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mean for µ as follows.

ξi+1 =
ξi(

τ2

ni+1
+ σ2) + ν2t ȳi+1

τ2

ni+1
+ σ2 + ν2t

(3.29)

We choose to break up the derivation by considering the numerator of (3.29)

first and show that we can obtain the (i + 1)st case for the numerator. When

we substitute in for ξi we can take the numerator of (3.27), and multiply it by

( τ2

ni+1
+ σ2). We pass the denominator of (3.27) to the denominator of (3.29) and

deal with it later. The numerator of (3.29) becomes

[
ξ0

i∏
j=1

(
τ 2

nj
+ σ2

)
+ ν20

i∑
j=1

ȳj

( ∏
k∈Ki,j

(
τ 2

nk
+ σ2

))][
τ 2

ni+1

+ σ2

]
+ [ν2ȳi+1] (3.30)

so if we multiply out the pair of square brackets in (3.30) we obtain

ξ0

i+1∏
j=1

(
τ 2

nj
+ σ2

)
+

[
ν20

i+1∑
j=1

ȳj

( ∏
k∈Ki+1,j

(
τ 2

nk
+ σ2

))
−ν20 ȳi+1

∏
k∈Ki+1,i+1

(
τ 2

nk
+ σ2

)]
+ν2ȳi+1

(3.31)

where if we take the numerator of (3.28) when we substitute for ν2i in (3.31), again

leaving the denominator of (3.31) for now, we find that since the numerator of

(3.28) is

ν20

i∏
j=1

(
τ 2

nk
+ σ2

)
= ν20

∏
k∈Ki+1,i+1

(
τ 2

nk
+ σ2

)
(3.32)

which gives us the term we need to cancel out the negative term in (3.31) leaving

us with the numerator

ξ0

i+1∏
j=1

(
τ 2

nj
+ σ2

)
+

[
ν20

i+1∑
j=1

ȳj

( ∏
k∈Ki+1,j

(
τ 2

nk
+ σ2

))]
(3.33)

which gives us the numerator for ξi+1 which fits with our claimed form for it. Now

we need to verify that the denominator is also of the correct form. Remember

that during the course of evaluating the numerator we delayed dealing with the
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following quotient

1∏n
j=1

(
τ
nj

+ σ2
)

+
∑i

j=1 ν
2
0

∏
k∈Ki,j

(
τ2

nk
+ σ2

) (3.34)

when substituting for both ξi and ν2i . We could have taken out this quotient

initially as it is a common factor of the two terms in the numerator of (3.29). We

can multiply the denominator of (3.29) by the inverse of (3.34) and evaluate the

resulting expression then check it against our proposed form for the denominator

of ξi+1.

We first obtain the denominator of ξi+1 to be

( n∏
j=1

(
τ

nj
+ σ2

)
+

i∑
j=1

ν20
∏
k∈Ki,j

(
τ 2

nk
+ σ2

))(
τ 2

ni+1

+ σ2 + ν2i

)
(3.35)

Now we substitute ν2i in (3.35) but notice that if we put everything inside the right-

most bracket of (3.35) over a common denominator (the denominator of (3.34))

we find that the leftmost bracket will cancel out with this denominator leaving us

with only the numerator of the rightmost bracket. In doing all of this we find that

(3.35) is equivalent to

(
τ 2

ni+1

+σ2

)[ i∏
j=1

(
τ 2

nj
+σ2

)
+

i∑
j=1

ν20
∏
k∈Ki,j

(
τ 2

nk
+σ2

)]
+ν20

i∏
j=1

(
τ 2

nj
+σ2

)
. (3.36)

If we simplify (3.36) we get precisely the denominator we need for ξi+1 and complete

this part of the induction argument.

So for the variance part of the proof we already established that the basis case

was true in the induction. Now we need to be able to obtain the specified form

(3.28) for the (i + 1)st given that we assume the ith. Since we would be using ν̂2i

as the prior variance for µ, the next posterior variance to be computed would be
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ν̂2i+1 and it is done as follows.

ν2+ =
ν2(σ2 + τ2

ni
)

τ2

ni
+ σ2 + ν2

(3.37)

If we let φ and ψ respectively denote the numerator and denominator of (3.28) we

find that (3.37) is equal to

ν2+ =
φ(σ2 + τ2

ni
)

ψ

(
ψ( τ

2

ni
+σ2)+φ

ψ

) =
φ(σ2 + τ2

ni
)

ψ( τ
2

ni
+ σ2) + φ

(3.38)

And if we substitute back in the values of φ and ψ we find that we have precisely

the form we need for the posterior variance.

3.5 Numerical Implementation

The main computational challenge of working with this model is evaluating the

value function Vt(ξ, ν
2, y(n), n) from (3.10), (3.11), (3.15) and (3.18). It has four

arguments, three of which are continuous. The range of both ξ and y(n) is (−∞,∞)

whilst ν2 has range [0,∞) and while this alone may not be too much of an imple-

mentation issue, one also has to account for the fact that the value function also

takes the time remaining t as an argument and also that V is recursively defined.

For example we know from (3.11) that

Vt(ξ, ν
2, y(n), n|D) =

∫ ∞
−∞

Vt−1(ξ+, ν
2
+, y(1), 1)φ

(
y(1) − ξ+

(σ2 + ν2+ + τ 2)
1
2

)
dy(1). (3.39)

One requirement for evaluating the above integral is that for all y(1) in the range

(−∞,∞) we have available to us a corresponding value for Vt−1(ξ+, ν
2
+, y(1), 1).

Bearing in mind that Vt−1 itself requires infinitely many Vt−2 and so on and so

forth, it becomes immediately obvious that some form of approximation scheme

for V needs to be deployed. However any approximation error in evaluating Vt at

time t = 0 will be inherited when evaluating it at t = 1 and so on. It is therefore
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important to keep approximation errors at a minimum as we step backwards in

time.

One way of doing this is to construct a lattice of points that encompasses the

four dimensional statespace (implied by Vt(ξ, ν
2, y(n), n)) as much as possible and

use this to discretise the continuous parts of the statespace to a level of detail that

adequately trades off timeliness (or indeed, tractability) and accuracy. Each point

in the lattice corresponds to a particular state the system can take, so that when

one needs to compute the value of a state that is between these points, one will

interpolate within the hypercube, of lattice points it is contained in.

The only other case that needs to be dealt with is the instance where the system

requires an evaluation of Vt at a state existing outside of the range of the lattice.

In this case one is forced to submit the value Vt corresponding to the nearest

point of the statespace that is included within the hypercube but generally the

lattice ranges should be chosen to avoid these cases as much as possible. At least

the hypercube that is chosen should be large enough so that the value function

returns for parameter combinations that exist outside of it contribute very little

to the computation of Vt.

So:

� Construct four vectors of equally spaced values of ξ , ν, y(n) and n respec-

tively.

� Let V1 be a four dimensional array with dimensions corresponding to the

length of the vectors in the previous step.

� For each element of V1, compute V1(ξ, ν
2, y(n), n|P ) (as defined in 3.15) with

parameters corresponding to the position within the array.

� For t in 2 to T construct Vt from Vt−1, where Vt(ξ, ν
2, y(n), n) is defined in

3.10, interpolating within Vt−1 where necessary.

� Directly reference from VT the desired value VT (ξ, ν2, y(n), n|D) or interpolate

within the smallest hypercube of VT containing that point.
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One can use the psuedocode described in Algorithms 1-3 to approximate the

values of Vt(ξ, ν
2, y(n), n|D), Vt(ξ, ν

2, y(n), n|P ) and Vt(ξ, ν
2, y(n), n|R) required in

computing Vt(ξ, ν
2, y(n), n).

Set : RewardD ← 0
Carry out Bayesian updating that would occur as a result of trashing
now ;

Set : ξ+ ←
ξ( τ

2

n
+σ2)+ν2y(n)
τ2

n
+σ2+ν2

Set : ν2+ ←
ν̂2( τ

2

n
+σ2)

τ2

n
+σ2+ν2

Create : vector PhiArray and InterpArray to be the same size as
Y Array

for a← 1 to DimY do
Set : y(1) ← Y Array[a]

Set : PhiArray[a]← φ

(
y1−ξ+

(σ2+ν2++τ2)
1
2

)
where φ is the standard Normal cdf ;
Search : XiArray for the consecutive pair of elements such that

ξ+ lies between those two values. Call the endpoints of
that interval ξlow and ξhigh

Repeat : for NuArray and ν2+, creating ν2low and ν2high
Interpolate: (linearly) between the four lattice points of Final

corresponding to the states Vt−1(ξlow, ν
2
low, y(1), 1),

Vt−1(ξlow, ν
2
high, y(1), 1), Vt−1(ξhigh, ν

2
low, y(1), 1) and

Vt−1(ξhigh, ν
2
high, y(1), 1) to obtain Vt−1(ξ+, ν

2
+, y(1), 1)

Set : InterpArray[a]← Vt−1(ξ+, ν
2
+, y(1), 1)

end
The arrays PhiArray and InterpArray are now fully populated ;

Set : RewardD ←
∑DimY
i=1 InterpArray[i]PhiArray[i]∑DimY

i=1 PhiArray[i]

return RewardD;

Algorithm 1: Evaluating Vt(ξ, ν
2, y(n), n|D)

Retrieve: RewardD from Algorithm 2

Set : RewardP ← RewardD +
(σ2+ν2)y(n)+

τ2

n

σ2+ν2+ τ2

n

return RewardP ;

Algorithm 2: Evaluating Vt(ξ, ν
2, y(n), n|P )

An optional addition to the above procedure is to create the arrays At which

track the action taken by the processor from any given state i.e. the maximising ac-

tion from the options of passing, trashing and re-assessing the currently held item.
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Set : RewardR ← 0
Create : vector PhiArray and InterpArray to be the same size as

Y Array
for a← 1 to DimY do

Set : yn+1 ← Y Array[a]

Set : y+ ←
ny(n)+yn+1

n+1

Set : PhiArray[a]← φ

(
yn+1−

(σ2+ν2)y(n)+
τ2
n ξ

σ2+ν2+ τ
2
n(

(σ2+ν2) τ
2
n

σ2+ν2+ τ
2
n

+τ2

) 1
2

)

where φ is the standard Normal cdf ;
Search : Y Array for the consecutive pair of elements such that

y+ lies between those two values. Call the endpoints of
that interval ylow and yhigh

Interpolate: (linearly) between the pair of lattice points of Final
corresponding to the states Vt−1(ξ, ν

2, ylow, n) and
Vt−1(ξ, ν

2, yhigh, n) and linearly to obtain
Vt−1(ξ, ν

2, y(+), n)
Set : InterpArray[a]← Vt−1(ξ, ν

2, y(+), n)

end
The arrays PhiArray and InterpArray are now fully populated ;

Set : RewardR ←
∑DimY
i=1 InterpArray[i]PhiArray[i]∑DimY

i=1 PhiArray[i]

return RewardR;

Algorithm 3: Evaluating Vt(ξ, ν
2, y(n), n|R)
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Figure 3.1: A sample of from the numerical output

By doing this it should be possible in most cases to directly recommend an action

to the processor given their current problem state (ξ, ν2, y(+), n) if it lies within the

bounds of the created lattice. It is unclear what should be done in the event that

the processor must ’interpolate’ between non-identical actions. One could choose

the action corresponding to action specified at the nearest neighbouring lattice

point as a rule of thumb.

I have been able to produce some working code that produces such an action

array At; an example screen of the output is shown in Figure 3.1. A two dimen-

sional slice of the larger four dimensional action lattice is shown which shows a

contiguous region within which the processor is compelled to re-assess their cur-

rently held item, which separates two similar such regions where the processor is

respectively compelled to trash or pass on her current item.

I’ve carefully chosen the parameters for this toy problem to show what happens

at the borderline between discarding and passing items. Being able to see this

behaviour requires that the fidelity of the experiment is fine enough to capture

the re-assessment region. In other test cases on a more macroscopic scale, it is

common for this interim area to be missed out entirely, having a lattice which

jumps from trashing to passing and vice versa.

However, the method takes considerable time to execute and is unsuitable for
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anything more than a moderately sized lattice. Given that we ultimately wish

to extend to multiple source problems, it is clear that a lattice type approach

such as this may not be suitably developed to solve those problems. The level

of complexity in the systems we would wish to consider is only going to increase

from this stage. A completely exhaustive numerical approximation, even at this

level of discretisation, is certain to suffer from dimensionality related difficulties

and severely limit the progress that can be made in future research efforts.

We seek instead index-based heuristics to guide our processor and analyst in

our intelligence operations models. The exploration and development of these

index-based decision approaches form the basis for the content in the research of

the chapters to come.



Chapter 4

The Multi-Armed Bandit

Allocation Problem

4.1 Overview

This chapter develops a novel variant of the multi-armed bandit problem. Its

name is the multi-armed bandit allocation (or MABA ) model. For those familiar

with the literature of bandit problems or for those that have read the relevant

material in Chapter 2, the term source is used instead of ’arm’ when discussing the

various sampling choices available throughout the problem horizon. This language

is primarily used to serve the intelligence operations setting but will be used from

this point onwards.

The crucial difference between MABA and other multi-armed bandit problems

is that only a subset of the sampled rewards can be allocated and count towards

the problem solver’s final reward, and the total number of allocations must be

made within a finite number of decision epochs. The non-allocated rewards are

permanently discarded and count as zero reward at the end of the problem. The

decisions to allocate or not are made in a sequential fashion so the problem becomes

a matter of efficiently searching for the best sources from which to sample, but

also the best way to sequentially allocate the sampled rewards while this search

50
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takes place.

More technically, the multi-armed bandit allocation problem models a situation

in which there are K arms or sources which can yield rewards, only one of which

can be visited at each time epoch t ∈ N∩[1, T ]. Once a source has been visited and

its current reward observed, a subsequent decision is required concerning whether

that reward should be allocated. Over a horizon of length T there is a limit of

M = (1 − q)T of rewards which can be allocated, where q ∈ (0, 1). Typically

1 − q � 1. Sources evolve in a Markovian fashion when they are visited, but

remain unchanged otherwise. The goal is to design a policy, namely a rule for

taking decisions regarding both sources to visit and rewards to be allocated to

maximise the expected total reward allocated.

To be more precise, we introduce the MABA {(Ωi, Ri, Pi) , 1 ≤ i ≤ K;T,M}

as follows:

1. The state space of source i is denoted by Ωi, 1 ≤ i ≤ K. For the rest of

this section we shall assume that each such state space is finite or countable,

though our later theory will apply more widely;

2. The state of the system at each decision epoch t ∈ N ∩ [1, T ] is written

I (t) = {I1 (t) , I2 (t) , . . . , IK (t)} , where Ii (t) ∈ Ωi is the state of source i at

t;

3. A policy π is a rule that decides which source to be visited at each epoch

t and mandates a decision concerning whether the reward available at the

source should be allocated or not. Policies are allowed to depend upon the

entire history of the process to date (states observed, actions taken) and may

be randomised;

4. Should source i be visited at epoch t then a reward Ri {Ii (t)} is available

to be allocated (or not), where Ri : Ωi → R+ is source i’s return function,

assumed positive-valued. The state of source i also undergoes a transition
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Ii (t)→ Ii (t+ 1) determined by Markovian law Pi. The states of sources not

visited at t are frozen;

5. The total number of rewards to be allocated over horizon T is bounded above

by M, where M ≤ T. Typically, we have M � T.

The MABA model is designed for simplicity, but also to allow for extensions

and modules to be added to it for particular applications. Two key assumptions

that adhere to this design philosophy are the assumptions of a single processor,

and the assumption that discarded items are not accessible to the processor for the

rest of time. Relaxing either or both of these assumptions would be valid actions

to take but would add unnecessary complexity to the model which is why we’ve

elected for the simpler option in these cases. A single processor model is simpler

than having a model which assumes an array of many processors and the reason

for choosing to prefer a single processor model, other than for simplicity, is that

the policies developed to solve the single processor variant of the MABA can be

issued to quasi-autonomous processors individually and we assume that solutions

of this type are easier to implement that those that apply to a multi-processor

problem. Such multi processor solutions would typically have to be supported

by a team management system of some kind, which would require even further,

arguably unnecessary, model complexity. If a particular use case would demand

a multi-processor solution that could not be comprised from many single proces-

sor solutions, then this complexity could be added to the single processor MABA

model that we’ve chosen to proceed with, although this would require additional

modelling effort. As for permanent discarding of items, we assume that the pro-

cessor can not revisit previously discarded items, even if they later regret their

decision to discard a particular item. This assumption, if deemed unrealistic for

practice, could be remedied by the inclusion of a finite sized ’folder’ of items to

be considered for re-assessment. Doing so would offer the processor three addi-

tional actions at each decision epoch. First, they could store a sampled item in the

’folder’ of items which have neither been discarded or allocated. Second and third,
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the processor could allocate or permanently discard items from the ’folder’. In-

creasing the size of the state and action space like this would ameliorate concerns

about permanent discards but would also come at the cost of additional model

dimensionality, so we’ve elected to accept the problems of permanent discards in

the MABA and move ahead.

In what follows we shall write π (t) for the source visited under policy π at

epoch t and Xπ (t) for the indicator which takes the value 1 when the reward

available at the source visited by π at t is allocated and is 0 otherwise. We now

express the problem P associated with the MABA {(Ωi, Ri, Pi) , 1 ≤ i ≤ K;T,M}

as follows:

(P ) : R (T,M) := sup
π
E

[
T∑
t=1

Rπ(t)

{
Iπ(t) (t)

}
Xπ (t)

]
;

such that
T∑
t=1

Xπ (t) ≤M. (4.1)

Plainly R (T, T ) := R (T ) is the expected return from the corresponding conven-

tional MAB in which all rewards made available are allocated, namely in which

the constraint (4.1) becomes
T∑
t=1

Xπ (t) ≤ T (4.2)

and hence vacuous. The following result is immediate.

Lemma 4.1.1. R (T ) ≥ R (T,M) ≥ R (M) , ∀M ≤ T.

Solutions for the conventional MAB in which all rewards are allocated are

difficult to implement directly. We therefore seek simplification through developing

relaxations of P which are more amenable to analysis. We do this by considering

a version of the key constraint (4.1) based on expected values. We thus develop

problem P ∗ as follows:

(P ∗) : R∗ (T,M) := sup
π
E

[
T∑
t=1

Rπ(t)

{
Iπ(t) (t)

}
Xπ (t)

]
;
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such that E

{
T∑
t=1

Xπ (t)

}
≤M. (4.3)

A rather poor way of solving P ∗ would be to resolve the allocation part of the

problem by simply randomising to allocation (rather than to non-allocation) at

each epoch independently with probability M
T
. This, together with the evident

fact that P ∗ is indeed a relaxation of P yields the following:

Lemma 4.1.2. R (T ) ≥ R∗ (T,M) ≥ max
{
R (T,M) , M

T
R∗ (T )

}
,∀M ≤ T.

We proceed toward a solution of P ∗ by developing a further relaxation based

on Lagrangian techniques. We develop problem P ∗ (C) for multiplier C ∈ R+

by dropping the constraint (4.3) and instead introduce into the objective for the

problem penalties for violations of it. We write

(P ∗ (C)) : R∗ (T,M,C) := max
π

E

[
T∑
t=1

(Rπ(t)

{
Iπ(t) (t)

}
− C)Xπ (t) + CM

]
.

(4.4)

In problem P ∗ (C) the policy class is unconstrained with respect to the allocations

made. In P ∗(C), there is no hard control over the number of allocations made and

the flow of items from the processor to the analyst is instead controlled indirectly

by the choice of C. Note that in (4.4) the multiplier C has an interpretation as a

fixed cost incurred whenever an allocation is made. Please note that the standard

theory of MDPs (see, for example, Puterman [1994]) implies that, for given C the

maximum in (4.4) will be achieved by a policy whose decisions are deterministic

and dependent upon (t, I (t)) only. Further, it is easy to see that R∗ (T,M,C) ,

being a maximum taken over an objective which is linear in C, is convex (and

piecewise linear) in C. The breakpoints in R∗ (T,M,C) will correspond to points

at which there are multiple optimal policies. We resolve any non-uniqueness in

defined quantities by taking right limits (ie, as C is approached from above). In

that spirit, we now write π∗ (C) for a policy which achieves R∗ (T,M,C) ,and

hence which is optimal for P ∗ (C) and m∗ (C) for the mean number of rewards

allocated under π∗ (C) . Finally, we use ∆+R∗ (T,M,C) for the right gradient of
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R∗ (T,M,C) , namely

∆+R∗ (T,M,C) := lim
c→C+

∂

∂c
R∗ (T,M, c) . (4.5)

We now have the following result:

Proposition 4.1.3. (i) m∗ (C) is nonincreasing in C; (ii) minC∈R+R∗ (T,M,C) =

R∗ (T,M) .

Proof. For (i), we observe from (4.4) that

∆+R∗ (T,M,C) = −m∗ (C) +M, (4.6)

and this is nondecreasing because of the convexity (in C) of R∗ (T,M,C) . It follows

immediately that m∗ (C) is nonincreasing, as required. For (ii) we first note that

it is trivial from the definitions of the quantities concerned that R∗ (T,M,C) ≥

R∗ (T,M) , C ∈ R+, and hence that minC∈R+R∗ (T,M,C) ≥ R∗ (T,M) . To obtain

the reverse inequality we observe trivially that

m∗ (0) = T > M, (4.7)

namely that if there is no cost associated with allocation (C = 0) then all rewards

will be allocated. Similarly, we must have that

lim
C→∞

m∗ (C) = 0 (4.8)

and hence from (4.6), we infer that

∆+R∗ (T,M, 0) < 0, (4.9)

and

lim
C→∞

∆+R∗ (T,M,C) > 0. (4.10)
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It must then follow that one of two possibilities must occur. The first is that there

exists some value C∗ for which

∆+R∗ (T,M,C∗) = 0⇒ m∗ (C∗) = M (4.11)

and hence that the corresponding optimal policy π∗ (C∗) satisfies the constraint

(4.3) with equality. It must then follow that

R∗ (T,M,C∗) = E

[
T∑
t=1

Rπ∗(C∗)(t)

{
Iπ∗(C∗)(t) (t)

}
Xπ∗(C∗) (t)

]
≤ R∗ (T,M) (4.12)

from which we immediately infer that

minC∈R+R∗ (T,M,C) ≤ R∗ (T,M) , (4.13)

as required. This establishes (ii) for such cases. The second possibility is that while

there is no C-value at which ∆+R∗ (T,M,C) is zero, nonetheless there exists some

value C∗ for which

∆+R∗ (T,M,C) < 0, C < C∗, (4.14)

and

∆+R∗ (T,M,C) > 0, C > C∗. (4.15)

When this happens it is easy to show that there must exist two distinct policies,

π− (C∗) (optimal to the left at C∗) and π+ (C∗) (optimal to the right at C∗) , both

of which achieve R∗ (T,M,C∗) , and which satisfy

E

{
T∑
t=1

Xπ−(C∗) (t)

}
> M (4.16)

and

E

{
T∑
t=1

Xπ+(C∗) (t)

}
< M. (4.17)

It will then follow that some randomisation between π− (C∗) and π+ (C∗) will
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achieve constraint (4.3) with equality while continuing to achieve R∗ (T,M,C∗) .

Equation (4.12) then holds but with π∗ (C∗) replaced by this randomisation and

we then infer

minC∈R+R∗ (T,M,C) ≤ R∗ (T,M) , (4.18)

as before. We have now established (ii) for all cases. This completes the proof.

There is one further point. In problem P ∗ (C) , the allocation part of the policy

is trivial. Plainly an allocation will be optimally made in respect of a reward R if

and only if R is no less than the corresponding cost C. It follows that P ∗ (C) is

equivalent to a corresponding MAB problem (ie, in which all rewards are allocated)

but with reward contributions RiI replaced by (Ri − C)+ . Hence we can rewrite,

with a slight abuse of notation, P ∗ (C) in the form

(P ∗ (C)) : R∗ (T,M,C) := max
π

E

[
T∑
t=1

(
Rπ(t)

{
Iπ(t) (t)

}
− C

)+
+ CM

]
, (4.19)

where now the policy π only chooses sources and allocations occur precisely when a

positive contribution is made to the above objective. In this sense problem P ∗ (C)

is a finite horizon MAB problem.

Motivated by the above, we could in principle adopt the following approach

to developing heuristic policies for the MABA problem P. We develop heuristic

policies for the relaxation P ∗ using the above ideas and we then adapt those to

achieve policies for P. How this latter step is achieved will be described later, but

we now sketch ideas concerning how the former step is accomplished. Using the

above results, the following programme, if achievable would yield solutions to P ∗ :

� Fix C;

� Solve the MAB problem P ∗ (C) in the form maxπ E
∑T

t=1

[(
Rπ(t)

{
Iπ(t) (t)

}
− C

)+]
;

� Infer the value m∗ (C) ;

� If m∗ (C) < M, decrease C; if m∗ (C) > M increase C;

� Iterate until m∗ (C) is sufficiently close to M ;
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� Use the final optimal policy π∗ (C) as the solution to P ∗.

Sadly, a programme of that kind is unrealistic, not least because the problem

P ∗ (C) is itself intractable. Hence we shall necessarily adopt heuristic procedures

to estimate a C−value, CH say, close to C∗ and a policy for P ∗ (CH) , πH (CH)

say, such that πH (CH) is close to optimal for P ∗. We can then adapt πH (CH) to

achieve a strongly performing policy for the MABA problem P.

The focal application of the MABA throughout this thesis is toward the end of

aiding intelligence operations. However the generality of this model has potential

for application in other areas. This chapter closes by speculating on how the

MABA framework could be applied to an existing business setting.

4.1.1 Application of MABA to freemium app user acqui-

sition strategy

In the realm of freemium app development, customers can install applications at a

price point of zero. Apps such as Tinder, Spotify, Snapchat, and Skype monetize

through a mixture of in-app purchases, which unlock additional functionality, or

through exposing their users to advertising whilst using the product. The freemium

model assumes that most of the users will spend nothing at all throughout their

lifetime as a user and see many adverts, but click very few of them. Freemium apps

make money by having an infintely scalable inventory, which is easily available to

users through an established payment platform such as iTunes, Google Play or

PayPal. If a sufficient number of users install the app, even if the probability of

an individual spending money in the app is small, the apps in question can still

make enough money to cover the costs of app development, app maintenance, and

crucially, user acquisition costs. See [Seufert, 2014] for a more complete view on

this industry and the material covered in this subsection.

Organic user acquisition is the phenomenon where users discover apps naturally

without targeted advertising suggesting that they install the app. However, this

meagre volume is rarely enough to sustain a freemium app’s economy. It would be
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ideal if every hopeful app developer could count on a their app ’going viral’ and

acquiring a vast amount of users and brand awareness through social networking

shares by a large number of engaged users, but hoping for and even designing apps

around this potential virality and doing no further paid user acquisiton is rarely a

successful approach.

Users for apps are often acquired through user acquisition services that typi-

cally charge app developers a fixed rate per user that they persuade to install the

developer’s app. However it is not in the developers interest to pay to acquire

users if the expected lifetime value (LTV) of that user is less than the cost of their

acquisition. So the user acquisition services are presented with a MABA problem.

They incur a cost in searching for users to allocate to the various apps in their

client network. The various sources they have available for finding users will yield

user cohorts with random expected LTV values (whose true LTV only becomes

apparent after their allocation to an app) and they can decide on a case by case

basis which users to allocate to client apps. There is an incentive to for the user

acquisiton services to submit a limited subset of the total number of sampled users,

such that the allocated subset are of the highest quality possible (in terms of LTV)

such that they can claim a higher average LTV per allocated user than their rival

user acquisition services. Additionally, these services need to rapidly find the best

user sources for the client app in question (the right audience for the right app)

such that the costs incurred in locating the best users are minimised.

We conclude by saying that there is untapped potential for user acquisiton

services to provide a higher mean quality of users to their client app developers

for a much reduced cost by applying MABA methods to their operations.



Chapter 5

A Dirichlet-Multinomial MABA

model

In this chapter we apply the multi-armed bandit allocation (MABA) framework

that was developed in Chapter 4 to the problem of intelligence gathering. The

opening section of this chapter is dedicated to developing the Dirichlet-Multinomial

MABA model. We develop solutions for the problem P via finding solutions to the

problem P ∗(C) introduced in Chapter 4 and adapted to the Dirichlet-Multinomial

setting here.

We then develop a Lagrangian relaxation of P ∗(C), which allows the processor

to sample from any number of the available sources once per time epoch, provided

she is willing to pay a charge W to do so. We refer to this version of the problem

as P ∗(C,W ). This approach is novel for this type of problem and forms an original

contribution in this work.

In addition to the Lagrangian relaxation, we will be adapting existing types of

heuristic to provide approximate solutions to P . Knowledge gradient, Thompson

sampling and Optimistic Bayes sampling methods are also adapted to the MABA

framework.

We will be using two methods for conducting studies using the existing heuris-

tics. The first is a ’static C’ approach, where a benchmark value of C is chosen

60
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once and for all through the problem horizon. The second is a ’dynamic C’ ap-

proach, where the value of C is allowed to change after observing the value of each

sampled item. A section outlining these item allocation policies is presented.

The latter sections of this chapter document efforts to conduct numerical stud-

ies using combinations of heuristic source selection and item allocation policies.

The purpose of these numerical studies is twofold. Firstly, we wish to show that

the framework described in Chapter 4 and the heuristics outlined in this Chapter

can actually be implemented in a robust and scalable way. Secondly, we compare

the relative performances of the various heuristic source selection policies within

and between the static C and dynamic C frameworks. In doing so we intend to

yield insights into the relative merits of the heuristic policies in each setting and

to test whether their relative merits under one framework are consistent under the

other.

A key assumption of this chapter’s work is that all item importances take

discrete values. The motivation for this is how we suspect the MABA model may

be used in practice. We believe that real world intelligence operatives are more

likely to assign discrete ratings of importance to intelligence items (Item A has an

importance rating of ’Mission Critial’ and Item B is considered to have a rating of

’Non-Urgent’) as opposed to assigning continuous importance values (Item A has

an importance rating of 5.43 and Item B is considered to have a rating of 1.34), and

we take the former approach in this chapter. We recognise that the assumption

of discrete item importance values is potentially restrictive so in Chapter 6 we

consider a MABA model where continuous importance scores are supported.

5.1 Development of Dirichlet-Multinomial MABA

model

In this section we develop the Dirichlet-Multinomial model for solving P ∗(C).

One supposes that the processor encounters a MABA {(Ωi, Ri, Pi) , 1 ≤ i ≤ K;T,M}
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which corresponds to a finite-horizon intelligence gathering problem. The proces-

sor seeks to sample a total of T items sourced from up to K distinct sources.

The convention of counting time periods is that t denotes the number of sampling

decisions remaining.

We denote by Ik,t, 1 ≤ t ≤ T, the importance of the item sampled from source

k when there are t decisions remaining. We set Ik,t = 0 wherever source k is not

sampled when t samples remain. The processor seeks to sample from the sources

in such a way as to solve the problem P ,

(P ) : maxE

{
K∑
k=1

T∑
t=1

Ik,tXt

}
, (5.1)

Subject to:
T∑
t=1

Xt ≤ bT (1− qh)c (5.2)

whereXt =


1 if item is allocated (passed to analyst) at time t

0 otherwise,

and 0 < qh < 1.

The value qh is called the horizon quartile and denotes the proportion of items not

passed to the analyst by the processor.

The operational interpretation of this is that the processor is capable of pro-

cessing a greater number of items than the analyst is capable of analyzing in the

same amount of time. The processor aims to provide the analyst with a selection of

the most important items from the items that she sees over the horizon. However

the processor sees items in a sequential fashion.

The processor chooses her sources sequentially, sampling a single item from

a single source in each time period. She then assigns an integer score out of

N , where N is client-specified. We suppose that she is able to make a perfect

judgement concerning the importance of each item sampled. As she progresses

forwards through time, she will use this new information to update her posterior

beliefs about the population of item importances for items sampled from the K

sources.
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The problem is similar to the General Secretary problem discussed by [Babaioff

et al., 2007] where a manager must hire the best possible subset of candidates for

secretarial positions given that she must interview the candidates in a random order

and make a permanent decision whether to hire each individual candidate before

interviewing the next one in the sequence. It is also true in this MABA problem

that an item is discarded permanently by the processor if it is not immediately

allocated after sampling.

The kth source/bandit from a collection of K such objects is as follows: An

item sampled from source k at time t has importance Ik,t which has a multinomial

distribution on [1, 2, ..., N ] with unknown pk. ∈ [0, 1]N Hence

P (Ik,t = i | pk) = pi,k, 1 ≤ i ≤ N, 1 ≤ k ≤ K, 1 ≤ t ≤ T. (5.3)

We define the N x K x T scalar arrays α and c and the K x T scalar arrays n and

I and will refer to these objects in what follows. The initial uncertainty relating

to pk is described by a Dirichlet prior with parameter given by the N -vector αk,T ,

that is,

π (pk) =
Γ (
∑

i αi,k,T )

ΠiΓ (αi,k,T )
Πip

αi,k,T−1
i,k , pi,k > 0, 1 ≤ i ≤ N,

∑
i

pi,k = 1. (5.4)

The αi,k,t terms update through time as follows

αi,k,t−1 = αi,k,t + ci,k,t (5.5)

where ci,k,t ∈{0, 1} denotes whether an item with precision equal to i was ob-

served from source k at with t time periods remaining. The resulting predictive

distribution of Ik is given by

P (Ik,t = i) =

∫
P (Ik,t = i | pk)dπ (pk) =

αi,k,t∑
j αj,k,t

, 1 ≤ i ≤ N, (5.6)

and the expected one-step reward for the model, taken with respect to the predic-
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tive distribution, as is appropriate for the Bayes’ reward, is given by

r (αk,t) =
N∑
i=1

iP (Ik,t = i) =
N∑
i=1

i
αi,k,t∑
j αj,k,t

(5.7)

A multinomial likelihood is assumed for the observed count vector ck,t =

(ci,k,t)i=1,...,N . We have

P (ck,t|pk) ∝
N∏
i=1

p
ci,k,t
i,k (5.8)

which yields the posterior distribution

πt−1(pk) = πt(pk|ck,t) ∝ P (ck,t|pk)πt(pk) ∝
N∏
i=1

p
αi,k,t+ci,k,t−1
i,k , (5.9)

which is Dirichlet with parameter αk,t + ck,t. Hence this is a conjugate structure.

The update shown in (5.9) only takes place when a source is sampled.

For ease of notation we now write

T∑
s=t

ci,k,s = ni,k,t (5.10)

and
N∑
i=1

ni,k,t = nk,t (5.11)

The updated one-step reward for the next time period is given by

r (αk,t−1) = r (αk,t| ck,t) =
N∑
i=1

i
(αi,k,t + ci,k,t){(∑
j αj,k,t

)
+
∑

j cj,k,t

} (5.12)

The quantity (5.12) will be greater for larger counts of high importance items.

As the number of observations nk,t from source k gets large the effect of the ob-

servations will dominate that of the prior values αk,T .

In Chapter 4, it was proposed that we develop heuristic policies for MABA

problems such as P in (5.2) via the analysis of suitable relaxations such as P ∗ and

P ∗(C). The relaxation P ∗ is obtained from P by replacing the constraint on the

number of items allocated to one involving the latter quantity’s expected value.
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In the case of the problem class we are considering here P ∗ takes the form:

(P ∗) : maxE

{
K∑
k=1

T∑
t=1

Ik,tXt

}
(5.13)

Subject to:

E

(
T∑
t=1

Xt

)
≤ bT (1− qh)c. (5.14)

It is now possible to apply a Lagrangian relaxation P ∗(C) by incorporating the

constraint in (5.14) into the objective by using the Lagrangian multiplier C ∈ R+.

From (4.4), P ∗(C) is equivalent (ie, has the same optimal policies as) to the MAB

problem

(P ∗(C)) : maxE

{
K∑
k=1

T∑
t=1

(Ik,t − C)+
}

(5.15)

Despite dropping the constant term CM from (4.4), we shall continue with the

P ∗(C) label for this problem.

The discussion in Chapter 4 yields the conclusion that in problem P ∗(C), only

items whose importance exceeds C are passed on to the analyst. This is reflected

in the form of the objective in (5.15). Looking ahead, once we have solution

approaches to P ∗(C), the threshold C can be tuned to meet the constraint in

(5.14) with equality. In this way we will develop solutions to P ∗.

For problem P ∗(C), the one-step reward in (5.7) needs to be developed further

to take the form

r (αk,t,C) =
N∑
i=1

(i− C)+ P (Ik,t = i) =
∑
i≥C

(i− C)
αi,k,t∑
j αj,k,t

(5.16)

where the posterior one step expected reward in (5.12) is now modified to

r (αk,t−1,C) = r (αk,t,C| ck,t) =
∑
i≥C

(i− C)
αi,k,t + ci,k,t∑
j(αj,k,t + cj,k,t)

=
∑
i≥C

(i− C)
(αi,k,T + ni,k,t){(∑
j αj,k,T

)
+ nk,t

} . (5.17)
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A relationship between one step rewards and the choice of C can be proven an-

alytically. The next result states that these one-step rewards are decreasing in

C.

Lemma 5.1.1. The immediate expected reward r (αk,t,C) as defined in (5.16) is

non-increasing in C.

Proof. Let C1 > C2. We have that

r (αk,t,C2)− r (αk,t,C1) ≥
∑
i≥C1

(C1 − C2)
αi,k,T + ni,k,t∑
j(αj,k,T ) + nk,t

≥ 0.

hence the result.

For any given policy for choosing which sources to sample, it is plain that we

can decrease the number of items allocated by increasing the value of C. Further,

from Proposition 4.0.3, we have that m∗(C), the mean number of items allocated

under π∗(C), an optimal policy for P ∗(C), is nonincreasing in C. This means that

it is relatively straightforward to search over values of C to find one C∗ say, such

that m∗(C∗) = bT (1 − qh)c. It will then follow from the ideas in Chapter 4 that

π∗(C∗) will solve P ∗.

A finer search can be conducted by making use of the randomised acceptance

approach developed to solve the dynamic C version of this problem. This tool is

described in a later subsection in detail. See equation (5.39) for its implementation.

Evolving beliefs about the level of importance of items emerging from the K

sources will influence the processor as she decides how to sample from the sources

to obtain a collection of items for the analyst with high importance. We can now

state the full DP for this version of the model. We have the recursively defined

value function:

Vt(αt, C) = max
1≤k≤K

{
r (αk,t, C) +

N∑
i=1

P (Ik,t = i)Vt−1((αj,t)j 6=k;αk,t + 1i, C)

}
;
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V1(α1, C) = max
1≤k≤K

{r (αk,1,C)}. (5.18)

Note that 1i is an N -vector with ith component 1 and zeroes elsewhere. V0(α0, C) =

0 for all input values.

5.2 Lagrangian indices for the Discrete MABA

problem

We wish to obtain approximate solutions to the problem P ∗(C). In this section we

reformulate the problem to use Lagrangian indices as the heuristic of choice. This

novel solution approach will be implemented in a later section and its performance

compared against existing heuristic methods.

We introduce the sampling cost parameter W which represents a fee that the

processor must pay per item sampled regardless of whether it is passed along for

analysis or not. We also give the processor the option not to sample from any

source at all during any given decision epoch. The processor can sample (or not)

each source at each epoch.

We can state the objective of the problem (P ∗(C,W )) as follows,

(P ∗(C,W )) : maxV (W ) = maxE

(
K∑
k=1

T∑
t=1

(Ik,t − C)+ −W
T∑
t=1

K∑
k=1

Sk,t

)
+WT

(5.19)

where Sk,t =


1 if source k is sampled at time t

0 otherwise,

It is also noted at this point that the value of C is regarded as a constant of

the problem, obtained in some pre-processing phase similar to that in the problem

P ∗(C). However, the value of the sampling fee W is one which we are free to tune

to obtain source selection index solutions to (P ∗(C,W )). The first stage in doing

this is to notice that V (W ) can be decomposed sourcewise as
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V (W ) = max
K∑
k=1

Vk(W ) +WT (5.20)

where

Vk(W ) := maxE

(
T∑
t=1

(Ik,t − C)+ −W
T∑
t=1

Sk,t

)
(5.21)

. The value of Vk(W ) can be developed analytically via a recursive definition

if we also introduce the subscript t to denote the number of sampling decisions

remaining. We have

Vk,t(αk,t,W ) = max

{∑
i≥C

(i− C)
αi,k,t∑
j αj,k,t

−W

+
N∑
i=0

P (Ik,t = i)Vk,t−1(αk,t + 1i,W );Vk,0(αk,0,W )

}
(5.22)

where

Vk,0(αk,0,W ) = 0. (5.23)

The two actions in (5.22) respectively refer to the actions of sampling an item

and choosing not to sample an item from the source k. The rightmost term of

(5.22) indicates that once the processor decides to stop sampling from a particular

source, she never samples from that source for the remainder of the horizon. It is

easy to show that this is a feature of any optimal policy.

Theorem 5.2.1. Vk,t(αk,t,W ) is increasing in the value of t under the condition

that αk,t = αk for all t.

Proof. Proceed by induction. The basis case is trivial as

Vk,t(αk,W ) ≥ Vk,0(αk,W )
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for t > 0. Continuing to the induction step we assume that Vk,t(αk,W ) ≥

Vk,t−1(αk,W ) . We have that

Vk,t+1(αk,W ) = max

{∑
i≥C

(i− C)
αi,k∑
j αj,k

−W

+
N∑
i=0

P (Ik,t+1 = i)Vk,t(αk + 1i,W ), Vk,0(αk,W )

}
≥ max

{∑
i≥C

(i− C)
αi,k∑
j αj,k

−W

+
N∑
i=0

P (Ik,t = i)Vk,t−1(αk + 1i,W ), Vk,0(αk,W )

}
= Vk,t(αk,W )

hence the result.

Theorem 5.2.2. Vk,t(αk,t,W ) is non-increasing in the value of W .

This result is obvious from (5.21).

The decision whether to allocate the item or not is made for the processor

implicitly by comparing the importance of the sampled item to the value of C.

For ease of this formulation we will not allow the processor to randomly accept

items of importance equal C−1 and suppose that this concept can be reintroduced

in future work done on this problem.

For any given state αk,t, the source k is indexable if we can compute an indiffer-

ence charge, Wk,t(αk,t) such that sampling from source k with t periods remaining

is only optimal if any actual sampling charge W is less than Wk,t(αk,t) so that it

has the following relationship with Vk,t(αk,t,W ).

Vk,t(αk,t,W ) = 0⇔ W ≥ Wk,t(αk,t) (5.24)

or alternatively

Wk,t(αk,t) = inf{W : Vk,t(αk,t,W ) = 0}. (5.25)
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If all sources are indexable in this fashion then in the state αk,t the processor

can rank them by their indifference charges, opting to sample the source k with

the greatest value of Wk(αk,t). In this way the problem P ∗(C,W ) is solved by a

policy which samples all sources whose index exceeds W at all times.

Implementation of Lagrangian indices in the MABA problem

Using the standard dynamic programming framework of [Bellman, 2003], as well

as the calibration approaches put forward in [Nio-Mora, 2011], [Jacko and Villar,

2012] and [Berry and Fristedt, 1985] one can compute approximate solutions to

the DP problem implied by (5.22). To evaluate a given value of Wk,t(αk,t), one

must evaluate Vk,t(αk,t,W ) over a grid of W values. The size of this grid should

be the result of a trade off between accuracy and timeliness of computation.

Since this is a finite horizon problem, one can use the backwards recursion

property in (5.22) to compute these quantities by stepping backwards in time

from the boundary case (5.23). One also requires a sufficiently populated grid of

the state space α for each time point, which is potentially very expensive in terms

of memory allocation and computational effort. It is possible however to reduce

the overall cost of these calculations by creating a permanent library of Wk,t(αk,t)

values so that they do not need to be calculated in an online fashion for repeated

runs in numerical experiments.

It is also possible to reduce the size of the state space considered by observing

that for a given value of C, the information considering the posterior probabilities

of sampling items with importances less than or equal to C can be consolidated

into a single entity in any given vector αk,t, which can potentially reduce the di-

mensionality of the problem significantly depending on the nature of the individual

problem. Whichever level of precision and/or state space reduction is chosen, one

must create an array of Vk,t and Wk,t values that span the state space to use as a

library for numerical experiments on the given problem. This is done as follows.

1. Decide on the size of the grid of W values to use in the calibration as well



CHAPTER 5. A DIRICHLET-MULTINOMIAL MABA MODEL 71

as the subset of the state space that one wishes to use for the arrays of Vk,t

and Wk,t values.

2. Create arrays which span the state space αk,t to respectively store values

of Vk,t(αk,t,W ) and Wk,t(αk,t) for each of the K sources (and also for each

element of the W-grid in the case of the Vk,t).

3. Compute the value of Vk,1(αk,1,W ) where t = 1, for each k and value of W .

4. For each source k, for each state in the state space where t = 1, find

the two consecutive values W1 < W2 for which the interval [Vk,1(αk,1,W1),

Vk,1(αk,1,W2)] contains zero. Store the mean of W1 and W2 as the value of

Wk,1(αk,1) for that part of the state space.

5. One can now step backwards in time for t = 2...T to compute the remaining

values of Vk,t(αk,t,W ) using (5.22) and previously calculated values at lower

values of t. With t time periods remaining one only needs to cover the state

space for which the total number of samples made from a source is less than

or equal to T − t.

6. One can now compute the corresponding values of Wk,t(αk,t) using the same

method as in step 4.

At this point one should have populated arrays of value function and fair charge

values which span the chosen subset of the state space, the chosen grid of W values,

all time points in the horizon and all sources. From this point one could choose to

solve the problem P ∗(C,W ) by simulating forward in time from the chosen initial

conditions for the horizon by following the following procedure.

1. Set an actual sampling charge Wactual for the problem.

2. With T time periods to go, retrieve the approprate Wk,T (αk,t) for each source.

3. For each source k such that Wk,T (αk,t) > Wactual, in descending order of the

value of Wk,T (αk,t), sample an item from that source and accept it if the

importance of the sampled item is greater than C.
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4. Update the item importance distributions for sources sampled from, also

recording the total number of samples and allocations made.

5. Repeat this process for t = T −1, ..., 1 using the posterior state of the system

from earlier time points.

One is then able to return the number of allocations made, which are not sub-

ject to the allocation constraints of P ∗(C,W ) in this version of the implementation,

and repeat the entire process for as many runs is desired by the experimenter.

However, we are actually interested in solving the original problem P which

only permits the processor to sample exactly one item per decision epoch so the

solution to P ∗(C,W ) is not what we are truly pursuing. Rather the processor

should instead use the Wk,t(αk,t) values as indices to rank the competing sources,

selecting the source k with the greatest value of Wk,t(αk,t) for the sampling de-

cision at time t. This provides an approximation to P ∗(C) which in turn is an

approximation to P ∗. Finally, by restricting the total number of allocations to

be exactly the number desired by the analyst, we can approximate a solution to

P . This is achieved by preventing extraneous allocations from being made and by

forcing allocations to be made at the end of the problem horizon if there would

otherwise be a shortfall.

In this method we must also force sub-C items to be passed if it is necessary in

order to allocate bT (1−Qh)c items within T decisions and restrict the allocation

of any number of items in excess of this maximum figure.

The speed at which horizons can be simulated in this implementation is very

fast once the Wk,t(αk,t) values have been computed. Obtaining the W values

themselves is the most time consuming aspect of the implementation but in certain

applications the processor would be able to precompute likely scenarios for added

time efficiency.
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5.3 Heuristic approaches to the solution of P ∗(C)

Evaluating the function Vt defined in Section 4.1 is generally an intractable problem

so we’ve appealed to heuristic approaches such as the Lagrangian heuristic from the

previous section. This section will adapt a selection of existing heuristic archetypes

as solutions to P ∗(C). The Thompson sampling and optimistic Bayesian sampling

methods use simulated source samples to drive decisions through the horizon. The

knowledge gradient method asks the processor to take quasi-myopic decisions under

an assumption that there is only one more time period during which learning can

take place. It was established in section 5.1 (in the discussion following Lemma

5.1.1) that it should be possible to find an optimal threshold C∗, such thatm∗(C) =

bT (1−qh)c. We also discuss how this is done. Additionally, a super-optimal perfect

information policy is developed as an upper bound benchmark against which other

heuristics can be measured in numerical studies. Approaches to inferring solutions

to P from those for P ∗ and P ∗(C) are described in this section. We also discuss

the possibility of varying the threshold C throughout the horizon to respond to

feedback from the sources as time advances in a threshold selection policy which

we call the ’dynamic C’ approach.

5.3.1 Knowledge gradient approach

The Knowledge Gradient (KG) method was developed by [Gupta and Miescke,

1984] and further analysed by [Frazier et al., 2008] and [Ryzhov et al., 2012] as

a heuristic approach to sequential learning problems. The typical objective is to

effectively experiment with available alternatives in order to quickly learn which of

them is the true best option (ranking and selection) as well as to maximise the total

rewards earned in the process of doing so. It captures the trade-off between explo-

ration and exploitation in online learning problems in a computationally tractable

way.

Under KG, one assumes at every decision stage that the current decision is the

last opportunity for which it is possible for learning to take place, after which the
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most attractive of the alternatives will be chosen for the remainder of the problem

horizon. The alternative which maximises the total expected rewards under these

assumptions is chosen at each stage in a rolling fashion.

There are conditions given in [Frazier et al., 2008] which guarantee that the KG

policy asymptotically converges to choose the true best alternative (the one with

the highest mean) over an infinite horizon. It is worth noting that in P ∗(C) the

best alternative refers to the source with the highest associated value of
∑

i<C(i−

C)pi,k. The paper also proves that the policy is one-step optimal as it is identical

to a greedy approach in that special case. For the objective in our application,

which is the gathering of a collection of intelligence items which together have the

greatest total importance, the KG method’s asymptotic tendency to converge on

the best alternative is attractive. It is not generally known whether this heuristic

is appropriate in the case of finite horizon online problems.

In our problem we are faced with K intelligence sources and it is assumed that

each of them is capable of generating intelligence items independently with an

unknown distribution of level of importance specific to that source.

Since KG methodology guarantees asymptotic convergence (as t→∞) to the

most preferable, i.e. greatest, of these importance levels, one can be confident that

as sources are chosen sequentially, the sources that yield the more important items

are more likely to be chosen as we learn more about the sources. Therefore, the

items of high importance are more likely to be included in the final item collection.

The one-step optimal attribute of the KG policy also gives weight to immediate

rewards. So, as one moves through the decision horizon one would expect that

exploration of the available sources is balanced against the exploitation of those

that are believed to produce intelligence items of great importance. The numerical

work in this section will test the adequacy of KG methods for this problem.

The knowledge gradient (KG) approach to producing solutions to P ∗(C) is to

take decisions on the basis that the current epoch is the only opportunity to learn,

beyond which one would be forced to employ a purely greedy policy and select
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the source with the greatest expected one step reward r (αk,t,C) for the remainder

of the problem horizon. Since no more learning takes place, the resulting total

reward earned this way for source k with t time periods remaining is also the KG

index for that source at that time.

We construct the KG index for a particular source k at time t by taking the

sum of the current immediate expected reward r (αk,t,C) and adding it to a term

which quantifies the total expected future reward earned from a greedy policy

given that the current decision epoch is the only time the processor can learn.

Since no further learning takes place, the processor will choose the same source

and earn the same expected reward from the source which is greedy-optimal after

the current decision has been made. By conditioning on the importance of the

next item to be sampled, one can estimate the per period reward for all future

decisions and multiply this by (t− 1), the number of future decisions to be made

in the time horizon. At t = 1 the KG policy is identical to the greedy policy. We

have the KG index KG(k, t) for source k at time t:

KG(k, t) := r (αk,t,C)

+ (t− 1)
N∑
i=1

P (Ik,t = i) max

(
max
j 6=k

r (αj,t,C) ; r
(
αk,t + 1i,C

))
, (5.26)

so the KG policy always directs the processor to choose the source with the greatest

value of KG(k, t) at each sampling decision. The processor then updates the

posterior belief state for the selected source and the KG index is reapplied in a

rolling fashion for each time step. Learning continues to take place as a result of

all decisions.

Policy sensitivity to the degree of emphasis on exploration can be investigated

by placing limits on the maximum size of the linear scaling term (t− 1) in (5.26)

by selecting a cap, J using the modified index
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KG(k, t, J) := r (αk,t,C)

+ min(J, (t− 1))
N∑
i=1

P (Ik,t = i) max

(
max
j 6=k

r (αj,t,C) ; r
(
αk + 1i,C

))
,

(5.27)

and adjusting J to control the weight that expected future rewards has on the KG

index. A special case of KG, which we call the greedy policy, can be created by

setting J = 0. The greedy policy only uses the immediate expected rewards of the

sources to choose from which source to sample. The computation of these indices

is relatively straightforward and can be done as set out in (5.27). In [?], curtailing

the effect of the remaining horizon (t− 1) in the exploration term proved useful.

The explicit algorithm for implementing a study of this type is shown below.

1. Specify the client’s prior array αT and the desired horizon length T . Set

the total reward earned and the total number of items passed to be equal to

zero. Decide on a value of C to use.

2. Compute the indices KGk,t as set in (5.27) for each of the K sources.

3. From the source with greatest such KGk,t, observe the importance score Ik,t

for the sampled item where the distribution of Ik,t is as in (5.6).

4. Add (Ik,t − C)+ to the total reward earned for the horizon and add one to

the number of items passed if this value is non-zero.

5. Update the Dirichlet posterior such that αk,t−1 ← αk,t + 1i where k is the

source that was sampled for this time period.

6. Reduce t, the number of time periods remaining, by 1.

7. If t > 0, Go to step 2.

8. Record the total reward earned and total number of items passed.
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These steps will compute and store the result of one realisation of the system

over the complete time horizon of length T . Repeating this a desired number of

times will form a study allowing us to compute the mean and standard deviation

for the total reward earned and proportion of items that are passed.

5.3.2 Thompson sampling and optimistic Bayes sampling

In this subsection we adapt the Thompson sampling (TS) and optimistic Bayes

sampling (OBS) approaches to the discrete MABA setting.

We start with TS. At each time point t and for each source k, the processor

uses the posterior distribution of pk to make a random source k importance draw

from among the integers from 1 to N . More formally, at each time point t the

Thompson sampling index TSk,t assigned to source k is randomly sampled from

the posterior importance distribution of source k. We have

P (TSk,t = i) =
αi,k,t∑N
j=1 αj,k,t

(5.28)

. Having observed the Thompson sampling indices TSk,t, 1 ≤ k ≤ K, the policy

for P ∗(C) is then to choose the source with the largest index, deciding uniformly

randomly between the candidate sources in case of ties, and then update αi,k,t−1 =

αi,k,t + ci,k,t.

For OBS, as with the TS approach, the processor makes a random integer draw

for each source based on its posterior item importance distribution. However in

the OBS approach, this random integer is compared to the expected one step mean

return for that source and the greater of the two values acts as the index for that

source. We have

OBSk,t = max

(
TSk,t,

N∑
i=1

(
iαi,k,t∑N
j=1 αj,k,t

))
(5.29)

and the policy for P ∗(C) selects the source k with the greatest value of OBSk,t.

The effect of adjusting the random indices in this way is to only choose greedy
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suboptimal sources if they outperform the greedy optimal choice in a random draw.

One would expect the OBS policy to compete well against the standard greedy

policy as the OBS introduces a much needed element of exploration which is absent

in the greedy policy.

The implentation of either the Thompson or Optimistic Bayes sampling heuris-

tics within the P ∗(C) framework is almost identical to that of the implementation

of the knowledge gradient heuristic and its capped variants, which was defined at

the end of the previous subsection. One simply needs to replace the computation

and ranking of the KGk,t indices in steps 2 and 3 with that of the TSk,t or OBSk,t

as appropriate.

5.3.3 Perfect information policy

Evaluating and comparing the performance of candidate source selection policies

would ideally include comparisons to an optimal policy. In this context, compar-

isons to optimal are not available as we are not able to compute the optimal policy

for problems of realistic size. A superoptimal policy is a plausible alternative.

The superoptimal policy used in this study is referred to as the perfect infor-

mation (PI) policy. The premise is that the processor is clairvoyant and knows the

true nature of the item importance distributions of all sources. It is effectively a

greedy policy where no learning is necessary.

For the other candidate policies, computing the mean Bayes return requires

both an inner and outer simulation as the true item importance distributions are

unknown to the processor. In the case of PI, after the random multinomial vectors

αk have been generated for each of the K sources in each run of the simulation,

the inner simulation does not need to take place as one can analytically compute

the expected total value of the items passed, given knowledge of the true item

importance distributions.

The inner expectation of the mean Bayes return
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Eα1,...,αK

{
E

{
K∑
k=1

T∑
t=1

(Ik,t − C)+Xk,t|p

}}
(5.30)

in this study is computed as the total of the importance excesses over C of all items

passed to the analyst. The inner expectation presumes a given p to determine

sampling outcomes and the outer expectation concerns the prior sampling of p

from the prior distribution with parameters α.

Once the prior sampling of p is conducted, a clairvoyant will see what it truly

is and will maximise her return by sampling from the source with the highest one-

time return at all epochs and also by allocating to the analyst accordingly. Hence

the clairvoyant’s return for P ∗(C) is written

maxEα1,...,αK

{
E

{
K∑
k=1

T∑
t=1

(Ik,t − C)+Xk,t|p

}}
= TEα

{
max
k

(∑
i>C

(i− C)pi,k

)}
(5.31)

where C is tuned via some surrogate policy (e.g. KG) so that it is appropriate

for the target problem. This may be an issue for the PI policy if the KG policy

performs poorly but the benefit of this is that is makes the computations a lot sim-

pler. If KG is found to be an inappropriate tuning policy then the best performing

heuristic policy should be a good substitute for KG here. In this document, KG

is always chosen for this tuning of C.

5.4 Application of heuristics to solve P

Now that we have specified some source selection heuristics to use, we now seek

to set out how the processor should allocate sampled items in order to provide

solutions for the problem P . This amounts to selecting an appropriate allocation

threshold C to apply to the stream of observed intelligence items.

In this section we describe two methods for threshold selection. The first is

the’static C’ method, which makes a one time calibration for the choice of C before

processor samples any items. The second is the ’dynamic C’ method, where the
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processor makes adjustments to her preferred threshold value as she samples more

items.

5.4.1 Static C Method

Tuning C to solve P ∗

The problem P ∗(C) arose as a Lagrangian relaxation of P ∗. Policies for P ∗(C)

allocate items with an importance score at least C and are easy to implement. If

the value of C is chosen appropriately, one can approximate a solution to P ∗.

There are effectively only N + 1 choices for C due to the discrete nature of

importance scores in this model. One needs only to find the two consecutive

values of C such that the expected number of allocations (bT (1 − qh)c) allowed

by the constraint (5.14) of P ∗ lies between them. We use the notation m∗(C) to

denote the expected number of allocations made when using the optimal policy for

the problem P ∗(C). One can obtain values for m∗(C) numerically by simulating

many horizons using C and tracking the mean number of sampled items that are

allocated. In practice, a strongly performing heuristic for P ∗(C) may need to

replace the optimal policy when estimating m∗(C).

Since C is discrete, taking values in integers only, there may be no C for which

m∗(C) = bT (1 − qh)c. We secure the equality we need by randomising between

consecutive thresholds as follows. If m∗(C) < bT (1 − qh)c ≤ m∗(C − 1) (recall

from Chapter 4 that m∗(C) is nonincreasing in C) then for the probability that

the processor uses the threshold C − 1 we have

π =
m∗(C)− bT (1− qh)c
m∗(C)−m∗(C − 1)

, (5.32)

and the probability that the processor applies the threshold value of C to sampled

items during allocation decisions is 1− π. The intention is that the mean number

of allocated items when using this hybrid policy is approximately that allowed by

the constraint of the problem P ∗.
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Using a randomised policy for choosing C means that it will simplify and clarify

matters for the processor to record absolute importance scores for the allocated

items rather than exceedes over C. Hence we amend the objective to maximise:

E

{
K∑
k=1

T∑
t=1

Ik,tXt

}
(5.33)

where we restrict the set of allocation policies to those described in this subsection

and the processor randomly determines the value of C for each decision epoch.

The problem is to choose the appropriate values of C and π such that the mean

number of items passed is approximately bT (1 − qh)c so by abuse of notation we

continue to refer to this problem as P ∗(C).

To find the values of C1 and π to use such that the expected number of allo-

cations made is as close to bT (1 − qh)c as possible the processor proceeds in the

following way for each of the policies considered:

1. Via simulation, search among the integer values of C ∈ [1, N ] for the two

consecutive values for which m∗(C) < bT (1− qh)c ≤ m∗(C − 1).

2. Use the formula in (5.32) and the C values from step 1 to set the probability

π that the threshold value C − 1 is used for any given allocation decision.

It is also possible to perform a search among the possible values of π if steps

1 and 2 do not tend to allocate near enough to the target value of bT (1 − qh)c

allocations. This is more time intensive at this stage but the problem setting may

make it worthwhile.

Approximation to P via P ∗

With only the priors α for the item importance distributions available ahead of

time, the processor must decide the nature of both the sampling and allocation

policies without any access to online feedback from the true system. In absence

of any available opportunity for real-world experimentation, the mean Bayes re-

turn Eα
{
E
{∑K

k=1

∑T
t=1 Ik,tXt|φ

}}
is a measure of the expected performance of
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candidate policy combinations given that the current prior for the system is α.

This quantity represents the expected total allocated reward from the problem,

averaged over α and in order to compute it one must compute the mean expected

horizon reward E
{∑K

k=1

∑T
t=1 Ik,tXt|φ

}
for a sufficient number of random vectors

φ drawn from the prior α.

The way to generate random instances item importance distributions based on

α is to generate for each of the k sources realisations of the independent random

variables Z1 . . . ZN where Zi ∼ Gamma(αi,k, 1) and use the fact that the vector

(Z1

Z
. . . ZN

Z
) where Z =

∑N
i=1 Zi is Dirichlet distributed with parameter αk (see

[Devroye, 1986]).

When randomising with respect α in the outer simulation, one generates real-

isations of item importance distributions for each source before the horizon sim-

ulation begins and one would refer to the pre-generated distributions whenever a

sample from a source is made in order to obtain the item’s importance value. One

would need to repeat this procedure for each repeated horizon in order to compute

the mean Bayes return for the problem.

However, it is more computationally efficient and mathematically equivalent

to instead incorporate the randomisation of α into the inner simulation itself.

Starting with the same priors for each horizon considered, the item importances

for the sampled items can be drawn from the respective predictive distributions of

the sources sampled, where the importance value of the sampled item is then used

to update the posterior for that source. In numerical studies, this eliminates any

need to create random draws from α for each repeated horizon before simulating

what occurs during the horizon for the given draw φ. Instead each α is sampled

implicity during each simulated horizon, which greatly reduces the computational

time required to conduct a study. In the previous subsection, it was shown how

the processor could produce an approximate solution to the problem P ∗ by tuning

the value of C in the problem P ∗(C) such that the constraint on the expected

number of allocations in problem P ∗ is satisified. A value of C and a probability
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π of using threshold value C − 1 can be selected via a search method such that

the expected number of allocations is close to the upper limit according to the

constraint imposed by the processor in problem P ∗. The processor truly wishes to

solve problem P where the constraint on the number of allocations is less than or

equal to a given value absolutely, with no allowances for possibly allocating items

to achieve a total in expectation as is the case in P ∗ and P ∗(C).

Since the processor is able to approximate a solution to P ∗ by tuning the value

of C appropriately in P ∗(C), she should now be able to approximate a solution

to P by forcing the number of allocations to satisfy the constraint on the number

of allocations directly. This can be achieved by preventing all intelligence items

from being allocated once the maximum number of allocations have been reached

or forcing the allocation of items with importance less than C in order to reach

the maximum allocation limit if necessary.

Under the problem P, the processor is required to allocate an exact number of

sampled items by the end of the problem horizon. To force a solution to P, the

processor behaves as if solving P ∗(C) until one of two conditions are satisfied. One

condition is that the processor allocates a number of items which is equal to the

required amount under P, at which point she allocates no further items, even if

those items have importances greater than C. Alternatively the processor has yet

to allocate the full amount of items and the number of allocations that remain is

equal to the number of time periods that remain in the horizon. In this case, the

processor allocates all of the remaining items sampled, even if those items have

importances less than C. In this way the exact number of allocated items that is

required under P is always achieved.

5.4.2 Dynamic C method

The discussion of the Dirichlet-Multinomial model so far has treated the threshold

C as a pre-calculated constant that applies to all allocation decisions throughout

the horizon. The operational motivation for why a client would choose a higher
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value of C would be because of an increased scarcity level in resource (time) that

can be dedicated to analysing processed items. Previously passable items may

need to be rejected by an updated policy which takes into account a more scarce

investigation environment. Choosing a greater value of C achieves this effect by

filtering out more items.

The problem of choosing a static value of the tuning constant C is difficult and

our current tuning method requires a time consuming search subroutine before it

can be implemented for a given problem scenario. This situation motivates the

development of methods which allow the value of C to be chosen dynamically

throughout the horizon. The ability to respond dynamically to what is learned

about the sources is attractive. In doing so, we attempt to solve P directly by

tuning C across the horizon to ensure that exactly the desired number of allocations

are made by the processor.

When solving P ∗ via P ∗(C) in the static case, the choice of C should be such

that the expected number of allocations is less than or equal to bT (1 − qh)c. A

proposed way of dynamically choosing a value of C at time t is to first compute

the qh-quantile of the posterior c.d.f. of the item importance distribution for each

source k, where we define

Ck,t = inf{i : Fk,t(i) ≥ qh, 1 ≤ i ≤ N}, (5.34)

where

Fk,t =
∑
l≤i

αl,k,T + nl,k,t∑
j(αj,k,T ) + nk,t

, (5.35)

and we set Ct = maxk Ck,t to be the tuning constant for that decision period.

We now discuss how a dynamic thresholding policy impacts the design of KG

indices. Since Ct updates with incoming information about the sources, one must

modify the knowledge gradient indices to accommodate this new feature of the

model. The dynamic analogue for the knowledge gradient index for source k at
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time t is defined as follows:

KG(k, t) := r (αk,t,Ct)

+ (t− 1)
N∑
i=1

P (Ik,t = i) max

(
max
j 6=k

r (αj,t,Ct−1(i)) ; r
(
αk + 1i,Ct−1(i)

))
,

(5.36)

where Ct−1(i) is the value of the tuning constant at time t − 1 given that an

item of importance i is observed as a result of selecting source k. The processor

selects sources according to this modified KG policy and only allocates the item

sampled at time t if its importance is greater than Ct. Proceeding in this way

yields a proposed solution to the problem P ∗ set out in (5.14). The reasoning

behind this approach is that the processor can only allocate the proportion 1− qh

of the T sampled items in the problem so it holds that she must reject Tqh items.

By rejecting items below the qthh quantile of the item importance distribution we

should tend to filter out the correct proportion of items. These items contribute the

least reward upon allocation as they are from the leftmost part of the distribution,

so the processor satisfies the expectation based allocation constraint whilst still

maximising the total importance of the allocated intelligence items.

As with the static C implementation we can set a cap J , on the multipier

applied to future expected rewards and create a capped version of KG as where

KG(k, t, J) := r (αk,t,Ct)

+ min(J, (t− 1))
N∑
i=1

P (Ik,t = i) max

(
max
j 6=k

r (αj,t,Ct−1(i)) ; r
(
αk + 1i,Ct−1(i)

))
,

(5.37)

to tune the importance the processor places on future expected rewards.

Remark: When Fk,t(Ck,t) = qh, items with importance at least Ck,t are passed

to the analyst, in a single source problem, with probability equal to 1− qh. Oth-

erwise, when Fk,t(Ck,t) > qh, the threshold policy passes items with probability
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smaller than 1− qh, meaning that the senior analyst will typically receive items at

rate which deviates from the desired amount. One way to overcome this rate bias

is to randomize the passing policy for items with importance (Ck,t−1), by passing

them with probability equal to

πk,t :=
(Fk,t(Ck,t)− qh)

(Fk,t(Ck,t)− Fk,t(Ck,t − 1))
. (5.38)

To accommodate randomised acceptance in this way, we need to reformulate the

model that has been presented so far. We redefine the nature of the threshold

policy based on Ck,t to incorporate πk,t. We define πt = maxk πk,t and Ft = Fk,t :

k = arg maxk(Ck,t − πk,t). For the processor, the random acceptance policy based

on the threshold Ct such that at time t,

� Items of importance i ∈ [Ct, N ] are always accepted.

� Items of importance i ∈ [0, Ct − 1) are always rejected.

� Items of importance i = Ct−1 are passed to the analyst with probability πt.

The added accuracy offered by this ’π method’ is sufficient that it will also be

incorporated into the static C implementation. One interpolates between the two

values, m∗(C − 1) and m∗(C) (see the definition preceding Proposition 4.0.3) that

contain the desired expected mean number of items, bT (1− qh)c to be passed.

πt =
bT (1− qh)c −m∗(C − 1)

m∗(C)−m∗(C − 1)
(5.39)

When choosing Ct in a dynamic fashion, given that the processor knows exactly

how many rewards have been allocated at time t, the number of remaining allo-

cations that should be made at time t will not necessarily be equal to bt(1− qh)c.

The processor can dynamically adjust the quantile used in the computation of

the Ck,t by taking into account the number of allocations that have already been

made. For the horizon wide quantile qh, we define the time dependent quantile qt
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for t > 0. We have

qt = 1−min

[
1,

[
T (1− qh)−

∑T
s=t+1Xs

t

]+]
, (5.40)

where Xt =


1 if item is allocated (passed to analyst) at time t, and

0 otherwise.

The quantity
∑T

s=t+1Xs in (5.40) denotes the total number of allocations made

before the current time period. For a given value of qt and source k there is a

passing threshold C∗k,t defined as the (approximate) posterior qt quantile of source

k at time t:

C∗k,t = inf{i : Fk,t(i) ≥ qt, 1 ≤ i ≤ N} (5.41)

where C∗t = maxk C
∗
k,t.

The knowledge gradient for source k at time t is computed as in (5.36) except

in the case of randomised choices we instead use

πk,t :=
(Fk,t(C

∗
k,t)− qt)

(Fk,t(C∗k,t)− Fk,t(C∗k,t − 1))
. (5.42)

With dynamically changing thresholds it is no longer appropriate to use the ob-

jective function set out in (5.13) as the interpretation of rewards is inconsistent

as the threshold value is not held constant over the horizon. Under (5.13), less

important items can yield greater rewards than more important items if they clear

a lower C∗t target by a larger margin. We replace the objective in (5.13) with the

alternative described in (5.43).

Maximise:

E

{
K∑
k=1

T∑
t=1

Ik,tXt

}
(5.43)

subject to (5.14), as previously. We remove the thresholds from the objective

function entirely.

We have discussed the specific adapation of the KG indices to the dynamic
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setting. It is worth noting how the other source selection policies we have used in

the static C environment operate under a dynamic C thresholding environment.

In the cases of Thompson sampling and Optimistic Bayes sampling, the indices

are generated in exactly the same way as under static C, as there neither policy is

calculated with respect to the threshold Ct at any time in the horizon. Only the

current posterior item importance distributions for the sources are necessary.

In the case of the perfect information policy, the analyst was able to analyt-

ically compute the inner expectation of the mean Bayes return in the static C

environment using (5.31) which saved on computational effort. This is because of

the clairvoyant nature of the PI policy, which reveals the true nature of the item

importance distributions across all sources. In the dynamic C environment, the

threshold is not a pre-calculated constant; rather, the threshold evolves through-

out the time horizon. To use PI in the dynamic C setting, the processor does not

benefit from the computational saving present in the static C case and instead uses

her clairvoyant knowledge to choose the source with the greatest one step reward

at each time t, subject to the prevailing value of C∗t .

At this stage, we establish the usability of the dynamic C framework with some

preliminary studies.
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5.4.3 Preliminary studies for Dynamic C method

The purpose of this subsection is to explore the implementation of the dynamic C

methodology over a series of small scale numerical studies before committing to a

larger scale study.

In this subsection, two item importance distributions, spanning five sources

each, are considered in the experiments. They are shown here in Tables 5.1 and

5.2 and are referred to throughout. We show the prior αi,k,T values in these two

tables for the five sources in Studies 1 and 2. We sample from these priors to

generate the initial belief states αi,k,T for the sources in each simulation run.

Importance 1-8 9 10 Mean

source 1,2 4 4 2 5.263

source 3 8 9 3 5.250

source 4,5 4 5 1 5.237

Table 5.1: Prior importance distributions for sources in Study 1

The prior importance distributions for Study 1 shown in Table 5.1 have been

chosen such that the distributions collection of five sources have relatively similar

means (means within 0.026 of each other) but not all identically distributed. Sim-

ilar means in these experiments make for the most compelling studies as if any

one source has a mean that is even moderately lower than the rest, it will tend

to be ignored by all of the competing policies. The sources’ item importance dis-

tributions are also designed in such a way that early observations in the problem

horizon can change the posterior mean of these distributions in a meaningfully

great way.

The design of the item importance distributions in Table 5.2 also follow this

design philosophy of ensuring that the means of the distributions are relatively

close together. The means of these sources’ item importance distributions are also

just below 3 and the long tails of each of these distributions are placed to start

for items of importances 4 and above. The rationale for this is to create problems

with interesting solutions. We learn less from problems where either a single source
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attracting all of the samples in an uncontested manner, or the choice of the source is

ultimately irrelevant to the total reward earned. The latter case occurs when each

of the sources are so similar that there is no meaningful choice to be made. Having

similar means (so that one source doesn’t immediately win outright) and having

diverse long tails above the mean of the item importance distributions (so that

the choice between sources is meaningful) has helped us create more compelling

studies. The studies in this subsection are concerned with solving the problem P .

Importance 1-3 4 5 6 7 8 9 10 Mean

source 1 93 6 3 1 7 4 2 8 2.52

source 2 78 1 1 1 1 1 1 20 2.72

source 3 84 7 6 5 4 3 2 1 2.4

source 4 75 1 1 1 1 1 10 10 2.68

source 5 21 2 2 2 2 2 2 2 2.93

Table 5.2: Prior importance distributions for sources in Study 2

We achieve this by first solving P ∗(C) which yields a solution to P ∗. We then force

a solution to P by overruling the thresholding policy to prevent excess allocations

over the quota, or by ensuring the quota is met by allocating items if the number

of time periods remaining is equal to the number of remaining allocations that are

required to fulfil the quota.

Study 1

In this subsection the results of a numerical study which we shall refer to as Study

1 are discussed. The number of sources considered was 5, the time horizons were

of length T = 100, the maximum importance rating of any source was N = 10.

Each policy was tested on the same 2000 test case runs.

Four such experiments were run with different values of qh. The four values

used were 0.95, 0.9, 0.85 and 0.80. The prior beliefs for each of the 5 sources at

the start of every time horizon are shown in Table 5.1 along with the prior mean

item importance for each source.

The values in Table 5.1 are also the basis for randomly generating the ’true’
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1-qh G Policy s.e KG Policy s.e. PI policy s.e.

0.2 (20 items) 170.5 0.10 170.4 0.10 171.1 0.09

0.15 (15 items) 132.2 0.07 131.9 0.07 132.3 0.07

0.1 (10 items) 89.9 0.05 89.8 0.05 90.0 0.05

0.05 (5 items) 45.9 0.02 46.4 0.02 46.7 0.02

Table 5.3: Mean total importance of items passed

underlying distributions in individual horizons from which all item importances

were drawn. The PI policy has exclusive access to knowledge of these true dis-

tributions in contrast to the other policies considered, which rely entirely on the

posterior beliefs informed by the observed sampled item importances from sources.

We refer to the greedy policy (G) as the variant of KG that does not take into

account future rewards and focuses on immediate rewards only. The G index is

obtained by setting J = 0 in (5.37).

In Table 5.3 we present the mean total importance of the items allocated in

each of the experiments, categorised by total number of item allocations and the

source selection policy used. In terms of mean total importance of items allocated,

it is apparent that the performance gap between the G and KG policies is in favour

of the G policy, with the exception of the 1 − qh = 0.05 case. It is unclear how

much the choice of policy regarding source selection is a driver of this good perfor-

mance and how much of it can be attributed to the dynamic threshold selection

mechanism but the combination of both of these features appears to work well in

this case. Further preliminary studies are required at this point to examine the

effect of the problem setting on policy performance and how much the favourable

1% (approx.) value of PI over KG is problem dependent or whether it holds gen-

erally. Figures 5.1 and 5.2 were each created by running five separate experiments

with the different values of T shown on the x-axes of the figures. The value of

qh used was 0.9 in these two figures. In each experiment, 2000 simulations were

run. The item importance distributions are as in Experiment 1 (see Table 5.1) In

Figure 5.1 we show the boxplot of the pairwise percentage gains of mean Bayes

returns for the PI policy over the KG policy. For each simulation run, the mean
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Figure 5.2: Relationship between log mean passed item importance and horizon
length T (KG)

Bayes returns for the PI and KG policy are compared directly and the percentage

gain of I over KG is computed according to the formula in the y-axis of Figure

5.1. In Figure 5.2 the boxplots are constructed for each experiment by taking the

log mean importance of the allocated items in each of the simulation runs. In

Figure 5.1, the relationship between the horizon length T and the value of perfect

information is shown. The plot suggests that the role of source selection policies

is greater when the horizon length is shorter, motivating analysis as to why this

is the case. A natural hypothesis is that the KG policy benefits from additional

time to learn about the true relative ranking of the sources as T increases or that

exploration is increasingly expensive as the horizon length decreases. Before we

continue it is worth mentioning that for the simulations depicted in Figures 5.1

and 5.2 the theoretical maximum log mean item importance per allocated item in
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1-qh G s.e KG s.e

0.2 30.91 0.12 25.75 0.27

0.15 41.14 0.12 27.68 0.32

0.1 37.54 0.16 28.79 0.39

0.05 4.25 0.18 18.88 0.43

Table 5.4: % Optimal source choices, Study 1

each run is log 10, as the maximum total importance for all allocated items in each

run is NbT (1 − qh)c where we have N = 10 and the total number of allocations

equal to bT (1− qh)c.

This effect is more noticeable in Figure 5.2 where the boxplots of the log mean

importance per item passed by the KG policy are plotted for the same scenarios

studied in Figure 5.1. The effect of an increased time horizon steadily decreases

the variability in the average value of the passed items. The mean value remains

steady as the time horizon increases, largely because the log mean importance per

item value for T = 20 is already close to the theoretical maximum and has no room

to increase. This suggests that the problem setting of Study 1 is such that it is not

particularly difficult for the policies to attain the highest levels of performance. A

more challenging problem setting may be appropriate.

In Table 5.4 the mean percentage of the horizon that the G and KG policies

agreed with the PI policy (i.e. chose the same source) is shown above. The

knowledge gradient policy chooses the sources favoured by PI less often than the

greedy policy preferring to explore other sources in addition to exploiting the

supposed ’best source’, which the G policy focuses on doing more strongly. We see

in Table 5.5 that the significant difference in source selection behaviour between

the PI, KG and G policies has not translated into a noticeable difference in the

mean horizon wide average threshold 1
T

∑T
t=1C

∗
t which prevail between the three

policies.

The lack of noticeable impact of varying source selection also applies to the

mean time at which the processor fills their quota of items required to send to the

analyst, except in the case of qh = 0.05 where we see that the larger differences
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in source selection accuracy between all three policies is reflected in the spread of

these mean end times. The KG policy, which in this case is more aligned with the

PI policy, has an earlier end time than the far less accurate G policy here.

Although the mean end times do increase with the value of qh they do not

increase in direct proportion to the number of items that are passed. In this

example 1 − qh = 0.05 and 1 − qh = 0.2 respectively imply that 5 and 20 items

are to be submitted by the processor to the analyst (a fourfold increase), yet

the corresponding mean end times in the PI case are 28.26 and 66.54, which

is approximately only a twofold increase. As one would expect, increasing the

horizon threshold qh results in a stricter item acceptance policy, meaning that on

average a greater number of items are rejected by the processor per item that she

accepts.

The mean end times in Table 5.5 are very low and show that the policies are

allocating the full quota of items without using close to the full horizon’s worth

of T samples. This highlights a problem with the thresholding policy effective in

these studies. In particular, it appears that setting the threshold selection policy

sets C too low and results in the processor allocating the full quota of items too

early. The dynamic adjustments to C across the horizon do not seem to restrict the

stream of item allocations strongly enough and an alternative dynamic threshold

selection policy may need to be developed.

This gulf in agreement with PI between the G and KG policies does not have a

significant impact on the mean total importance of the items that are submitted.

The sources in this problem are similar enough that it matters less which sources

are chosen as could otherwise be the case. Different scenarios need to be tested

to investigate the impact of scenario design on these performance measures. The

discrepancy between the prior and the true item importance distributions of the

sources is generally not great, so the G policy performs well when exploration isn’t

paramount but it may be the case the G policy’s performance drops sharply in a

lower information environment.
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1-qh Policy Mean horizon wide threshold Mean end time s.e

0.05 G 8.05 34.09 0.30

KG 8.05 33.82 0.30

PI 8.05 28.26 0.30

0.1 G 7.49 48.35 0.30

KG 7.49 48.68 0.30

PI 7.49 48.21 0.30

0.15 G 7.07 59.28 0.29

KG 7.07 59.32 0.29

PI 7.07 59.28 0.29

0.2 G 6.60 66.67 0.27

KG 6.60 66.55 0.27

PI 6.60 66.54 0.27

Table 5.5: Mean thresholds, finishing times and rewards in Study 1. All s.e. for
Mean Threshold were less than 10−4

This particular numerical study examined one test case of source selection and

investigated the sensitivity of policy performance to some key problem attributes.

In the cases of both G and KG policies it has been shown numerically that the

value of perfect information in this particular case is small, and that the G policy

seems to do better than the KG in all but the 1− qh = 0.05 case.

The choice of horizon length T and the horizon quantile, qh has been shown

to have an effect on the performance of source selection policies in particular and

motivates further investigation into those relationships so that more challenging

scenarios can be created to test source selection policies in particular.

Studies 2 and 3

The impact of making accurate source selections in Study 1 (i.e. selecting the same

sources as the PI policy) on the overall performance of the processor was unclear.

It did not appear to make a significant difference. The prior beliefs for the sources

in Study 1, from which the true distributions were constructed, were possibly too

similar for studies of that problem to reveal interesting properties about source

selection policy so the problem set up for Study 2 was created.
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Policy Mean threshold s.e Mean end time s.e Mean reward s.e

G 2.65 0.01 27.42 0.15 48.52 0.20

KG 2.64 0.01 29.75 0.16 48.62 0.19

PI 2.68 0.01 28.26 0.15 49.06 0.19

Table 5.6: Mean thresholds, finishing times and rewards in Study 2

A revised set of priors for a five source problem is shown in Table 5.2. The

idea behind the design on this problem is that the 90% quantile of each of these

distributions is 3. With a qh value of 0.9 this allows more room for variation

in the shape and scale of the tails of the item importance distributions, which

makes them more distinct than the sources in Study 1. The number of sources

considered remains 5, the time horizons are of length T = 100, the maximum

importance rating of any source is N = 10, and 2000 simulations were run for each

policy.

The new problem setting of Study 2 did reveal an undesirable property of

the dynamic threshold selection policy employed so far. Table 5.6 shows that the

average end time for all policies is suspiciously low. Given that T = 100, one would

expect the processor to make the most of her available sampling opportunities in

order to seek out items of greater importance. She does not do so, because the

anchoring of the threshold C∗t to the qt quantile of posterior distribution of the

sources results in the processor being content with accepting any reward above

the qt quantile of the distribution, which in this study will be items typically with

minimum importance of 3 or 4.

A policy which readily accepts items of a lower importance quickly exhausts the

budget of items the processor can submit for analysis and in doing does not provide

the best value for the analyst as the search for items of the highest importance are

not prioritised. This policy only strives to provide items from the top 1− qt of the

perceived item importance distribution rather than the top 1− qt of items seen in

the horizon.

A new method for selecting C∗t values based on qt values is required to amend
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this behaviour. One such way of achieving this is to divorce threshold selection

from the beliefs about the sources’ item importance distributions. The amended

dynamic C policy at time t requires the value of qt as defined in (5.40) and we

define

Ct = dNqte (5.44)

πt = dNqte −Nqt, (5.45)

where N is the maximum importance score for any item.

The effect of doing this is that the evolving Ct values are very strict initially

and reject all items which fall below the importance level equal to dNqhe but

this strictness wanes as the processor continues to reject items and has fewer

remaining time periods during which she must fill her quota of item allocations.

This approach directly ties the threshold level Ct to the processor’s level of urgency

with regards to fulfilling her item allocation quota at time t. She accepts fewer

lower quality items when she has more time remaining and has fewer items to

submit. She becomes less strict as time elapses, and if she has allocated fewer

items by time t. This is in direct contrast to the previously trialled method which

ties Ct to the current posterior item importance distributions of the sources, and

did not use the full length of the horizon to search for the best quality items. This

new approach is designed with the intention that the processor does not end her

search for items prematurely.

Study 3 replaces the original source based threshold policy implemented in

Study 2 with the new policy desribed by (5.44) and (5.45), holding all other pa-

rameters equal. The observed improvement which this new threshold policy creates

can be seen to be dramatic in Table 5.7. The mean sum total of the importances

of submitted items is significantly greater in Study 3 than it is in Study 2. The

mean threshold across the horizons in Study 3 are almost double those in Study

2 and the processors of Study 3 tend to use the entire horizon searching for high
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Policy Mean threshold s.e Mean end time s.e Mean reward s.e

G 7.375 0.013 95.89 0.23 83.17 0.34

KG 7.371 0.012 96.25 0.23 81.57 0.32

PI 7.375 0.013 95.83 0.23 83.21 0.34

Table 5.7: Mean thresholds, finishing times and rewards in Study 3

Study G s.e KG s.e

2 42.34 0.44 32.58 0.64

3 99.97 0.00 81.62 0.82

Table 5.8: % Optimal source choices, Studies 2 and 3

quality items, where Study 2 failed to do so. The differences in source selection

policy between G, KG and PI still do not seem to impact nearly as much as the

change in the threshold selection policy clearly has.

It is a surprising result indeed to see that a policy based on such a simple

heuristic vastly outperforms a policy which makes sophisticated use of the posterior

information state of the sources. It has not been shown that the superiority of this

heuristic holds generally but it is more a damning indictment of the so-called

sophisticated policy’s competence. The problem of dynamically and efficiently

setting a threshold for C has proven to be a non-trivial task.

The source selection behaviour for the G policy largely coincides with that

of the PI policy, which causes its reward performance to marginally outperform

the KG policy. This is because the KG policy still tends to explore other sources

more often as it deviates from the sources with the greatest immediate expected

rewards. This is despite KG assigning the majority of its sampling effort to the

more exploitable sources on average. It is possible that over-weighting of potential

future gains in the KG policy is encouraging too much explorative behaviour which

is inappropriate for this setting where rewards are thresholded in such a strict

way. The cost of that level of exploration may just be too great in these kinds of

problems.

The percentage of source selection decisions made by the G and KG policies
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which coincided with the PI policy in Studies 2-3 are shown in Table 5.8 . The G

policy was very much aligned (almost identically) with the PI policy in the setting

operating in Study 3, agreeing in almost 100% of cases with the PI policy and

achieving an essentially identical performance. We find that the KG policy agrees

with PI less often as it is designed to explore the sources and deviate from the

greedy-optimal source, which in Study 3 also happens to be the PI-optimal source.

These preliminary studies suggest that the key driver of good performance is

the adequacy of the policy for accepting and rejecting sampled items that are

sampled by the processor more than it is the policy for selecting and learning

about the sources from which to sample, despite the value of accurate information

about sources being high. It may be the case that relatively short time horizons

in these problems do not grant the processor enough flexibility to experiment and

learn about sources enough for it to make a large impact on her ability to seek out

the most important items that can be found.

In these preliminary studies it is clear that the time horizon T , the horizon

quantile, qh, the source selection policy, the item acceptance policy, and the state

of the prior beliefs relative to the true facts all have an impact on the processor’s

ability to gather high quality items for the analyst. By running tests on various

combinations of these conditions the goal is to construct a sufficiently detailed

picture so that meaningful insights can be gained into the problem.
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5.5 Lagrangian indices: Numerical study

Several heuristics for solving the problem P have been identified in this chapter so

far. In the remainder of this chapter, numerical implementations of a multitude

of these approaches will be documented. The results of such studies will serve to

establish whether these approaches are workable at all and help to identify which

heuristics tend to be the best fit for solving P overall by testing them out in a

wide array of problem settings.

To test the performance of the Lagrangian charges Wk,t(αk,t) as an index heuris-

tic for solving problem P , the heuristic was tested on the five source scenario set

out in Tables 5.9 and 5.10 with qh = 0.95 and T = 100. Hence, the allocation limit

is 5 items out of 100.

During the time that the authors have looked at this problem, it has been

difficult to devise an implementation of the Lagrangian index heuristic approach

that is tractable when applied to moderately large state spaces. It has only been

possible for us to apply the Lagrangian index heuristic to problems with a binary

state space. In other words, when computing indices, we can only describe items’

importance as either being less than C or greater than or equal to C, with no level

of granularity in between.

This particular setup has the convenient property that the resulting integer

value of C that is most appropriate threshold for this problem is 9 when a value of

C is searched for in the problem P ∗(C). One can reduce the complexity of the size

of the state space considerably by consolidating the parts of the item importance

distributions corresponding to importances 1 through 9 into a single category for

rewards which are not strictly greater than C. This allows us to evaluate the

performance of the Lagrangian indices, even if we cannot consider a wide range of

problem settings.

Once the array of Wk,t(αk,t) was generated for both scenarios, 10000 horizons

were run for both studies and the mean Bayes return for the Lagrangian indices

are shown in Tables 5.11 and 5.12 as well as those earned by rival policies in the
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Importance 1-9 10

source 1,2 36 2

source 3 36.5 1.5

source 4,5 37 1

Table 5.9: Prior importance distributions for sources in Lagrangian studies for
Experiment 1

Importance 1-9 10

source 1,2 9 10

source 3 9 1

source 4,5 18 1

Table 5.10: Prior importance distributions for sources in Lagrangian studies for
Experiment 2

same experiment setup. In these studies we approximate a solution to P by forcing

the total number of allocations in any study to be exactly T b(1−qh)c as described

in section 5.4.1. This is achieved in one of two ways in each problem horizon.

Under application of a heuristic to the problem P ∗, the processor either reaches

the required quota of item allocations for P before the horizon ends, in which

case she allocates no further items in that horizon. The other case is that the

processor does not reach the allocation quota early and has a remaining number

of allocations to make which is equal to the number of remaining time periods.

In this second case, the processor allocates all remaining sampled items. In this

way, the exact number of required allocations are made in every instance of the

problem.

We now look at Tables 5.11 and 5.12 and comment on the performance of the

various source selection policies in Experiments 1 and 2.

The mean Bayes returns in Experiment 2 make it difficult to differentiate be-

tween the performance of the Lagrangian, optimistic Bayes, Thompson, and knowl-

edge gradient policies (as well as PI), as all of these policies are able to achieve

approximately the highest possible rewards in this scenario. Sources 1 and 2 in Ex-

periment 2 tend to be the clearly preferred choices over the remaining three. Only
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Policy Mean Bayes return (T = 100) s.e.

Greedy 34.72 0.09

Knowledge Gradient 39.11 0.09

Thompson 41.81 0.09

Optimistic Bayes 42.46 0.08

KG Capped at 2 34.42 0.09

KG Capped at 5 34.42 0.09

KG Capped at 10 37.70 0.09

Lagrangian 43.91 0.1

PI 44.45 0.09

Table 5.11: Bayes returns for Lagrangian indices compared to rival heuristics (Ex-
periment 1)

Policy Mean Bayes return (T = 100) s.e.

Greedy 36.44 0.13

Knowledge Gradient 49.82 0.01

Thompson 49.32 0.03

Optimistic Bayes 50.00 0.01

KG Capped at 2 36.39 0.14

KG Capped at 5 36.35 0.14

KG Capped at 10 36.51 0.14

Lagrangian 49.64 0.10

PI 50.00 0.11

Table 5.12: Bayes returns for Lagrangian indices compared to rival heuristics (Ex-
periment 2)
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the greedy policy and the greedy-like capped KG policies are noticeably weaker.

These policies fail to explore the sources sufficiently enough to consistently sample

from the best sources in each run of the simulation. The cost of exploration in

this kind of problem is worth paying.

Experiment 1 shows more clearly the differences between the Lagrangian, op-

timistic Bayes, Thompson and KG policies. This is most likely because all five

sources in this problem have priors which are similar, as opposed to Experiment 2

where the differences between the sources are more exaggerated. The Lagrangian

index policy suffers the least from the more challenging problem whereas the knowl-

edge gradient policy falls further behind the Lagrangian index policy in Experiment

1. Thompson and Optimistic Bayes perform better than KG, but do not keep up

with the Lagrangian policy. The Lagrangian policy comes equipped with indices

that have been designed to consider the most detailed picture of the future state

of the problem at any given time, and we see this reflected in its performance here.

In Experiment 1 we observe again the inadequacy of the greedy policy and

capped versions of KG. Policy performance in this problem hinges greatly on the

ability of each policy to consider possible future states of the problem when mak-

ing sampling decisions in the present. The Lagrangian indices perform so well

precisely because they extensively consider future states of the problem by design.

Knowledge gradient allows a second best source to be explored in the case where

it would be efficient to do so. This approach seems to be less good than sampling

from the posteriors as is the case with optimistic Bayes and Thompson sampling,

which allow the full range of sources to be potentially explored. It is not clear why

Optimistic Bayes’ tendency to forgive otherwise attractive sources for their poor

draws results in a superior performance over Thompson sampling in both experi-

ments. The small edge that Optimistic Bayes has over Thompson sampling may

be specific to item importance distributions of these problems. Further studies

would be required to find out whether Thompson sampling consistently performs

less well across a broader range of problems and also to discern why this is the
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10 \1-9 0 1 2 3 4 5

0 0.0525 0.0515 0.0515 0.0505 0.0505 0.0495

1 0.0655 0.0645 0.0645 0.0635 0.0625 0.0615

2 0.0785 0.0775 0.0765 0.0755 0.0755 0.0745

3 0.0925 0.0905 0.0895 0.0885 0.0875 0.0865

4 0.1055 0.1035 0.1025 0.1015 0.1005 0.0985

5 0.1185 0.1165 0.1155 0.1135 0.1125 0.1115

Table 5.13: A subset of the Lagrangian indices for source 1 at t = 1 (Experiment
1)

case.

We have seen that the heuristic based on the Lagrangian indices competes the

most favourably with the others that have been tested in this chapter in this sce-

nario, only faring worse than the perfect information policy. These positive results

for the Lagrangian index heuristic motivates further evaluation of the Lagrangian

heuristic’s performance in general. We expect the policy to perform very well if

we can devise a computationally tractable implementation of the heuristic which

supports problems with larger state spaces. We expect that the Lagrangian index

policy’s performance relative to the others considered in this problem would scale

well with the size of the state space.

Comments regarding the indices

A subset of the fair charge Wk,t(αk,t) values for source 1 in Experiment 1 are shown

in Tables 5.13 to 5.16. They show the fair charges for t = 1, 10, 20, and 50 for all

combinations of 0 to 5 samples above the threshold C (vertical axes in the tables),

and less than or equal to C (horizontal axes).

For example, the indices in row 3 and column 2 in Table 5.13 represent the

charge W1,1(3, 2) = 0.0895, the charge which is applicable at t = 20 with 3 samples

exceeding the threshold and 2 samples which do not exceed the threshold.

The indices exhibit desirable general properties. The fair charges Wk,t(αk,t) are

increasing in t and the number of sampled items of importance above C, where in
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10 \1-9 0 1 2 3 4 5

0 0.0555 0.0545 0.0535 0.0535 0.0525 0.0515

1 0.0685 0.0675 0.0665 0.0665 0.0655 0.0645

2 0.0825 0.0815 0.0805 0.0795 0.0785 0.0775

3 0.0965 0.0945 0.0935 0.0925 0.0915 0.0895

4 0.1095 0.1085 0.1065 0.1055 0.1035 0.1025

5 0.1235 0.1215 0.1195 0.1185 0.1165 0.1155

Table 5.14: A subset of the Lagrangian indices for source 1 at t = 10 (Experiment
1)

10 \1-9 0 1 2 3 4 5

0 0.0575 0.0565 0.0565 0.0555 0.0545 0.0535

1 0.0715 0.0705 0.0695 0.0685 0.0675 0.0665

2 0.0885 0.0845 0.0835 0.0825 0.0815 0.0805

3 0.0995 0.0985 0.0965 0.0955 0.0945 0.0935

4 0.1135 0.1125 0.1105 0.1095 0.1075 0.1065

5 0.1275 0.1255 0.1245 0.1225 0.1205 0.1195

Table 5.15: A subset of the Lagrangian indices for source 1 at t = 20 (Experiment
1)

this case the only such importance value is 10. The indices also decrease in the

number of sampled items with value less than or equal to C. Intuitively we would

expect these properties for the fair charges.

For the indices, the marginal increase per sampled item with importance greater

than C is generally greater than the marginal decrease per sampled item with

importance less than equal to C. If we view sampled items of importance 10 as

successes and all other sampled items as failures, the Lagrangian heuristic says that

a particular source can still be valuable if the processor samples many failures from

that source, as long as she has also sampled a few successes. Since the priors for all

of these sources are heavily skewed towards sampling failures, then it would make

sense that the aversion to individual failures is not pronounced in the behaviour

of the indices.
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10 \1-9 0 1 2 3 4 5

0 0.0625 0.0625 0.0615 0.0605 0.0595 0.0585

1 0.0775 0.0765 0.0755 0.0745 0.0735 0.0725

2 0.0925 0.0915 0.0895 0.0885 0.0875 0.0865

3 0.1075 0.1055 0.1045 0.1205 0.1015 0.1005

4 0.1225 0.1205 0.1185 0.1175 0.1155 0.1135

5 0.1375 0.1355 0.1355 0.1315 0.1295 0.1275

Table 5.16: A subset of the Lagrangian indices for source 1 at t = 50 (Experiment
1)
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5.6 Extended numerical studies using non-Lagrangian

heuristics

In the preceding section we conducted studies which established the Lagrangian

index method of source selection to be both viable and strong when compared

against other source selection policies. Due to computational limitations of working

with Lagrangian indices we were only able to conduct studies in a limited number

of scenarios. The other source selection policies considered are not subject to the

same limitations. In this section we conduct an extension of the previous study

which excludes the Lagrangian index method from the list of candidates.

To test the remaining source selection heuristics 60 variants were run in this

study. Each variant within the study consists of K = 5 competing sources and

a maximum importance score of N = 10. Each variant operates under a unique

combination of threshold policy implementation and initial conditions.

A summary of the various configurations is shown in Table 5.17. One can form

all of the variants by selecting one option from each column. In all cases, 5000

simulations were run for each configuration in these studies.

Horizon length T 1− qh Prior Distributions Thresholding Policy

100 0.05 0 (Table 5.18) Static

20 0.1 1 (Table 5.19) Dynamic

0.15 2 (Table 5.20)

0.20

0.30

Table 5.17: Summary of study parameter codes

The static thresholding method sets a threshold value C and a random ac-

cpetance probability π for the entire horizon before the processor begins sampling

items (see section 5.4.1). The processor allocates all sampled items with an impor-

tance value greater than or equal to the threshold C and allocates with probability

π any sampled item with importance value equal to C − 1. The processor con-

ducts some preparatory numerical work to search for values of C and π such that
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the mean number of item allocations made is approximately the target number of

allocations, i.e a solution to P ∗.

The dynamic thresholding policy is the adapted source independent version

established during the preliminary studies of the dynamic C implementation (see

section 5.4.2). Recall that the thresholding policy at time t is defined by the

threshold value Ct, and the random acceptance probability πt. The processor

accepts the item sampled at time t if it has an importance value greater than or

equal to Ct. She accepts items with importance equal to Ct − 1 with probability

πt. We have

Ct = dNqte (5.46)

πt = dNqte −Nqt. (5.47)

where qt is defined as in (5.40).

The source selection policies being tested in this study are the greedy and

knowledge gradient policies including capped variants of KG (2,5, and 10 period

maximum look ahead). As described in sections 5.3.1 (static) and 5.4.2 (dynamic)

the desired cap levels are achieved by setting the corresponding value of J . We

also have both Thompson and Optimistic Bayes sampling policies and the perfect

information policy.

In all cases we are using threshold based policies to solve P ∗ by finding an

appropriate threshold in P ∗(C). We then force a solution to P by imposing special

allocation rules to overrule the thresholding policy in order to allocate the exact

number of items required by the analyst. The processer either prevents additional

allocations once the quota of item allocations has been reached, or allocates all

remaining items if the number of remaining time periods is equal to the number

of remaining allocations required to satisfy the allocation quota.

The experimental designs of Experiments 0 and 1 in Tables 5.18 and 5.19

should be familiar from Tables 5.1 and 5.2 in the preliminary studies. We now add
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Experiment 2, described in Table 5.20, where the sources have been designed such

that sources 1 and 5 are clearly the best and worst sources in terms of their prior

item importance distributions. The rationale here is that we want Experiment 2

to exist as a control, as we very much expect all policies to choose source 1 when

applied to the sources in Experiment 2.

Importance 1-8 9 10 Mean

source 1,2 4 4 2 5.263

source 3 4 9 3 5.250

source 4,5 4 5 1 5.237

Table 5.18: Prior importance distributions for sources in Experiment 0

Importance 1-3 4 5 6 7 8 9 10 Mean

source 1 93 6 3 1 7 4 2 8 2.52

source 2 78 1 1 1 1 1 1 20 2.72

source 3 84 7 6 5 4 3 2 1 2.4

source 4 75 1 1 1 1 1 10 10 2.68

source 5 21 2 2 2 2 2 2 2 2.93

Table 5.19: Prior importance distributions for sources in Experiment 1.

Importance 1 2-9 10 Mean

source 1 1 1 10 7.63

sources 2,3,4 1 1 1 5.5

source 5 10 1 1 3.37

Table 5.20: Prior importance distributions for sources in Experiment 2

5.6.1 Analysis

In this subsection, the results of all of the numerical studies relating to the discrete

MABA problem will be analysed. The tables of results are collected in the next

subsection in Tables 5.21 through 5.35. In this section we hope to establish the

viability of the methodology that has been developed to solve this problem and
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to make actionable conclusions about the competing source selection and item

allocation policies that are being tested.

In Section 4.5 we considered a much narrower range of problem configurations

due to the computational limitations we encountered in implementing the La-

grangian index policy. The heuristics in these experiments are not subject to such

problems so we have been able to extend the analysis to include a broader range

of scenarios.

Validation of data

Before looking at the data it is worth checking its overall viability by checking

whether it fits with what we would expect in a broad sense. The perfect infor-

mation policy in both the static and dynamic cases routinely ranks the highest

in all of the individual study variants. This not only fits with what we would

expect from this policy but also provides context to the performance of the other

non-clairvoyant policies, which will be commented on in more detail as we proceed

with the analysis.

Another key sanity check for the data is how the mean Bayes returns relate

to total number of items passed, holding all other parameters equal. We expect

the mean Bayes returns to be concave increasing in the value of 1− qh. The total

importance value of the allocated items increases, because strictly more items are

allocated. However, the mean item importance of the allocated items decreases as

the processor accepts more items, because the processor must be less selective in

order to accept a larger number of items. By examining the upwards progression

of the mean Bayes returns for corresponding experiments, we see that in all cases

that the overall returns are indeed concave increasing in the number of items for

all variants within the study.

We can also make side by by side comparisons for the study variants where

T = 100 and T = 20 within the individual studies. In all directly comparable

study variants, the relative performance ranking of the source allocation policies
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is the same between the T = 100 and T = 20 versions of the same study. If a

particular policy performs poorly or well under T = 100, it performs just as poorly

or well with respect to the other policies under T = 20 and vice versa.

It does not appear that there are any discrepancies or unexplained patterns in

the data that relate to anything else other than the choice of thresholding policy

(static or dynamic) or the choice of source selection policy. We can now proceed to

analyse the effects of these two key choices’ effects on the final mean Bayes return.

Effect of thresholding policies

In this study, two thresholding policies were tested. The first of these is the static

C approach, where a single thresholding policy value is tuned in advance of the

problem horizon starting. The second being the dynamic C policy, where the

thresholding policy value changes over time, responding to learnings made about

the various sources.

In Experiments 1 and 2, the dynamic C thresholding policy tends to match

or outperform the static C policy, holding all other experiment parameters equal.

This also includes the performances of the perfect information policies in these

instances too. The static C policy’s calibration stage, where it chooses the value

of C used in the true problem, is consistently worse at selecting a value of C than

the dynamic C policy.

The only instances in which dynamic C doesn’t always outperform static C is

under the conditions of Experiment 3, where source 1 has a very high probability

of producing the highest possible valued items over any other. In this instance, the

threshold that results from the calibration phase of the static C method also hap-

pens to be a threshold which competes relatively on a par, and sometimes better

than, the thresholds returned by dynamic C. It should be noted that this conclu-

sion applies specifically to the perfect information, Optimistic Bayes and knowl-

edge gradient policies. In the Static C cases, the Greedy, Thompson sampling and

capped Knowledge Gradient policies’ performances are universally weaker across
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all variants in Experiment 2. The dynamic C thresholding policy’s tendency to

lower the threshold slightly over the problem horizon results in it accepting lower

importance items at the end of problem horizons voluntarily, without having to

pass those types of items by default to fulfil the allocation quota. The static C

policy by definition does not alter its behaviour once it is calibrated and in this

particular case, its choice of threshold proves to be the best fit for the problem.

From the results that have been gathered, it’s clear that the dynamic C thresh-

olding policy is preferred to the static policy, although we have seen that it can

be flawed under certain conditions compared to the static C case. However, the

dynamic C option, unlike static C, does not require an expensive calibration phase

for each unique problem setting that it encounters, making dynamic C the more

viable option for operational deployment in a situation which is explicitly time

critical. The caveat for recommending dynamic C would be that until it is known

what a typical problem setting would look like for an intelligence gathering exer-

cise, it is hard to know how dynamic C would perform. The source independent

Dynamic C approach may need adaptation for certain problems as it is not obvi-

ous that its good performance is consistent across all problem types. The heuristic

that we have so far is likely to need further adaptation going forward.

Now that we have discussed the relative merits of the two thresholding policies,

let us now turn our attention to the source selection policies.

Effect of source selection policy

The numerical results paint a clear picture as to how the source selection policies

compare in terms of performance.

Optimistic Bayes sampling, second only to perfect information, tends to yield

the greatest mean Bayes returns across all of the studies and even though it doesn’t

always strictly place highest in the relative performance rankings of the non-

clairvoyant policies, it is by far the least susceptible to significant failure. The

recommendation that emerges from this study would be that optimisitc Bayes
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sampling be used in an operational setting wherever possible. However, our lim-

ited evaluation of the Lagrangian index heuristic shows promising results as it has

performed very well where it can be implemented. We would expect the policy

to continue to perform favourably if the computational issues relating to its wider

implementation could be overcome.

The knowledge gradient policy would be the next best option after optimistic

Bayes for a source selection policy and would also be generally suitable for deploy-

ment.

The remaining policies can largely be summarised as inferior cousins of knowl-

edge gradient or optimistic Bayes. The Thompson sampling and greedy approaches

are the most consistent after knowledge gradient in terms of performance. The

greedy approach tends to be a lesser version of knowledge gradient and Thompson

sampling has the same relationship with optimistic Bayes.

The drawback of greedy is that it doesn’t actively explore the available sources

so its resulting behaviour is slower to adapt. The greedy approach almost functions

on a par with knowledge gradient in problems where the value of exploration is

low, in which case greedy and knowledge gradient are very similar. The Thompson

sampling approach’s ability to index sources below their expected sampled item

importance value has proven to hinder its performance in comparison to optimistic

Bayes. This is particularly noticeable in Experiment 2, where the item importance

distributions of all five sources are heavily skewed towards the lower values, causing

Thompson samples to routinely undervalue sources.

The degree to which the drawbacks of the greedy and Thompson sampling

policies affect their performance (compared to knowledge gradient and optimistic

Bayes respectively) is largely problem dependent, but generally speaking, Thomp-

son sampling tends to perform better than greedy because optimistic Bayes per-

forms better than knowledge gradient. Additionally, since the drawback of greedy

is largely negated in situations where learning is less valuable, its not a policy that

is recommended.
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The capped variants of knowledge gradient have performances which lie some-

where between that of the greedy and knowledge gradient policies, which makes

sense as the formulation of the capped knowledge gradient policy tends towards

greedy as the cap tends to zero and tends to KG as the cap tends towards t−1. It

is evident from this study that there is no particular benefit to be obtained from

adjusting the effect of the future expected gains in the knowledge gradient. The

intermediate KG policies created by adjusting J to be less than T and greater

than 0 has not resulted in a policy which consistently outperforms either KG or

greedy in any experiment that we have conducted.

Anomalous Results

There are some exceptions to the general patterns from the numerical results

discussed so far. We now seek to explain these anomalies and gain further insights.

In Experiment 1, for 1− qh = 0.05 (see Table 5.26), we see in the static cases

for both T = 20 and T = 100 that the greedy policy and all four variants of the

knowledge gradient perform exceptionally poorly. Checking the mean value of the

threshold applied to the sources, we find that each policy’s thresholding behaviour

in these experiments is always to accept items with value 10 because in both cases

it is the thresholding policy which on average returns a number of item allocations

closest to the maximum number of allocations desired by the analyst. The strict

exclusion of low value items in this experiment is common across all policies in

this scenario. The noticeably poor behaviour of the greedy and knowledge gra-

dient policies is not because the thresholding policies are unfavourably different.

However these policies are struggling to find enough high value items to compete

with their competitors. This is because these policies are somehow ill suited to this

particular experimental set up and because the threshold has been set too high,

which compounds the problems faced by these policies further. It is not apparent

how the specific nature of this problem setting informs us where it may occur in

other scenarios nor what those scenarios would look like. Additionally, this par-
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ticular case is an extreme case of the general trend of these policies performing

poorly.

However in Experiment 1 with 1− qh = 0.1, we find that the optimistic Bayes

policy, which is generally the best performing policy in these numerical experi-

ments, does not keep up with the other policies and only surpasses Thompson

sampling in both the T = 100 and T = 20 case. This anomaly is linked to the

unequal thresholding values under which the heuristic policies operate. In both

cases, the optimistic Bayes policy operates under a higher, and therefore stricter,

threshold then all of the other policies. The optimistic Bayes operates under C = 8

on average (in the T = 100 case) and C = 7 (in the T = 20 case) whilst the other

policies use C = 5 or C = 6 in both cases. We see that optimistic Bayes may have

a slightly lower mean Bayes return in these experiments, but the higher thresh-

olding policy results in the allocated items (other than those allocated at the end

of the horizon) being of a higher quality, even if there are fewer of them. This ex-

ample does highlight the inadequacy of comparing source allocation policies under

different thresholding policies when there are outliers. A subject for future work

would be to devise an effective way to hold all source selection heuristics to the

same standard.

Concluding remarks

This numerical study was conducted to test whether the implementation of the

framework for solving the discrete MABA problem (P ) was workable and also to

test the effectiveness of various source selection policies within that framework.

The study has shown the implementation does work and that it can be used

to approximate a solution to P reasonably well. The static C and dynamic C

thresholding policies have each shown to have their flaws, but nothing so cata-

clysmic that it prevents the use of either, although dynamic C proved to be better

in these studies. In the case of the static C, it appears as if calibrating C towards

passing the specified number of items dictated by bT (1 − qh)c may not be the
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best approach. A costly search over the possible thresholds which targets rewards

directly may be a good option to pursue in future work. In any case, the static

C also suffers operationally from requiring a calibration phase to tune C in the

first place, which may be too costly for operational use. Dynamic C thresholding,

although the best in this study, would require extensive testing to truly establish

its general effectiveness and beyond the scope of this work.

The picture is more clear when we look at the source selection policies. Op-

timistic Bayes is a firm choice, although knowledge gradient is also viable. The

other policies considered can be ruled out as being inferior variants of these two

frontrunners, although one would choose the Thompson sampling policy as the

third most consistent performer of those tested.

Considering the Lagrangian index policy again, we saw in a previous study that

its performance level was second only to the perfect information policy. In future

work, efforts should be made to render the Lagrangian index policy computation-

ally tractable in a wider array of scenarios so we can establish whether its superior

performance is consistent more broadly. We believe that its performance in the

limited studies that we have seen it in so far motivate the effort as the Lagrangian

index policy has performed well so far.

5.6.2 Results of study
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Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 34.72 0.09 6.89 0.03

Knowledge Gradient 39.11 0.09 6.82 0.03

Thompson 41.81 0.09 7.66 0.03

Optimistic Bayes 42.46 0.08 7.85 0.03

KG Capped at 2 34.42 0.09 6.82 0.03

KG Capped at 5 34.42 0.09 6.82 0.03

KG Capped at 10 37.70 0.09 6.82 0.03

PI 44.45 0.09 8.10 0.03

Greedy (Dynamic) 47.32 0.01 9.38 0.01

Knowledge Gradient (Dynamic) 47.89 0.01 9.45 0.01

Thompson (Dynamic) 26.81 0.12 5.30 0.05

Optimistic Bayes (Dynamic) 47.89 0.01 9.46 0.01

KG Capped at 2 (Dynamic) 47.57 0.01 9.44 0.01

KG Capped at 5 (Dynamic) 47.59 0.01 9.45 0.01

KG Capped at 10 (Dynamic) 47.57 0.01 9.44 0.01

PI (Dynamic) 48.35 0.01 9.47 0.01

Table 5.21: Bayes returns for Experiment 0 with 1− qh = 0.05

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 60.81 0.12 12.36 0.05

Knowledge Gradient 65.71 0.12 12.30 0.05

Thompson 70.41 0.15 13.67 0.05

Optimistic Bayes 73.11 0.15 14.13 0.05

KG Capped at 2 60.44 0.12 12.30 0.05

KG Capped at 5 60.44 0.12 12.20 0.05

KG Capped at 10 60.44 0.12 12.30 0.05

PI 73.93 0.12 14.78 0.05

Greedy (Dynamic) 91.71 0.02 18.12 0.02

Knowledge Gradient (Dynamic) 92.45 0.02 18.32 0.02

Thompson (Dynamic) 76.29 0.13 15.17 0.06

Optimistic Bayes (Dynamic) 92.46 0.02 18.30 0.02

KG Capped at 2 (Dynamic) 91.99 0.02 18.28 0.01

KG Capped at 5 (Dynamic) 91.96 0.02 18.26 0.02

KG Capped at 10 (Dynamic) 92.00 0.02 18.27 0.01

PI (Dynamic) 95.01 0.01 18.60 0.02

Table 5.22: Bayes returns for Experiment 0 with 1− qh = 0.1
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Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 86.34 0.14 17.55 0.05

Knowledge Gradient 91.15 0.14 17.48 0.05

Thompson 95.95 0.17 19.04 0.06

Optimistic Bayes 95.95 0.17 19.65 0.06

KG Capped at 2 85.98 0.14 17.48 0.05

KG Capped at 5 85.98 0.14 17.48 0.05

KG Capped at 10 85.98 0.14 17.48 0.05

PI 97.51 0.13 25.44 0.04

Greedy (Dynamic) 133.98 0.05 26.47 0.02

Knowledge Gradient (Dynamic) 135.73 0.03 26.84 0.02

Thompson (Dynamic) 95.02 0.19 18.91 0.08

Optimistic Bayes (Dynamic) 135.89 0.03 26.83 0.02

KG Capped at 2 (Dynamic) 135.30 0.03 26.80 0.02

KG Capped at 5 (Dynamic) 135.31 0.03 26.83 0.02

KG Capped at 10 (Dynamic) 135.30 0.03 26.81 0.02

PI (Dynamic) 138.00 0.02 26.91 0.03

Table 5.23: Bayes returns for Experiment 0 with 1− qh = 0.15

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 171.02 0.16 32.72 0.05

Knowledge Gradient 171.24 0.16 32.69 0.05

Thompson 169.89 0.14 32.50 0.05

Optimistic Bayes 170.88 0.15 32.50 0.05

KG Capped at 2 171.03 0.16 32.71 0.05

KG Capped at 5 171.10 0.16 32.68 0.05

KG Capped at 10 171.10 0.16 32.66 0.06

PI 172.06 0.13 33.02 0.05

Greedy (Dynamic) 175.47 0.06 34.43 0.03

Knowledge Gradient (Dynamic) 176.35 0.05 34.74 0.03

Thompson (Dynamic) 160.22 0.14 31.52 0.07

Optimistic Bayes (Dynamic) 176.41 0.05 34.76 0.03

KG Capped at 2 (Dynamic) 175.30 0.04 34.63 0.03

KG Capped at 5 (Dynamic) 175.29 0.05 34.63 0.03

KG Capped at 10 (Dynamic) 175.28 0.04 34.66 0.03

PI (Dynamic) 180.02 0.04 35.27 0.03

Table 5.24: Bayes returns for Experiment 0 with 1− qh = 0.2
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Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 248.07 0.18 47.46 0.07

Knowledge Gradient 248.46 0.18 47.50 0.07

Thompson 244.36 0.18 47.15 0.06

Optimistic Bayes 247.55 0.18 47.32 0.07

KG Capped at 2 248.14 0.19 47.46 0.07

KG Capped at 5 248.23 0.19 47.46 0.07

KG Capped at 10 248.22 0.19 47.44 0.07

PI 250.39 0.16 48.12 0.06

Greedy (Dynamic) 250.30 0.10 48.96 0.05

Knowledge Gradient (Dynamic) 250.49 0.08 49.38 0.04

Thompson (Dynamic) 235.49 0.15 46.38 0.07

Optimistic Bayes (Dynamic) 250.63 0.07 49.39 0.04

KG Capped at 2 (Dynamic) 249.03 0.07 49.25 0.04

KG Capped at 5 (Dynamic) 249.01 0.07 49.28 0.04

KG Capped at 10 (Dynamic) 249.04 0.07 49.26 0.04

PI (Dynamic) 255.07 0.06 50.05 0.04

Table 5.25: Bayes returns for Experiment 0 with 1− qh = 0.3

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 14.54 0.06 2.87 0.02

Knowledge Gradient 14.54 0.06 2.87 0.02

Thompson 33.77 0.15 6.05 0.04

Optimistic Bayes 33.11 0.12 5.66 0.04

KG Capped at 2 14.53 0.06 2.87 0.02

KG Capped at 5 14.54 0.06 2.87 0.02

KG Capped at 10 14.54 0.06 2.87 0.02

PI 34.77 0.16 6.23 0.03

Greedy (Dynamic) 47.69 0.01 9.41 0.01

Knowledge Gradient (Dynamic) 48.19 0.01 9.46 0.01

Thompson (Dynamic) 29.75 0.01 5.95 0.05

Optimistic Bayes (Dynamic) 48.18 0.01 9.46 0.01

KG Capped at 2 (Dynamic) 43.60 0.01 8.72 0.01

KG Capped at 5 (Dynamic) 43.62 0.02 8.71 0.01

KG Capped at 10 (Dynamic) 43.63 0.02 8.74 0.01

PI (Dynamic) 48.36 0.01 9.47 0.01

Table 5.26: Bayes returns for Experiment 1 with 1− qh = 0.05
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Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 82.72 0.15 14.67 0.06

Knowledge Gradient 82.65 0.15 14.60 0.06

Thompson 71.14 0.16 12.91 0.05

Optimistic Bayes 75.90 0.14 13.58 0.05

KG Capped at 2 82.69 0.15 14.68 0.06

KG Capped at 5 82.65 0.15 14.59 0.06

KG Capped at 10 82.68 0.15 14.61 0.06

PI 92.43 0.15 16.60 0.06

Greedy (Dynamic) 94.34 0.02 18.44 0.02

Knowledge Gradient (Dynamic) 94.97 0.02 18.52 0.02

Thompson (Dynamic) 91.04 0.09 17.90 0.03

Optimistic Bayes (Dynamic) 94.73 0.02 18.47 0.02

KG Capped at 2 (Dynamic) 67.34 0.07 13.47 0.03

KG Capped at 5 (Dynamic) 67.36 0.07 13.47 0.03

KG Capped at 10 (Dynamic) 67.39 0.07 13.48 0.03

PI (Dynamic) 95.01 0.02 18.58 0.02

Table 5.27: Bayes returns for Experiment 1 with 1− qh = 0.1

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 102.44 0.18 18.95 0.08

Knowledge Gradient 103.34 0.21 18.91 0.08

Thompson 87.92 0.18 16.55 0.06

Optimistic Bayes 103.14 0.17 18.84 0.06

KG Capped at 2 103.11 0.22 19.01 0.08

KG Capped at 5 103.27 0.22 19.10 0.08

KG Capped at 10 103.16 0.21 19.00 0.08

PI 106.79 0.23 19.88 0.88

Greedy (Dynamic) 136.01 0.04 26.73 0.03

Knowledge Gradient (Dynamic) 137.94 0.03 26.94 0.03

Thompson (Dynamic) 98.13 0.19 20.99 0.08

Optimistic Bayes (Dynamic) 137.82 0.03 26.95 0.03

KG Capped at 2 (Dynamic) 98.13 0.09 19.59 0.04

KG Capped at 5 (Dynamic) 98.03 0.09 19.62 0.04

KG Capped at 10 (Dynamic) 98.15 0.09 19.64 0.04

PI (Dynamic) 137.99 0.03 26.98 0.03

Table 5.28: Bayes returns for Experiment 1 with 1− qh = 0.15
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Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 119.36 0.20 22.42 0.07

Knowledge Gradient 120.13 0.20 22.50 0.07

Thompson 103.17 0.20 19.78 0.07

Optimistic Bayes 122.06 0.20 22.62 0.07

KG Capped at 2 119.68 0.20 22.44 0.07

KG Capped at 5 119.96 0.20 22.47 0.07

KG Capped at 10 120.10 0.20 22.45 0.07

PI 123.58 0.17 23.10 0.06

Greedy (Dynamic) 177.99 0.06 34.83 0.04

Knowledge Gradient (Dynamic) 179.87 0.04 35.07 0.04

Thompson (Dynamic) 172.12 0.13 33.66 0.05

Optimistic Bayes (Dynamic) 179.27 0.05 35.04 0.04

KG Capped at 2 (Dynamic) 127.00 0.11 25.42 0.05

KG Capped at 5 (Dynamic) 126.92 0.11 25.42 0.05

KG Capped at 10 (Dynamic) 127.04 0.11 25.46 0.05

PI (Dynamic) 180.05 0.04 35.25 0.03

Table 5.29: Bayes returns for Experiment 1 with 1− qh = 0.2

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 151.37 0.23 29.01 0.08

Knowledge Gradient 152.50 0.23 29.04 0.08

Thompson 133.54 0.21 25.97 0.07

Optimistic Bayes 154.41 0.24 29.15 0.08

KG Capped at 2 152.02 0.23 29.12 0.08

KG Capped at 5 152.33 0.23 29.16 0.08

KG Capped at 10 152.57 0.24 29.19 0.08

PI 154.43 0.21 29.51 0.08

Greedy (Dynamic) 251.77 0.10 49.36 0.05

Knowledge Gradient (Dynamic) 254.70 0.07 49.72 0.05

Thompson (Dynamic) 243.85 0.17 47.89 0.07

Optimistic Bayes (Dynamic) 253.86 0.08 49.72 0.05

KG Capped at 2 (Dynamic) 185.49 0.14 37.04 0.06

KG Capped at 5 (Dynamic) 185.46 0.14 37.04 0.06

KG Capped at 10 (Dynamic) 185.42 0.14 37.04 0.06

PI (Dynamic) 255.00 0.06 49.97 0.04

Table 5.30: Bayes returns for Experiment 1 with 1− qh = 0.3



CHAPTER 5. A DIRICHLET-MULTINOMIAL MABA MODEL 123

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 36.44 0.13 6.62 0.04

Knowledge Gradient 49.82 0.01 7.16 0.04

Thompson 49.32 0.03 9.79 0.01

Optimistic Bayes 50.00 0.01 10.00 0.01

KG Capped at 2 36.39 0.14 6.62 0.04

KG Capped at 5 36.35 0.14 6.62 0.04

KG Capped at 10 36.51 0.14 6.62 0.04

PI 50.00 0.11 10.00 0.04

Greedy (Dynamic) 47.68 0.01 9.41 0.01

Knowledge Gradient (Dynamic) 48.18 0.01 9.44 0.01

Thompson (Dynamic) 29.88 0.12 5.88 0.05

Optimistic Bayes (Dynamic) 48.16 0.01 9.46 0.01

KG Capped at 2 (Dynamic) 48.36 0.01 9.44 0.01

KG Capped at 5 (Dynamic) 48.38 0.01 9.44 0.01

KG Capped at 10 (Dynamic) 48.37 0.01 9.47 0.01

PI (Dynamic) 48.85 0.01 9.47 0.01

Table 5.31: Bayes returns for Experiment 2 with 1− qh = 0.05

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 58.98 0.24 11.51 0.07

Knowledge Gradient 95.84 0.09 12.44 0.07

Thompson 95.88 0.10 19.16 0.03

Optimistic Bayes 100.00 0.01 19.99 0.01

KG Capped at 2 58.87 0.24 11.51 0.07

KG Capped at 5 58.82 0.24 11.51 0.07

KG Capped at 10 59.54 0.24 11.52 0.07

PI 100.00 0.01 19.99 0.01

Greedy (Dynamic) 93.38 0.02 18.35 0.02

Knowledge Gradient (Dynamic) 94.08 0.02 18.50 0.02

Thompson (Dynamic) 86.02 0.10 17.01 0.04

Optimistic Bayes (Dynamic) 93.92 0.02 18.43 0.02

KG Capped at 2 (Dynamic) 95.22 0.08 17.53 0.04

KG Capped at 5 (Dynamic) 95.26 0.08 17.45 0.04

KG Capped at 10 (Dynamic) 95.26 0.08 17.49 0.04

PI (Dynamic) 95.65 0.02 18.61 0.02

Table 5.32: Bayes returns for Experiment 2 with 1− qh = 0.1
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Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 77.17 0.29 15.43 0.08

Knowledge Gradient 131.33 0.21 16.78 0.09

Thompson 138.68 0.20 27.99 0.04

Optimistic Bayes 149.98 0.01 29.96 0.01

KG Capped at 2 77.18 0.29 15.43 0.08

KG Capped at 5 77.18 0.29 15.45 0.08

KG Capped at 10 78.76 0.31 15.48 0.09

PI 150.00 0.26 29.98 0.04

Greedy (Dynamic) 136.30 0.04 26.70 0.03

Knowledge Gradient (Dynamic) 137.98 0.03 26.95 0.03

Thompson (Dynamic) 108.54 0.18 21.41 0.07

Optimistic Bayes (Dynamic) 137.96 0.03 26.93 0.03

KG Capped at 2 (Dynamic) 129.55 0.19 24.42 0.06

KG Capped at 5 (Dynamic) 129.56 0.19 24.50 0.06

KG Capped at 10 (Dynamic) 129.49 0.19 24.53 0.06

PI (Dynamic) 137.98 0.03 26.94 0.03

Table 5.33: Bayes returns for Experiment 2 with 1− qh = 0.15

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 94.63 0.34 19.00 0.10

Knowledge Gradient 157.34 0.30 20.67 0.10

Thompson 177.80 0.29 36.17 0.06

Optimistic Bayes 199.92 0.02 39.87 0.01

KG Capped at 2 94.77 0.34 19.01 0.10

KG Capped at 5 94.87 0.34 19.03 0.10

KG Capped at 10 96.99 0.37 19.10 0.10

PI 199.96 0.28 19.17 0.10

Greedy (Dynamic) 179.39 0.05 34.97 0.04

Knowledge Gradient (Dynamic) 179.93 0.04 35.07 0.04

Thompson (Dynamic) 175.63 0.10 34.42 0.04

Optimistic Bayes (Dynamic) 179.75 0.05 35.13 0.03

KG Capped at 2 (Dynamic) 152.96 0.29 30.66 0.08

KG Capped at 5 (Dynamic) 153.12 0.28 30.61 0.08

KG Capped at 10 (Dynamic) 152.81 0.29 30.52 0.08

PI (Dynamic) 180.10 0.04 35.27 0.03

Table 5.34: Bayes returns for Experiment 2 with 1− qh = 0.2



CHAPTER 5. A DIRICHLET-MULTINOMIAL MABA MODEL 125

Policy Mean Bayes return (T = 100) s.e. (T = 20) s.e.

Greedy 129.19 0.42 25.76 0.12

Knowledge Gradient 198.93 0.40 27.78 0.13

Thompson 247.42 0.49 50.66 0.10

Optimistic Bayes 299.21 0.06 59.27 0.03

KG Capped at 2 129.68 0.43 25.81 0.12

KG Capped at 5 129.87 0.43 25.82 0.12

KG Capped at 10 132.38 0.47 25.93 0.12

PI 299.45 0.45 59.76 0.10

Greedy (Dynamic) 253.99 0.07 49.67 0.05

Knowledge Gradient (Dynamic) 254.85 0.07 49.78 0.05

Thompson (Dynamic) 248.92 0.12 48.83 0.06

Optimistic Bayes (Dynamic) 254.76 0.07 49.85 0.05

KG Capped at 2 (Dynamic) 189.67 0.43 41.30 0.11

KG Capped at 5 (Dynamic) 190.28 0.42 41.30 0.11

KG Capped at 10 (Dynamic) 190.14 0.41 41.27 0.11

PI (Dynamic) 254.97 0.06 50.06 0.04

Table 5.35: Bayes returns for Experiment 2 with 1− qh = 0.3



Chapter 6

Continuous MABA with

judgement error

In the previous chapter, we were concerned with solutions to a discrete Dirichlet-

Multinomial formulation of the MABA problem. The processor in that problem

was faced with K sources from which T items were to be sampled, where the

unknown distribution of the importances of these items was Dirichlet-Multinomial.

We denoted the importance of the item sampled from source k with t samples

remaining by Ik,t and within the context of the discrete MABA, problem P was

stated,

(P ) : maxE

{
K∑
k=1

T∑
t=1

Ik,tXt

}
, (6.1)

Subject to:
T∑
t=1

Xt ≤ bT (1− qh)c (6.2)

whereXt =


1 if item is allocated (passed to analyst) at time t

0 otherwise,

and 0 < qh < 1.

The value qh is called the horizon quartile and denotes the proportion of items not

allocated by the processor.

In this chapter we consider a continuous variant of the problem P in which

126
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the item importances are non-negative real valued. We go on to develop an

Exponential-Gamma-Gamma conjugate structure to model the processor’s learn-

ings about the item importance distribution of items sampled from sources.

We also extend the MABA problem to include the operational issue of processor

judgement error, where the processor has explicit uncertainty about their own

ability to assess the importance ratings of sampled items. We go on to model this

uncertainty by having the distribution of the perceived item importances to be

exponentially distributed with mean equal to the true (unknown) item importance.

The processor’s perceived notion of the item importance is only partially accurate,

whereas it was perfect in the discrete model of Chapter 5.

First we develop the framework for the continuous MABA and establish how

processor uncertainty is captured by the model. There we also formally set out the

continuous version of the problem P . We then develop a Lagrangian relaxation

of the continuous MABA problem as we did with the discrete MABA problem.

In addition we also adapt the same selection of existing heuristic approaches that

were used in the discrete case to analogous solution approaches for the continuous

model.

The reader will recall that the implementation of the Lagrangian relaxation

based solution in the discrete MABA model was limited by computational re-

sources to a small number of testable cases. Although the implementation method

is detailed in this chapter, moving forward with any meaningful numerical work

was beyond the resources available during this project. However this chapter does

contain numerical work relating to existing heuristic approaches, as well as the

preliminary work that informed the design of those experiments.

6.1 Development of Model

In this section we develop a continuous MABA model which also accounts for the

processor’s uncertainty of her own assessments of the importance value of sampled

items. From a horizon of length T , the processor seeks to sample bT (1 − qh)c
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items from K available sources, where qh is the proportion of items that are to

be rejected by the processor. Denote by Yt, 1 ≤ t ≤ T, the processor’s judgement

of the true importance value, It of the item sampled at time t. The processor’s

judgement is typically centered around the true importance, subject to some noise.

We model source k as follows: An item sampled from source k has a true im-

portance rating Rk distributed as a gamma Γ (αk, βk) , random variable and hence

has mean αk
βk

and variance αk
β2
k
. The Rk used as the precisions are not known. If

all of the parameters αk, βk were known a priori then in order to achieve maximal

total importance from some fixed number of items, the processor should focus on

items from the source with maximal αk
βk
. Suppose, however, that the item impor-

tance distributions of the K sources are not fully known in advance. To make this

approach tractable, suppose that the scale parameters βk are known but that there

is uncertainty regarding the shape parameters αk. Taking a Bayesian viewpoint it

is supposed that αk has a gamma prior Γ (γk, δk). These are assumed independent

for distinct k.

If R is the true importance of the item then we shall suppose that the condi-

tional distribution of the inverse score U = Y −1 | R v exp (R) .Hence E (Y −1 | R) =

R−1 and the inverse score is unbiased for the inverse importance.

The problem P of Chapter 4 is to allocate a collection of sampled items with

the maximum total importance value. The continuous MABA analogue for this

problem, which we call P ′ is to maximise the total expected perceived item im-

portance score of the allocated items instead, as the processor does not know the

true importance. The processor intends to pass the most important items to the

analyst by solving P ′. We have

(P ′) : maxE

{
T∑
t=1

YtXt

}
, (6.3)

Subject to:
T∑
t=1

Xt ≤ bT (1− qh)c. (6.4)
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where Xt is defined as in (6.4). As with problem P , the problem P ′ is hard to solve

exactly so we approximate solutions to it. By changing the constraint in (6.4) and

allowing the expected number of allocations to be less than bT (1 − qh)c rather

than the total number of allocations, we create the problem P ∗′, the continuous

analogue to P ∗. We have

(P ∗′) : maxE

{
T∑
t=1

YtXt

}
, (6.5)

Subject to:

E

(
T∑
t=1

Xt

)
≤ bT (1− qh)c. (6.6)

The problem P ∗′ is also difficult to solve so we introduce a further relaxation step.

We use a Lagrangian multipler C to bring the constraint of problem P ∗′ (see (6.7))

into the objective of a new problem which we call P ∗(C)′. Items sampled by the

processor from any source are allocated and passed to the analyst if and only if

their item importance value is greater than C.

We now state the relaxed version of the processor’s problem for this chapter

(P ∗(C)′) : maxE

{
T∑
t=1

(
C−1 − Y −1t

)+
Xt

}
. (6.7)

The form of the objective in (6.7) is taken because Yt, and some simple functions

of it, will have an infinite mean while Y −1t does not. As with the discrete MABA

model of Chapter 5, the processor can search for a value of C (using a bisection

method for example) such that the constraint in P ∗′ is satisfied. In this way the

relaxed problem P ∗(C)′ can be used as a heuristic to provide solutions to P ∗′. In

turn, by manipulating the item allocation behaviour at the end of the problem

horizon, we can force solutions to P ′ too. When there is no constraint on the total

number of allocations (qh = 0), the processor seeks to sample from the sources

in such a way as to maximise the expected value E
{∑T

t=1

(
C−1 − Y −1t

)+}
, where

the expectation is understood to be taken with respect to the prior distributions
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of the unknown αk as well as over realisations of the process. The understanding

implied by such an objective is that it is only the items for which Y −1t −C−1 < 0,

equivalently Yt > C, which are passed on to the analyst. We are effectively

maximising the sum of the inverse scores of the allocated items.

If the processor solves this problem, she allocates a collection of items which

she believes to have a high true importance as she discards items with perceived

importance less than C. In turn she passes items to the analyst with the highest

true importance scores. This forms the continuous analogue to the P ∗(C) problem

in the discrete MABA setting.

For ease of notation we drop the source identifying subscript k in what follows.

The implied distribution of the inverse scores U is given by

f (u | α) =

∫
f (u | r) g (r | α) dr

=

∫
re−ru

rα−1βαe−βr

Γ (α)
dr

=
αβα

(β + u)α+1 , u ≥ 0. (6.8)

If α has the prior π = Γ (γ, δ) then its posterior based on a single importance score

y = u−1 is given by

π (α | u) ∝ π (α) f (u | α)

∝ αγ−1e−δα.
αβα

(β + u)α+1

∝ αγ exp

[
−α
{
δ + ln

(
β + u

β

)}]
= Γ

{
γ + 1, δ + ln

(
β + y−1

β

)}
. (6.9)

Hence this is a conjugate structure. The posterior for α following importance

scores ys, 1 ≤ s ≤ T, on T items is

Γ

{
γ + (T − t), δ +

T∑
s=t

ln

(
β + y−1s

β

)}
(6.10)
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with associated posterior mean for the true mean importance α
β

for the source

given by

E

(
α

β
| ys, t ≤ s ≤ T

)
=

γ + (T − t)

β
{
δ +

∑T
s=t ln

(
β+y−1

s

β

)} (6.11)

which will be large for a collection of items with high importance scores.

Evolving beliefs about the importance of items emerging from the K sources

will influence the processor as she decides how to sample from the sources to obtain

a collection of items for the analyst with high total importance. When computing

mean Bayes returns in numerical studies, samples from sources always come from

their current posteriors.

In summary, the goal for the analyst is to sample the source with largest preci-

sion. However, these are unknown, and have a Gamma(αk, βk) prior. Furthermore,

there is a Gamma(γk, δk) prior for αk, and the analyst judgement of the precision

is exponentially distributed with mean equal to the true (unknown) precision. As

the sources are sampled, the analyst can reduce the uncertainty about the true

precision of each source.

From this framework, we can extract some further analytical observations which

will help us to devise and implement solutions to the problem P ∗(C)′. We look at

this in the next subsection.

6.1.1 Some preliminary observations/calculations

Using the framework developed so far in this section we will be able to define two

useful concepts, the expected one-step return of a source and the Bellman equation

for this particular variant of the intelligence problem.

For implementation of numerics and analysis in relation to this model we will

need the marginal predictive p.d.f of U = Y −1 (continuing to drop the source-

identifying suffix k for the moment) when the current posterior for α is Γ (γ, δ) .
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The appropriate calculation is

f (u | γ, δ) =

∫ ∞
0

f (u | α) π (α | γ, δ) dα

=

∫ ∞
0

αβα

(β + u)α+1

δγαγ−1e−δα

Γ (γ)
dα

=
δγγ

(β + u)

(
δ + ln

(
β + u

β

))−γ−1
, u ≥ 0, (6.12)

and the corresponding value of E
(

(C−1 − Y −1)+ | γ, δ
)

= E
(

(C−1 − U)
+ | γ, δ

)
is then given by

E
((
C−1 − U

)+ | γ, δ) =

∫ C−1

0

(
C−1 − u

)
f (u | γ, δ) du

=

∫ C−1

0

(
C−1 − u

) δγγ

(β + u)

(
δ + ln

(
β + u

β

))−γ−1
du, (6.13)

which, using the substitution x = ln
(
β+u
β

)
, becomes

=

∫ ln

(
β+C−1

β

)
0

(
C−1 − β (ex − 1)

)
δγγ (δ + x)−γ−1 dx. (6.14)

It will abbreviate things below if we call this quantity in (6.14) r (γ, δ, C), the

mean one step return from a source with current posterior Γ (γ, δ) in what follows.

We now need to restore the source identifying suffices in order to write the

DP optimality equations for a T−horizon version of the above multi-armed bandit

problem. We use (γ, δ) to denote the 2K−vector ((γ1, δ1) , (γ2, δ2) , . . . , (γK , δK))

which, in the formulation below is taken to be the state of the system with time t

to go to the end of the horizon, with Vt (γ, δ, C) the corresponding optimal value

function. We have the Bellman equations

Vt (γ, δ, C) = max
1≤i≤K

{
ri (γi, δi, C)

+

∫ ∞
0

fi (u | γi, δi)Vt−1
[
(γj, δj)j 6=i ;

(
γi + 1, δi + ln

(
βi + u

βi

))
, C

]
du

}
;
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V1 (γ, δ, C) = max
1≤i≤K

{ri (γi, δi, C)} . (6.15)

For large K,T it will not be possible to develop solutions to the above prob-

lem using exact DP methods. We propose a number of heuristic approaches to

circumventing this issue. The details of these proposals are given in Sections 6.2

and 6.3 of this chapter.

6.2 Lagrangian index approach to continuous MABA

problem

In the same way that Lagrangian indices were developed for the discrete version

of the MABA problem in Chapter 5, we now seek to develop analogous indices for

the continuous version of the problem.

Technical Description

A Lagrangian index approach to source selection, rather than sampling from ex-

actly one source per time period in the horizon, would instead allow many sources

to be sampled per time period and impose a charge for each sample taken. Hence

the objective of the Lagrangian relaxation is as follows:

V (W ) := max

{
E

(
K∑
k=1

Ak (T )−WNk (T )

)
+WT

}
, (6.16)

where Ak (T ) is the total reward received from source k items over the T −horizon

and Nk (T ) is the number of source k items sampled over the horizon. The class

of policies is such that any number of sources may be sampled at each time, but

that a charge W is paid for each.

It will be true that as the charge W increases, so, under an optimal policy the

mean number sampled, namely E
∑K

k=1Nk (T ) will decrease. One approach is to

focus on the relaxation whose associated charge W ∗ achieves E
∑K

k=1Nk (T ) = T,
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namely that on average one item is sampled at a time (and hence T on average in

total over the entire horizon) under an optimal policy.

To develop suitable index policies for the problem, observe that problem (6.16)

has a source-wise decomposition. This means that

V (W ) =
K∑
k=1

Vk (W ) +WT, (6.17)

where

Vk (W ) := maxE (Ak (T )−WNk (T )) , (6.18)

is the maximal return from a problem defined in terms of source k only in which

a decision has to be made at each time point as to whether to sample from the

source (and claim the appropriate one-step reward rk(γk, δk, C) but also incur the

charge W ) or not (and receive nothing) at each time point in the horizon. This

source k problem is solved by a DP recursion as follows:

Vk,t (γk, δk;W ) = max

{
rk (γk, δk, C)−W

+

∫ ∞
0

fk (u | γk, δk)Vk,t−1
(
γk + 1, δk + ln

(
βk + u

βk

)
;W

)
du;

Vk,t−1 (γk, δk;W )

}
, (6.19)

where the first term on the r.h.s. above corresponds to sampling from source k

and the second term corresponds to not sampling.

Any solution to (6.19) that samples from the source non-consecutively can be

replaced by another solution that samples consecutively and achieves the same

value as the non-consecutive solution. This is due to the fact that the state of

the system remains constant (i.e. Vk,t (γk, δk;W ) = Vk,t−1 (γk, δk;W )) when the

source k is not sampled in period t. More formally, for a solution Vk that samples

consecutively to period s and stops sampling until period t for t > s − 1 (when

a new sample is taken), there exists solution Ṽk that samples consecutively up

to period s − 1 and doesn’t sample in periods s − 2, . . . , t such that the rewards
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gained under both solutions are the same and Vk,t(γi, δk;W ) = Ṽk,s−1(γk, δk;W ).

Hence, without loss of generality, we can restrict our sampling schemes to stopping

problems such that once the non-sampling action is taken, it remains in force for

the rest of the horizon. The above DP is then be simplified to

Vk,t (γk, δk;W ) = max

{
rk (γk, δk, C)−W

+

∫ ∞
0

fk (u | γk, δk)Vk,t−1
(
γk + 1, δk + ln

(
βk + u

βk

)
;W

)
du; 0

}
, (6.20)

since it can be shown that the non-sampling option must have an associated future

return of zero. Source k will be indexable if for all (γk, δk, t) there exists some charge

Wk (γk, δk, t) for which

rk (γk, δk, C)−W+

∫ ∞
0

fk (u | γk, δk)Vk,t−1
(
γk + 1, δk + ln

(
βk + u

βk

)
;W

)
du ≥ 0

⇔ W ≤ Wk (γk, δk, t) . (6.21)

In words, source k is indexable if, for the source k problem in every state (γk, δk, t)

there exists an indifference charge Wk (γk, δk, t) such that it is optimal to sam-

ple source k in state (γk, δk, t) if and only if the actual charge W is below the

indifference charge.

If all K sources are indexable then the optimal policy for the Lagrangian re-

laxation (6.16) has the following form: in every system state (γ, δ,t) sample all

sources j for which the appropriate indifference charge Wj (γj, δj, t) exceeds the

actual charge W . Note also that if W ≥ 0 then V (W ) must be an upper bound

for the problem in (6.15) on the optimal return (V opt, say) and so we must have

min
W≥0

V (W ) ≥ V opt (6.22)
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for the tightest such bound. It is not difficult to show that

min
W≥0

V (W ) = V (W ∗) , (6.23)

where W ∗ is as previously described, namely the value of the charge for sampling

such that the mean number of items sampled equals the length of the horizon, T .

Such upper bounds are often close to tight and hence provide effective benchmarks

against which to measure the performance of heuristics. For ease of notation, we

drop the source suffix k in what follows. We recall that the one-step rewards are

given by

r (γ, δ, C) =

∫ ln

(
β+C−1

β

)
0

(
C−1 − β (ex − 1)

)
δγγ (δ + x)−γ−1 dx. (6.24)

This can be re-expressed as

r (γ, δ, C) = E

[(
C−1 − β

(
eX − 1

))
I

(
X ≤ ln

(
β + C−1

β

))]
, (6.25)

where X is a positive-valued random variable with the pdf given by

fX (x) = δγγ (δ + x)−γ−1 , x ≥ 0. (6.26)

We develop a sequence of theoretical results, which make use of the following

definition

Definition: We say that random variable X is stochastically larger (resp.

smaller) than Y if the distribution function of X is everywhere smaller (resp.

larger) than that of Y, namely,

FX (y) := P (X ≤ y) ≤ (resp. ≥)P (Y ≤ y) = FY (y) for all y (6.27)

It is easy to show that if X is stochastically larger than Y then E {φ (X)} ≥

E {φ (Y )} for any increasing function φ and E {φ (X)} ≤ E {φ (Y )} for any de-
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creasing function φ. When X is stochastically smaller than Y these inequalities

are reversed.

Suppose that the distribution of X is dependent upon some real-valued pa-

rameter θ. We say that X | θ is stochastically increasing (resp. decreasing) in θ if

whenever θ1 ≥ θ2 then X | θ1 is stochastically larger (resp. smaller) than X | θ2.

We will show that Vt (γ, δ,W ) is increasing in γ (for fixed t, δ,W ) and decreasing

in δ (for fixed t, γ,W ). It will then follow from its definition above that that the

index W (γ, δ, t) is increasing in γ (for fixed t, δ) and decreasing in δ (for fixed t, γ).

We first need the following.

Lemma 6.2.1. One step return r(γ, δ, C) is non-decreasing in γ and non-increasing

in δ.

Proof. We have that

r (γ, δ, C) = E
((
C−1 − U

)+ | γ, δ) , (6.28)

where U | (γ, δ) has the pdf

f (u | γ, δ) =

∫ ∞
0

f (u | α) π (α | γ, δ) dα

=

∫ ∞
0

αβα

(β + u)α+1

δγαγ−1e−δα

Γ (γ)
dα

=
δγγ

(β + u)

(
δ + ln

(
β + u

β

))−γ−1
, u ≥ 0. (6.29)

Now it is straightforward to show, using a change of variable (x=ln
(
β+u
β

)
, that

P (U ≤ v | γ, δ) =

∫ v

0

f (u | γ, δ) du =

∫ v

0

δγγ

(β + u)

(
δ + ln

(
β + u

β

))−γ−1
du

= 1−

 δ

δ + ln
(
β+v
β

)
γ

, v > 0 (6.30)

which is increasing in γ (for fixed δ) and decreasing in δ (for fixed γ) for each v > 0.
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It follows (by definition of the terms concerned) that U is decreasing stochastically

in γ (for fixed δ) and increasing stochastically in δ (for fixed γ). But the quantity

(C−1 − U)
+

is a decreasing function of U. The result now follows from standard

results regarding the stochastic ordering of random variables.

Proposition 6.2.2. Vt (γ, δ,W ) is non-decreasing in γ (for fixed δ) for all t.

Proof. The proof uses an induction on t. We first rewrite the DP equations deter-

mining Vt (γ, δ,W ) as

Vt (γ, δ,W ) = max

{
r (γ, δ, C)−W +

∫ ∞
0

f (u | γ, δ)Vt−1
(
γ + 1, δ + ln

(
β + u

β

)
;W

)
du; 0

}

= max

{
r (γ, δ, C)−W + EU |(γ,δ)

[
Vt−1

(
γ + 1, δ + ln

(
β + U

β

)
;W

)]
; 0

}
.

(6.31)

We firstly observe that the result is trivial for t = 1, since we have that

V1 (γ, δ,W ) = max {r (γ, δ, C)−W ; 0} (6.32)

and we now invoke Lemma (6.2.1). We now suppose the result to be for all horizons

≤ t−1 and infer it to be true for horizon t. By the induction hypothesis regarding

δ for horizon t−1 we know that Vt−1

(
γ + 1, δ + ln

(
β+U
β

)
;W
)

is a non-increasing

function of U. Suppose now that γ1 > γ2. We know from the calculation in the

proof of Lemma (6.2.1) that U | (γ1, δ) is stochastically smaller than U | (γ2, δ) for

each fixed δ. It therefore follows from standard results on stochastic ordering that

EU |(γ1,δ)

[
Vt−1

(
γ1 + 1, δ + ln

(
β + U

β

)
;W

)]
≥ EU |(γ2,δ)

[
Vt−1

(
γ1 + 1, δ + ln

(
β + U

β

)
;W

)]
(6.33)
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for each fixed δ. We now invoke the inductive hypothesis regarding γ to infer that

EU |(γ2,δ)

[
Vt−1

(
γ1 + 1, δ + ln

(
β + U

β

)
;W

)]
≥ EU |(γ2,δ)

[
Vt−1

(
γ2 + 1, δ + ln

(
β + U

β

)
;W

)]
(6.34)

and hence (combining the two inequalities above) that

EU |(γ1,δ)

[
Vt−1

(
γ1 + 1, δ + ln

(
β + U

β

)
;W

)]
≥ EU |(γ2,δ)

[
Vt−1

(
γ2 + 1, δ + ln

(
β + U

β

)
;W

)]
. (6.35)

We also have (from Lemma (6.2.1)) that

γ1 > γ2 ⇒ r (γ1, δ, C) ≥ r (γ2, δ, C) . (6.36)

Putting all the above together we see that when γ1 > γ2 we may deduce that

r (γ1, δ, C)−W + EU |(γ1,δ)

[
Vt−1

(
γ1 + 1, δ + ln

(
β + U

β

)
;W

)]
≥

r (γ2, δ, C)−W + EU |(γ2,δ)

[
Vt−1

(
γ2 + 1, δ + ln

(
β + U

β

)
;W

)]
(6.37)

and hence

Vt (γ1, δ,W ) ≥ Vt (γ2, δ,W ) , (6.38)

as required. Hence the inductive hypothesis regarding γ goes through.

The induction argument regarding δ is similar.

Proposition 6.2.3. Vt (γ, δ,W ) is non-increasing in δ (for fixed γ) for all t.

Proof. From the proof of Lemma (6.2.1) we infer that when δ1 > δ2 that U |

(γ, δ1) is stochastically larger than U | (γ, δ2) from which it follows trivially that

δ1 + ln
(
β+U
β

)
| (γ, δ1) is stochastically larger than δ1 + ln

(
β+U
β

)
| (γ, δ2) which is

in turn trivially stochastically larger than δ2 + ln
(
β+U
β

)
| (γ, δ2) . Hence using the
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induction hypothesis regarding δ twice we infer that

EU |(γ,δ1)

[
Vt−1

(
γ + 1, δ1 + ln

(
β + U

β

)
;W

)]
≤ EU |(γ,δ2)

[
Vt−1

(
γ + 1, δ1 + ln

(
β + U

β

)
;W

)]
.

≤ EU |(γ,δ2)

[
Vt−1

(
γ + 1, δ2 + ln

(
β + U

β

)
;W

)]
. (6.39)

As above, we combine this with the fact that

r (γ, δ1, C) ≤ r (γ, δ2, C) (6.40)

to infer that

r (γ, δ1, C)−W + EU |(γ,δ1)

[
Vt−1

(
γ + 1, δ1 + ln

(
β + U

β

)
;W

)]
≤

r (γ, δ2, C)−W + EU |(γ,δ2)

[
Vt−1

(
γ + 1, δ2 + ln

(
β + U

β

)
;W

)]
(6.41)

and hence from (6.39) that

Vt (γ, δ1,W ) ≤ Vt (γ, δ2,W ) , (6.42)

as required. It now follows that the inductive hypothesis regarding δ goes through.

Corollary 6.2.4. W (γ, δ, t) is increasing in γ (for fixed δ) and decreasing in δ

(for fixed γ) for all t.

Proof. This follows immediately from the preceding results and the characteri-

sation of W (γ, δ, t) in (6.21) as the smallest W value which makes Vt(γ, δ,W )

zero.

The above results provide the building blocks for understanding the structure

of index policies. Suppose, for example, that at time t a source with current state

(γ, δ) and index W (γ, δ, t) is sampled. At the following epoch, the above theory
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tells us that the new index for the source will be W
(
γ + 1, δ + ln

(
β+y−1

β

)
, t− 1

)
where y is the sampled importance at t. From the above theoretical results we have

that

W

(
γ + 1, δ + ln

(
β + y−1

β

)
, t− 1

)
≥ W (γ, δ, t)⇔ y ≥ Ψ (γ, δ, t) (6.43)

for some threshold Ψ (γ, δ, t) . It will follow that if the sampled importance is large

enough (above a threshold) then the index policy is guaranteed to return to the

same source for a further sample at t− 1. Hence the index policy embodies a form

of play on the winner rule.
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6.3 Other heuristic approaches

As with the discrete MABA model, we also develop other heuristic approaches for

use in the continuous MABA framework. Doing so will demonstrate a broader

number of ways to develop solution approaches to the continuous form of the

intelligence problem. Knowledge gradient, Thompson sampling and optimistic

Bayes sampling methods are adapted in this section.

Each of the heuristics described in this section are adapted to provide solutions

to P ∗′ via the relaxed problem P ∗(C)′. The processor searches for the threshold

C in each case that satisfies the constraint on the expected number of allocations

in the problem P ∗′. It is then possible to force a solution to P ′ in each case

by overruling the thresold policy at the end of each problem horizon to ensure

the exact number of required allocations dictated by the constraint are made. In

the case that the processor allocates the maximum number of items early, she

refuses to allocate any remaining sampled items, even if their importance exceeds

C. Conversely, she allocates all remaining sampled items if the total number

of time periods remaining in the problem is equal to the maximum allocations

allowed minus the total number of allocations made so far. In this way, each of

the preceding heuristics can be used to find solutions to P ′

6.3.1 Knowledge Gradient methodology

Knowledge gradient methods, when applied to the continuous MABA problem,

require an index computation for each source k, at every time period in the horizon.

Using the quantities defined in equations (6.12) and (6.14) of Section 5.1.1, the

KG index for source k with t time periods remaining is

KG(k, t) := rk (γk, δk, C) + (t− 1)

∫ ∞
0

fk (u | γk, δk) ∆ (k, u) du, (6.44)

where the ∆ (k, u) term is defined as,



CHAPTER 6. CONTINUOUS MABA WITH JUDGEMENT ERROR 143

∆ (k, u) := max

(
max
j 6=k
{rj (γj, δj, C)} ; rk

[
γk + 1, δk + ln

(
βk + u

βk

)
, C

])
,

(6.45)

which, operationally, quantifies the highest expected one-step reward of any of the

K sources given that source k was chosen most recently yielding an item with

inverse importance score equal to u. At each time t, the processor computes the

indices in (6.44) for each of the k sources and samples from the source k with the

largest KG(k, t). For a particular importance score u, it is straightforward enough

to calculate ∆ (k, u) by just computing each of the rewards individually using the

following integral for each of the sources,

r (γk, δk, C) =

∫ C−1

0

(
C−1 − u

)
f(u|γk, δk)du, (6.46)

where,

f(u|γk, δk) =
δγkk γk

(βk + u)

(
δk + ln

(
βk + u

βk

))−γk−1
, u ≥ 0. (6.47)

Hence it is possible to compute f(u|γk, δk)∆ (k, u) for a fixed u. An appropriate

form of numerical integration over the range of u is then required to complete the

computation of the KG indices.

It is also of interest to investigate the sensitivity of policy behaviour to the

scaling term applied to expected future rewards, which appears as (t−1) in (6.44).

Instead one could select a cap, J and use the modified index

KG(k, t) := rk (γk, δk, C) + min(J, (t− 1))

∫ ∞
0

fk (u | γk, δk) ∆ (k, u) du, (6.48)

and adjust J to control the weight that expected future rewards has on the KG

index. Adjusting the weighting on the future like this was explored in [Glazebrook

et al., 2012] with some success so we will try it here.
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Knowledge gradient simulation

To compute the knowledge gradient indices for each source, one needs to sepa-

rately compute the expected immediate rewards and the resulting expected future

rewards. Both require some form of approximate integration.

One requires knowledge of the prior information state (γk, δk) for each of the

K competing intelligence sources and also the known rate parameters βk for the

precisions of emerging items. The threshold C, which determines the minimum

level of perceived importance an intelligence item needs to possess to be allocated

and passed to the analyst, must be specified. The processor searches for a value

of C such that the expected number allocations satisfies the constraint of P ∗′.

To evaluate the various integrals involved in these computations, both numeri-

cal integration and Monte Carlo methods are used so that their performance can be

compared. In the Monte Carlo case, the convergence rate is inversely proportional

to the square root of the computing power available, while the convergence for the

numerical integration methods will be at its fastest when only one dimension is

considered. We will use the library GSL library <gsl/gsl_integration.h> in

C++ to handle the implementation of the numerical integration.

We have a closed form for the cdf F (u|γ, δ) corresponding to the pdf in (6.47),

namely

F (u|γ, δ) =

∫ ∞
0

f(x|γ, δ)dx = 1− δγ
(
δ + ln

(
β + u

β

))−γ
. (6.49)

We can use the inverse transform method to obtain random draws from this dis-

tribution. We have the inverse cdf,

F−1(u|γ, δ) = β
(

exp
[
δ (1− u)−

1
γ − δ

]
− 1
)
, (6.50)

so we can estimate r(γ, δ, C) by sampling from a suitably large sample of uniform

random numbers and transforming according to (6.50). We want to estimate the
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knowledge gradient for source k via a nested simulation. Let

r̄(m; γ, δ, C) =
1

m

m∑
`=1

(C−1 − x`)I(x` ≤ C−1) (6.51)

be the reward estimator, where I is an indicator function and the x`’s are IID

samples obtained by inverse transform using (6.50). The standard knowledge

gradient estimator for source k and cap level J is

ᾱk(m,n; γk, δk, C) := r̄(m; γk, δk, C) + min(J, (t− 1))
1

n

n∑
i=1

∆̄k(ui), (6.52)

where the ui’s are IID samples drawn from the density f(·|γk, δk) and

∆̄k(ui) = max

{
max
j 6=k
{r̄(m, γj, δj, C)}, r̄

(
m, γk + 1, δk + ln

(
βk + ui
βk

)
, C

)}
.

(6.53)

Analysis relating to Monte Carlo approach

Using MC approaches, preliminary computations were made to test the adequacy

of the estimator r̄(m, γ, δ, C) and it was found that it has a strong tendency to

increase with γ and decrease with δ. This is consistent with the behaviour of

r(δ, γ, C) described in Lemma 6.2.1.

An unforseen feature of this estimator which became known as a result of the

preliminary work was that if one selects any common ratio, γ
δ

= µ and increases

the values of γ and δ along the line defined by this common ratio condition, one

tends to find that the value of the estimator r(m, γ, δ, C) also increases. This

pattern held for all choices of µ tested and varying the choice of C did nothing to

change this effect. An analytical proof that the estimator r(m, γ, δ, C) behaves in

this way under these conditions is now given.

Lemma 6.3.1. Let y > 0. It follows that δ ln
(
1 + y

δ

)
is increasing in δ for the

range δ > 0.
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Proof. Note that

ln
(

1 +
y

δ

)
=

∫ y
δ

0

1

1 + u
du >

y
δ

1 + y
δ

(6.54)

and hence that

d

dδ

(
δ ln

(
1 +

y

δ

))
= ln

(
1 +

y

δ

)
− δ

y
δ2

1 + y
δ

> 0 (6.55)

as required.

Fix the value of µ > 0 and consider the r.v. Xδ with distribution parametrised

by the positive δ > 0 with p.d.f.

fδ (x) =
δδµ

(δ + x)δµ+1
(x ≥ 0). (6.56)

Corollary 6.3.2. Xδ is stochastically decreasing in δ.

Proof. The distribution function of Xδ is given by

Fδ (y) =

∫ y

0

fδ (x) dx = 1−
(

1 +
y

δ

)−δµ
= 1− exp

[
−δµ ln

(
1 +

y

δ

)]
, (6.57)

which by the above lemma is increasing in δ, ∀y > 0, as required.

Proposition 6.3.3. r (δµ, δ, C) is increasing in δ for any fixed µ > 0.

Proof. We express r (δµ, δ, C) as E (φ (Xδ)) where Xδ is as above and

φ (x) =
(
C−1 − β (ex − 1)

)+
, (x ≥ 0), (6.58)

is a decreasing function. Hence r (δµ, δ, C) is the expectation of a decreasing

function of a Xδ which is stochastically decreasing in δ. The proposition now

follows.

Comment: If µ > 0 is fixed, and γ = δµ then E (α) = γ
δ

= µ is fixed and

V ar (α) = γ
δ2

= µ
δ

is decreasing in δ. Hence the above result concerns one-step

rewards for a range of cases in which the mean of α is fixed at µ but its variance
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is decreasing in δ. As this decrease in variance takes place the one-step rewards

increase.

Such a result would mean that the quantity r(γ, δ, C) punishes exploration of

more variable sources to some extent, in particular in such cases where a subset of

competing sources have similar means. Proposition 6.4.3 tells us that the trade-off

between exploitation and exploration in this problem setting is skewed in favour

of exploitation. The degree to which exploitation is favoured in practice isn’t

apparent from the analysis alone but upcoming numerical work in this chapter will

demonstrate that the imbalanced tradeoff can make this problem very difficult.

6.3.2 Thompson and OBS sampling

The continuous MABA analogue to the discrete version of the Thompson sampling

heuristic requires that the processor make a random draw from source k to form

the Thompson sample index TSk for that source. We have

P
(
TSk ≤ (C−1 − u)

)
= F (u|γk, δk) (6.59)

To generate TSk, one samples from F−1(U |γk, δk) where U is U [0, 1]. This is

also the method for generating random samples from the sources once a source

has been chosen. It is very similar to the Thompson sampling method for the

discrete case in its execution. In each time step, the processor samples from the

source k with the greatest associated value of TSk after all such indices have been

generated.

The optimistic Bayes sampling index for source k, OBSk is defined as

OBSk = max (TSk, r(u|γk, δk)) , (6.60)

which forms a parallel with the relationship between Thompson and Optimistic

Bayes sampling methods in the discrete case. In the case of OBS, the processor

samples from the source k with the greatest OBSk value at each time t.
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6.4 Preliminary numerical studies - KG based

heuristics

Throughout the remainder of this chapter, the rewards shown are the respective

values of
∑T

t=1

(
(C−1 − 1)− Y −1t

)+
where the Y −1t are the inverse scores of the

samples sourced and passed to the analyst at time t.

Before any implementation of tractable numerical studies took place, some

preliminary work was undertaken using Monte Carlo integration and numerical

integration to test whether these approaches are the candidate numerical imple-

mentations of the knowledge gradient based heuristics. We conduct some simple

studies to observe whether anticipated behaviours occur and compare the pefor-

mance of these two implementations. Ultimately, we elect to proceed with the

numerical integration approach on the grounds of its superior computational effi-

ciency and it becomes the standard method we use to compute KG indices and

their variants.

6.4.1 Trialling Monte Carlo integration implementation

We now document the preliminary studies designed to test the capabilities of the

Monte Carlo integration implementation of the KG heuristics for this problem.

Wherever the processor needs to compute a one step return, she uses the estimating

method which was set out in section 6.4.1.

In these studies, scenarios involving three competing sources were considered.

The sources were set up such that the prior parameters (γ, δ) governing their

importance distributions are distinct pairs which have the property that the re-

sulting value of r̄(m, γ, δ, C) are reasonably close together. The purpose of this

is to make the three sources equally attractive to a purely greedy policy before

the first sampling choice is made. This places emphasis on differences in future

expected rewards between the three sources. For any three source experiment

considered, the same initial parameters were chosen.
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Source 1 Source 2 Source 3

γ 3 6 9
δ 2 4.128 6.27

E(α) 1.5 1.45 1.44
V ar(α) 0.75 0.35 0.22

Table 6.1: Parameter choices for 3 source scenarios

The global known scale parameter was set to β = 2, the hesistation constant

to C = 1 and the length of the time horizon to be T = 100. For outer level

computations the number of iterations was set to m = 104 whilst n = 103 iterations

were used for inner computations. We consider 300 problem horizons and place

no constraints on the number of allocations that the processor makes in these

preliminaries.

The corresponding values of r̄(m; γ, δ, C) (see equation (6.51) in Section 6.4.1)

for the sources described in Table 6.1 were approximately 0.252, a figure based

on the mean of 106 random MC iterates for each of the three pairs. The standard

errors for all three sources were approximately 3×10−4, which brings the immediate

expected rewards for the sources reasonably close together on average.

Scenario Generation

Each experiment has fixed parameter values for γk and δk for each source k. For

each horizon simulated, it is necessary to generate values for the processor’s initial

priors for source k from these values.

The approach is to take advantage of the fact that E(α) = γ
δ

and V ar(α) = γ
δ2

to compute values for γ and δ for each scenario. This is achieved by taking a

moderately large number of random samples from a Γ(γk, δk) distribution and

recording the sample mean x̄k and variance sk of these draws. We can then set

the prior values δk,sim and γk,sim for the current run to be

γk,sim = x̄k ∗ δk,sim.

δk,sim =
x̄k
sk

(6.61)
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Table 6.2: KG mean Bayes returns (MC approach, 300 runs)

Policy Mean Bayes Return s.e

KG 25.2 0.79
Cap 50 25.7 0.78
Cap 20 25.3 0.75
Cap 1 25.4 0.88
Greedy 25.8 0.89

Table 6.3: Mean proportion of samples from each source (MC, 300 runs)

Policy Source 1 s.e Source 2 s.e Source 3 s.e

KG 25.2 1.86 35.5 2.12 39.3 2.13
Cap 50 25.9 1.89 34.7 2.11 39.3 2.13
Cap 20 31.1 2.02 32.9 2.08 36.0 2.10
Cap 1 41.1 2.17 28.6 2.01 30.3 2.03
Greedy 34.7 2.10 33.0 2.13 32.3 2.09

and these values form the prior parameters for the K sources for the given horizon.

Using common random numbers, we ensure that each policy is given the same

sequence of randomised horizons in any numerical studies performed.

The mean Bayes returns for problem P ∗(C)′ (with C = 1) that the processor

earns using some KG based source selection policies under this experimental set up

are shown in Table 6.2 alongside the standard errors for those experiments. Monte

Carlo methods are used for the numerical implementation. These preliminary

results suggest that that in this particular problem setting, the processor should

be indifferent between using the greedy and knowledge gradient source selection

policies as the performance difference between the various cap levels looks to be

insignificant.

The proportions of time (averaged across all runs) for which each source was

selected by each policy are shown in Table 6.3. For the KG and Cap 50 policies, the

choice of sources significantly favours sources 2 and 3 over source 1, but otherwise

the three sources attract approximately equal attention from the source selection

policies, which could imply that the sources are too similar on average for the MC

integration method to pick a clear winner. The fact that the greedy policy doesn’t

significantly favour one source suggests that the MC integration method or the
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problem setting is inappropriate so revising both of those issues before more work

is carried out will be necessary.

There are also high levels of random noise in the MC methods used to compute

the KG indices. Tables 6.2 and 6.3 show that the standard errors for these exper-

iments are large. One way to decrease these standard errors would be to increase

the number of problem instances from 300 to a high enough level to reduce the

errors, but this MC approach has proven very expensive in terms of computing

time. Obtaining the current study size took an excess of one day even with par-

allel computing. The approach is already too slow to be of use practically in an

intelligence gathering context where expediency has already been established as

an essential property for any proposed method. In the next subsection we will

see that the direct numerical integration approach compares favourably to Monte

Carlo integration in this regard and ultimately becomes our method of choice for

the larger study in this chapter.

6.4.2 Trialling numerical integration implementation

In an effort to speed up the process of obtaining data and reduce the noise associ-

ated with these data, direct numerical integration was implemented to replace the

Monte Carlo approach. One can use direct numerical integration to make the com-

putations for all the quantities of the form r(m; γ, δ, C) wherever they appear in

the algorithm, replacing the MC methods previously used to compute such terms.

We also compute the KG indices using direct integrations and remove MC methods

from the index computation altogether. The terms in (6.47) are computed using

direct integration.

An effect of this is that the overall duration of individual runs in the experiment

is greatly reduced, allowing more runs to be completed within a fixed time budget.

To illustrate this, the 300 runs required to produce the data in Table 6.4 and

Table 6.5 took approximately half an hour per experiment to generate whilst the

data in Table 6.2 and Table 6.3 took at least twenty four hours per experiment to
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Table 6.4: KG Mean Bayes Returns (Numerical integration, 300 runs)

Policy Mean Bayes Return s.e

KG 25.28 0.04
Cap 50 25.51 0.03
Cap 20 25.13 0.04
Cap 1 25.31 0.04
Greedy 25.42 0.04

Table 6.5: Rate of source selection (Numerical integration, 300 runs)

Policy Source 1 s.e Source 2 s.e Source 3 s.e

KG 13.8 0.17 53.6 0.33 32.6 0.30
Cap 50 12.7 0.16 55.8 0.31 31.5 0.29
Cap 20 12.9 0.17 65.6 0.30 21.5 0.26
Cap 1 30.8 0.32 55.1 0.36 14.1 0.22
Greedy 100.0 0.0 0.0 0.00 0.0 0.00

produce. In some large part this addresses an earlier held concern that this solution

method would be impractical for use in the an operational setting. There is also a

major reduction in the standard error as a result of the change of approach for the

same number of runs. Comparing the mean Bayes returns of Table 6.4 with the

analogous MC data in Table 6.5 we see do not see any apparent effect that varying

the look-ahead cap has on the mean Bayes returns. Any amount of exploration

seems to produce the same mean reward level. This effect is now most likely to be a

consequence of the parameters of the experiment; it may be that the choice of C is

so low that most sampled items are likely to be allocated. The initial set-up of the

sources makes the choice between exploration and exploitation irrelevant, because

the cap level, unlike in the MC case, has a significant effect on source selection.

Comparing Table 6.3 to Table 6.5 we see that the rate at which the various sources

are selected for sampling in each instance vary between the two approaches. The

direct integration approach significantly favours source 2 over sources 1 and 3 for

non-zero cap levels whereas source 1 is chosen exclusively in the pure exploitation

case. For caps of 20 and greater source 3 is also chosen significantly more often

than source 1 but source 2 still prevails as the preferred choice on average.

The direct numerical integration approach favours source 1 outright in the
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Table 6.6: KG Mean Bayes Returns (Numerical integration, 2500 runs)

Policy Mean Bayes Return s.e

KG 25.24 0.02
Cap 50 25.28 0.02
Cap 20 25.23 0.02
Cap 1 25.21 0.02
Greedy 25.27 0.02

greedy case, which has the greatest mean and variance, and when the cap level is

non-zero the policy strongly prefers source 2 and decreasingly selects source 1 as

the cap increases to favour the two sources with lower variances, possibly preferring

to sample from source 2 more often than source 3 because of its slightly higher

mean importance value.

This behaviour shows a counter-intuitive property of the non-zero cap (KG)

policies in that a source with a lower E(α) and lower V ar(α) (source 2) is more

likely to be chosen than a source with a a higher E(α) and V ar(α) (source 1)

which suggests that exploration of more variable sources for potentially greater

rewards is not taking place. Rather, the KG-type policies are displaying a more

risk averse nature, opting to avoid sources with higher values of V ar(α) to avoid

potentially lesser rewards. This behaviour is most likely explained by Proposition

6.4.3, which tells us that this problem is skewed in such a way to disincentivise

exploration to an extent. What is striking here is that this punishment of higher

V ar(α) is of a scale that a source which also has a higher E(α) can still be passed

over for a source where the same value is lower. It is a particular weakness of the

KG based heuristics in this setting.

Since it is possible to perform more runs per unit time using direct numerical

integration than the MC approach, this was exploited to collect the same statistics

from 2500 runs in approximately the same amount of time it would take to obtain

300 runs from the MC approach. These results are shown in Tables 6.6 and 6.7.

The direct numerical integration approach does not render the greedy policy

superior to any of the policies that place any weight on exploration by having a non-
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Table 6.7: Rate of source selection (Numerical integration, 2500 runs)

Policy Source 1 s.e Source 2 s.e Source 3 s.e

KG 11.8 0.10 56.6 0.20 31.6 0.19
Cap 50 12.7 0.10 55.8 0.20 31.5 0.18
Cap 20 12.6 0.11 63.9 0.20 23.5 0.17
Cap 1 32.3 0.21 53.5 0.22 14.2 0.14
Greedy 100.0 0.00 0.0 0.00 0.0 0.00

zero cap level. We find in this particular scenario that in terms of the Bayes returns,

one may generally choose any source selection policy that has been considered so

far and be confident that the rewards will be as high as if any other cap were

chosen. The invariance of rewards to the cap level chosen for the source selection

policy reflects the similarity of the mean importance across the three sources in

this study but Table 6.7 shows us that the cap level does have a noticeable impact

on which source is chosen, even if this does not translate into dramatic differences

in rewards. We see once more that increasing cap levels, corresponding to placing

increasing weight on the exploration term, results in source 2, and to a lesser

extent source 3, receiving a greater proportion of the sampling effort from the

source selection policy.

The greatest change is between the greedy policy and the Cap 1 policy, which

includes some element of exploration, where the higher V ar(α) value of source 1

appears to repel this policy and others with non-zero caps on exploration. This is

a further indication that sources with greater variances are seen as less attractive

by policies which take a one-step look into the future, despite source 1 having a

greater E(α) value in its item importance distribution. Further studies will be

conducted to examine whether this trend holds in other scenarios.

6.4.3 Two source comparisons

To understand more clearly how variants of the KG policy are affected by the

initial parameter choices for the item importance distributions of the sources, a

series of two source scenarios were studied. The two source format should make
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Table 6.8: Parameter choices for source 2 in studied scenarios

γ δ E(α) V ar(α)

Identical 3 2 1.50 0.750
Lesser V ar(α) 30 20 1.50 0.075

Lesser E(α) and V ar(α) 8 6 1.33 0.222
Greater E(α) and lesser V ar(α) 30 15 2.00 0.133

it easier to make conclusions regarding source selection behaviour without a third

source creating interference.

The mean Bayes returns for the total importance of allocated items in problem

P ∗(C)′ (for C = 1) and source selection rates for the three studies are shown

in Tables 6.9 through 6.16 and the parameter choices for each study are shown

in Table 6.8. In all four of these studies, source 1 has γ = 3 and δ = 2 and

acts as a control source in each of the studies. The mean Bayes returns for the

identical source version of the two source study do not vary with the cap level

in any significant fashion. One does not expect to be able to gain much through

exploration when the sources are so similar, as neither source will stand out as

particular worthy of exploration, since both sources are identical. The rate at

which the two sources are sampled from was evenly split between the two sources,

as one would expect.

Table 6.9: Mean Bayes returns (Identical Sources, 10000 runs)

Policy Mean Bayes Return s.e

KG 25.26 0.035
Cap 50 25.28 0.034
Cap 20 25.26 0.035
Cap 1 25.24 0.034
Greedy 25.19 0.035

When source 1 has a higher V ar(α) value, the mean Bayes returns decrease

with the cap level as shown in Table 6.11. In this study it is possible to see a

significant effect on rewards that can be attributed to the size of the cap placed

on the exploration term in the KG index.

In Table 6.12, the greedy and Cap 1 policies choose significantly more often the
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Table 6.10: Rate of source selection (Identical Sources, 10000 runs)

Policy Source 1 s.e Source 2 s.e

KG 50.8 0.41 49.2 0.41
Cap 50 50.6 0.41 49.4 0.41
Cap 20 50.3 0.41 49.7 0.41
Cap 1 50.6 0.41 49.4 0.41
Greedy 50.1 0.03 49.9 0.03

source with the smaller V ar(α) value than the policies with caps of 20 or above. At

this point one may believe that the exploration aspect of the KG index seeks source

1 because of its higher V ar(α), contradicting the behaviour seen in the preliminary

experiments where the sources with the lower V ar(α) (and E(α)) were favoured

as the weight on the exploration term went up. However the pure exploitation

case favoured source 2 and we have already shown analytically with Proposition

5.4.3 that a lower V ar(α) is favoured when the values of E(α) are equal in this

setting. Something else about the KG index must be driving sampling traffic to

the alternative source as the cap level increases.

Table 6.11: Mean Bayes returns (Lesser V ar(α) (source 2), 10000 runs)

Policy Mean Bayes Return s.e

KG 25.47 0.035
Cap 50 25.50 0.035
Cap 20 25.54 0.036
Cap 1 26.40 0.035
Greedy 26.47 0.035

Table 6.12: Rate of source selection (Lesser V ar(α) (source 2), 10000 runs)

Policy Source 1 s.e Source 2 s.e

KG 82.3 0.25 17.7 0.25
Cap 50 81.7 0.26 18.3 0.26
Cap 20 81.3 0.26 18.7 0.26
Cap 1 7.7 0.13 92.3 0.13
Greedy 0.0 0.00 100.0 0.00

When source 1 is initialised with a larger E(α) and a higher V ar(α) parameter

than source 2, there is a significant decrease in the rewards as the cap level is
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increased as shown in Table 6.13, which coincides with a decrease in the sampling

rate of source 1 as the cap level increases as shown in Table 6.14. It has already

Table 6.13: Mean Bayes returns (Lesser E(α) and V ar(α) (source 2), 10000 runs)

Policy Mean Bayes Return s.e

KG 23.81 0.035
Cap 50 23.86 0.034
Cap 20 23.87 0.034
Cap 1 24.42 0.034
Greedy 25.27 0.035

been observed when the E(α) values are equal a high cap version of the KG index

will choose the source with the lower V ar(α) in this study. Source 2 has both the

lower V ar(α) and the lower E(α) value of the two sources considered and still the

high cap versions of the KG index significantly favour it. The greedy choice in

all the studies so far appears to be consistent with the theory that higher E(α)

values are typically favoured and sources with lower V ar(α) prevail in cases where

sources have equal E(α). However, the only consistent pattern with regards to the

prevailing choice in the high cap cases is that the KG policy increasingly disagrees

with the greedy policy as the cap increases. To further demonstrate this, the fourth

study’s source 2 possesses both a greater E(α) and smaller V ar(α) than source 1.

Source 2 should be preferred very strongly to source 1 and in the pure exploitation

case (and in the Cap 1 case) we see that source 2 is chosen without deviation in

Table 6.16. However as the cap level becomes sufficiently high, we witness a strong

deviation to the inferior source 1 in Table 6.16 despite the detrimental effect this

has on rewards, which fall sharply as the cap level increases as shown in Table

Table 6.14: Rate of source selection (Lesser E(α) and V ar(α) (source 2), 10000
runs)

Policy Source 1 s.e Source 2 s.e

KG 8.5 0.11 91.5 0.11
Cap 50 8.6 0.11 91.4 0.11
Cap 20 8.8 0.12 91.2 0.12
Cap 1 47.1 0.38 53.9 0.38
Greedy 100.0 0.00 0.0 0.00
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Table 6.15: Mean Bayes returns (Greater E(α) and smaller V ar(α) (source 2),
10000 runs)

Policy Mean Bayes Return s.e

KG 27.20 0.045
Cap 50 27.32 0.045
Cap 20 27.45 0.047
Cap 1 33.18 0.037
Greedy 33.11 0.037

Table 6.16: Rate of source selection (Greater E(α) and smaller V ar(α) (source 2),
10000 runs)

Policy Source 1 s.e Source 2 s.e

KG 74.5 0.27 25.5 0.27
Cap 50 74.0 0.28 26.0 0.28
Cap 20 72.0 0.30 28.0 0.30
Cap 1 0.0 0.00 100.0 0.00
Greedy 0.0 0.00 100.0 0.00

6.15.

It would appear in these two source studies the KG policy, with a sufficiently

high weight placed on the future rewards term, will choose the next best source

and rarely choose the source which prevails under pure exploitation. This can be

shown analytically under certain conditions.

Rationale: Denote by k∗ the greedy-optimal source. For sufficiently large t,

the KG policy as defined in (6.44) will tend to select the source with the second

greatest value of r(γ, δ, C) if r(γk∗ , δk∗ , C) > r
(
γk∗ + 1, δk∗ + ln

(
β+u
β

)
, C
)

, where

u is the inverse importance of the next sampled item.

Any source s in a given problem which is not k∗ has a value of r(γs, δs, C)

which is less than r(γk∗ , δk∗ , C) by definition. For source j, the value of the

maxj 6=s r(γj, δj, C) = r(γk∗ , δk∗ , C), whereas for source k∗ the equivalent value is

again smaller by definition of k∗. If r(γk∗ , δk∗ , C) < r
(
γk∗ + 1, δk∗ + ln

(
β+u
β

)
, C
)

then the expected future rewards term of the KG index of the greedy-optimal

source k∗ will be strictly less than the equivalent terms for all other sources. When

comparing the KG indices of the greedy-optimal source k∗ with some other source
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s, for t large enough, we have that

(t− 1)

∫ ∞
0

fs (u | γs, δs) ∆ (s, u)− fk∗ (u | γk∗ , δk∗) ∆ (k∗, u) du

> r(γk∗ , δk∗ , C)− r(γs, δs, C) (6.62)

and therefore KG(s, t) > KG(k∗, t) for all s 6= k∗ and the maximal such KG(s, t)

is associated with the source with the greatest r(γs, δs, C), which is the source with

the second greatest value of r(γ, δ, C).

Numerically, for u > 0 I found that the act of sampling from a source causes

an update which results in the decrease of its immediate expected returns, at least

for the cases considered in the studies shown so far. I am unclear whether this

pattern holds generally so I’ll leave it as an open issue for now. For u > 0, is

r(γ, δ, C) > r
(
γ + 1, δ + ln

(
β+u
β

)
, C
)

generally or are there specific conditions

under which this is true?

6.5 Numerical Study: Existing approaches

We now look to examine the performance of heuristic approaches, which have been

adapted to fit within the framework of the continuous MABA problem.

6.5.1 Experiment set-up

Six numerical studies were undertaken to make an assessment of the relative per-

formance level of several source sampling policies. Two varieties of three source

problem were considered which we will refer to as Experiments 1 and 2. The

pararmeters for each of the sources in these experiments are shown in Tables 6.17

and 6.18. Both experiment types are run for each of the target horizon quantiles

qh = 0.95, 0.85, 0.70 with T = 100. The source selection policies considered are

knowledge gradient, greedy, Thomspon sampling and optimistic Bayes sampling.

We also consider capped variants of the KG policy with the cap J set to 1, 20,
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Source 1 Source 2 Source 3

γ 3 6 9
δ 2 4.128 6.27

Table 6.17: Parameter choices for 3 Experiment 1

Source 1 Source 2 Source 3

γ 3 6 9
δ 4 8.257 12.54

Table 6.18: Parameter choices for Experiment 2

and 50.

In all of the experiments, the processor is trying to solve the problem P ′ for

the various values of qh. She does this by first solving P ∗′ via P ∗(C)′ and then

forcing the number of allocations to be bT (1− qh)c to obtain a solution to P ′.

As with the discrete MABA numerics, for each policy one first makes a binary

search for the smallest integer values of C such that at least bT (1− qh)c items are

allocated on average. For the purposes of the numerics here, the term on average

refers to the mean allocation rate over 1000 horizons.

The resulting value of C for each heuristic tested is used as the threshold for

that policy over 10000 randomly generated horizons. For each allocation decision

there is a probability p that C − 1 is used as the threshold (if C > 1) instead of C

which is computed using the formula in (5.32) in Chapter 5. Due to the changing

nature of the threshold, all rewards are computed relative to (C − 1)−1 instead of

C−1. Unlike the discrete case, items which are passed along to the processor at the

end of the horizon such that exactly bT (1− qh)c items are allocated have a value

of zero if their importance value is not large enough to be allocated under normal

circumstances. This has the consequence of making poor runs slightly worse in

extreme cases.
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6.5.2 Results

Six sets of results showing the mean Bayes returns obtained by the processor

under the various source selection policies are displayed in Tables 6.19 to 6.24.

With regard to the results as a whole, the variants of the KG policy appear to

differ very little in terms of their performance. There are some instances where

one of these policies stands out from the others in an individual study, but no

single KG variant consistently stands out superior.

The Thompson sampling method tends to perform significantly better than all

other policies whereas the OBS policy’s performance is inconsistent when com-

pared to the other policies, and generally performs the worst of all. The only

difference between the implementation of the two policies is that OBS always uses

the expected item importance r(u|γk, δk) as the minimum index for each source k,

regardless of the random draw from the posterior distribution. It is possible that

in doing so, OBS neglects to explore the sources as much as Thompson sampling

does. However, we previously saw in the discrete MABA problem (Chapter 5)

that OBS performed very well in the numerical experiments there. This suggests

that the problem with OBS in the continuous MABA problem isn’t exclusively

because of the policy itself. Instead the specific relationships between the contin-

uous MABA problem (and the discrete MABA problem) require further analysis

to determine why their performance varies so much between the two settings. We

leave this as a subject for future work. The need to examine this variation was

discovered at such a time that rendered it impossible for us to embark on this

analysis in earnest.

In Tables 6.19 and 6.22 we see the results for Experiments 1 and 2 where

qh = 0.95 so the processor only allocates exactly 5 out of the 100 items seen. In

these scenarios, the difference in performances among the policies is the narrowest.

This is partly due to there being too few items in total for there to be significant

variation in their performance. In any further studies it may be worth omitting

problem cases where the number of allocated items is this small. Additionally, the
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Policy Mean Bayes return s.e C p

KG 0.6809 0.0016 11 1.00
Greedy 0.6848 0.0016 11 1.00

KG Capped at 1 0.6831 0.0016 11 1.00
KG Capped at 20 0.6853 0.0016 11 1.00
KG Capped at 50 0.6835 0.0016 11 1.00

Thompson 0.6874 0.0016 11 1.00
Optimistic 0.6824 0.0016 11 1.00

Table 6.19: Mean Bayes returns for Experiment 1 with 1− qh = 0.05

Policy Mean Bayes return s.e C p

KG 1.4228 0.0036 8 0.55
Greedy 1.4209 0.0037 8 0.55

KG Capped at 1 1.4171 0.0036 8 0.57
KG Capped at 20 1.4308 0.0037 8 0.52
KG Capped at 50 1.4296 0.0037 8 0.55

Thompson 1.8652 0.0044 8 0.13
Optimistic 1.4310 0.0039 8 0.33

Table 6.20: Mean Bayes returns for Experiment 1 with 1− qh = 0.15

threshold value C has to be at its highest setting in order to filter the stream of

incomng items sufficiently to only submit 5 of them.

In Table 6.21 the converse effect is observed where the number of allocations

in the experiment is too great for there to be any noticeable difference in the

policies’ performances. In Experiment 1 30 items out of 100 are allocated and the

policies are all equally capable of searching and allocating the best 30 items. This

again highlights the importance of adequate parameter selection when designing

experiments to test the capabilities of competing policies. This particular problem

setup is too easy to allow superior policies to differentiate themselves from inferior

ones.

The optimistic Bayes sampling heuristic has performed relatively poorly in the

continuous MABA problem, which is in stark contrast to its performance in the

discrete MABA problem, where it was second only to PI and Lagrangian, where

applicable. It is not apparent why the optimistic nature of OBS is detrimental to

its performance but it is clear that it is where the problem lies, seeing as Thompson
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Policy Mean Bayes return s.e C p

KG 8.082 0.016 3 0.35
Greedy 8.028 0.017 3 0.83

KG Capped at 1 8.065 0.017 3 0.44
KG Capped at 20 8.056 0.017 3 0.56
KG Capped at 50 8.020 0.017 3 0.76

Thompson 8.073 0.018 3 0.34
Optimistic 7.914 0.019 3 0.89

Table 6.21: Mean Bayes returns for Experiment 1 with 1− qh = 0.30

Policy Mean Bayes return s.e C p

KG 0.6764 0.0017 11 1.00
Greedy 0.6791 0.0017 11 1.00

KG Capped at 1 0.6773 0.0017 11 1.00
KG Capped at 20 0.6751 0.0016 11 1.00
KG Capped at 50 0.6765 0.0017 11 1.00

Thompson 0.6783 0.0017 11 1.00
Optimistic 0.6681 0.0017 11 1.00

Table 6.22: Mean Bayes returns for Experiment 2 with 1− qh = 0.05

Policy Mean Bayes return s.e C p

KG 3.869 0.008 4 0.57
Greedy 3.875 0.008 4 0.38

KG Capped at 1 3.840 0.008 4 0.78
KG Capped at 20 3.867 0.008 4 0.57
KG Capped at 50 3.876 0.008 4 0.57

Thompson 3.873 0.009 4 0.55
Optimistic 3.736 0.011 4 0.89

Table 6.23: Mean Bayes returns for Experiment 2 with 1− qh = 0.15

Policy Mean Bayes return s.e C p

KG 14.978 0.045 2 0.23
Greedy 14.899 0.046 2 0.23

KG Capped at 1 14.985 0.045 2 0.19
KG Capped at 20 14.894 0.046 2 0.27
KG Capped at 50 14.845 0.046 2 0.76

Thompson 16.210 0.046 2 0.01
Optimistic 14.077 0.044 2 0.89

Table 6.24: Mean Bayes returns for Experiment 2 with 1− qh = 0.30
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sampling has a much better performance when the two policies are compared in

the continuous setting. Sampling from the posteriors to create indices seems to be

effective, but augmenting those indices in the OBS case does not seem to work. It

would require further scrutiny of how OBS differs in behaviour to Thompson to

gain the insights required. In particular, it would be worth tracking how often OBS

indices result in sampling from a source with a lower E(α) because of a favourable

draw from the posterior versus how often OBS indices fail to sample from sources

with higher E(α) because of unfavourable draws in the index creation stage.

It may be that the performance of OBS and Thompson sampling methods

are entirely problem dependent. Conducting a study large enough to ascertain

whether or not this is the case would be a task for some future work. The ques-

tion of what exactly differentiates Thompson sampling’s performance from that

of OBS sampling in either the continuous or the discrete setting is not clear from

the work that has been carried out. Apart from this concern, Thompson sampling

is the most effective source selection heuristic across all studies in the continuous

setting. However, because of the arising concern that its performance may not be

consistent across a fuller range of problems, the standard KG heuristic would be a

recommended alternative because of its consistent high level of performance across

all of the experiments in the discrete and continuous settings. The standard KG

heuristic is also an appealing choice in the discrete setting following this argument,

as the consistency concerns relating to the Thompson sampling method in the con-

tinuous setting apply equally to the OBS method in the discrete case. Furthermore

the Lagrangian index heuristic performs exceptionally well where it has been pos-

sible to implement it, but we are not yet in a position where it can be broadly used

in all problem settings because of outstanding computational tractability issues.

The standard KG heuristic seems to be the most appropriate to use overall.

There doesn’t appear to be a tangible reason to use any of the capped variants

for any specific reason from the data. Capping the KG has the effect of making

it increasingly like the greedy policy (the lower the cap, the more like a greedy
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policy KG becomes), and although we have shown analytically (see Prop. 6.4.3)

and practically (see section 6.5.3) that exploration type behaviour in this setting

can be costly, a pure exploitation policy can only marginally outperform KG within

these edge case scenarios. From the results in this section, the cost of exploration

appears to be worth paying as the greedy policy falls far behind when it cannot

match the performance of KG.

What remains to be addressed in future work is to examine more closely the

behaviour of Thompson and OBS sampling methods to determine the causes for

the gulf in their relative performance levels. Additionallly, finding a heuristic to

approximate a Lagrangian index approach for the continuous setting is desirable,

as we have seen some evidence from the discrete setting that such an approach

could work very well, even if we have only seen it in a limited setting in Chapter

5.
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6.6 Future work: Existing heuristic approaches

for implementing Lagrangian relaxation

Computational limitations have hindered our efforts to provide an implementation

of the Lagrangian index source selection policy in the continuous MABA problem

for a general horizon length T . We close this chapter with a brief discussion

into how we could use existing techniques from the literature to develop a more

computationally tractable solution approach.

A closed form approximation to the Whittle index is developed in [Brezzi and

Lai, 2002] to simplify the exploration aspect of the indices. It is compatible with

our Bayesian Gamma model and for clarity I’ll state results to be consistent with

the notation used in this document. For an alternative with reward distribution

with shape parameter γ, rate parameter δ and t time periods reamining, the Brezzi-

Lai index is

IBLt (γ, δ) =
γ

δ
+

√
γ

δ
ψ

(
1

δ ln( t
t−1)

)
(6.63)

where

ψ(x) =



√
x/2 if s ≤ 0.2

0.49− 0.11(x/2)−
1
2 if 0.2 < s ≤ 1

0.63− 0.26(x/2)−
1
2 if 1 < s ≤ 5

0.77− 0.58(x/2)−
1
2 if 5 < s ≤ 15

(2 lnx− ln lnx− ln 16π)
1
2 if s > 15.

(6.64)

The literature explains that IBLt has the same desirable properties as our true

index W (γ, δ, t) in that it is increasing in t and γ and decreasing in δ. An alterna-

tive approximate index was developed in [Caro and Gallien, 2007] which performs

favourably against the Brezzi-Lai index in the numerical experiments carried out

in the literature. It is defined as

ICGt (γ, δ) =
γ

δ
+

zt
√
γ

√
δ2 + δ3

, (6.65)
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where zt is the solution to (t − 1)Ψ(z) = z where Ψ is the normal error function.

Again, this index has the desired properties in relation to its arguments, so it

is a candidate heuristic for W (γ, δ, t). The only obstacle to using both of these

heuristics is adapting them to be compatible with the rewards framework of our

MABA problem. It is not immediately obvious how this would be done and would

require some further analytical work.

Implementation of existing heuristics to Lagrangian formulation of the

MABA problem

A natural way to include these heuristic indices into our Lagrangian approximation

of the intelligence management problem would be to replace the computationally

expensive EuVt

(
γ + 1, δ + log

(
β+u
β

))
, (for reasonably large t at least) and replace

it with either ICGt (γ, δ) or IBLt (γ, δ).

The immediate issue with doing this is that neither of these indices incorporates

the hesitiation constant C, so using them in this way would mean that estimates

of the fair sampling charge W would not approximate those based on r(γ, δ, C).

The desire to find the highest quality, top quartile items would be diminished by

this. Replacing r(γ, δ) with say, IBLt (γ, δ) would completely remove this desirable

aspect of the model.

However if one were to use a hybrid approach, where the immediate expected

rewards at least took the hesitation constant C into account, then we could use

the approximation

W̃ = r(γ, δ) +
1

n

j∗∑
i=1

(
IBLt (γ + 1, δ[i])− Ŵ

)
, (6.66)

where

j∗ = max

{
j : 1, . . . , n : IBLt (γ, δ[j]) ≥ r̄(γ, δ) +

1

n

n∑
i=1

max
{
ĪBLt (γ, δ[i])− IBLt (γ, δ[j]), 0

}}
.

(6.67)

This has the benefit of including the one-step rewards in a way which is true to
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the model and also giving weight to the more variable sources in a way which is

very cheap computationally. There is no guarantee that this will be robust as the

hybrid isn’t likely to have the same order of magnitude. It may be better to fully

commit to using the heuristic indices and instead use

W̃ = IBLt (γ, δ) +
1

n

j∗∑
i=1

(
IBLt (γ + 1, δ[i])− Ŵ

)
, (6.68)

which would solve the robustness issue but would abandon a key attribute of the

model by disregarding the importance of C entirely. This issue could be worked

around by incorporating r(γ, δ) into a hybrid index at each stage so that

IHt (γ, δ) = r(γ, δ)

(
γ

δ
+

zt
√
γ

√
δ2 + δ3

,

)
(6.69)

which takes a similar approach to that used in [Glazebrook et al., 2012] where the

authors added problem-specific features to IBLt (γ, δ) when considering an assort-

ment problem. We could then use (6.68) with IHt , although doing so would render

the computation of W̃ at least as computationally expensive as evaluating the fair

charge for T = 2. Whether one can avoid or reduce the amount of computations

related to this (via omission or discretisation of the (γ, δ) space) and still maintain

a robust, near-optimal decision policy is yet to be seen and further work on this

subject would be required.



Chapter 7

Conclusions and future

considerations

The largest component of the work carried out in this document relates to the

multi-armed bandit allocation problem (MABA) which was introduced in Chapter

4 and then developed into numerical studies in subsequent chapters. Chapter

5 pursued a discrete Dirichlet-multinomial model and Chapter 6 focused on a

continuous Exponential-Gamma-Gamma formulation, which also incorporated the

feature of the processor’s judgement uncertainty.

Overall, this thesis has managed to develop some robust methodologies to at-

tack a collection of problems usually not tackled in the literature and that are of

importance to those in the intelligence community. The contributions to solving

the discrete MABA here have already provided solutions based on numerical test-

ing. This thesis has also explored possible avenues for attack in the continuous

case as well as incorporating the operational concern of processor uncertainty.

7.1 Discrete MABA problem

For the discete MABA model, a wide range of numerical experiments were con-

ducted to test the relative performance level of various item allocation policies.

Where the Lagrangian policy was tested, it performed second only to the super-

169
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optimal ’perfect information’ policy.

The optimistic Bayes sampling method and knowledge gradient methods also

performed well very well, with optimistic Bayes faring better than knowledge gra-

dient across the range of numerical experiments that were carried out in Chapter 5.

The standard Knowledge gradient typically outperformed any variation of the pol-

icy which involved capping the look ahead multiplier on future expected rewards,

including the greedy policy. The Thompson sampling method outperformed the

greedy policy but less well than knowledge gradient.

Although the Lagrangian policy has shown to be the most effective in the

numerical studies that it has featured in, it should be noted that the range of

examples considered was limited to those in which the value of C was set to be

N−1 to decrease the computational cost of running numerical studies. Expanding

the work done here so that more reward states per source can be considered would

be a priority subject for further study of the Lagrangian allocation policy in the

discrete MABA model.

The robustness of the thresholding policies for allocated sampled items was

sufficiently good to yield usable results, and the dynamic C policy outperformed

static C in the numerical study, but both thresholding variants could be improved

upon. Investigating ways to tune the static C policy more efficiently and without

using the mean number of allocated items in the unconstrained case would certainly

be an avenue for further work. With dynamic C, simply giving it an extensive range

of test cases would help to uncover under which circumstances it performs less well

so that any policy redesign can then take place.

The judgement uncertainty feature included in the continuous MABA model

is one which has been described as desirable by intelligence professionals during

informal discussions and it is also called for in [Friedman and Zeckhauser, 2012]

and [Kaplan, 2012]. A priority for future work on the discrete MABA model in

this document would be to find a suitable way to incorporate this feature into the

discrete MABA work and evaluate how policies perform there.
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7.2 Continuous MABA problem

The main issues arising when formulating the continuous MABA model are those of

the complexity of the model itself and of selecting appropriate problem settings to

fully test the capabilities of various allocation policies. The Exponential-Gamma-

Gamma structure is not as operationally transparent as the discrete model.

The analytical framework that has been built to incorporate the judgement

uncertainty feature has come at the cost of not being able to attribute a meaningful

absolute importance value to intelligence items. Rather we must compare them to

a chosen threshold C. One is not able to set C = 0 in the continuous formulation

as was the case in the discrete model.

Any mean Bayes returns obtained are hard to compare to other results obtained

under a different value of C. Using a common value of C across many experiments

is a poor solution to this problem, as the choice of C plays a key part in achieving

the best results for any given policy and could bias experiments in favour of certain

policies. However, it may be possible to first use a set of threshold values for the

purposes of allocation decisions, unique to each individual policy. We would then

separately use a common threshold across all policies for the purposes of scoring

and guaranteeing comparable results.

The policies’ relative performances across the pilot study indicate that the

Thompson sampling policy is best suited to the continuous MABA model so far.

Knowledge gradient type policies seem to be largely unaffected by the size of the

look-ahead cap value placed on expected future rewards, and the Optimistic Bayes

sampling policy as it stands is inconsistent. There is currently no adequate super-

optimal policy formulated for this problem that performs consistently well.

The pilot study for the continuous MABA model is limited in scope and further

numerical work is required if more meaningful insights are to be gained. The

framework itself may also need to be redesigned to be more user-friendly to non-

technicians.

A Lagrangian reformulation of the continuous MABA model has been provided



CHAPTER 7. CONCLUSIONS AND FUTURE CONSIDERATIONS 172

as an analogue to the discrete Lagrangian model in Chapter 5. However, at this

time there is no computationally tractable way to produce numerical studies in a

similar fashion to those carried out elsewhere. The computational shortcut used

in the discrete case has no natural analogue in the continuous setting.
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