
Assured Deletion in the Cloud: Requirements, Challenges
and Future Directions

Kopo M. Ramokapane
Security Lancaster Research

Centre
Lancaster, United Kingdom

k.ramokapane@lancaster.ac.uk

Awais Rashid
Security Lancaster Research

Centre
Lancaster, United Kingdom
a.rashid@lancaster.ac.uk

Jose M. Such
Security Lancaster Research

Centre
Lancaster, United Kingdom

j.such@lancaster.ac.uk

ABSTRACT
Inadvertent exposure of sensitive data is a major concern for
potential cloud customers. Much focus has been on other
data leakage vectors, such as side channel attacks, while is-
sues of data disposal and assured deletion have not received
enough attention to date. However, data that is not prop-
erly destroyed may lead to unintended disclosures, in turn,
resulting in heavy financial penalties and reputational dam-
age. In non-cloud contexts, issues of incomplete deletion
are well understood. To the best of our knowledge, to date,
there has been no systematic analysis of assured deletion
challenges in public clouds.

In this paper, we aim to address this gap by analysing as-
sured deletion requirements for the cloud, identifying cloud
features that pose a threat to assured deletion, and describ-
ing various assured deletion challenges. Based on this dis-
cussion, we identify future challenges for research in this
area and propose an initial assured deletion architecture for
cloud settings. Altogether, our work offers a systematiza-
tion of requirements and challenges of assured deletion in
the cloud, and a well-founded reference point for future re-
search in developing new solutions to assured deletion.

Categories and Subject Descriptors
C.2.4 [Cloud Computing]: General; D.4.6 [Security and
Protection]

Keywords
Assured deletion, Secure deletion, Public cloud computing,
Cloud computing security, User assurances

1. INTRODUCTION
For cloud computing customers, disclosure of sensitive

data is a major concern. While research has investigated side
channel attacks and various other types of attacks exploiting
virtualization [23, 26, 45], security issues arising from inse-
cure or incomplete data deletion have not been considered.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCSW’16, October 28 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4572-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996429.2996434

However, incomplete data deletion may lead to unintentional
or premediated exposure of tenants’ sensitive information.
The costs associated with such disclosures are high and in-
clude financial losses (for both customers and providers, e.g.,
through regulatory fines) and loss of reputation. For in-
stance, [29] reported that a bug in a provider’s application
programming interface (API) allowed new tenants to read
data belonging to former tenants. The provider’s system
failed to scrub the disks before reallocating them to new
tenants.

However, it is important to note that assured deletion
guarantees in the cloud are not only important to tenants,
they are also important to providers. From a tenant per-
spective, it is essential to receive assurances that data will
be handled and destroyed as agreed. From a cloud provider
perspective, such guarantees are needed to comply with data
regulations of various countries and regions and also address
tenants’ requirements and expectations. Furthermore, dele-
tion assurances can also become a differentiator in the mar-
ket for a cloud provider.

Significant efforts have been made in various areas to pro-
vide cloud users with assurances such as proof of data avail-
ability [8, 24, 25], data integrity [8, 47], data location [8,
52] and encryption [16]. But, for deletion, cloud tenants are
made to rely heavily on trust – trusting that the provider
will ensure that data is completely deleted upon request.
Sometimes such assurances are included in the contracts and
service level agreements (SLAs) but they still require trust-
ing the provider without any technical proof [20]. Technical
assurances – and proof of deletion upon request – can give
tenants confidence about how their outsourced data is han-
dled and decommissioned.

In non-cloud contexts issues of insecure deletion are well
understood [12, 41, 42, 44]. For cloud tenants, having no
access to the infrastructure makes it difficult for them to
verify deletion of data from the cloud while, for providers,
there are a number of salient features such as service delivery
models, multi-tenancy, virtualization, elasticity, high avail-
ability and data backup, all of which pose various challenges
with regards to providing assured deletion guarantees. Cur-
rent research work in this area has mainly focused on on
scenarios where the tenant wants assured deletion when us-
ing an untrusted cloud provider [49, 40, 27]. Moreover, such
works focus only on cloud storage providers, neglecting ap-
plications involving data processing in the cloud or scenar-
ios where the cloud provider may be interested in providing
deletion assurances.

To contextualize the challenges of assured deletion in the

cloud, we present two adversarial models, one involving a
dishonest cloud provider and the other an honest cloud provider.
Using the dishonest cloud provider scenario, we draw and
present requirements for assured deletion for a tenant, and
then analyse existing solutions for assuring deletion in such
scenarios. We discuss the limitations of such solutions and
the open research challenges. Afterwards, using the honest
provider model we draw requirements for assured deletion
in such a context. In the absence of existing solutions in
extant literature, we review OpenStack, an existing cloud
infrastructure. We analyse, in depth, the OpenStack fea-
ture set and the challenges the various features pose with
regards to assured deletion. In both adversarial scenarios,
we identify both open research problems and current areas
of research that might act as building blocks or help towards
achieving assured deletion in the cloud.

In summary, our main contributions are: as follows

• We discuss the issue of assured deletion in the cloud
from two perspectives, the dishonest provider’s point
of view and the honest provider’s point of view, provid-
ing a distinctive mapping between requirements and
challenges.

• We identify critical cloud features which pose chal-
lenges to assured deletion, and offer a systematic anal-
ysis and discussion of these challenges for assured dele-
tion for both cloud tenants and providers.

• We discuss open challenges for assured deletion in the
cloud, for both the tenant and the provider.

As a result, our work is significant with many benefits.
For researchers, it offers an initial study of the subject; for
practitioners, it provides a comprehensive study of the ex-
isting solutions and identifying limitations and challenges in
the area.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces assured deletion and presents the two ad-
versarial models discussed in this paper. Section 3 discusses
the dishonest cloud provider model by first presenting as-
sured deletion requirements, and then providing an analy-
sis of existing solutions against the requirements. It con-
cludes by presenting the limitations of the existing solutions
and possible future research areas. Section 4 starts by pre-
senting assured deletion requirements for the honest cloud
provider model followed by an analysis of current cloud in-
frastructure (OpenStack) with regards to assured deletion,
culminating in open research problems. Section 5 briefly dis-
cusses the insights from the two models, positing an initial
architecture for assured deletion in the cloud, while Section
6 concludes the paper.

2. ASSURED DELETION
While data security is commonly related to protecting and

preserving data privacy, it is important to point out that
data disposal is also an essential aspect of managing and
protecting sensitive data. It is a key element in assuring
confidentiality. Incomplete data deletion may lead to inad-
vertent exposure of tenants’ sensitive information.

Assured deletion methods are different and behave differ-
ently. According to [12, 41, 39], assured deletion is achieved
when an adversary with access to the system is no longer
able to recover deleted data from the system, while [40, 38,

43] also suggest that data is assuredly deleted when it is
permanently inaccessible to anyone upon request after it has
been deleted. Throughout our discussion, we assume data
is assuredly deleted when it can no longer be accessed or
recovered or constructed to have any useful meaning after it
has been deemed deleted.

Adversarial Models
In the following subsections, we present and describe our two
adversarial models. In the first model, we consider a scenario
where a tenant uses the services of a dishonest cloud provider
while the second model considers a scenario where the cloud
provider is honest. In both scenarios, we assume that cloud
tenants desire to have their data assuredly deleted from the
cloud infrastructure. The difference between the two models
is that, in the first model the cloud provider is acting as an
adversary while in the second model the provider is not an
adversary and is willing to provide assured deletion as a
service. Other attacks (e.g., side channel attacks) are out
of our scope since there is already a substantial amount of
research on such attacks [23, 26, 45].

Dishonest cloud provider
In this scenario, we consider a situation where a cloud ten-
ant is using a public cloud provider for storage and data
processing services. The tenant outsources most of his/her
data to the cloud but is suspicious and sceptical about the
provider’s data disposal responsibilities. We assume that
the tenant is aware of the risks involved in incomplete or
impartial deletion of data and does not want to be a victim
of data leakage. Without losing any benefits of using the
cloud or incurring any extra cost, the tenant wants to en-
sure that data will always remain safe even after deletion.
We also assume that the provider is not only curious about
tenants’ data but has some other malicious tenants who are
also interested in getting hold of other tenants’ data. During
provisioning of services the provider’s insiders (e.g., system
admin) may probe freed resources or decommissioned servers
for tenants’ data. A malicious tenant may request more re-
sources (e.g., processing server) from the cloud provider, but
before writing any data to the availed resource, the malicious
tenant probes the provided resource for any sensitive data
that may have been left behind by a previous user.

Honest cloud provider
For our second model, we consider a scenario where a public
cloud provider is honest but prone to accidental data leaks
due to incomplete deletion. Due to escalating number of
incidents of data leakages in the cloud, we assume that our
provider is conscious about reputation and does not have
any intentions to leak tenants’ data. We also assume that
the provider has other security mechanisms in place to pro-
tect the tenants’ data from other attacks which could lead
to data loss. Additionally, it is in the interest of the provider
to provide confidentiality and comply with legal and stan-
dard regulations. In spite of the cloud provider’s good inten-
tions, malicious tenants may randomly probe their resources
for partially deleted data. Again, unless data is completely
deleted from the infrastructure, malicious attackers may tar-
get decommissioned machines from the cloud provider to
steal data.

In the next two sections, we systematise the aspects of as-
sured deletion in the cloud using the two scenarios described

above. We review each scenario under the following aspects:
requirements for assured deletion, existing approaches and
challenges of assured deletion in the cloud, and afterwards
compare insights from the two analyses.

3. DISHONEST CLOUD PROVIDER
In situations where the tenant is the one interested in

assured deletion and the provider is dishonest, the tenant
has to carry the burden of ensuring that data is inaccessible
after deletion. From the dishonest cloud provider model
above, we draw and summarise the tenants’ requirements
for assured deletion in the cloud. These are requirements to
be considered when a cloud user does not trust the provider.

3.1 Requirements for Assured Deletion
Fine-grained: Deletion should be fine-grained in that

only the target data is deleted while other data remains safe
and accessible to the tenant. Fine-grained deletion gives the
user more control over what to delete in the cloud, therefore,
reducing cost of deletion operations.

Usability: User’s daily work and use of the cloud should
not be affected. Assured deletion should be easy to at-
tain without accumulating any usability cost or affecting
the user’s productivity.

Cloud Computation: Use of data should not be af-
fected, that is, cloud tenant should continue to work with
data as before without any problems. They should be able
to complete necessary data operation, for example, sorting
and searching.

Complete deletion: Assured deletion requires that the
deletion should affect all copies of data associated with the
deleted data including the metadata.

Timeliness: Deletion should be completed promptly; deleted
data should not be accessible from the environment imme-
diately after deletion is complete.

From a tenant’s perspective is it always challenging to as-
sure deletion in the cloud since there is little that a tenant
can do – tenants do not have access to the actual physical
infrastructure, therefore, they have limited options. In most
cases, tenants are forced to explore other complete deletion
approaches that do not require modification of the infras-
tructure. These solutions are mostly based on cryptographic
schemes. In the next section we discuss encryption as a solu-
tion to guarantee deletion in the cloud. First, we survey and
discuss existing encryption approaches to assured deletion
in the cloud and then present a discussion of the challenges
and limitations of those solutions against the requirements
mentioned above. Later, we present the areas that could be
explored in order to improve such solutions.

3.2 Existing approaches
In this section, we present existing encryption solutions

proposed to guarantee deletion in the cloud. Our aim is
to compare existing approaches through a discussion of the
assured deletion requirements we outlined above.

As mentioned earlier, deletion is assured when deleted
data is irrecoverable or not accessible. All prior work in
this area focuses on the scenario where a cloud provider is
only offering storage services. To assure deletion using en-
cryption, sensitive data is encrypted before being outsourced
to the cloud. Encryption keys are kept secret from the cloud
provider. When data reaches the end of its lifetime, before it
is deleted, encryption keys are securely destroyed, then data

is deleted from the cloud [22, 42]. Consequently, without
encryption keys data is deemed inaccessible.

One approach which uses cryptography to assure deletion
is FADE [49]. It supports policy-based assured deletion,
whereby each file has its own access policy which is also
associated with a control key. Before being farmed out to
the cloud, files are encrypted with data keys and then con-
trol keys. Encryption keys are kept secret and managed
independently by a key escrow system. Assured deletion
is achieved when the associated file’s access policies are re-
voked. In this approach, fine-grained deletion is achieved
since it allows tenants to only revoke polices of the target
file or data that needs to be deleted. Assured deletion of a
file is also immediately achieved when the access policy is
revoked. However, this approach does not consider a sce-
nario where multiple versions of a file exist, which is a case
in most cloud setups.

FadeVersion [40] aims to extend FADE by considering a
case where multiple versions of a file exist. Each file version
has its own encryption key which, when revoked, the version
is assumed to be assuredly deleted. Like FADE, fine-grained
assured deletion can be achieved by only revoking the access
policy of the version one wants to delete. Again, assured
deletion is achieved as soon as access policies are revoked.
Nevertheless, it should be noted that this approach increases
the number of encryption keys for the third party to manage.

Mo et al. explore the feasibility of assuredly deleting data
using encryption without involving a third-party [27]. En-
cryption keys together with sensitive data are outsourced to
the cloud provider but are inaccessible to the provider. The
authors claim to prevent any potential data privacy breach
by using a multi-layered key structure, called Recursively
Encrypted Red-black Key tree (RERK). RERK assumes the
responsibility of securing data and encryption keys stored
in the cloud. The cloud user still maintains a master key
or metadata which helps to manipulate encryption keys and
data stored by the provider. Fine-grained deletion is sup-
ported but the issue of deleting multiple copies remains un-
addressed.

3.3 Challenges and limitations
While these solutions do satisfy some of the requirements

for assured deletion, they also have various limitations. We
discuss these next.

Key Management
One of the reasons why enterprises and other cloud users
have struggled to adopt encryption technology is the over-
head performance issues and the issue of key management.
When using encryption, the client does not only need to deal
with protecting the data but also needs to protect the keys
themselves. This has required users to adopt third-party key
management systems. FADE and FADEVersion base their
trust in a key escrow system to manage keys. However, if
one cannot fully trust the cloud provider, should this not
place the same doubt on these third-party services? These
services are vulnerable to the same adversaries as the cloud
providers. Moreover, in practice they may introduce some
bottlenecks hence reducing performance. For instance, when
using a third party provider, one first has to securely access
the key before one can access the data. Sometimes this pro-
cess can delay and even affect performance of the service.

Another challenge is deciding granularity of the keys, whether
one key should be used for all or whether each file should

Table 1: Summary: Open research areas

Emerging Solution (EM) Challenges

EM1- Homomorphic Encryption Impractical for cloud applications.

Causes a lot of computational overheads.

EM2- Partial Homomorphic Encryption Support limited amount of datasets[6].

Does not support all queries.

Causes a lot of computational overheads.

EM3- Searchable encryption Does not support all queries.

Causes a lot of computational overheads [51].

EM4- Trusted Computing Expensive

User needs to transfer secret key to the trusted hardware [6].

Compatibility with current infrastructures.

Verification and attestation [46]

have its own key. Mo et al.[27] and Rahumed et al.[40] con-
sider fine-grained deletion in their solutions, both solutions
suggesting that each file should have its own encryption key.
Nonetheless, this increases the number of keys and may be
cumbersome to manage hence leading to usability problems.
Data sharing also becomes a problem especially when more
than one user needs to access the encrypted data. This
is explained later in detail under data sharing subsection.
Again, key management systems are sometimes proprietary
and support a limited number of cloud providers, cloud ten-
ants may struggle finding an appropriate key management
system.

Usability
Integration of encryption into systems has always shown to
have impact on users [53, 48, 21]. Research has shown that
users struggle to use encryption systems and are likely to
make mistakes especially with encryption keys. As a result,
this may lead to cloud users making mistakes when delet-
ing keys as part of guaranteed deletion. Users are bound to
make mistakes, for example, a user deleting the wrong keys
or forgetting to encrypt a file after use. Another concern is
the issue of effort, i.e., the addition of extra steps into the
process of completing a daily task (often such extra steps are
circumvented by users when they get in the way of daily ac-
tivities [1]. Again, users are not only required to understand
why such solution is in place but also, their responsibilities
to make it work effectively.

Limited Data Usage
When data is encrypted outside the cloud, there is little to
do with it unless keys are also shared with the cloud provider
or if the cloud is only used for storage (e.g., Storage as a Ser-
vice). Encryption limits data use. Current solutions do not
mention how this issue will be addressed if the cloud tenant
also uses the cloud to process data. Current cloud applica-
tions do not yet accommodate the use of encrypted data.
When encrypted, data loses some of its properties such as
the ability to be searched or sorted since it is in unrecog-
nised cipher text. A naive solution would be to download it
first before use. Still, this can be burdensome on the client
hence reducing productivity.

Although there have been some proposed solutions [28, 50,
13] to tackle the above-mentioned issues, most of them are
still in their infancy and are not yet practical to be adopted
in cloud applications. For example, most of the homomor-
phic encryption schemes that have been proposed only sup-
port a limited number of operations [18].

Data Sharing
Encryption makes sharing data difficult especially when all
involved parties need to access the same data. Current cryp-
tographic schemes depend on using a single set of secret
keys, therefore, allowing access to a single user. In order
to share data, users end up sharing such keys which can be
costly during key revocations as it requires all the data to
be re-encrypted [17]. Moreover, this leaves data and keys
vulnerable.

One of the benefits of cloud computing is high availabil-
ity, the ability to access data regardless of location and time.
However, with encryption in place this can become a chal-
lenge as users may need to share encryption key between
devices hence putting keys at risk.

3.4 Future Directions
Since encryption is a de facto solution for scenarios where

the tenant does not have full trust in the provider, research
work could focus more on trying to improve the current
encryption schemes (e.g., searchable and homomorphic en-
cryption schemes) that compute data. Development of en-
cryption ready cloud applications could be an area to be
explored.

Trusted computing is an alternative area to be explored
or to be used alongside encryption. Cloud providers could
offer secured hardware containers within their cloud infras-
tructures[5].

In Table 1 we summarise some emerging solutions with
their respective limitations.

4. HONEST CLOUD PROVIDER
As we mentioned earlier, there are many reasons why a

cloud provider may want to provide assured deletion as a
service; it might be to comply with standards or to enhance
reputation in the market. In this section, we summarise the
provider’s requirements for assured deletion using the honest
cloud provider model.

4.1 Requirements for Assured Deletion
Service availability: Assured deletion should not nega-

tively affect services offered to other tenants or even to the
tenant who requested the deletion. Any service disruption
would cost the provider.

Complete deletion (irrecoverable and inaccessible):
Data should be removed from all layers and components
that handle data. Data residing in temporary locations such

as buffers and RAM should also be wiped out completely.
Deleted data should not be accessible after deletion, either
to the provider or tenants. Data should be completely wiped
from the provider’s infrastructure.

Deletion of all backup copies: The provider should be
able to completely delete all backup data that is no longer
needed or required by the tenants. This includes data stored
locally and remotely.

Fine-grained deletion: Provider should be able to as-
sure deletion on target data (data which is to be deleted
and requested by the tenant). When a tenant requests the
provider for data deletion, the provider should only be able
to completely delete requested data without affecting the
tenant’s other data. Fine-grained deletion reduces cost of
secure deletion operations.

Delete latency: Timeliness to guarantee deletion - this
refers to the time agreed by the provider to assure deletion
to a cloud tenant or the time required by any regulatory
standards to assure deletion. The provider should be able
to completely delete data within this time.

Error handling: Deletion procedure should complete
without any errors and if errors do occur, the deletion pro-
cedure should be able to recover and complete within a rea-
sonable time.

Proof of deletion: An honest cloud provider should be
able to prove deletion to tenants, attesting that data dele-
tion has completed successfully. For example, if a deletion
procedure has completed successfully, it should return a sig-
nature which can be verified by the client.

In the absence of existing literature targeting this sce-
nario, we analyse OpenStack, an existing cloud infrastruc-
ture. We opted for OpenStack as an example because it is
the most used open source cloud platform. Different cloud
features and characteristics pose different challenges to as-
sured deletion. We discuss these challenges next against the
requirements mentioned above.

4.2 Case Study: OpenStack
OpenStack is a fully distributed open source infrastruc-

ture as a service (IaaS) cloud platform used for building pub-
lic and private clouds infrastructures. NASA and Rackspace
were the first companies to develop and contribute to the
OpenStack project but now it has more than 30 contribut-
ing companies [31].The main core of OpenStack is fully de-
veloped in Python and has powerful APIs which allow it
to be interfaced with other cloud computing platforms such
as Amazon EC/S3, making it possible to offer hybrid cloud
services. OpenStack is made up of several components or
projects, which include:

OpenStack Compute (Nova): The main component of
Openstack; its main purpose is to provide virtual in-
stances on-demand.

Openstack Image Service (Glance): Glance is a virtual
image repository service which provides services for
discovering, registering and retrieving virtual images
in OpenStack.

Network Service (Neutron): Provides network connec-
tivity between interface devices in OpenStack.

OpenStack Object Storage(Swift): A highly available
and distributed Object Storage.

Cinder Swift Quantum

Horizon (Dashboard)

B
lo

ck S
torage

O
bject S

to
rag

e

N
etw

o
rk

C
o

m
p

u
te

Im
ag

es

Nova Glance

Keystone (Identity)

Figure 1: OpenStack Core Components

Block Storage (Cinder): Provides persistent block stor-
age for virtual instances.

Other key components of OpenStack include Keystone and
Horizon. Authentication and authorization for OpenStack
are handled by the Keystone component while Horizon is a
web based graphical user interface for OpenStack compo-
nents [32]. Fig 1 shows the key components of OpenStack.

4.2.1 Assured Deletion Challenges
Like other cloud platforms, OpenStack has features and

components that lead to challenges in terms of assured dele-
tion. We discuss these challenges next.

Many Components
OpenStack has a very complex architecture with many dif-
ferent components. Numerous services and components cap-
ture, maintain or reference tenants’ sensitive data [33]. Be-
sides OpenStack storage components, tenants’ sensitive data
may also be found in these components: Neutron, Glance,
Keystone and Nova. These data include information about
the instances, storage volume data and public keys while sen-
sitive metadata may include organization names, internally
generated private keys and users’ real names. Although
OpenStack is expected to delete this data when required
to do so, some data may still remain in the platform after
deletion[33]. Layers, virtual and physical components may
trap data and making it difficult to locate during a deletion
request. As a result, it is difficult to completely delete data
from OpenStack due to the complexity of the architecture.

Virtualization Technology
In OpenStack, deletion is also subject to the virtualization
technology used. To explain this challenge, we discuss a
scenario in which a tenant launches and terminates a virtual
instance. When a tenant launches an instance, OpenStack
makes a copy of the base image from Glance to the local
disk of the compute node. A new ephemeral volume is then
created and attached to the running instance. For persistent
writing, block storage can then be attached to the instance.
When an instance is decommissioned, the metadata of the
original image is updated with the new metadata from the
running instance. All unsaved data is then saved to the
block storage before it is detached. The previously created

SaaS SaaS IaaS

SaaS Cloud Service Provider

Tenant Tenant Tenant Tenant Tenant

RELATIONSHIP

(a) Horizontal Multi-tenancy relationship

IaaS IaaS

IaaS Cloud Service Provider

SaaS SaaS

SaaS Cloud Service Provider

Tenant

Provider/
Tenant

Provider

R
E

L
A

T
IO

N
S

H
IP

(b) Vertical Multi-tenancy relationship

Figure 2: Multi-tenancy relationship in the cloud

ephemeral storage is then deleted before memory and CPU
resources are released[34].

One of the requirements for assured deletion for the provider
is the ability to make data inaccessible within an agreed
time. However, deletion in OpenStack may not always be
complete. The destruction of images and the ephemeral stor-
age is dependent on the hypervisor and the compute plug-in
used [19, 33]. Some plugins (e.g., libvirt) would not over-
write the memory block that was previously used by the
running instance. It is assumed that the dirty memory ex-
tents will not be made available to other tenants, but this
cannot be guaranteed. It is difficult for the provider to pre-
dict or estimate when the dirty memory would be overwrit-
ten. Also, in practice hundreds of instances are launched
and decommissioned all the time. Therefore, it is not al-
ways feasible for the provider to confirm or provide proof of
deletion after every terminated instance.

Live Migration
There are two types of migration supported by OpenStack:
True Live migration and Non-live migration (or simple mi-
gration). Unlike other cloud settings where live migration is
a load management feature, OpenStack has this as an opera-
tional management feature. For example, migration may be
required when performing upgrades that need system reboot
of the physical server. Live migrations in OpenStack take
place under controlled conditions and cloud administrators
initiate them. In spite of this, migration still increases data
surface area. For example, after the virtual instance is suc-
cessfully copied to a new location, there might still be data
left on the previous host. OpenStack currently does not have
any feature to check if all data from the source host has been
deleted. Although the hypervisor might delete data after mi-
gration, the provider cannot assure that data and metadata
of the migrated virtual machine is completely removed from
the source environment [33].

Virtualized Storage
Deletion of data from Swift is a complicated process, which
may not result in complete deletion. Like other virtual-
ized storages, Swift does not provide direct access to raw
blocks of data but rather provides blobs of data(data ob-

jects) which represents “volumes” and they are accessible
through an API [2].Data is stored as objects and can be
stored anywhere in the storage or even replicated to other
Swift clusters. Since this is virtualized, the pool of storage
provided may span several physical servers or drives. This
allows data to be scattered all over the storage infrastruc-
ture. To access data, OpenStack makes multiple requests
to these storage servers through a Swift API. It is difficult
to assure deletion because the physical location of data is
abstract and may not be known, and also, deletion methods
such as overwriting will not overwrite an object but rather
create one. Virtualization layers may also possess some data
that may be left behind since deletion is not done at all lay-
ers. Deletion of backup copies in other Swift clusters may
not happen in time or at all.

Horizontal Multi-tenancy
In the cloud tenants share the same physical infrastruc-
ture and each tenant has his/her own relationship with the
provider. Multi-tenancy relationships in the cloud can either
be horizontal or vertical depending on the services provided.
Horizontal multi-tenancy relationship exists when a provider
is offering their services directly to multiple tenants simul-
taneously as shown by Fig 2a while vertical multi-tenancy
exists when a provider is offering services to other multiple
tenants while it is also leasing computer resources from an-
other provider as shown by Fig 2b. In these kind of setups,
it can be challenging for the provider to assure deletion since
tenants’ data may be residing in the same location or even
tangled together. In horizontal multi-tenancy, it is possible
that when a tenant is decommissioned, their storage parti-
tion will not be securely wiped out completely before it is
made available to new tenants. This may be due to a number
of reasons: (1) the hypervisor used as explained earlier in the
section under virtualization technology, (2) secure deletion
techniques like overwriting may not be feasible between pro-
visioning of services, (3) the secure deletion methods used
may not be fine-grained and leave other tenants’ data at risk
during the deletion.

Vertical Multi-Tenancy and Third Party Backup Providers
OpenStack interfaces allow it to be integrated with other
cloud computing platforms either for storage or computing
services. For example, OpenStack can be interfaced with
Amazon S3 for storage. This would form a vertical multi-
tenancy relationship. It becomes very difficult to delete data
that leaves Openstack because it may be out of reach. An-
other challenge is that if these APIs fail then the provider
has no other way to verify the deletion in the other infras-
tructure. Complete deletion may require the involvement of
the third party, which may add extra cost to the provider;
again, it may not happen as the other provider may face the
same problems highlighted in this paper. Deletion latency
could also be a problem.

Delayed Deletion
Another cloud feature that challenges the requirements for
assured deletion is the delayed deletion feature. By default,
most providers use a garbage collection method of deletion
whereby deleted data is only marked for deletion but not
removed from the system. This feature is enabled to protect
tenants’ data from accidental deletion operations or admin-
istrative errors. When a tenant deletes a file, the cloud sys-
tem will only mark it for deletion and remove it from the
tenant’s interface while it remains in the cloud. Sometimes,
providers have to delay deletion because of legal obligations
or policies. Therefore, deletion does not happen as soon as
it is requested.

In OpenStack when delayed deletion is enabled, deleted
accounts, images, volumes and other data are not removed
from the platform upon request [2, 19]. By default, there
is a 7-day delay before an image is removed from the plat-
form. When an image is deleted, it is marked for deletion
and given an expiry date. Although it is removed from the
tenant’s reach, it is still part of tenant’s data. The removal
of the image is then left for the reaper process - a periodical
background process that is responsible for removing all data
marked for deletion after retention time has expired [35]. It
is difficult to prove this deletion or estimate the time it takes
to completely delete data from the provider. Data may still
be accessible after deletion.

Execution Errors
OpenStack is not immune to failures. Its activities are vul-
nerable to errors. Migration, creation of instances, volume
attachments, deletion and many other processes may fail one
way or another. Failures may be due to network errors, hy-
pervisor errors, inadequate resources or even administrative
errors. When an instance fails during provisioning, the ser-
vice provider cannot guarantee that the tenant’s data that
was being processed will be destroyed completely. The same
problem exists with components: when a component fails,
the provider cannot guarantee whether data was completely
removed from the component before it encountered errors.
In this case, deletion assurances may be difficult to guaran-
tee.

High Availability
According to OpenStack documentation [30], it can meet
high availability requirements for its own infrastructure ser-
vices by up to 99.99% uptime. Images, containers, objects,
volumes and metadata can be replicated in OpenStack to

allow high availability requirements. A process called the
replicator is responsible for producing multiple copies of data
and syncing all data. Through Cinder Backup API, Open-
Stack allows volume replication, multiple backend backup
system with tiering technology and compression. This API
also allows the import and the export of tenants’ backup
service metadata. It may be difficult for the provider to
guarantee that all data copies and metadata will completely
be deleted when tenants request for deletion.

Challenges that depend on deployment
There are other challenges that manifest on OpenStack but
are dependent on deployment. These challenges include:
Underlying hardware (e.g., the use of Solid State Drives
(SSDs)), Storage Tiering and Thin Provisioning, Multiple
physical locations, Offline Backup, Different storage media
and Third-party providers.

4.2.2 Summary
Different cloud features pose different challenges with re-

gards to assured deletion. We have outlined and discussed
these challenges against the requirements mentioned in the
previous section. In OpenStack, these challenges include:
Live migrations, virtualized storage, execution errors, ver-
tical and horizontal multi-tenancy, delayed deletion, high
availability and virtual technology. Table 2 presents a sum-
mary of the list of cloud features and the key challenges they
pose with regards to assured deletion. The second column
shows the requirements impacted by these challenges.

In the next section, we present some future research di-
rections for assured deletion in the cloud with regards to the
provider wishing to provide assure deletion as a service.

4.3 Future Directions
This section is motivated by the requirements and chal-

lenges mentioned in the previous sections. We have clas-
sified these possible areas of research according to the re-
quirements we mentioned earlier. Our suggestions remain
focused on the public cloud paradigm.

Service availability
Service availability is very important to cloud providers and
tenants. Interruption of service for seconds could mean huge
financial losses for the provider. Research could be done
to find ways of assuredly deleting data without affecting
the service. For example, applying secure deletion meth-
ods (e.g., overwriting) without interrupting the service or
deleting other tenants’ data. Research should look into so-
lutions which do not only rely on secure deletion methods
(e.g., overwriting) which depend heavily on the properties of
the underlying physical storage since physical control over
infrastructure is no longer feasible [11]. Again, in order to
assure deletion without any service disruption, data isola-
tion mechanisms could be developed to isolate data that
would require assured deletion. Restrictions could be ap-
plied to sensitive data. For example, sensitive data could be
restricted to certain places in the cloud.

CloudFence [37] and Cloudfilter [36] are some of the ap-
proaches that have been proposed to restrict data move-
ment in the cloud. Cloudfilter proposes a practical service-
independent system that uses policies to restrict data move-
ment between enterprise and cloud service provider while
Cloudfence focuses on confining sensitive data to a single

Table 2: OpenStack cloud features and their respective challenges against assured deletion requirements

OpenStack feature Requirement Challenged Key Challenge

Infrastructure Complete deletion Multiple Components

Deletion of all backup copies

Deletion latency

Proof of deletion

Virtualization Complete deletion Virtualization Technology

Deletion of all backup copies Virtualized Storage

Fine-grained deletion Underlying Hardware

Error Handling Virtual Instance Operations

Multiple Dynamic Logical layers

Multi-tenancy Service Availability Horizontal Multi-tenancy

Complete deletion Vertical Multi-tenancy

Fine-grained deletion

On-Demand Elasticity Complete deletion Live Migration

Deletion of all backup copies Storage Tiering and Thin Provisioning

Error Handling Execution Errors

Backup and High Availability Complete deletion Multiple Locations

Deletion latency Offline backup Storages

Proof of deletion Different Storage Media

Third-Party Providers

Delayed Deletion

defined domain thus preventing the propagation of marked
data to other parts of the cloud infrastructure. Researchers
could leverage these approaches and use the tracking capa-
bilities to confine sensitive data to locations where assured
deletion methods could be applied in the cloud. For in-
stance, sensitive data could be restricted to disks that allow
scrubbing.

Complete deletion (irrecoverable and inaccessible)
Research could focus on coming up with better ways of
knowing the location of data that needs to be deleted. Data
life cycle should be tracked around the cloud in order to
help providers make better decisions on which methods of
assured deletion to apply.

Reardon et al.[41], presented a survey which focused on
analysing and discussing methods of secure deletion. It is
stated that in order to know which secure deletion approach
to use, one has to know the properties of the environment
before deciding the most suitable method. In terms of the
cloud, it would be ideal to track and locate data during its
life cycle that is, getting all the relevant information needed
for deletion so as to help the provider with a better method
of assuring deletion.

Deletion of metadata is another area that could be ex-
plored. To completely delete data also means getting rid
of the metadata associated with data that is being deleted.
These metadata do sometimes hold sensitive information.
Solutions could include finding ways of deleting metadata
from all places in the cloud. Diesburg et al.[15] proposed
how metadata could be deleted from NAND flash drives and
hard drives.

Deletion of data could also be performed at every layer of
the cloud to assure that data is completely removed. Secure
deletion methods could be refined to work in these layers
to guarantee deletion. Again, using provenance, data could
be tracked up to the physical layer in order to capture the

mapping between virtual and physical resources. This would
also give cloud users some sense of transparency and show
them how virtual locations and physical static server loca-
tions are linked or mapped together. Also, this mapping will
allow deletion done on the virtual environment to be con-
firmed at the physical level hence enabling proof of deletion.

In a complex system like the cloud, researchers could de-
velop security policies for each component in the cloud rather
than having policies tied only to data. As mentioned ear-
lier, data in the cloud may get trapped in different cloud
components and never be assuredly deleted. New solutions
can focus on developing a set of policies that could be im-
plemented by each individual component to make deletion
easy and more secure.

Deletion of all backup copies
To assure availability and durability in the cloud, data is
replicated in the cloud several times. During deletion, it can
be a challenge to guarantee that all copies are deleted. Also,
data can get trapped in different cloud layers and compo-
nents and be left behind during deletion. Research could fo-
cus on tracking this data and keeping record of all the places
it could be so that during deletion, such data could also be
removed. Proof of Retrievability (PoR) and Provable Data
Possession (PDP) are areas that could be considered to ver-
ify the number of copies in the cloud. Traditional PoRs [9,
24] only demonstrate that the provider has the data not how
many copies exist in its possession. Benson et al. [8] looked
into verifying that data is present in multiple locations (e.g.,
multiple disks) within the cloud. Their framework comple-
mented Bowers et al. [10] who looked at the same verification
but on a single geolocation or datacentre. Both of these ap-
proaches could prove to be vital in providing the location of
data, that is, location within the datacentre and location of
data with respect to geographical locations. They can also
be used to verify number of copies before deletion so as to

Table 3: A mapping of assured deletion requirements and research areas that could be explored to satisfy them.

Deletion requirements Summary of possible areas to be explored

Service availability Tenants Isolation

Controlled movement of data in the cloud infrastructure

Complete deletion Use of secure deletion methods which are suitable and appropriate for the cloud.

Secure deletion of metadata

Deletion of data at every cloud layer

Secure deletion policies for each component

Deletion of all backup copies Keeping track of number of copies

Verifying the number of copies before and after deletion

Data provenance during migration

Fine-grained deletion Data provenance for sensitive data.

Isolation of data that needs to be securely deleted.

Use of secure deletion methods which are suitable and appropriate for the cloud.

Deletion latency Exploration of secure deletion mechanisms that can delete data promptly.

Error handling Resilient mechanisms for secure deletion in the cloud.

Proof of Deletion Verification and attestation of deletion in the cloud.

help the provider in deleting all copies and verifying that
the same number of copies is deleted after deletion request.
Watson et al. [52] also explored the possibilities of verifying
that the provider is storing files at the requested location
which can also be leveraged to prove deletion.

Another approach that could help to verify deletion of
multiple copies of data previously held by a provider is pro-
posed by Barsoum et al. [7], aimed at verifying that the
provider has more than one copy of outsourced data in its
possession. They extended existing PDP [3] that focused on
a single copy of data. Under assured deletion, this work can
also be used to verify whether the provider still possesses
other copies after deletion.

To ensure deletion of data left behind after migration,
research could focus on capturing all the necessary informa-
tion involved during migration. This may include data that
moved and the data that failed to move during migration.
This could also give the provider an opportunity to delete
all data in case of errors and actually confirm it.

Fine-grained deletion
Multi-tenancy is an important feature of the cloud – mul-
tiple users can share resources (e.g., storage, tables) hence
reducing cost for the provider. This sharing of resources can
lead to data being tangled and mixed up hence proving to
be a challenge during deletion. As stated before, applying
secure deletion mechanisms may lead to service disruption
for other tenants using the cloud in case the secure deletion
method deletes other tenants’ data. Again, assured deletion
at a fine-grained level is needed. For example, the provider
should be able to completely delete tenants’ data that need
to be deleted while other data remains untouched. Cachin et
al. constructed a deletion scheme that aims to provide fine
grained deletion. The scheme maintains a collection files and
provides deletion of the files that need to be deleted [11].

Not all data stored in the cloud is sensitive therefore data
provenance could be explored in depth to track sensitive
data and only allow data with the same level of deletion
requirements or retention duration to be stored in same lo-
cations. These might be media which allow secure deletion
mechanisms.

Another area to explore is that of assured deletion meth-

ods (e.g., overwriting). Research should look into how these
methods could be applied in the cloud, for example, how an
overwriting method could be applied to few bits of storage
rather than the entire disk partition.

Deletion latency
Time to guarantee deletion can depend on many things, for
instance, the distance between data centres or the number
of copies that need to be deleted. Research could focus on
these properties to develop and design better mechanisms
which could assure deletion within a reasonable time. As-
sured deletion procedures could be timed and the elapsed
time could be used as part of evidence in proving deletion.
Research could also focus on finding out how secure deletion
methods could be improved to complete promptly in cloud
settings.

Error handling
Research could look into improving the current secure dele-
tion methods which can recover during failures and still com-
pletely delete data. For instance, Diesburg et al. [14] devel-
oped an assured deletion framework for the storage data
path that could handle crashes. Such works could be ex-
tended to the cloud and incorporated with the cloud system
to report any deletion crashes. Deletion mechanisms in the
cloud could be improved to report failures.

Proof of deletion
Methods are needed to attest whether deletion mechanisms
complete deletion successfully without errors. These could
provide building blocks to proving deletion. Deletion attes-
tations could either be done at software level or hardware
level depending on deletion requirements. Backes et al.[4]
proposed a verification mechanisms which a cloud user could
use to force a cloud provider to attest deletion of data.

In Table 3 we summarise the above areas of research and
the requirements they may satisfy.Column 1 presents the
requirements while column 2 outlines the areas of research.

5. DISCUSSION
In Fig 3 we present a conceptual architecture for assured

User Friendly Interface
T

h
ird

 P
a
rty

 D
a
ta

 M
a
n

a
g
e

r

Data Deletion Verifier

T
hird

-p
a
rty

 P
ro

v
id

e
rs

Searchable Encryption

STORAGE

Data Segregation Tenant Isolation

Encryption Layer

Secure Deletion Methods

COMPUTATION

Data Segregation Tenant Isolation

Trusted Computing

Secure Deletion Methods

Data
Replication
Manager

Secure
Provenance

Manager

Metadata
Manager

Assured
deletion Policy

Cloud Users

Figure 3: Assured Deletion Conceptual Architecture

deletion which targets both scenarios. We assume a model
that is protected against a peek-a-boo adversary as described
by Reardon et al. [41]. The conceptual architecture consists
of the following main components:

• Data replication manager
It is responsible for managing data replication, keeping
track of how sensitive data is replicated in the cloud
system. This ensures that sensitive data is only repli-
cated according to users’ requirements or data policies.

• Secure provenance manager
It is responsible for the tracking of all sensitive data
in the cloud throughout its life cycle. This ensures
that location of all sensitive data is tracked throughout
the cloud system enabling the provider to locate and
delete data when required. This will make sure that
data trapped between the cloud layers is also deleted.

• Metadata manager
This component is responsible for the management
of information about data, together with the secure
provenance manager, it ensures that all metadata of
deleted data is also removed from the system.

• Assured deletion policy module
This module makes sure that all data deletion policies
are enforced in the cloud system. For example, if sen-
sitive data is to be restrained to a specific location,
this module will enforce that particular policy.

• Third-party data manager
This component is responsible for the management of
third party activities in the cloud, ensuring that dele-
tion policies (enforced by the policy module) are re-

spected by third party services. For example, mak-
ing sure that data marked sensitive does not leave the
cloud system where secure deletion can be guaranteed.

• Deletion verifier
This is a trusted component of the cloud which is re-
sponsible for verifying deletion whether from the stor-
age or the computation area. When a tenant poses a
challenge to an honest cloud provider, this module will
produce a signature which can be verified by the user
to prove deletion.

• Encryption layer
This layer handles all encryption related procedures
including data operations such as searching encrypted
data.

In scenarios where the provider is dishonest, this architec-
ture should provide tenants with the ability to completely
delete data effortlessly without encountering any difficulties.
Assured deletion interfaces could be incorporated and be
made easy to use in the cloud.

For honest providers, data should be segregated at all lev-
els of the cloud to avoid service disruptions during complete
deletion, for instance, tenants’ data should be isolated to al-
low secure deletion without deleting other tenants’ data. By
using trusted computing modules, tenants should be allowed
to process their sensitive data, and verify deletion within the
cloud. Data should be tracked and monitored throughout
the cloud environment to allow deletion of all copies. The
new architecture should allow secure deletion of metadata
when associated copies are deleted, and also allow secure
deletion methods to be applied in all layers on the cloud.
This architecture may change as homomorphic encryptions
develop and become more achievable.

6. CONCLUSION
Although assured deletion is a significant hurdle for adop-

tion of public clouds, it could also become a differentiator
in the market. Allowing cloud users to control and verify
how their data is handled is essential for even greater adop-
tion. We have shown the importance of assuring deletion in
the cloud and presented assured deletion for both the cloud
tenant and the provider. In cases where a dishonest cloud
provider is used, we have surveyed and discussed existing so-
lutions against requirements and outlined their limitations.
For the honest provider, we have outlined assured deletion
requirements for the provider, reviewed current infrastruc-
tures then provided a systematization of assured deletion
challenges their features pose with regards to assured dele-
tion. The open research directions discussed in this paper
are a stepping stone in tackling the challenge of assured dele-
tion in the cloud, and provide a research agenda for both our
own research and that of the wider community.

7. ACKNOWLEDGMENTS
We want to thank Alessandro Sorniotti for his invaluable

time and effort for improving this work. We would also
like to thank all the anonymous reviewers for their helpful
comments and suggestions.

8. REFERENCES
[1] A. Adams and M. A. Sasse. Users are not the enemy.

Communications of the ACM, 42(12):40–46, 1999.

[2] J. Arnold. OpenStack Swift: Using, Administering,
and Developing for Swift Object Storage. O’Reilly
Media, 2014.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and
communications security, pages 598–609. Acm, 2007.

[4] M. Backes and F. Bendun. Poster: Forcing the cloud
to forget by attesting data deletion.

[5] M. Barhamgi, A. K. Bandara, Y. Yu, K. Belhajjame,
and B. Nuseibeh. On Protecting Privacy in the Cloud.
IEEE Computer, 2016.

[6] M. Barhamgi, A. K. Bandara, Y. Yu, K. Belhajjame,
and B. Nuseibeh. Protecting privacy in the cloud:
Current practices, future directions. Computer,
49(2):68–72, 2016.

[7] A. F. Barsoum and M. A. Hasan. Provable possession
and replication of data over cloud servers. Centre For
Applied Cryptographic Research (CACR), University
of Waterloo, Report, 32:2010, 2010.

[8] K. Benson, R. Dowsley, and H. Shacham. Do you
know where your cloud files are? In Proceedings of the
3rd ACM workshop on Cloud computing security
workshop, pages 73–82. ACM, 2011.

[9] K. D. Bowers, A. Juels, and A. Oprea. Proofs of
retrievability: Theory and implementation. In
Proceedings of the 2009 ACM workshop on Cloud
computing security, pages 43–54. ACM, 2009.

[10] K. D. Bowers, M. Van Dijk, A. Juels, A. Oprea, and
R. L. Rivest. How to tell if your cloud files are
vulnerable to drive crashes. In Proceedings of the 18th
ACM conference on Computer and communications
security, pages 501–514. ACM, 2011.

[11] C. Cachin, K. Haralambiev, H.-C. Hsiao, and
A. Sorniotti. Policy-based secure deletion. In Proc of
the 2013 ACM SIGSAC conference on Computer &
communications security, pages 259–270. ACM, 2013.

[12] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum.
Shredding your garbage: Reducing data lifetime
through secure deallocation. In USENIX Security,
pages 22–22, 2005.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved
definitions and efficient constructions. In Proceedings
of the 13th ACM conference on Computer and
communications security, pages 79–88. ACM, 2006.

[14] S. Diesburg, C. Meyers, M. Stanovich, M. Mitchell,
J. Marshall, J. Gould, A.-I. A. Wang, and
G. Kuenning. Trueerase: Per-file secure deletion for
the storage data path. In Proceedings of the 28th
Annual Computer Security Applications Conference,
pages 439–448. ACM, 2012.

[15] S. Diesburg, C. Meyers, M. Stanovich, A.-I. A. Wang,
and G. Kuenning. Trueerase: Leveraging an auxiliary
data path for per-file secure deletion. ACM
Transactions on Storage (TOS), 12(4):18, 2016.

[16] M. V. Dijk, A. Juels, and A. Oprea. Hourglass
schemes: how to prove that cloud files are encrypted.
Proceedings of the . . . , pages 265–280, 2012.

[17] C. Dong, G. Russello, and N. Dulay. Shared and
searchable encrypted data for untrusted servers.
Journal of Computer Security, 19(3):367–397, 2011.

[18] J. Fan and F. Vercauteren. Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[19] T. Fifield, D. Fleming, A. Gentle, L. Hochstein,
J. Proulx, E. Toews, and J. Topjian. OpenStack
Operations Guide. O’Reilly Media, 2014.

[20] A. A. Friedman and D. M. West. Privacy and security
in cloud computing. Center for Technology Innovation
at Brookings, 2010.

[21] S. Furnell. Why users cannot use security. Computers
& Security, 24(4):274–279, 2005.

[22] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy.
Vanish: Increasing data privacy with self-destructing
data. In USENIX Security Symposium, pages 299–316,
2009.

[23] G. Irazoqui, T. Eisenbarth, and B. Sunar. Sa: A
shared cache attack that works across cores and defies
vm sandboxing—and its application to aes. IEEE:
Security & Privacy, 2015.

[24] A. Juels and B. S. Kaliski Jr. Pors: Proofs of
retrievability for large files. In Proceedings of the 14th
ACM conference on Computer and communications
security, pages 584–597. Acm, 2007.

[25] L. Krzywiecki and M. Kuty lowski. Proof of possession
for cloud storage via lagrangian interpolation
techniques. In Network and System Security, pages
305–319. Springer, 2012.

[26] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee.
Last-level cache side-channel attacks are practical. In
36th IEEE Symposium on Security and Privacy (S&P
2015), 2015.

[27] Z. Mo, Q. Xiao, Y. Zhou, and S. Chen. On deletion of
outsourced data in cloud computing. In 2014 IEEE

7th International Conference on Cloud Computing,
pages 344–351. IEEE, 2014.

[28] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can
homomorphic encryption be practical? In Proceedings
of the 3rd ACM workshop on Cloud computing
security workshop, pages 113–124. ACM, 2011.

[29] D. Ocean. Data leakage, 2013 (accessed May 14, 2015).
https://www.digitalocean.com/company/blog/
resolved-lvm-data-issue/.

[30] OpenStack. OpenStack High Availability, 2015
(accessed June 2, 2015). http://docs.openstack.org/
high-availability-guide/content/ch-intro.html.

[31] OpenStack. OpenStack Official, 2015 (accessed June 2,
2015). http://www.openstack.org/.

[32] OpenStack. OpenStack Architecture, 2015 (accessed
May 15, 2015). http://docs.openstack.org/
openstack-ops/content/architecture.html.

[33] OpenStack. OpenStack: Data privacy concerns, 2015
(accessed May 15, 2015). http://docs.openstack.org/
security-guide/content/data-privacy-concerns.html.

[34] OpenStack. OpenStack Image and Instances, 2015
(accessed May 2, 2015).
http://docs.openstack.org/admin-guide-cloud/
content/section compute-images-and-instances.html.

[35] OpenStack. OpenStack Reaper, 2015 (accessed May 28,
2015). http://docs.openstack.org/developer/swift/
overview reaper.html.

[36] I. Papagiannis and P. Pietzuch. Cloudfilter: practical
control of sensitive data propagation to the cloud. In
Proceedings of the 2012 ACM Workshop on Cloud
computing security workshop, pages 97–102. ACM,
2012.

[37] V. Pappas, V. P. Kemerlis, A. Zavou,
M. Polychronakis, and A. D. Keromytis. Cloudfence:
Data flow tracking as a cloud service. In Research in
Attacks, Intrusions, and Defenses, pages 411–431.
Springer, 2013.

[38] R. Perlman. File system design with assured delete. In
Third IEEE International Security in Storage
Workshop (SISW’05), pages 6–pp. IEEE, 2005.

[39] C. Priebe, D. Muthukumaran, D. O’Keeffe, D. Eyers,
B. Shand, R. Kapitza, and P. Pietzuch.
Cloudsafetynet: Detecting data leakage between cloud
tenants. In Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security, pages
117–128. ACM, 2014.

[40] A. Rahumed, H. C. Chen, Y. Tang, P. P. Lee, and
J. C. Lui. A secure cloud backup system with assured
deletion and version control. In Parallel Processing
Workshops (ICPPW), 2011 40th International
Conference on, pages 160–167. IEEE, 2011.

[41] J. Reardon, D. Basin, and S. Capkun. Sok: Secure
data deletion. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 301–315. IEEE, 2013.

[42] J. Reardon, D. Basin, and S. Capkun. On secure data
deletion. Security & Privacy, IEEE, 12(3):37–44, 2014.

[43] J. Reardon, S. Capkun, and D. A. Basin. Data node
encrypted file system: Efficient secure deletion for
flash memory. In USENIX Security Symposium, pages
333–348, 2012.

[44] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun.
Secure data deletion from persistent media. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 271–284.
ACM, 2013.

[45] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and
communications security, pages 199–212. ACM, 2009.

[46] N. Santos, K. P. Gummadi, and R. Rodrigues.
Towards trusted cloud computing. HotCloud, 9:3–3,
2009.

[47] A. Shraer, C. Cachin, A. Cidon, I. Keidar,
Y. Michalevsky, and D. Shaket. Venus: Verification for
untrusted cloud storage. In Proceedings of the 2010
ACM workshop on Cloud computing security
workshop, pages 19–30. ACM, 2010.

[48] S. W. Smith. Humans in the loop: Human-computer
interaction and security. IEEE Security &
privacy, 1(3):75–79, 2003.

[49] Y. Tang, P. P. Lee, J. C. Lui, and R. Perlman. Fade:
Secure overlay cloud storage with file assured deletion.
In Security and Privacy in Communication Networks,
pages 380–397. Springer, 2010.

[50] M. Van Dijk, C. Gentry, S. Halevi, and
V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In Advances in
cryptology–EUROCRYPT 2010, pages 24–43.
Springer, 2010.

[51] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and
W. Jonker. Computationally efficient searchable
symmetric encryption. In Workshop on Secure Data
Management, pages 87–100. Springer, 2010.

[52] G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E.
Locasto, and S. Narayan. Lost: location based storage.
In Proceedings of the 2012 ACM Workshop on Cloud
computing security workshop, pages 59–70. ACM,
2012.

[53] A. Whitten and J. D. Tygar. Why johnny can’t
encrypt: A usability evaluation of pgp 5.0. In Usenix
Security, volume 1999, 1999.

