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Abstract—Shape optimization techniques are becoming 

increasingly important in design and engineering. This growing 
significance reflects the need to exploit advances in digital 
fabrication technologies, and the desire to create new types of 
surface designs for various engineering applications. 
Evolutionary algorithms offer several key advantages for shape 
optimization, but they can also be restricted, especially as design 
problems scale up in size. A key challenge for evolutionary shape 
optimization is to overcome these challenges in order to apply 
evolutionary algorithms to large-scale, "real-world" engineering 
problems. This paper presents a new evolutionary approach to 
shape optimization using what we call “surface-mapped CPPNs”. 
Our method outperforms a state-of-the-art gradient-based 
method on a simple benchmark problem, and scales well as 
degrees of freedom are added to the design problem. Our results 
demonstrate that surface-mapped CPPNs offer practical ways of 
approaching large-scale, real-world engineering problems with 
evolutionary algorithms, opening up exciting new opportunities 
for engineering design. 
 

Index Terms—Shape optimization, engineering design, 
generative encodings, optimization methods, CPPN-NEAT.  
 

I. INTRODUCTION 
The recent proliferation of digital fabrication technologies 
(such as 3-D printing) has generated growing interest in high-
performance shell structures and mechanically motivated 
surface designs [1]-[7]. Shape optimization techniques are a 
central component of this research field, and are used to 
produce high-performance designs according to precise 
requirements.  

Shape optimization consists of three key elements. First, 
geometry of a 2-D or 3-D design is modeled so that all degrees 
of freedom are identified and parameterized. Second, the 
design is meshed (i.e., discretized) to ensure it is suitable for 
analysis and simulation (e.g. flow solver or structural 
analysis). Finally, an optimization process is used to 
manipulate the parameterized mesh design according to some 
objective function. Today, both gradient-based treatments and 
evolutionary algorithms are used in shape optimization.  
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Gradient-based methods are used across a wide range of 
structural optimization problem domains, including shape 
optimization, [1], [2], [8], [14], [34]-[38]. The general 
principle is to iteratively simulate the mechanical performance 
of an object, perform a gradient sensitivity analysis, and 
determine a series of geometric adaptations that will improve 
the engineering design in relation to the objective function [8]. 
When the design problem is (or can be made) convex, 
gradient-based methods work well, and converge to optimal 
solutions in good time.  

Evolutionary algorithms (EAs) are also applied to shape 
and structural optimization, particularly in fields such as 
aeronautical and aerospace engineering (see [9] for an 
extensive review). Aeronautical applications of shape 
optimization techniques include next-generation airplane 
wings [10] and structurally robust monocoque shells [4], but 
these methods are also now being applied to architectural 
design in order to create large-scale, efficient, free-form 
structures [2]. This broadening in application is largely due to 
the increased availability of easy-to-use software packages, 
combined with affordable new fabrication processes [11].  

As outlined in [9], EAs offer several key advantages for 
shape and structural optimization, compared to gradient-based 
numerical optimization methods. Two key advantages are (A) 
the ability to deal with complex multimodal design spaces and 
highly nonlinear objective functions (which are common in 
real-world problems), and (B) ease-of-use by designers and 
non-specialist engineers.  

However, these advantages come at a cost. EAs are more 
computationally expensive than gradient-based methods, due 
to the bottleneck imposed by having to evaluate populations of 
solutions. Additionally, EAs do not guarantee convergence to 
optimal solutions and they often scale poorly. Consequently, 
evolutionary approaches are often limited to exploring 
relatively trivial benchmark problems with coarse 
discretization (i.e., with few degrees of freedom) and 
described using relatively few design variables.  

This inability of EAs to deal with large-scale structural 
optimization problems and generate useful solutions within 
acceptable timeframes has led to criticism [12]. Consequently, 
state-of-the-art shape optimization methods generally 
comprise gradient-based approaches that employ a variety of 
sophisticated filtering techniques that help to convexify noisy 
search spaces and ensure successful convergence to optimal 
solutions [1], [2], [12]-[14].  

In both gradient-based and evolutionary approaches, the 
way that geometry is modeled and parameterized plays a 
crucial role in the optimization process. Specifically, designs 
described by too few parameters (i.e. degrees of freedom), 
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tend to converge quickly to sub-optimal solutions, due to the 
low-resolution nature of the parameterization. On the other 
hand, designs defined by relatively many parameters (i.e. more 
degrees of freedom) can often converge to superior solutions, 
due to the expanded space of possible shapes. However, in 
order to do so, they usually require many more evaluations, 
and thus use significantly more computational resource in the 
process.  

In order to address this challenge in practice, designers 
often manually test various different parameterizations of 
problems in order to find the best solutions [13]. However, 
this process is time consuming and labor intensive, and is 
further compounded for evolutionary models, which typically 
need many more evaluations to solve similar problems. 
Indeed, this scalability challenge usually renders evolutionary 
methods unusable when shape optimization problems are 
described by many degrees of freedom [9], [12]. One route 
towards scaling up EAs for large-scale shape optimization 
problems may lie in alternative chromosome encodings [9], 
but further work is required.  
 In this paper, we present a new (gradient-free) evolutionary 
method, which we call surface-mapped CPPNs, and which is 
able to deal with large shape optimization problems with many 
degrees of freedom.  

We first show that our approach can produce solutions with 
mechanical performance that is superior to that of solutions 
produced with state-of-the-art gradient-based methods, and 
then demonstrate that our method eliminates the mathematical 
challenge of scalability. To support these claims, our first 
experiment uses a well-known benchmark problem to compare 
the physical properties of solutions found by both state-of-the-
art gradient-based methods and surface-mapped CPPNs.  We 
validate these results to show that our evolved solutions are 
both reliable and mesh-independent. The second experiment 
then tests our surface-mapped CPPN on the same benchmark 
problem, but this time uses eight different parameterizations. 
This demonstrates that instances do not become more difficult 
to solve as more degrees of freedom are added to the design 
problem. When combined, these results demonstrate a 
powerful new approach to shape and shell optimization that is 
especially well-suited for exploiting digital fabrication 
technologies in high-performance engineering design.  

The paper is organized as follows: we begin by discussing 
related work. We then outline our new method, describe the 
base experiment and validate these results, before presenting a 
second experiment to demonstrate the scalability of our 
approach. Finally, we conclude with a discussion of our 
results, and highlight further opportunities for development.  

II.  BACKGROUND 
EAs offer several key advantages for engineering domains, but 
further work is needed to develop alternative chromosome 
encodings if they are to be competitive with state-of-the-art 
gradient-based methods [9]. Typically, chromosomes used in 
shape optimization consist of vectors of either real or binary 
numbers that describe transformations of individual vertex 
positions in 2-D or 3-D geometries (e.g. [1], [4], and [15]). 
The problem with this approach is that as designs increase in 
size and complexity, the chromosome encodings also become 

much larger (due to the direct nature of the one-to-one 
mapping) and this significantly expands the search space, 
making it harder to find good solutions. Real-world shape 
optimization problems can easily comprise thousands of 
vertices, and encoding schemes are needed that allow for more 
effective search of these vast spaces. This scalability challenge 
is well-known in in the evolutionary computing community 
[16] and is the subject of much research. To improve how EAs 
perform on large-scale problems, several techniques may be 
employed. 

Firstly, to limit computational expense of simulating large 
populations of possible solutions, variants of Evolutionary 
Strategies are often used [9], [17]. These techniques 
demonstrate good convergence speed with small population 
sizes, and in doing so significantly improve how EAs scale. 
However, they do not eliminate the underlying problem, and 
are thus still susceptible to scalability challenges on large-
scale problems [12].  

A second approach to improving scalability is to limit the 
dimensionality of the search space. This may be achieved by 
exploiting a priori domain-specific knowledge of the design 
problem, and thus identifying only the important parameters to 
use in the shape optimization procedure. For example, when 
optimizing solutions that require fine-grained meshes, a 
common approach used by both EAs and gradient-based 
methods is to apply a series of control points to the original 
geometry, and define the position of each individual mesh 
vertex in relation to changes to a smaller number of specific 
control points. In this way, the shape optimization algorithm 
manipulates the positions of only the control points, allowing 
for a significant reduction in the dimensionality of the search 
space [18], [19]. The benefit of optimizing compact 
parameterizations lies in the fact that the system generally 
converges quickly. However, for this approach to work, the 
correct identification and parameterization of all control 
points are crucial. Consequently, for problems where 
comprehensive domain knowledge is not available in advance 
(which is usually most of them) this method has limited 
practical value.  

Thirdly, adaptive parameterizations may offer a valuable 
trade-off [10], [20], [21]. Here, solutions begin as low-
resolution parameterizations (with fixed mesh discretization), 
and, throughout an optimization process, designs accrue new 
degrees-of-freedom in order to incrementally build higher 
resolution parameterizations. The benefit of this approach is 
that it eliminates the most time-consuming part of traditional 
shape optimization methods (i.e. when performance of the 
solution is low and the dimensionality of the problem is high). 
By incrementally adding degrees-of-freedom to the model, 
solutions initially converge much more quickly, yet also retain 
the capacity to exploit higher parameterizations later on. This 
allows for the fine-tuning of geometric features and the 
creation of better performing designs [10]. Adaptive 
parameterizations have been applied to both evolutionary 
methods [17] and state-of-the-art gradient-based approaches 
[10], [20], [21], and have demonstrable performance benefits. 
However, there are also several key limitations of this 
approach: (A) the rate at which new degrees-of-freedom are 
added to designs plays a key role in the efficiency of the 
approach [21]. The implication is that specialist knowledge is 
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required in order to manually test and calibrate this new 
system parameter for each new problem, which is time 
consuming, labor intensive, and impossible for non-specialists.  

(B) It is unclear how well this approach works on highly 
non-convex problems, which are characterized by deceptive 
design spaces.  

(C) The ability of this approach to scale up to extremely 
large problems has yet to be demonstrated. To date, existing 
work using this approach has been limited to the addition of 
20-30 parameters to solutions over the course of an 
optimization process [17], [20]-[21]. But real-world problems 
can easily contain thousands of degrees-of-freedom, and this 
number is growing alongside the geometric freedom offered 
by advanced fabrication technologies [2], [5], [9].   

Ultimately, adaptive parameterizations provide a trade-off 
whereby a designer may make an educated initial guess as to 
which parameters are critical, and then use the algorithm to 
adjust this identified parameterization throughout the 
optimization process. However, as we argue throughout this 
paper, significant progress in this area can only be made when 
the parameterization of geometry is independent of the 
dimensionality of the search space.  

Outside the scope of typical shape optimization methods, 
the area broadly defined as generative and developmental 
systems focuses on the capacity to evolve complex solutions 
from extremely compact encodings [22]. This paper will 
demonstrate that specific ideas, which have emerged from this 
area in recent years [23]-[28], have the potential to 
significantly advance engineering design through powerful 
new shape optimization techniques.  
 Our central insight involves changing the way that shape 
optimization problems are conceptualized. The key is thinking 
in terms of patterns instead of points. The traditional view of 
shape optimization problems is to view solutions as large 
collections of points that are individually adjusted in order to 
improve the performance of a design. The problem with this 
perspective is that each point is usually described by an 
individual optimization variable, and this means that solutions 
with many points are required to solve high-dimensional 
problems.  

However, if we step back and view solutions as functional 
patterns painted across surface-conformed canvases, then the 
problem becomes conceptually much easier to solve. Indeed, 
from this perspective, the resolution of the canvas (i.e. number 
of vertices on the surface) may be independent of the 
functional description of the pattern (i.e. a mathematical 
function). This means that the traditional scalability problem 
can be eliminated, because the parameterization of the 
problem and the dimensionality of the search space are no 
longer explicitly linked.  
  To shift our thinking from the manipulation of individual 
points to instead painting functional patterns across geometry, 
we build on a rich body of work relating to the NEAT 
(Neuroevolution of Augmented Topologies) model [23] and 
CPPNs (Compositional Pattern Producing Networks) [24] 
[25], [26].  

In 2007, Stanley [24] demonstrated that CPPNs can paint 
functional patterns across 2-D (pixel-based) canvases and be 
evolved with NEAT [23] to discover novel pictures. This idea 
is perhaps best demonstrated with Picbreeder [25], an online 

tool where users collaboratively evolve populations of 2-D 
images. Following these 2-D demonstrations, Clune and 
Lipson [26] extended the idea of Picbreeder to evolve 3-D 
objects that can be fabricated with 3D printing technologies. 
In recent years, CPPN-NEAT has been used for a variety of 
applications, including evolving virtual [29], [30] and physical 
[31] creatures with diverse locomotive behaviors and dynamic 
properties [32], topology optimization [33], simulation of 
multi-material objects that that exhibit higher-level behaviors 
such as specific deformations of 3-D beams [34] and 
vibrational frequencies [35], and evolution of efficient truss 
designs [36].  

We suggest that CPPN-NEAT methods offer vast potential 
for shape optimization. However, in order to unlock the power 
of CPPNs for real-world optimization problems, it is necessary 
to resolve a key limitation of existing approaches. 3-D CPPN 
models have, to date, been almost exclusively used to control 
properties of volumetric pixels (or “voxels”) within traditional 
Cartesian (x,y,z) grids. From an engineering perspective, this 
approach has limited practical value. This is because real-
world engineering problems typically require manipulation of 
pre-defined shapes and geometries, which are also subject to 
various physical constraints.  

To address this challenge, Clune et al. [37] created a novel 
method of “seeding CPPNs” with geometric information 
associated with predefined shapes. The approach begins with a 
normal 3-D CPPN setup, whereby a 3-D array of voxels is set 
within a Cartesian grid, and a CPPN defines the property of 
each voxel as a function of its Cartesian (x,y,z) coordinate 
values. The key innovation of this approach (as described 
[37]) is to place a 3-D shape within the Cartesian voxel grid, 
and to then add an additional input to the CPPN, which inputs 
the distance between each voxel and the nearest point of the 3-
D shape. By seeding a CPPN with geometric information 
about a predefined shape, Clune et al. show that it is possible 
to upload a voxelized version of the original 3-D shape, and 
then evolve it using the NEAT algorithm.  

This approach to seeding CPPNs is potentially valuable for 
exploring conceptual 3-D designs. However, from an 
engineering design perspective, we argue that it is limited in 
specific ways.  

A major problem is that designs produced with this method 
are often impossible to build (for example, featuring 
disconnected parts that "float" in space). Critically, most 
engineering design problems demand that specific constraints 
are enforced, e.g. all points on the surface of an object might 
need to be constrained to only move in one direction, or by a 
maximum distance. To our knowledge, seeded CPPNs are 
unable to deal with this sort of design constraint.  

Another issue specific to shape optimization is that the 
geometric patterns and regularities, which feature in many 
solutions, are probably expressed much more easily as 2-D 
patterns mapped across curved surfaces than as 3-D patterns 
which define all solid and void voxels within a larger (and 
computationally expensive) 3-D array of voxels. Indeed, the 
ability to exploit a surface-mapped coordinate system may 
provide more useful compositional information relating to the 
design problem.  

Our approach precisely exploits this insight. Specifically, 
rather than seeding a CPPN with geometric information that 
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relates to an object in Cartesian space, our approach may be 
conceptualized as wrapping a volume around a 3-D object and 
then mapping all inputs of the CPPN to suit a new object-
based coordinate system.  

The first major contribution of this paper is to show how 
our approach can unlock the power of CPPNs for real-world 
shape optimization problems. The second main contribution is 
to show how surface-mapped CPPNs can scale up and deal 
with truly large-scale problems, thereby eliminating the long-
standing scalability challenge associated with evolving shapes 
with many degrees of freedom.  

III. BASE EXPERIMENT 

A. Methods 
CPPN-NEAT has been previously described in detail [22]-

[37] so here we provide only a brief summary, and focus on 
how our proposed method differs from existing versions. 
CPPNs are similar to neural networks, but the neurons in a 
network may contain a variety of different activation 
functions, and may be evolved with NEAT [23]. CPPNs query 
a discretized spatial domain by inputting the positional 
information (e.g. (x,y,z) coordinates) of each element and 
returning values that determine specific properties of that 
element (e.g. color). Through this process CPPNs can control 
grids of pixels and voxels to create 2-D and 3-D patterns. 
CPPNs can create a vast array of diverse patterns using 
compact encodings, and the patterns produced display 
geometric regularities, symmetries and even imperfect 
symmetries due to periodic activation functions within the 
CPPN (e.g. cosine) [24].  
 The key difference in our model is that we use CPPNs to 
paint patterns across Non-uniform Rational Basis Spline 
(NURBS [38]) surface domains (Fig 1). NURBS surfaces are 
commonly used to model geometry in design and engineering 
software packages. A useful property of NURBS surfaces is 
that any point can be located on the surface using a relative 
(U, V) coordinate system that extends from (0, 0) to (1, 1). As 
shown in Figure 1, we can exploit this relative coordinate 
system to build a new surface-mapped domain that is 
"clamped" between (-1, -1) and (1, 1). We can then discretize 
any NURBS surface, query each point by feeding its (U, V) 
coordinates into a CPPN, and then use the output value (ZN) as 
the distance by which to move the queried (U,V) point relative 
to its surface normal. Following placement of surface nodes, 
we mesh the solution to create a shell with specific thickness, 
and export this information for structural analysis using a 
commercial finite element analysis (FEA) solver.  

We refer to this approach as mapping a CPPN to a 
predefined NURBS surface. Our choice of terminology is 
intended to provoke analogies with conceptually similar 
techniques in computer graphics - specifically, techniques 
such as texture mapping, bump mapping, normal mapping and 
displacement mapping that are used to paint textures across 
geometry in computationally efficient ways. Indeed, our 
surface-mapped CPPNs operate in a similar manner, allowing 
us to paint geometric and material transformations across 
geometry, yet they can also be evolved with NEAT to discover 
mechanically motivated surface designs.  

1) Benchmark Setup 
To test our surface-mapped CPPNs, we use the simple 

benchmark problem originally proposed in [39], and more 
recently extended by [13], to demonstrate the performance of 
their sophisticated FE-based parameterization scheme in 
combination with the state-of-the-art gradient-based method: 
SIMP (Solid Isotropic Material with Penalization) [40]. 

We choose this benchmark problem for three key reasons. 
First, as discussed by [41], this problem is “highly non-
convex”, and state-of-the-art shape optimization methods 
reach local optima defined by an engineer’s initial choice of a 
“sensitivity filter size” [13]. Second, this problem has been 
widely published in recently years [13], [41]-[44], and 
consequently we have good data with which to make 
comparative analyses. Finally, this benchmark problem has 
over 1,000 finite elements (FE) and comprises 1,736 degrees 
of freedom, which makes it challenging to solve with 
traditional gradient-free methods [12].  

The goal of the benchmark problem is to stiffen a bending 
dominated L-shaped cantilever (Fig 2). Stiffening is achieved 
by moving FE-nodes relative to the surface normal and 
creating structural beads that are subject to a maximum bead 
height. The cantilever is made of steel (E=210GPa and v=0.3) 
and has a thickness of 0.5mm. The structure is fixed at the top 
left and right corners, and is loaded with a single load of 5N, 
as shown in Fig. 2. The optimization variables are the set of 
heights of all FE-nodes relative to the surface normal. These 
variables are continuous, yet clamped between zero and the 
maximum bead height of 2.5mm. The objective is to minimize 
displacement experienced at the point on the L-shaped 
structure where the 5N load is applied (see Fig 2).  

 

 
Fig. 2. Benchmark Problem Setup. This L-shaped cantilever shape is the 
NURBS substrate in our model. The cantilever is fixed at the top right and left 
corners within 2.5mm of the edges and loaded at the center of the lower flat 
part of the structure with 5N. As noted by Firl et al. [13], this loading acts in 
the x-axis and results in a bending load of the whole structure. The shell 
thickness is 0.5mm and the maximum bead height is 2.5mm. We use 1,650 
C3D20R elements (30 x 55 x 1) and record an initial displacement, |d|, of 
0.742mm with this setup, as recorded by [13]. As shown in bottom left of the 
figure, the colors of the surface represent different amounts of displacement 
|d| of the structure due to the 5N load.  
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We perform our finite element calculations using the open-
source solver CalculiX, and use C3D20R elements, which are 
common across a variety of commercial FEA packages and 
perform well in bending. For the shape functions of C3D20R 
elements, see [45].  

 
2) NEAT Setup 

We perform 10 independent runs, each with a population of 
100, evolved for 160 generations. We use our own Java 
implementation of NEAT with the following activation 
functions: Gaussian, Sigmoid, Sine, Cosine and Linear, all 
with an equal probability of being selected. We promote 25% 
of the population using mutations (i.e. no crossover), and for 
the remaining 75% of the population there is an 80% chance 
of mutating individuals after crossover. Mutation rates are 
0.03 for adding a new node, 0.05 for adding a new link, 0.8 for 
perturbing a connection weight, and the probability of 
interspecies mating is 0.001. We use a dynamic compatibility 
threshold, the target number of species is 8, the initial species 
delta is 4, the niche size required for elitism is 5. Finally, the 
compatibility coefficients are c1 = 1.0, c2 = 1.0, c3 = 0.5. For 
a full description of the NEAT parameters see [23].  

 
3) Fitness Function 

To maximize stiffness of the cantilever, we minimize 
displacement experienced at the loading node. We calculate 
the magnitude of displacement as:  
 
! = (!"! + !!"! + !!"!)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1  

 
Where: |d| is the magnitude of displacement, ux is absolute 
displacement in the x-axis, uy is absolute displacement in the 
y-axis, and uz is absolute displacement in the z-axis. NEAT is 
a maximization algorithm, so we define our fitness function 
as: 
 

!"# 1
|!|! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 

 

B. Results 
1) Comparative Analysis 

We compare our results with those described in [13], which 
uses the (current) state-of-the-art (gradient-based) Solid 
Isotropic Material with Penalization (SIMP) method with a 
sophisticated FE-based parameterization scheme and 
sensitivity filter to address the same problem. This method 
produces high-performance solutions within about 30 
optimization steps. Importantly, by varying the size of the 
sensitivity filter radius, the method converges to different local 
optima. This allows designers and engineers to run the model 
several times using a variety of different filter sizes in order to 
pinpoint the best performing solutions. The authors of [13] 
present results using three different filter sizes: 1mm, 2mm 
and 3mm, recording optimized |d| values of 0.047mm, 
0.033mm and 0.045mm respectively. These solutions 
represent significant improvements over the original geometry 
(0.742mm, as shown in Fig. 2). However, we now 
demonstrate that our surface-mapped CPPN method produces 
solutions with superior mechanical properties.  

 
Figure 3. Performance of 10 runs of our model over 160 generations. Each 
line shows the best solution in the population at each generation (indicated by 
a point). 90% of our test runs discovered solutions, which outperformed 
designs created by Firl et al. [13] with state-of-the-art gradient-based methods.  

 
Figure 4. Mean convergence of the best solution in the population at each 
generation, over 10 runs. Also shown are the range of best solutions 
discovered at each generation over the 10 runs.  
 

Fig. 3 shows the best solution in each population over 160 
generations, for all 10 runs of our experiment. This 
convergence is plotted in relation to the range of solutions 
discovered by [13] using three different filter sizes. We 
outperform [13] in nine out of ten runs by discovering 
mechanically superior solutions that display less displacement 
of the structure under loading. Fig. 4 shows the mean 
convergence of the best solution in the population over ten 
runs, and demonstrates that we tend to converge to solutions 
that out-perform those described in [13] in relatively few 
generations. As shown in Fig 4, over 10 runs of the model, our 
average (mean) solution converges to a displacement equal to 
the upper limit of 0.047mm found by [13] within about 36 
generations, and exceeds the best solutions found by [13] 
(0.033mm) within 139 generations. Fig. 5, shows three of our 
evolved solutions which exhibit superior mechanical 
performance than solutions found by [13] using state-of-the-
art gradient-based methods.  
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2) Model Validation 
We argue that our method is able to outperform state-of-the-

art gradient-based methods in this problem domain because 
conventional sensitivity filters do not hamper our designs. 
Specifically, we think that the sensitivity filters, applied 
during gradient-based methods to (uniformly) smooth designs, 
actually prevent methods from discovering potentially useful 
geometric features. Since our evolutionary (i.e. gradient-free) 
approach does not need to calculate sensitivity gradients, it is 
not limited in the same way, and can therefore access and 
exploit geometric features that gradient-based approaches 
cannot. However, it is important to note that sensitivity filters 
are a well-established component of shape optimization, and 
fulfill multiple functions [14]. Consequently, to support the 
claim that our unfiltered solutions have superior performance, 
we first show that our solutions are valid.  

As shown in Fig. 5A, when our FE-nodes move relative to 
the surface normal they cause our elements to stretch and 
produce slightly irregular meshes. Sensitivity filters are 
traditionally applied at this point to smooth mesh geometry 
and redistribute nodes, so that the size and shape of all mesh 
elements remain as uniform as possible.  

This filtering process plays three key roles in gradient-based 
methods. Firstly, smoothing helps eliminate noise and ensures 
that gradient sensitivities are accurate during sensitivity 
analysis calculations. Secondly, the smoothed meshes help 
reduce numerical anomalies that can occur in FEA 
calculations due to distorted mesh elements.  Finally, 
smoothing helps produce solutions that are mesh independent 
(i.e. that are not exploiting specific attributes of the 
discretization) and return the equivalent physical performance 
when simulated with finer meshes [13].  

Since our evolutionary method does not require gradient 
information, we validate our solutions by showing that they 
are (A) not exploiting numerical errors caused by mesh 
distortion (i.e. not displaying deceptive physical performance), 
and (B) are mesh-independent.  

Our FEA calculations use C3D20R elements, which are 
common quadratic brick elements with reduced integration 
points (2x2x2). C3D20R is a reliable and robust general-
purpose element, and is not susceptible to numerical 
instabilities such as hour-glassing and locking phenomena. 
Consequently, a simple method of demonstrating validity of 
our method is to re-evaluate our final solutions with finer and 
more regular meshes (i.e. greater discretization of well-shaped 
C3D20R elements), and demonstrate equivalent results.   

A novel property of the CPPN encoding is that the solutions 
theoretically obtain infinite resolution. That is, because CPPNs 
paint functional patterns across a NURBS-based substrate, the 
designs they encode are not limited to a fixed resolution. In 
order to increase the resolution of evolved solutions, we may 
simply increase the discretization of the NURBS substrate (in 
this case, the L-shaped cantilever shown in Fig 2), and re-
query the CPPN to create high-resolution meshes. However, in 
contrast to sensitivity filters, which have a tendency to “over-
smooth” geometric features, increasing the resolution of 
solutions discovered with surface-mapped CPPNs can have 
the inverse effect of “under-smoothing” evolved features and 
revealing geometric properties that were not apparent at the 
resolution originally used to optimize the design.  

For example, consider a 2-D beam that has been evolved 
using our method, and is composed of only two horizontal 
finite elements. If the (continuous) CPPN output describes a 
Gaussian curve, then the discretized 2-D beam design (1x2 
elements) will form an upside down “V” shape (Fig. 6).  
However, as we increase the resolution of the design by 
subdividing the domain and adding extra elements (e.g. 1 x 4 
and 1 x 8), the solution begins to approximate the CPPN-
generated Gaussian distribution, and thus the evolved upside-
down “V” shape is lost.  

To counteract the tendency to under-smooth solutions as 
mesh resolution is increased, we can apply a simple Laplacian 
smoothing filter (see [46] for an extended description of 
Laplacian smoothing). This has two significant effects. Firstly, 
the smoothing filter dramatically improves mesh regularity (as 
is known from traditional sensitivity filters), but secondly, it 
ensures that higher resolution designs closely approximate the 
original evolved design. To perform Laplacian smoothing, we 
re-query our evolved CPPN and define the height of each node 
using the average output of surrounding nodes within a Moore 
neighborhood of range, R:  
 

ℎ !, ! = 1
!(!, !) ! !, !

!!!

!!!!!

!!!

!!!!!
 

 
Where: 

! !, ! = ℎ(!, !),!!!!!!!!!!!"!0 ≤ ! ≤ !"! ∧ !0 ≤ ! ≤ !"!!!!!!!
0,!!!!!!!!!!!"ℎ!"#$%!  

 

! !, ! = ! !, !
!!!

!!!!!

!!!

!!!!!
 

 

! !, ! = 1, !"!0 ≤ ! ≤ !"! ∧ 0 ≤ ! ≤ !"
0, !"ℎ!"#$%! !!!!!!!!!!!!!!!!!!!!(3) 

 
Where: ℎ !, !  is the average (Laplacian smoothed) height, 

h, of node (!, !), R is the Moore neighborhood range, and Ma 
and Mb are the maximum number of nodes in the a and b 
dimensions of the mesh grid, respectively.  

As shown in Fig. 6, the success of this method, when 
applied to CPPN generated outputs, relies on careful 
coordination between the Moore neighborhood range, R, of 
the Laplacian smoothing filter and the increased resolution 
size. For example, if we apply the Laplacian filter directly to 
the initial (1 x 2) 2D beam design (i.e. without increasing the 
mesh resolution) the shape quickly begins to approximate a 
flat line due to over-smoothing. However, if the Moore 
neighborhood is incremented each time the mesh resolution 
doubles, then we can avoid over-smoothing and under-
smoothing (Fig. 6). This method allows us to produce finer 
resolution meshes that have significantly more uniform 
elements, yet - critically - they remain close approximations of 
the original evolved designs.  

Fig. 7 shows the evolved design from Fig 5A, at three 
significantly different resolutions (1,650, 6,600 and 26,400 
elements) and with different filter properties (i.e. no filter, 
R=1, R=2) to illustrate the percentage error and absolute error 
introduced to the FEA results following transformation. Here 
percentage error is defined as:  
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%!!""#"! = ! |!" − !"|!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4) 
 

Where: !" is |d| experienced at the loaded node in the 
evolved solution (30 x 55 resolution, no filter), and !" is the 
|d| experienced by the updated solution.  

As shown in Fig. 7, applying Laplacian smoothing directly 
to the evolved design has the effect of over-smoothing the 
evolved features, and altering mechanical performance. Note 
that while mechanical performance is worse, the shape and 
size of the mesh elements are significantly improved and made 
more regular. The central image in Fig. 7 shows the effect of 
doubling the resolution from (30 x 55) elements to (60 x 110) 
elements and applying a Laplacian smoothing filter with R = 
1. Here we see a FE-mesh with significantly more uniform 
elements and only 0.4% difference in simulated performance. 
Similarly, we achieve a relatively small 3.7% error even as we 
multiply the number of mesh elements by a factor of 16 times 
(Fig. 8).  

Figure 9 shows the results of testing all of our evolved 
solutions at differing resolutions and with different filter 
ranges. To compare our results we show our percentage error 
in relation to the results of [13]. The authors show that their 
solutions are mesh independent by altering the resolution of 
their mesh between 1,650 and 6,600 elements and re-running 
their gradient-based method to show that they converge on 
equivalent solutions with about 4 – 6.5% error. In comparison, 
we show an average error of 3.5% and 7% when increasing 
resolution to 6,600 elements and 26,400 elements respectively.  

By showing that the mechanical performance of our 
evolved designs (Fig 5A) can be replicated using significantly 
finer and more regular meshes (Fig 7-9) and - importantly -  
using reliable C3D20R elements, we show that our method of 
evolving surface-mapped CPPNs is not exploiting mesh 
irregularities to produce deceptive results, and is indeed 
improving on state-of-the-art gradient-based methods for 
shape optimization. Specifically, we show that our method can 
consistently discover mechanical designs that are better than 
existing state-of-the-art methods [13]. 

IV. SCALABILITY EXPERIMENT 

A. Modifications to Methods  
To test the scalability of our method, we explore eight 
different parameterizations of the previous benchmark 
problem (Fig. 2), and use two different surface 
transformations. Firstly, we evolve designs with a uniform 
shell thickness. Secondly, we evolve designs where shell 
thickness is allowed to vary (locally) across the surface.   
 To build designs with uniform shell thickness, we use a 
CPPN (as before) with three inputs, and one output (see Fig 
1). To build designs with variable shell thickness, we use the 
same CPPN method, but add an extra output, T, to control 
shell thickness. As shown in Figure 10, ZN continues to define 
a surface extrusion relative to the surface normal, but now T 
defines the thickness of the shell across the surface. Here, T 
defines the thickness of the shell at each (u,v) coordinate on 
the NURBS substrate by locally extruding the shell in the 
opposite direction of the surface normal, ensuring that the 
minimum shell thickness at any point is 0.01mm and the 

maximum is 1.0mm (Fig 10). The solution is then meshed and 
subjected to FEA as the uniform shell. Note that a key 
difference between the uniform and variable shell designs is 
the number of degrees-of-freedom.  
 

1) Modifications to the Benchmark Setup 
We add additional degrees of freedom (DoF) to the original 

benchmark problem in order to demonstrate that, unlike 
similar methods [4], [15], [17], the problem does not become 
more difficult to solve as more DoF are added to the system.  

To demonstrate this scalable behavior, we increase the 
dimensionality of the problem in two specific ways, and test 
eight different parameterizations of the benchmark problem.  

Firstly, we vary the discretization of the FE-mesh. Our base 
experiment used a fixed mesh resolution of 30 x 55 elements 
(i.e. 1736 different DoF). In this paper we test four different 
mesh resolutions: 6 x 12 elements (91 DoF), 12 x 24 elements 
(325 DoF), 24 x 48 elements (1225 DoF), and 48 x 96 
elements (4753 DoF). Here each uniform shell has a fixed 
thickness of 0.3mm.  

Secondly, we allow solutions to vary their discretization and 
shell thicknesses across the surface domain, subject to a 
maximum volume constraint. Here the local shell thickness is 
a continuous value between 0.01mm and 1.0mm. If the 
volume of the final shell solution, sV, is greater than a 
maximum volume, mV, the CPPN is re-queried and the 
thickness, T, of each point is scaled linearly to meet mV.  

We calculate the volume of each shell solution by taking 
each finite element block (as shown in Fig 10), and splitting it 
into twelve irregular tetrahedrons. Each tetrahedron is defined 
by six edges: a, b, c, A, B, C, where the pairs (a,A), (b,B), and 
(c,C) are opposite edges that do not share common vertices 
(Fig. 11). 

 
Figure 11. Irregular tetrahedron defined by six edges: a,b,c,A,B,C. The 

volume of each finite element block, as shown by the dotted bounding box, is 
calculated by summing the volume of 12 irregular tetrahedrons.  

 
We calculate the volume of each tetrahedron, tV, as:  
 

!" = (4!!!!!! − !!!!! − !!!!!! − !!!!!! + !!′!′!′)! !
12  

 
Where:  
!! = !!! + !!! − !!! 
!! = ! !! + !!! − !!! 
!! = !!! + !!! − !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(5) 



TEVC-00210-2016 8 

We then calculate the volume of each shell by summing over 
all tetrahedrons:   
 

!" = !"!"
!"

!!!

!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(6) 

 
where: tVij is the volume of the jth tetrahedron within the ith 
finite element in a collection of N FE blocks.  

To constrain sV of each shell to mV, we re-query the CPPN 
and linearly scale the shell thickness, T, to meet mV using:   

 

!(!!"
!"

!!!
, !",!")

!"

!!!
 

 
Where:  
!! ∈ [0.01 ∶ 1] 
 

! !, !",!" = !
!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!" ≤ !"!
!!×! 1 − !!" !" ,!!!!!!"!!"! > !" !!!!!!!!!(7) 

 
where: Tuv is the local shell thickness generated by querying 

the CPPN at point (u,v) on the NURBS surface, and Ut and Vt 
are the total number of points on the NURBS surface in the u, 
and v dimensions respectfully. Tuv can have a minimum value 
of 0.01 and a maximum value of 1.0. In these experiments we 
set mV to 130mm3. Notably, shells with uniform shell 
thickness of 0.3mm have a volume that is between 124.2mm3 
and 141.9mm3 (depending on how points are extruded to form 
structural beads).  

The important consequence of using variable shell thickness 
is that it doubles the number of DoF in each parameterization 
of the benchmark problem. This creates eight different 
parameterizations with increasing DoF: 91 and 182 (uniform 
and variable shell thickness of discretization: 6 x 12), 325 and 
650 (12 x 24), 1225 and 2450 (24 x 48), and 4753 and 9506 
(48 x 96). These eight parameterizations allow us to test how 
our surface-mapped CPPN approach performs across a range 
of different scales.  

As in our base experiment, we perform our finite element 
calculations using the open-source solver CalculiX, but this 
time we use C3D8 elements. Our base experiment used 
C3D20R elements, which are robust and reliable FE brick 
elements, in order to compare our solutions with a state-of-
the-art gradient-based approach [13]. C3D20R elements more 
accurately simulate physical behavior, but the trade-off for 
fine-grained analysis is increased computation time [45]. In 
this experiment we use C3D8 elements, which are less 
accurate, but much faster to simulate and therefore allow us to 
explore the scalability of our approach in a reasonable 
timeframe.  
 

2) Modifications to the NEAT Setup  
We perform 20 independent runs of each of our 8 

parameterizations, each run using a population of 100 
solutions, evolved for 200 generations. All other details of the 
NEAT setup and fitness function are the same as in the base 
experiment.  

Since we use different finite element bricks in this 
benchmark setup, our results are not directly comparable to 
solutions found in the base experiment. Consequently, our 
decision to increase the number of runs and generations is due 
to a desire to exploit the reduced runtimes of our simulations 
(when using D3D8 elements) in order to provide a better 
picture of average convergence behavior across different 
parameterizations of the benchmark problem. 

A. Results 
We now present the results from eight different 

parameterizations of the benchmark problem. Our focus is on 
how designs converge as the benchmark problem increases in 
scale. Our results show that, in contrast to traditional shape 
optimization techniques, the benchmark problem does not 
become more difficult to solve as we increase the number of 
degrees of freedom. Indeed, our results show that the 
benchmark problem actually becomes easier to solve with 
higher resolution parameterizations.  

We first test solutions with uniform thickness and varying 
mesh resolution. Figure 12 shows the mean convergence of 
the best solution in each population over 20 runs of the model. 
As shown, the lowest resolution FE-mesh (i.e. 6 x 12 
elements) converges to a displacement, |d|, of 0.073mm after 
200 generations. We then see that for each successive increase 
in scale, i.e. 12 x 24 elements, followed by 24 x 48 elements, 
we converge to better solutions, and this trend continues as we 
reach our highest resolution of 48 x 96 elements (4753 DoF), 
which achieved an average |d| of 0.041mm.  

Secondly, we test solutions with variable thickness and 
varying mesh resolution. Figure 13 shows the mean 
convergence of the best solution in each population over 20 
runs. In a similar fashion to Figure 12, we see that higher 
resolution FE-meshes converge to solutions with mechanically 
superior performance (i.e. less displacement at the loaded 
node). On first sight, this finding is perhaps not completely 
surprising, as it is well-known that designs defined by more 
degrees of freedom can often discover better solutions, due to 
the increased opportunity for fine-tuning [21]. However, the 
key point is that this ability typically comes at a cost of many 
more evaluations and thus increased computational expense. 

Indeed, designs with low resolution FE-meshes typically 
converge quickly to sub-optimal solutions, whereas whilst 
higher resolution FE-meshes can often find superior solutions, 
they require many more evaluations to converge [9], [10]. 
Figures 12 and 13 illustrate that solutions evolved with 
surface-mapped CPPNs are not subject to this behavior. In 
fact, we find that solutions controlled by more optimization 
variables discover superior solutions in fewer evaluations.  

Figure 14 illustrates this by comparing the average number 
of generations required by each of the different 
parameterizations to converge to a specific displacement 
value. The specific displacement value chosen to act as a 
threshold for this comparison is 0.0609mm. This value was 
chosen because it represents the upper range of solutions 
discovered with the 6 x 12 variable shell solution (see Fig 13). 
Critically, this value represents an evolved solution with 
relatively few DoF (650) that is not obviously converging to 
sub-optimal solutions in the same way as the 6 x 12 uniform 
shell solutions (see Fig 12). Figure 14 shows that 
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parameterizations with both uniform and variable shell 
thicknesses converge to the threshold of 0.0609mm in fewer 
generations as more DoF are added to the solution. The 
significance of this plot is that traditional shape optimization 
methods produce the inverse effect – that is, as DoF increase, 
so do the number of generations required to converge [9], 
[21]. 

It is important to note that, in these experiments, higher 
resolution parameterizations take fewer evaluations to 
converge, yet do take more time to solve than lower-resolution 
designs, due to the increased computational expense of the 
FEA. This might initially appear to be an obvious limitation of 
our approach. However, in practice, approaches which employ 
strategies to reduce the dimensionality of the problem in order 
to improve speed of convergence do not change the resolution 
of the FEA mesh, but simply change the number of control 
points that define DoF in the model [2], [4], [17], [18]-[21]. 
Consequently, our finding that parameterizations with more 
DoF can discover superior solutions in fewer evaluations is 
potentially significant for shape optimization.  

Next, we compare how uniform and variable shell solutions 
with identical mesh resolutions converge (Fig 15). We observe 
that more DoF lead to better solutions (i.e. less displacement) 
and faster convergence. Finally, Figure 16 shows the spread of 
mechanical performance achieved across the eight different 
parameterizations. This plot emphasizes our key finding, that 
evolving surface-mapped CPPNs for shape optimization does 
not become more difficult as more degrees of freedom are 
added to the system. In contrast, we find that problems defined 
by more DoF are consistently easier to solve and also 
converge to superior solutions in fewer evaluations. For raw 
convergence data collected from both experiments see: 
https://dx.doi.org/10.6084/m9.figshare.3795888.v1. 

These results, in parallel with the findings from our base 
experiment, suggest significant potential for tackling complex 
and large-scale shape optimization problems using surface-
mapped CPPNs.  

V. DISCUSSION 
 Our results demonstrate that surface-mapped CPPNs offer 
practical improvements over state-of-the-art methods to shape 
optimization. In this section we discuss (A) the advantages of 
our approach in terms of the superior physical properties of 
solutions; (B) the ability to scale up and solve design problems 
with many degrees of freedom, and (C) exciting opportunities 
for further exploration.  

A. Advantages Relating to Physical Performance  
A significant feature of our method is that it does not 

explicitly define sensitivity filters. As evidenced by [13], [41]-
[44], different filter sizes constrain state-of-the-art gradient-
based methods to converge to specific local optima. 
Consequently, filter size becomes an important design variable 
that designers must experiment with to access different 
solutions within the search space. But once the filter size is 
set, it is uniformly applied to the mesh to smooth the design.  

We claim that a key limitation of these state-of-the-art 
approaches is that a combination of different filter sizes, 

applied simultaneously across the design may conceivably 
produce even better solutions than existing uniform filters.  

This insight is the key to understanding why our surface-
mapped CPPNs improve on state-of-the-art methods. 
Specifically, our approach uses CPPNs to paint functional 
patterns across NURBS geometry to create coordinated mesh 
transformations. Recall that the CPPN-generated patterns 
exhibit useful features such as geometric regularities with 
repeating motifs; symmetries and even imperfect symmetries; 
and thus the capacity to create both smooth gradations and 
more abrupt angular transitions between parts of the design. 
This means that our encoding can implicitly control 
smoothness of geometric features during evolution, and, 
critically, does so in a non-uniform manner that is not limited 
in the same way as existing state-of-the-art gradient-based 
methods.  
  A common criticism of gradient-free methods for shape 
and structural optimization is that is that they cannot 
guarantee that the solutions converge to the global optimum. 
This remains true with our approach. However as we have 
discussed, in state-of-the-art shape optimization methods, 
parameterization decisions involved in setting up sensitivity 
filters actively define which “optimum” is discoverable. 
Consequently, while our model cannot guarantee convergence 
to an optimal solution, we seem better able to approximate the 
true global optima than state-of-the-art methods, and in doing 
so, can discover solutions that have superior performance on 
highly non-convex, real-world problems. 

A. Advantages Relating to Scalability 
The results of our scalability experiment suggest that 

surface-mapped CPPNs enable a powerful and scalable 
approach to shape optimization. Critically, our choice of FE-
mesh resolutions (6x12), (12x24), (24x48), (48x96) allow us 
to test our benchmark problem at a variety of significantly 
different scales, ranging from 91 to 9506 degrees of freedom. 
This increase in scale is substantial compared to related 
studies [2], [4], [9], [10], [17], [21], and also significantly 
exceeds the 1,000 DoF threshold which is known to be 
currently challenging for gradient-free methods due to the 
need to individually parameterize and manipulate each DoF  
[12]. However, we consistently discover superior solutions, in 
fewer evaluations, when using parameterizations with more 
degrees of freedom.  

An interesting observation is that while our high-resolution 
(48x96) solutions with uniform and variable shell thickness 
converge to similar displacement, |d|, values, the physical 
properties of these designs are often very different (Fig 17). 
As shown in our base experiment, our evolved uniform shell 
designs tend to form angular structural beads. However, shell 
designs with variable thickness (subject to a maximum volume 
constraint) produce much more "organic" looking shapes. 
Indeed, these solutions tend to drastically reduce shell 
thickness in less important areas, whilst increasing shell 
thickness in areas of greater structural stress. This ability to 
exploit a range of geometric freedoms is particularly useful in 
engineering domains that can exploit emerging additive 
manufacturing technologies (i.e. 3-D printing) where 
manufacturing costs are typically defined by the volume of 
material used, rather than complexity of form. 
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Figure 12. Convergence of  uniform shell solutions with different DoF  over 
200 generations. Mean convergence,and variation of the best solution in each 
population across 20 runs are shown. Solutions defined by more DoF 
converge to better performing designs.  
 
 

 
Figure 14. Convergence behavior of different parameterizations. Mean 
number of generations required to hit the threshold over 20 runs of the model 
is shown for each parameterization. Range of maximum and minimum 
generations required to converge to the threshold is also shown. Solutions 
with uniform shell thickness are plotted in red, and variable shell thickness in 
blue.  
 

Critically, the shell designs with variable thickness do not 
use more material than those with uniform thickness (in fact, 
in some cases they use less); rather, they are afforded the 
capacity to control where material is distributed whilst 
defining how geometry is transformed. This type of 
parameterization would traditionally be fraught with 
scalability problems, especially when using EAs, yet our 
surface-mapped CPPNs easily coordinate geometric 
transformations to find good solutions.  

Another useful property of our approach is that it is 
conceptually relatively simple, and therefore (unlike adaptive 
parameterizations) does not require specialist knowledge to 

 
Figure 13. Convergence of variable shell solutions with different DoF over 
200 generations. Mean convergence and variation,of the best solution in each 
population across 20 runs are shown. Solutions defined by more DoF 
converge to better performing designs.  
 

 
Figure 16. Spread of best evolved solutions from all 20 runs, over 200 
generations each time, using different parameterizations. As the number of 
DoF increases, better solutions (i.e. those showing less displacement at the 
loaded node) are discovered more regularly. 

 
tune newly introduced problem specific parameters. In terms 
of commercial application and use in industry, we suggest that 
this is a major advantage. Future work will explore this 
further.   

The key reason why our approach performs well, and across 
scales, is that by changing how shape optimization problems 
are conceptualized (as patterns instead of points) we exploit a 
rich, seemingly untapped and free source of compositional 
information. Specifically, optimal solutions to shape 
optimization problems typically (if not always) exhibit well-
defined and coordinated geometric features that are 
underpinned by geometric and spatial relationships. Yet, many 



TEVC-00210-2016 11 

shape optimization methods ignore this fact, instead choosing 
to treat designs as collections of points, which are individually 
parameterized, manipulated and then post-processed to 
achieve smooth transitions and coordinated transformations.  

By evolving surface-mapped CPPNs, we completely re-
frame the problem, and in doing so make high-resolution 
geometric problems just as easy to solve as low-resolution 
geometric problems. That is, instead of conceptualizing shape 
optimization as a high-dimensional combinatorial optimization 
problem, where the exact value of each parameter is sought, 
our approach uses CPPNs to discover underlying geometric 
and spatial relationships that are often (if not always) present 
in these types of problems.  

Critically, previous work relating to CPPN-based methods 
of generating 3-D objects has also demonstrated this ability to 
exploit free compositional information to create scale free 
geometric transformations. However, by mapping the spatial 
domain to specific surfaces – rather than using Cartesian 
volumes – we are able to exploit free compositional 
information relating to predefined geometries, while 
simultaneously enforcing much-needed constraints on 
engineering design problems.   

In this paper we show that our approach is conceptually 
easier to use than similar methods (i.e. adaptive 
parameterizations), can produce superior mechanical solutions 
compared to state-of-the-art gradient-based approaches on a 
well-known benchmark problem, exploit the core benefits of 
evolutionary methods in terms of addressing complex multi-
modal problem domains, and - perhaps most importantly - 
operate well at large scales.  
 

B. Opportunities for Further Work 
We now discuss several key benefits and opportunities for 
progress in this area, as well as ongoing challenges that 
require further work.  
 Advanced digital fabrication technologies (e.g. additive 
manufacturing) are transforming construction. Not only do 
these technologies offer vast geometric freedom to designs, 
but also they allow us to combine different materials within 
single objects, and thereby construct complex composites with 
bespoke physical properties and behaviors. These technologies 
are opening up exciting possibilities for large-scale shell 
structures in design and engineering domains [2], bio-inspired 
composites [3], resilient high-performance shell designs [4], 
next-generation robotics [31], exotic compliant mechanisms 
and morphing structures [47], [48]. Evolutionary approaches, 
such as surface-mapped CPPNs, that can deal with large 
numbers of design variables and approximate optimal designs, 
will offer significant benefits for exploiting these new 
fabrication technologies by exploring highly non-convex and 
disjoint search spaces in response to ill-defined and multi-
objective goals.  
 We conclude by outlining three areas for future research 
that we think will be valuable in leveraging surface-mapped 
CPPNs to advance engineering design. 
 Firstly, an ongoing challenge with our current setup is that it 
is computationally expensive. That is, while our model 
requires roughly the same number of generations as 
optimization steps required by [13] (i.e. to test all three filter 

sizes), in order to discover superior solutions each generation 
requires an additional 99 FEA evaluation calls, due to the need 
to simulate populations of solutions. Consequently our 
simulation time is about 100 times that of [13]. For example, 
our base experiment, with 1,736 degrees of freedom, requires 
about 17 hours run time to process 160 generations, which is 
impractical for use within industry. However, we are currently 
running our model on a single PC. Further work is required to 
utilize cloud-based systems and evaluate individual solutions 
from each generation in parallel. This would drastically reduce 
the time required to solve design problems, make our method 
much more suitable for commercial application, and render it 
potentially comparable to gradient-based methods in terms of 
time required to generate solutions.  

Secondly, as we demonstrate in our base experiment, in 
order to increase the resolution of evolved surface-mapped 
CPPNs and produce similar solutions, it is necessary to 
employ strategies that prevent under-smoothing and over-
smoothing (Fig 6). In this paper we demonstrate a simple 
Laplacian smoothing operator in order to demonstrate that our 
solutions are mesh independent. However, further work is 
needed in this area to ensure that surface-mapped CPPNs can 
be reliably recreated at any resolution without further 
evolution. Additionally, while we show that surface-mapped 
CPPNs eliminate the need for adaptive parameterizations on 
large-scale problems, we suggest that there may be cases 
where designs benefit from mesh solutions that feature non-
uniform discretization, or which perhaps feature adaptive 
mesh strategies [49]. Specifically, there may be times when it 
is easier to produce high-performance solutions with FE-
meshes, which are subdivided and discretized differently. 
Notably, ES-HyperNEAT approaches [50] have proven useful 
in other domains, and may provide useful insights for further 
research in this area. Additionally, alternative methods of 
exploiting CPPN outputs may enable high-performance 
surface conformed truss and lattice structures [36], which may 
be advantageous in specific problem domains.  

Finally, this paper demonstrates shape optimization on one 
benchmark problem only. To progress this proof-of-concept 
study, further work is needed to test this approach on a variety 
of different benchmark problems. Notably, the real benefit of 
using EAs, rather than state-of-the-art gradient-based methods, 
is that they can be applied to non-trivial design problems that 
are characterized by deceptive search spaces, for example, 
exotic compliant mechanisms, multi-material composites and 
shape changing structures. Further work will explore material 
maps as a method of addressing these sorts of non-trivial 
design problems, and fully exploit the benefits of evolutionary 
methods to advance engineering design. 
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Figure 1. Surface manipulation process. Firstly, a CPPN querys each point within a NURBS-based substrate of specified discretization, and using the points (u,v) 
coordinates as inputs, returns a bead height (ZN). Secondly, shell nodes are placed by extruding points in the direction relative to their surface normal by their 
CPPN generated bead height. Shell solutions are then created by meshing the nodes. Finally, solutions are broken down into finite elements (FE) for structural 
analysis. Here the shell thickness of each FE is defined by controlling the distance between nodes A and A1. 

 
 

 
 
Figure 5. Three solutions to the benchmark problem which demonstrate superior mechanical performance by manipulating the original L-shaped cantilever 
shape, as shown in Fig. 2, using our surface-mapped CPPN method. Front and back views of designs are shown. The different colors represent different amounts 
of displacement experienced across the design. As shown by the key in the top corner, red shows displacement of 0.033mm, whereas purple represents zero 
displacement at that part of the structure. The absolute displacement values documented at the loaded node are indicated below solutions. As shown in (A), mesh 
elements are slightly irregular due to the way that nodes move relative to the surface normal. Specifically, we see some elements are long and thin, whilst others 
are squarer. Additionally, designs have areas with angular (non-smooth) features that traditional sensitivity filters would prevent (see [13]).  
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Figure 6. Influence of Laplacian smoothing on a toy 2D beam model. The red dotted line indicates the continuous CPPN output - a Gaussian function. Applying 
Laplacian smoothing to the 1 x 2 elements has the effect of over-smoothing the design and losing the original upside-down “V” shape form. Conversely, 
increasing resolution without applying smoothing leads to under-smoothing and losing the original shape also. By increasing the Moore neighborhood range, R, 
by one node for every time the resolution doubles, the “V” shape is conserved whilst the quality of the FEA domain is improved.  

 
 
 



TEVC-00210-2016 15 

 
Figure 7. Percentage error and absolute error between the displacement of evolved solution (30 x 55 with no filter) and different resolutions with different 
smoothing ranges. Coordinating resolution changes with the size of smoothing influence produces very small differences between designs. By demonstrating that 
we achieve very similar mechanical performance using finer mesh discretization with more regular mesh elements, we evidence that our evolved solutions are 
not exploiting mesh irregularities to produce deceptive mechanical performance. 
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Figure 8. Mesh independence example. Increasing resolution and regularity of mesh elements does not alter physical performance. 
 

 
Figure 9. Percentage error incurred by scaling FE-meshes. Evolved solutions (i.e. 30 x 55 with no filter) have zero error because they set the performance 
benchmark. Percentage error within the range 4% - 6.5% is considered a good indicator that the solution is mesh independent [13].  
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Figure 10. Surface manipulation process. Firstly, a CPPN queries each point within a NURBS-based substrate of specified discretization, and using the points 
(u,v) coordinates as inputs, returns a bead height (ZN). Secondly, shell nodes are placed by extruding points in the direction relative to their surface normal by 
their CPPN generated bead height. To create localised shell thickness, points are then the interior face of the shell is extruded in the opposite direction to the 
surface normal by the value T, which is a value between 0.01 and 1.0. Shell solutions are then created by meshing the nodes. Finally, solutions are broken down 
into finite elements (FE) for structural analysis. Here the shell thickness of each FE is defined by controlling the distance between nodes A and A1. 
 
 

 
 
Figure 17. Observed geometric and formal differences between evolved solutions with a fixed (uniform) shell thickness and a variable shell thickness. Note that 
the variable thickness shell does not use more material; it simply has more control over how material is distributed.  
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Figure 15. Convergence comparison of solutions with uniform and variable shell thickness. Mean convergence of the best solution in each population, at each 
generation, over 20 runs  of the model, is shown. Also shown are the range of solutions found over all 20 runs. Solutions with variable shell thickness, which 
have double the number of DoF compared to solutions with uniform shell thickness, converge to superior solutions in fewer evaluations.  
 

 
 
 
 
 
 
 
 
 
 
 


