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Abstract. This article considers Whittaker’s confluent hypergeometric function Wκ,µ where κ is real and µ is

real or purely imaginary. Then ϕ(x) = x−µ−1/2Wκ,µ(x) arises as the scattering function of a continuous time

linear system with state space L2(1/2,∞) and input and output spaces C. The Hankel operator Γϕ on L2(0,∞) is

expressed as a matrix with respect to the Laguerre basis and gives the Hankel matrix of moments of a Jacobi weight

w0(x) = xb(1 − x)a. The operation of translating ϕ is equivalent to deforming w0 to give wt(x) = e−t/xxb(1 − x)a.

The determinant of the Hankel matrix of moments of wε satisfies the σ form of Painlevé’s transcendental differential

equation PV . It is shown that Γϕ gives rise to the Whittaker kernel from random matrix theory, as studied by

Borodin and Olshanski (Comm. Math. Phys. 211 (2000), 335–358). Whittaker kernels are closely related to systems

of orthogonal polynomials for a Pollaczek–Jacobi type weight lying outside the usual Szegö class.
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1. INTRODUCTION

The Whittaker function Wκ,µ is the solution of the second order linear differential equation

y′′ +
(−1

4
+
κ

x
+

1/4− µ2

x2

)
y = 0 (1)

that is asymptotic to xκe−x/2 as x→∞ through real values, and possibly has a logarithmic singularity at x = 0. The

general solution of Eqn (1) is given by linear combinations of the Whittaker functions Mκ,±µ. See Refs 15, p.264; 39

p. 343 for basic definitions and properties, such as Wκ,µ = Wκ,−µ. We consider the case in which κ is real, and µ is

either real or purely imaginary; hence Wκ,µ(x) is real for all x > 0. In random matrix theory, as in Refs 6, 7, 8, 25,

kernels such as

K(x, y) =
(
(κ− 1/2)2 − µ2

)√
xy
Wκ−1,µ(x)Wκ,µ(y)−Wκ,µ(x)Wκ−1,µ(y)

x− y
, (2)

provide self-adjoint integral operators on L2((0,∞); C), and are associated with determinantal random point fields.

The purpose of this note is to provide some transparent proofs of some basic properties of these kernels and their

associated determinantal random point fields. The new contribution is showing that the Whittaker kernels are closely

related to systems of orthogonal polynomials for a Pollaczek–Jacobi type weight

wt(x) = e−t/xxb(1− x)a (0 < x < 1) (3)

for t > 0, a > −1 and b ∈ R. In Ref 26, the authors consider physical applications of wt in quantum mechanical

models of highly excited states. We compare wt with some classical weights.

An integrable weight w : [0, 1]→ [0,∞) belongs to the Szegö class if∫ 1

0

logw(x)√
x(1− x)

dx > −∞. (4)
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Szegö’s fundamental approximation theorem for orthogonal polynomials uses such weights as in page 157 of Ref 33.

The classical Jacobi weight function as in Ref 33 can be translated onto [0, 1] to become

w0(x) = xb(1− x)a (0 < x < 1), (5)

where a, b > −1. Clearly the Jacobi weight w0 satisfies (4), and Szegö uses this condition to derive properties of

Jacobi orthogonal polynomials in Ref 33. See also Ref 2 for the deformations of the Jacobi weight by e−tx, which

gives a weight which resembles the Laguerre weight.

Thus the weight wt may be regarded as a deformation of the Jacobi weight w0 by multiplication by e−t/x where

t > 0 is the deformation parameter. However, the weight wt vanishes to infinite order as x → 0+ for all t > 0 and

b ∈ R, and logwt(x) is not integrable with respect to dx/
√
x(1− x), violating condition (4); so the properties of

orthogonal polynomials with respect to wt can be rather different from the Jacobi orthogonal polynomials. In this

paper, we establish a remarkably strong connection between the weights wt for t > 0 and the Whittaker kernel K,

which in our view provides a clear insight into the properties of K as an operator, and explains why K has similar

properties to other kernels which arise in random matrix theory. In applications to random matrix theory, one is

primarily interested in the determinants associated with the operators and weights, which are defined as follows.

Definition With a, b > −1 and t ≥ 0, we introduce

DN (t; a, b) = det
[∫ 1

0

xj+kxb(1− x)ae−t/x dx
]N−1

j,k=0
(6)

or equivalently

DN (t; a, b) =
1

N !

∫
[0,1]N

∏
1≤j<k≤N

(xj − xk)2
N∏
`=1

xb`(1− x`)ae−t/x` dx`. (7)

The equality of (6) and (7) follows from Heine’s formula, as in Szegö’s treatise on orthogonal polynomials33. The

Hankel matrix associated with wt is [∫ 1

0

xj+kwt(x)dx
]∞
j,k=0

which gives a linear operator on `2; whereas the Hankel integral operator on L2(0,∞) with scattering function

ϕ ∈ L2(0,∞) is Γϕ : f(x) 7→
∫∞

0
ϕ(x + y)f(y) dy. In section two, we introduce the notion of a linear system and

scattering function, and introduce a special linear system involving w0 which realises ϕ(x) = Wκ,µ(x)/xµ+1/2 as its

scattering function. Then we relate the Hankel operator matrix with Hankel integral operators, and the linear system

which gives rise to the Hankel integral operator. We are concerned with a family of weights wt which deforms as

t ≥ 0 varies, so in section two, we introduce a family of linear systems (−A,Bε, Cε) depending on ε ≥ 0 which have

scattering functions ϕ(x+ 2ε). In section three we show how the weight wε corresponds (−A,Bε, Cε).
The fundamental eigenvalue distributions in random matrix theory are the bulk, soft edge and hard edge distri-

butions, which specified by Fredholm determinants of kernels K known as the sine, Airy and Bessel kernels. Tracy

and Widom36 observed that such K can be expressed as products of Hankel operators K = Γ∗φΓφ, where φ satisfies

second-order differential equations with rational coefficients. More generally they considered the matrix models which

arise from rational second order differential equations, and the deformations which arise from the translation operation

φ(x) 7→ φ(x + 2ε). The results in section two, three and four of this paper extend their program to the Whittaker

kernel.

We recall fundamental facts about trace class operators and their Fredholm determinants. Let H and H1 be

separable Hilbert space and suppose that H has a complete orthonormal basis (φj)
∞
j=0. A linear operator T : H → H1
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is said to be Hilbert–Schmidt if ‖T‖2HS =
∑∞
j=0 ‖Tφj‖2H1

is finite, and ‖T‖HS is the Hilbert–Schmidt norm. A linear

operator R : H → H is said to be trace class if there exist Hilbert–Schmidt operators T : H → H1 and S : H1 → H

such that R = ST . If so, then the trace norm is ‖R‖c1 = inf{‖S‖HS‖T‖HS : R = ST}. Such an R has eigenvalues

(λj)
∞
j=1 such that

∑∞
j=1 |λj | <∞, and the Fredholm determinant associated with R is det(I +R) =

∏∞
j=1(1 + λj). A

crucial observation is that TS : H1 → H1 is also trace class and

det(I + ST ) = det(I + TS). (8)

Given trace class R : H → H, and finite rank orthogonal projections PN : H → H, the operators PNRPN are also

trace class and we can compare the polynomial det(I − zPNRPN ) with the entire function det(I − zR). In particular,

we can choose PN to be the orthogonal projection onto span{φj ; j = 0, . . . , N−1}, where PNRPn is represented by the

matrix [〈Rφj , φk〉H ]N−1
j,k=0. In Proposition 2.3 below, we choose H = L2(0,∞), R to be a Hankel integral operator on H

and (φn)∞n=0 = (φ
(α)
n )∞n=0 to be a Laguerre basis of H; we also let H1 = L2(w0(x)dx) and realise det[〈Rφj , φk〉H ]N−1

j,k=0

in terms of DN (0; a, b) for (a, b) = (2α − 2µ + 1, µ − κ − 1/2). This leads to the basic connection between Hankel

integral operators and Hankel operators; in section three we refine this by deforming the Jacobi weight w0 to wt.

Painlevé considered how the solutions of second order rational differential equations behave when the coefficients

are deformed; see Refs 18, 22, 27 for a modern treatment. In section three, we show how the determinants DN (t; a, b)

are related to Whittaker functions, and we observe that DN (t; a, b) satisfies a version of the Painlevé transcendental

differential equations V and V I as a function of the deformation parameter t. The Painlevé V equation has previously

appeared in various ensembles in random matrix theory. Tracy and Widom37 obtained PV from the Laguerre

ensemble, and also from the Bessel ensemble from Ref 35 which is associated with hard edge distributions.

In section four, we introduce the Whittaker kernels in terms of our special linear system and associated Hankel

integral operators. We obtain factorization theorems in the style of Tracy and Widom34,35,36, which express the

Whittaker kernel as products of Hankel integral operators of infinite rank on L2(0,∞). Peller29 describes in detail

the connection between the eigenvalues of a Hankel operator Γφ, the spectral multiplicity and the smoothness of the

symbol φ. In Corollary 4.3, we show that the eigenvalues of a variant of the Whittaker kernel are of rapid decay, by

using methods from section 6 of Ref 4.

The case of Eqn (2) with κ = a+1/2 and µ = a is of particular interest, as in Ref 28, and we consider this in sections

5 and 6. Lisovyy considered how the determinant for the hypergeometric kernel degenerates to the determinant for

the Whittaker kernel, and realised PV as a limiting case of PV I; see Ref 24, section 10.

A stochastic point process on (0,∞) is a probability measure on the space of point configurations of (0,∞). See

section 5.4 of Ref 13 for the general definition of finite point processes. The process is said to be determinantal when

the correlation functions are given by Fredholm determinants of operators on L2(0,∞), as follows.

Definition (Determinantal point process) Let S be a continuous kernel on (0,∞) such that

(i) S(x, y) = S(y, x) for all x, y ∈ (0,∞);

(ii) the integral operator with kernel S satisfies the operator inequality 0 ≤ S ≤ I as self-adjoint operators on

L2(0,∞);

(iii) for all 0 < u < v < ∞, the integral operator with kernel I[u,v](x)S(x, y)I[u,v](y) is trace class, where I[u,v]

denotes the indicator function of [u, v].

Then S gives rise to a determinantal point process on (u, v) in Soshnikov’s sense9,32. Let T satisfy I + T = (I −S)−1

as operators on L2(u, v). Then the probability that there are exactly N points in the realization, one in each subset

dxj for j = 1, . . . , N and none elsewhere is equal to

det(I + T )−1 det[T (xj , xk)]Nj,k=1dx1 . . . dxN , (9)

where the xj ∈ [u, v].
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Let Mh
N (C) be the space of Hermitian complex matrices, and U(N) the space of unitary N × N matrices which

acts on Mh
N (C) by U : X 7→ UXU∗. A probability measure on Mh

N (C) which is invariant under the action of U(N)

is called a unitary ensemble. The eigenvalues of X are real and are invariant under this action, and the eigenvalues

λ1, . . . , λ may be regarded as random points on R. Mehta25 gives examples of unitary ensembles which produce

determinantal point processes of the above form.

2. LINEAR SYSTEMS FOR THE WHITTAKER FUNCTIONS

Definition (Linear systems) Let H be a complex separable Hilbert space known as the state space, and H0 a finite

dimensional complex Hilbert space which serves as the input and output space. Usually, we take H0 = C, although

in section 5 we use H0 = C2. Let L2((0,∞);H0)) be the space of strongly measurable functions f : (0,∞) → H0

such that
∫∞

0
‖f(t)‖2H0

dt < ∞. Let L(H) be the space of bounded linear operators on H with the operator norm

‖T‖ = sup{‖Tξ‖H : ξ ∈ H; ‖ξ‖H ≤ 1}. A linear system (−A,B0, C0) consists of:

(i) −A, the generator of a strongly continuous semigroup (e−tA)t≥0 of bounded linear operators on H such that

‖e−tA‖ ≤Me−ω0t for all t ≥ 0 and some M,ω0 ≥ 0;

(ii) B0 : H0 → H a bounded linear operator;

(iii) C0 : H → H0 a bounded linear operator.

(In semigroup literature, a strongly continuous semigroup is described as being of class (C0), but this should not be

confused with our notation.) We define the scattering function by ϕ(t) = ϕ(0)(t) = C0e
−tAB0, where ϕ : [0,∞) →

L(H0) is continuous by (i), (ii) and (iii) since H0 is finite-dimensional. Then we define the Hankel operator with

scattering function ϕ : (0,∞)→ L(H0) by

Γϕf(x) =

∫ ∞
0

ϕ(x+ y)f(y) dy (f ∈ L2((0,∞);H0)), (10)

as in Ref 29. Note that if the integral
∫∞

0
t‖ϕ(t)‖2L(H0)dt converges, then Γϕ defines a Hilbert–Schmidt operator. In

particular, this holds if ω0 > 0.

Let Bε = e−εAB0 and Cε = C0e
−εA, and consider the linear system (−A,Bε, Cε). For the moment, ε > 0 may be

viewed as a small parameter and e−εA as a convergence factor in some of the subsequent formulas; in section three

we show how this is related to deformations of wε. For ε ≥ 0, we also introduce Rε : H → H by

Rε =

∫ ∞
0

e−tABεCεe
−tA dt, (11)

and this integral plainly converges whenever ω0 > 0. See Ref 5 for some related results.

For Whittaker functions, the basic linear system is the following. Let ε > 0, H0 = C and H = L2((1/2,∞); C) and

D(A) = {f(s) ∈ H : sf(s) ∈ H}. Then

A : f(s) 7→ sf(s), (f ∈ D(A));

Bε : b 7→ e−εs(s+ 1/2)(κ+µ−1/2)/2(s− 1/2)(−κ+µ−1/2)/2b, (b ∈ C);

Cε : f(s) 7→
∫ ∞

1/2

e−εs
(s+ 1/2)(κ+µ−1/2)/2(s− 1/2)(−κ+µ−1/2)/2

Γ(µ− κ+ 1/2)
f(s)ds, (f ∈ D(A)). (12)

2.1 Lemma (i) Suppose that <µ > <κ− 1/2. Then the scattering function of (−A,Bε, Cε) is

ϕ(ε)(t) =
Wκ,µ(t+ 2ε)

(t+ 2ε)µ+1/2
. (13)

(ii) Suppose that κ, µ ∈ R and 1/2 > µ > κ− 1/2. Then Rε is self-adjoint and nonnegative, and Rε → R0 in trace

class norm as ε→ 0+.
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(iii) Suppose that <µ > <κ− 1/2, and either ε > 0, or <µ < 1/2 and ε = 0. Then Rε is trace class and

det(I − λRε) = det(I − λΓϕ(ε)
) (λ ∈ C). (14)

Proof. (i) This is by direct computation of ϕ(ε)(t) = Cεe
−tABε, which simplifies when one uses a representation

formula

ϕ(ε)(t) =
Wκ,µ(t+ 2ε)

(t+ 2ε)µ+1/2
=

∫ ∞
1/2

e−s(t+2ε)(s+ 1/2)(κ+µ−1/2)(s− 1/2)(−κ+µ−1/2) ds

Γ(−κ+ µ+ 1/2)
(t > 0) (15)

for the Whittaker function from Refs 15, 6.113(18); 17, (9.222), in which the integral is absolutely convergent.

Clearly, replacing t by t + 2ε is equivalent to multiplying the integrand by e−2εs. Taking ε → 0+, we obtain

ϕε(t)→ ϕ(t) = Wκ,µ(t)/tµ+1/2.

(ii) The operator Rε on L2(1/2,∞) is represented by the kernel

e−εs(s+ 1/2)(κ+µ−1/2)/2

(s− 1/2)(κ−µ+1/2)/2

e−εt(t+ 1/2)(κ+µ−1/2)/2

(t− 1/2)(κ−µ+1/2)/2

1

(s+ t)Γ(−κ+ µ+ 1/2)
. (16)

The first two factors are multiplication operators in s and t, while the final factor is the compression of Carleman’s

operator Γ ∈ L(L2(0,∞)) to the bounded linear operator on L2(1/2,∞) with kernel 1/(x + y), as discussed in Ref

29, p.440. Now Γ is non negative as an operator, hence Rε is also non negative by Eqn (16). Since Rε ≥ 0, the trace

class norm of Rε equals trace(Rε). Now R0 has kernel

(s+ 1/2)(κ+µ−1/2)/2

(s− 1/2)(κ−µ+1/2)/2

(t+ 1/2)(κ+µ−1/2)/2

(t− 1/2)(κ−µ+1/2)/2

1

(s+ t)Γ(−κ+ µ+ 1/2)
,

and

trace(R0) =

∫ ∞
1/2

(s+ 1/2)(κ+µ−1/2)

(s− 1/2)(κ−µ+1/2)

1

2sΓ(−κ+ µ+ 1/2)
ds <∞.

As ε → 0+, we obtain trace(Rε) → trace(R0) by the dominated convergence theorem and Rε → R0 in the weak

operator topology. Hence ‖Rε−R0‖c1 → 0 by Arazy’s convergence theorem from Ref 1. See Ref 19 for more analysis

of operators of this form.

(iii) One can introduce operators Ξε,Θε : L2(0,∞)→ L2(1/2,∞) by Θεf =
∫∞

0
e−tA

†
C†εf(t) dt so

Θεf(s) =

∫ ∞
0

e−ts−εs(s+ 1/2)(κ+µ−1/2)/2(s− 1/2)(−κ+µ−1/2)/2

Γ(µ− κ− 1/2)
f(t) dt (s > 1/2)

and Ξεf =
∫∞

0
e−tABεf(t) dt such that Γϕ(ε)

= Θ†εΞε and Rε = ΞεΘ
†
ε; see Ref 5 for more details. For ε > 0, it is

straightforward to check that Θε and likewise Ξε are Hilbert–Schmidt. The kernel of Ξε is

e−εs−st(s+ 1/2)(κ+µ−1/2)/2(s− 1/2)(−κ+µ−1/2)/2 (s > 1/2, t > 0), (17)

which is Hilbert–Schmidt since∫ ∞
1/2

∫ ∞
0

e−2εs−2st(s+ 1/2)(<κ+<µ−1/2)(s− 1/2)(−<κ+<µ−1/2)dtds <∞

for −<κ+ <µ− 1/2 > −1, since e−εs → 0 rapidly as s→∞. Hence Rε and likewise Γϕ(ε)
are trace class with

det(I − λRε) = det(I − λΞεΘ
†
ε) = det(I − λΘ†εΞε) = det(I − λΓϕ(ε)

). (18)

For α ≥ 0, let L
(α)
n (x) be the generalized Laguerre polynomial of degree n, defined by

L(α)
n (x) =

(−1)n

Γ(n+ 1)

ex

xα
dn

dxn
(
xn+αe−x

)
; (19)
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then the nth generalized Laguerre function is φ
(α)
n (x) = e−x/2xαL

(α)
n (x). See 8.970 of Ref 17.

2.2 Lemma Let ϕ be the scattering function ϕ(x) = Wκ,µ(x)x−µ−1/2, and let w0 be the Jacobi weight

w0(ξ) = ξµ−κ−1/2(1− ξ)2α−2µ+1 (0 < ξ < 1). (20)

Then the operation of Γϕ on the generalized Laguerre basis is represented by a matrix of moments for w0, so

〈
Γϕφ

(α)
` , φ(α)

n

〉
L2(0,∞)

=
Γ(n+ 1 + α)

Γ(n+ 1)

Γ(`+ 1 + α)

Γ(`+ 1)

∫ 1

0

ξ`+nw0(ξ)dξ. (21)

For α = 0, this reduces to the Hankel matrix of w0.

Proof. This is suggested by Ref 30. The Laplace transform of φ
(α)
n satisfies

φ̂(α)
n (s) =

1

Γ(α+ n)

(s− 1/2)n

(s+ 1/2)n+1+α
, (22)

as one checks by repeatedly integrating by parts. Using the representation formula for ϕ as in Eqn (15), one can

express 〈Γϕφ(α)
n , φ

(α)
` 〉 as an integral with respect to s over (1/2,∞). By changing variables to ξ = (s−1/2)/(s+1/2),

one obtains the integral of moments with respect to the weight w0.

We now show how the leading minors of the Hankel operator Γϕ are related to the Jacobi unitary ensemble. The

joint probability density function of the Jacobi unitary ensemble on [0, 1]N as in Refs 25, 36 is

1

N !

1

Γ(κ+ µ+ 1)N

N−1∏
j=0

Γ(j + 1 + α)

Γ(j + 1)

∏
0≤j<k≤N−1

(xj − xk)2
N−1∏
j=0

w0(xj). (23)

Let ∆N (t) be the multiple integral

∆N (t) =
1

N !

1

Γ(κ+ µ+ 1)N

N−1∏
j=0

Γ(j + 1 + α)

Γ(j + 1)

∫
[t,1]N

∏
0≤j<k≤N−1

(xj − xk)2
N−1∏
j=0

w0(xj)dxj , (24)

as in Chen and Zhang12.

2.3 Proposition (i) The leading minors of the determinant of Γϕ satisfy

det
[〈

Γϕφ
(α)
n , φ

(α)
`

〉]N−1

`,n=0
= ∆N (0). (25)

(ii) Let x0, . . . , xN−1 be a sample of N points from the Jacobi unitary ensemble. Then the probability of the event

[xj ≥ t for all j] equals ∆N (t)/∆N (0).

Proof. (i) This identity follows from Lemma 2.2 and the Heine–Andreief identity from page 27 of Ref 33.

(ii) Let P
(a,b)
n (x) be the monic Jacobi polynomial of degree n for the weight w0(x) = xb(1− x)a on [0, 1], where we

choose b = µ+κ− 1/2 and a = 2α− 2µ+ 1. See Ref 33, page 58. Then with the constants γj =
∫
P

(a,b)
j (x)2w0(x)dx,

the kernel

JN (x, y) =

N−1∑
j=0

P
(a,b)
j (x)P

(a,b)
j (y)

γj
(26)

defines a self-adjoint operator on L2(w0, [0, 1]) such that 0 ≤ JN ≤ I. Hence

∆N (t)

∆N (0)
= det

(
I − JNI(0,t)

)
. (27)



7

2.4 Proposition Let

HN (t) = t(1− t) d
dt

log ∆N (t). (28)

Then σ(t) = HN (t)− d1 − td2 satisfies the σ form of Painlevé’s transcendental differential equation PV I, so

σ′
[
t(t− 1)σ′′

]2
+
[
2σ′(tσ′ − σ)− (σ′)2 − ν1ν2ν3ν4

]2
= (σ′ + ν2

1)(σ′ + ν2
2)(σ′ + ν2

3)(σ′ + ν2
4) (29)

where ν1 = (a+ b)/2, ν2 = (b− a)/2, ν3 = ν4 = (2N + a+ b)/2 with initial conditions σ(0) = d2 and σ′(0) = d1.

Proof. See Theorem 1 of of Ref 12, and Ref 22.

3. DETERMINANT FORMULAS FOR THE POLLACZEK–JACOBI TYPE WEIGHT

In this section, we consider the Pollaczek–Jacobi type weights, and show that translating the scattering function

ϕ(t) 7→ ϕ(t + 2ε) has the same effect as deforming the weight w0(x) through multiplication by e−2ε/x. The mth

moment of the Pollaczek–Jacobi weight is defined to be

µm(t; a, b) =

∫ 1

0

xmxb(1− x)ae−t/x dx (m = 0, 1, . . .). (30)

3.1 Proposition (i) The moments satisfy

µm(t; a, b) = Γ(a+ 1)e−t/2t(b+m)/2W−(2a+b+m+2)/2,−(b+m+1)/2(t). (31)

(ii) The translation operation ϕ(t) 7→ ϕ(ε)(t) = ϕ(t+ 2ε) is equivalent to replacing w0 by

w(ε)(x) = w0(x) exp
(
−2ε

( 1

x
− 1

2

))
. (32)

Proof. (i) Making the change of variable 1/x = s+ 1/2 in Eqn (30) we have

µm(t; a, b) = e−t/2
∫ ∞

1/2

e−st(s− 1/2)−κ+µ−1/2(s+ 1/2)κ+µ−1/2 ds (33)

with κ = −(2a+ b+m+ 2)/2 and µ = −(b+m+ 1)/2. See Ref 17, Eqn 9.222.

(ii) As in Eqn (15), we have

ϕ(ε)(t) =

∫ ∞
1/2

e−s(t+2ε)(s+ 1/2)(κ+µ−1/2)(s− 1/2)(−κ+µ−1/2) ds

Γ(−κ+ µ+ 1/2)
, (34)

which involves an extra factor of e−2εs, and we recover w(ε) when change the variables from s ∈ (1/2,∞) back to

x ∈ (0, 1).

For this problem, we shall be concerned with

DN (ε) =

N−1∏
j=0

Γ(j + α+ 1)

Γ(j + 1)
[Γ(κ− µ+ (1/2))]−N

1

N !

∫
[0,1]N

∏
0≤j<k≤N−1

(xk − xj)2
N∏
`=1

w(ε)(x`)dx`. (35)

Hence a straightforward change of variables gives

DN (ε) = CN (ε)DN (2ε; a, b) (36)

where DN (t; a, b) is defined in Eqn (6) and

CN (ε) = eεN [Γ(κ− µ+ 1/2)]−N
N−1∏
j=0

Γ(j + α+ 1)

Γ(j + 1)
. (37)
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As in Lemma 2.2 and Proposition 2.3, we have

DN (ε) = det
[〈

Γϕ(ε)
φ(α)
n , φ

(α)
`

〉]N−1

`,n=0
. (38)

Let the quantity H̃N (t) be defined as follows

H̃N (t) = t
d

dt
logDN (t)−N(N + b+ a). (39)

3.2 Theorem Then H̃N (t) satisfies the Jimbo–Miwa–Okamoto σ form of Painlevé’s PV for a special choice of

parameters, so

(tH̃ ′′N )2 = −4t(H̃ ′N )3 + (H̃ ′N )2
(
4H̃N + (b+ 2a+ t)2 + 4N(N + a+ b)− 4a(b+ a)

)
+2H̃ ′N

(
−(b+ 2a+ t)H̃N − 2Na(N + b+ a)

)
+ (H̃N )2. (40)

Proof. This was found in Chen and Dai11 page 2161.

3.3 Remarks (i) Chen and Dai11 Theorem 6.1 also show that (H̃N )∞N=1 satisfies a second order nonlinear difference

equation.

(ii) DN (t; a, b) is the Wronskian determinant of

{µ2N−1(t; a, b), µ′2N−1(t; a, b), . . . , µ
(N−1)
2N−1 (t; a, b)}; (41)

thus µ2N−1(t; a, b) and its derivatives with respect to t determine DN (t; a, b).

(iii) The modified Bessel function as in Eqn (83) satisfies Kµ(z) = (2z/π)−1/2W0,µ(2z) as in Ref 31; so in view of

these results, it is fitting that PV should emerge from the Whittaker kernel.

(iv) Tracy and Widom37 considered the ensembles U(N) of N ×N complex unitary matrices U with Haar measure,

and obtained PV from the distribution of trace(U). Remarkably, this is related to the uniform measure on the

symmetric group SN of permutations as N → ∞. Borodin and Olshanski8 page 98 considered the pseudo-Jacobi

ensemble and obtained PV from a Fredholm determinant associated with the Whittaker functions Mκ,µ(1/x) with κ

and µ real. Their results have applications to the infinite dimensional unitary group U(∞).

4. THE MATRIX WHITTAKER KERNEL

Borodin and Olshanski7,8 have considered kernels of the form of Eqn (2). We can factorize the kernel in terms of

products of Hankel operators, by analogy to the results of Refs 34, 37. In section 5, we see that the case κ = a+ 1/2

and µ = a is of particular interest.

4.1 Proposition The kernel satisfies

√
zw

Wκ,µ(z)Wκ−1,µ(w)−Wκ−1,µ(z)Wκ,µ(w)

(w − z)
=

∫ ∞
1

(√
zWκ,µ(sz)

√
wWκ−1,µ(sw) +

√
zWκ−1,µ(sz)

√
wWκ,µ(sw)

)ds
2s

(42)

Proof. Note that the left-hand side is a continuously differentiable function of (z, w) ∈ (0,∞)2 and that the left-hand

side converges to zero as z →∞ or w →∞. In the following proof we use the matrices

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
, J̃ =

[
0 1
1 0

]
. (43)

Combining the differential equation (1) with the recurrence relation

z
d

dx
Wκ,µ(z) = (κ− z/2)Wκ,µ(z)−

(
µ2 − (κ− 1/2)2

)
Wκ−1,µ(z), (44)
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we obtain the matrix differential equation

z
d

dz
W =

(
(1/2)I + Ω(z)

)
W, (45)

W (z) =

[
Wκ,µ(z)
Wκ−1,µ(z)

]
, Ω(z) =

[
κ− 1/2− z/2 (κ− 1/2)2 − µ2

−1 1/2− κ+ z/2

]
(46)

in which trace(Ω(z)) = 0 for all z. The eigenvalues of (1/2)I + Ω(0) are (1/2) ± µ, so the eigenvalues differ by an

integer if and only if 2µ is an integer; this characterizes the exceptional case for Birkhoff factorization into canonical

form Ref 38.

The system in Eqns (45) and (46) resembles the system of matrix differential equation considered by Tracy and

Widom36, although in our paper the trace of the coefficient matrix is non-zero, so we use a variant on their methods

as in Ref 3. We compute(
z
d

dz
+ w

d

dw

) 〈JW (z),W (w)〉
z − w

=
〈JzW ′(z),W (w)〉

z − w
+
〈JW (z), wW ′(w)〉

z − w
− 〈JW (z),W (w)〉

z − w

=
〈JΩ(z)W (z),W (w)〉

z − w
+
〈JW (z),Ω(w)W (w)〉

z − w
, (47)

where JΩ(z) + Ω(w)tJ = −(1/2)(z − w)J̃ , so(
z
d

dz
+ w

d

dw

) 〈JW (z),W (w)〉
z − w

= −(1/2)〈J̃W (z),W (w)〉. (48)

For comparison, we have(
z
d

dz
+ w

d

dw

)1

2

∫ ∞
1

〈J̃W (sz),W (sw)〉ds
s

=
1

2

∫ ∞
1

(
〈J̃zW ′(sz),W (sw)〉+ 〈J̃W (sz), wW ′(sw)〉

)
ds

=
1

2

∫ ∞
1

d

ds
〈J̃W (sz),W (sw)〉ds

= −1

2
〈J̃W (z),W (w)〉. (49)

Hence the sum

〈JW (z),W (w)〉
z − w

− 1

2

∫ ∞
1

〈J̃W (sz),W (sw)〉ds
s

(50)

is a function of z/w, which converges to zero as z →∞ or w → 0 in any way whatever, so this sum is zero. To obtain

the stated result, we multiply by
√
zw and rearrange the terms.

Let K be the integral operator on L2((a1, a2); dx) with kernel

K(x, y) =
〈JW (x),W (y)〉

x− y
. (51)

For suitable a1 and a2, we can suppose that ‖K‖ < 1 as an operator on L2((a1, a2); dx) and let S = K(I −K)−1; so

that (I + S)(I −K) = I and S : L2((a1, a2); dx)→ L2((a1, a2); dx) has a kernel

S(x, y) =
Q(x)P (y)−Q(y)P (x)

x− y
, (52)

and we take S(x, x) = Q′(x)P (x)−Q(x)P ′(x) on the diagonal.
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Let D(a1, a2;K) be the Fredholm determinant of K, regarded as a function of the endpoints a1 and a2.

4.2 Proposition (i) The restrictions of the kernels on {(x, y) ∈ (a1, a2)2} of the operators S and S2 to the diagonal

{(x, x) : x ∈ (a1, a2)} satisfy

x
d

dx
S(x, x) = −P (x)Q(x) + (S2)(x, x). (53)

(ii) The exterior derivative with respect to the endpoints satisfies

d logD(a1, a2;K) = S(a1, a1)da1 − S(a2, a2)da2. (54)

Proof. (i) LetM be the operator of multiplication by the independent variable x andD the operator of differentiation

with respect to x. For a integral operator T let δT = [MD,T ] − T , so that δT has kernel (x∂/∂x + y∂/∂y)T (x, y);

thus δ is a pointwise derivation on the kernels, while T 7→ [MD,T ] is a derivation on operator composition. We use
.
= to mean that an operator corresponds to a certain kernel. Then

[M,K]
.
= Wκ,µ(x)Wκ−1,µ(y)−Wκ,µ(y)Wκ−1,µ(x) (55)

and Eqn (48) shows that

δK
.
= −2−1〈J̃W (x),W (y)〉. (56)

Then [M,S](I −K) = (I + S)[M,K], so the kernels have

[M,S]
.
= Q(x)P (y)−Q(y)P (x)

where Q = (I−K)−1Wκ,µ and P = (I−K)−1Wκ−1,µ are differentiable functions. Hence S is also an integral operator

with kernel of the form of Eqn (52). Also, by some straightforward manipulations, we have

δS = (I −K)−1(δK)(I −K)−1 + S2, (57)

where

(I −K)−1(δK)(I −K)−1 .
= −(1/2)(P (x)Q(y) + P (y)Q(x)) (58)

and a short calculation shows that (δS)(x, x) = x(d/dx)S(x, x). Hence the result.

(ii) This is a standard consequence of the results from Ref 21.

Let φκ−1,µ(t) = Wκ−1,µ(et) and φκ,µ(t) = Wκ,µ(et) and form the matrix

Φ(t) =

 0 0 φκ,µ(t) 0
0 0 φκ−1,µ(t) 0

φκ−1,µ(t) φκ,µ(t) 0 0
0 0 0 0

 (59)

(which is not symmetric) and the integral operator on L2((0,∞); C) with kernel

T
.
= 2

φκ,µ(t)φκ−1,µ(u)− φκ,µ(u)φκ−1,µ(t)

et − eu
. (60)

Definition (i) Let K be a bounded linear operator on Hilbert space H. As in page 126 of Ref 29, we define the

singular values of K to be (sj(K))∞j=0 where sj(K) = inf{‖K −R‖L(H) : R ∈ L(H), rank(R) ≤ j}.
(ii) We say that a complex sequence (zj)

∞
j=0 decays rapidly if jpzj → 0 as j →∞ for all p ∈ N.
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4.3 Corollary Let 0 > <µ > <κ − 1/2 > −1/2. Let (λj(T ))∞j=0 be the eigenvalues of T , listed according to

algebraic multiplicity in order of decreasing modulus, so |λ0(T )| ≥ |λ1(T )| ≥ . . .. Then

(i) the Hankel operator with scattering function Φ operates on L2((0,∞); C4) and satisfies

det(I − T ) = det(I + ΓΦ); (61)

(ii) (sj(T ))∞j=0 decays rapidly, so that jpsj(T )→ 0 as j →∞ for all p ∈ N;

(iii) (λj(T ))∞j=0 decays rapidly.

Proof. (i) By Proposition 4.1, with the change of variable s = eu, we see that the integral operator satisfies

T = Γφκ−1,µΓφκ,µ + Γφκ,µΓφκ−1,µ (62)

where Γφ is in the standard form of a Hankel operator on L2(0,∞) as in Eqn (10). By some elementary determinant

manipulations, the Hankel operator with matrix valued scattering function satisfies

det(I + ΓΦ) = det(I − Γφκ−1,µΓφκ,µ − Γφκ,µΓφκ−1,µ),

which produces the stated result.

(ii) By Eqn (62) and page 705 of Ref 29, we have the inequality

s2j(T ) ≤ 2‖Γφκ−1,µ‖L(L2)sj(Γφκ,µ)

which is an easy consequence of the definition of singular values. So it suffices to show that the singular values σj

of Γφκ,µ satisfy jpσj → 0 as j → ∞ for all p ∈ N. To do this, we replace the Hankel integral operator by a Hankel

matrix.

Let ψk(s) = e−sL
(0)
k (2s) so that (ψk)∞k=0 gives an orthonormal basis of L2(0,∞), and let

γk =

∫ ∞
−∞

φκ,µ(s)ψk(s)ds (63)

so that Γφκ,µ is represented by the Hankel matrix G = [γj+k−1]∞j,k=1 with respect to (ψj)
∞
j=0 as in Theorem 1.8.9 of

Ref 29.

We now prove that γk decays rapidly as k →∞. By Plancherel’s formula we have

γk =
i

2π

∫ ∞
−∞

φ̂κ,µ(ξ)
(ξ − i)k

(ξ + i)k+1
dξ. (64)

in which the Fourier transform of φκ,µ(t) = Wκ,µ(et) is

φ̂κ,µ(ξ) =

∫ ∞
−∞

φκ,µ(t)e−iξt dt =

∫ ∞
0

z−iξ−1Wκ,µ(z)dz.

We recognise this as a Mellin transform of Wκ,µ(z), which is an absolutely convergent integral by Eqn (15) since

Wκ,µ(z) = O(z<µ+1/2) as z → 0+; also, substituting Eqn (15) and changing the order of integration, this reduces to

φ̂κ,µ(ξ) =
Γ(µ+ (1/2)− iξ)
Γ(µ− κ+ (1/2))

∫ ∞
0

tµ−κ−1/2(1 + t)µ+κ−1/2

(1/2 + t)µ+1/2−iξ dt. (65)

The latest integral converges for 1/2 − <(iξ) > <µ > <κ − 1/2, and is easy to bound from above for the stated

parameters. From Stirling’s asymptotic formula for the Gamma function in Eqn (65), we deduce that there exist

δ1, δ2 > 0 such that φ̂κ,µ is analytic on the horizontal strip {ξ ∈ C : |=ξ| < δ1} and φ̂κ,µ(ξ) = O(e−δ2|ξ|) as <ξ → ±∞
along the strip. As in Proposition 6.3 of Ref 4, we can estimate Eqn (64) by shifting the line of integration and

thereby obtain convergence kpγk → 0 as k →∞ for all p ∈ N.
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By some simple matrix approximation arguments, this implies that σn also decays rapidly as n→∞. Indeed, the

matrix Gn = [γj+k−1Ij+k≤n(j, k)]∞j,k=1 is zero outside the top left corner and has rank less than or equal to n, so by

definition of singular values, we deduce that

σn = sn(G) ≤ ‖G−Gn‖L(`2) ≤ ‖G−Gn‖HS ≤
( ∞∑
m=n

(m+ 1)γ2
m

)1/2

,

which decays rapidly as n→∞. Hence sn(T ) decays rapidly as n→∞.

(iii) By Weyl’s inequality, we have

|λn(T )|n+1 ≤
n∏
j=0

|λj(T )| ≤
n∏
j=0

sj(T ) (n = 1, 2, . . .),

where in which sj(T ) ≤ Mp/(1 + j)p for some Mp > 0 and all j by (ii). By Stirling’s formula, there exists Cp > 0

such that |λn(T )| ≤ Cp/np for all n ∈ N.

4.4 Remark By Ref 17, 9.237, Whittaker’s differential equation generalizes the differential equation that the

associated Laguerre functions satisfy. The column vector Y (z) =
√
zW (z) satisfies z(d/dz)Y (z) = Ω(z)Y (z), which

resembles the differential equation for generalized Laguerre functions on Ref 36, page 60. In Remark 5.2 of Ref 4

we obtained a factorization theorem for certain Whittaker kernels which expressly excluded the case of generalized

Laguerre functions.

5. A SPECIAL CASE OF THE WHITTAKER KERNEL

For −1/2 < a < 1/2, let Ra be the integral operator on L2(0,∞) that has kernel

Ra
.
=

(y/x)ae−(x+y)/2

x+ y
(66)

and R(a) be the operator on L2((0,∞); C2) given by the block matrix

R(a) =

[
0 R(a)

−R(−a) 0

]
(67)

and let Ψ be the matrix-valued scattering function

Ψ(t) =

[
0 Γ(1− 2a)/(1 + t)1−2a

−Γ(1 + 2a)/(1 + t)1+2a 0

]
(t > 0). (68)

5.1 Proposition (i) The operators R(±a) are bounded on L2(0,∞) for |a| < 1/2.

(ii) For all 0 < a1 < b1 <∞, the operators R(a) and ΓΨ are trace class on L2((a1, b1); C2) and satisfy

det(I − λR(a)) = det(I − λΓΨ) (λ ∈ C). (69)

(iii) The operator R(a) is skew self-adjoint, and I +R(a) is invertible, and they satisfy in block matrix form

R(a)(I +R(a))−1 =

[
R(a)R(−a)(I +R(a)R(−a))−1 −R(a)(I +R(−a)R(a))−1

−R(−a)(I +R(a)R(−a))−1 R(−a)R(a)(I +R(−a)R(a))−1

]
. (70)

(iv) The integral operator R(a)R(−a) is represented by the kernel

Γ(1− 2a)
Wa+1/2,a(x)Wa−1/2,a(y)−Wa−1/2,a(x)Wa+1/2,a(y)

(x− y)
√
xy

. (71)
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Proof. (i) This was proved by Olshanski28 using a Fourier argument. For completeness we give an equivalent proof

involving Mellin transforms. First we check that the operators R(±a) are bounded on L2(0,∞). The expression∫ ∞
0

(x/y)a

(x/y) + 1

f(y)dy

y
=

1√
x

∫ ∞
0

(x/y)a√
(x/y) +

√
(y/x)

√
yf(y) dy

y
(72)

is a Mellin convolution as in Ref 31, and one shows by a standard contour integration argument that∫ ∞
0

za+iσ−1/2dz

z + 1
= πsechπ(a+ iσ) (73)

is bounded for all σ ∈ R for all |a| < 1/2.

(ii) This follows as in Lemma 2.1. Letting M2 be the 2 × 2 complex matrices with Hilbert–Schmidt norm, we

introduce the state space H = L2((ω0,∞);M2) and the input and output space H0 = C2, viewed as column vectors,

then

D(A)→ H : f(x) 7→ xf(x);

Bω0
: H0 → H : b 7→

[
0 e−x/2x−a

−e−x/2xa 0

]
b;

Cω0 : H → H0 : g(y) 7→
∫ ∞
ω0

[
e−y/2y−a 0

0 e−y/2ya

]
g(y) dy. (74)

Then ‖e−tA‖ ≤ e−tω0 for all t > 0, and the scattering function is

Cω0
e−tABω0

=

∫ ∞
ω0

[
0 e−ty−yy−2a

−e−ty−yy2a 0

]
dy; (75)

and we note that

Cω0e
−tABω0 → Ψ(t) (76)

as ω0 → 0+; also the ‘corresponding R operator’ for the linear system (−A,Bω0
, Cω0

) has 2× 2 matrix kernel

R(a)
ω0

=

∫ ∞
0

e−tABω0
Cω0

e−tAdt; (77)

so as ω0 → 0, we obtain the operator from Eqn (67), namely

R(a) .
=

∫ ∞
0

[
0 e−t(x+y)−(x+y)/2(y/x)a

−(x/y)ae−t(x+y)−(x+y)/2 0

]
dt

.
=

[
0 (y/x)ae−(x+y)/2/(x+ y)

−(x/y)ae−(x+y)/2/(x+ y) 0

]
. (78)

(iii) Note that R(a)∗ = R(−a) hence R(a)∗ = −R(a) and I +R(−a)R(a) is invertible. By elementary row operations

one checks that I +R(a) has inverse[
I R(a)

−R(−a) I

]−1

=

[
(I +R(a)R(−a))−1 −R(a)(I +R(−a)R(a))−1

R(−a)(I +R(a)R(−a))−1 (I +R(−a)R(a))−1

]
, (79)

in which we observe that the indices a and −a alternate.

(iv) We have

R(a)R(−a) .
=

∫ ∞
0

(x/y)ae−(x+y)/2

x+ y

(y/z)−ae−(y+z)/2

y + z
dy
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which we write as partial fractions

R(a)R(−a) .
=

(xz)ae−(x+z)/2

z − x

∫ ∞
0

( 1

x+ y
− 1

y + z

)
y−2ae−y dy, (80)

where Refs 16, 14.2(17) and page 431 give the final integral in terms of an incomplete Gamma function which reduces

to Whittaker’s function ∫ ∞
0

y−2ae−y

x+ y
dy = Γ(1− 2a)x−a−1/2ex/2Wa−1/2,a(x). (81)

We also have the identity from Ref 16, p 432

xae−x/2 = x−1/2Wa+1/2,a(x). (82)

The result follows on substituting Eqns (81) and (82) into (80).

6. DIAGONALIZING THE WHITTAKER KERNEL

The Whittaker’s functions are related to Bessel’s functions and Laguerre’s functions. Let Kν(x) be the modified

Bessel function of the second kind given by

Kν(x) =

∫ ∞
0

cosh(νt)e−x cosh t dt, (83)

which is analytic on the open right half plane {x : <x > 0} and decays rapidly as x→∞ through real values. When

ν = im is purely imaginary, one refers to McDonald’s function as in Ref 31.

Let L(a) be the differential operator

L(a)f = − d

dx

(
x2 df

dx

)
+
(
x/2 + a

)2
f(x). (84)

Then L(−κ) has eigenfunctions

fκ,m(x) = x−1Wκ,im(x) (m ≥ 0), (85)

so that

L(−κ)fκ,m(x) =
(
1/4 +m2 + κ2

)
fκ,m(x). (86)

6.1 Proposition (i) The differential operator L(−a) commutes with R(a)R(−a) on

C∞c ((0,∞); C), and

L(−a)R(a) = R(a)L(a). (87)

(ii) R(a) can be expressed as a diagonal operator with respect to (f±a,m)m≥0 for −1/2 < a < 1/2.

Proof. (i) Suppose that f is smooth and has compact support inside (0,∞). Then we can repeatedly integrate by

parts the integral ∫ ∞
0

(y/x)ae−(x+y)/2

(x+ y)

(
− d

dy

(
y2 df

dy

)
+ (y/2 + a)2f(y)

)
dy (88)

without introducing boundary terms, to obtain∫ ∞
0

(x/y)ae−(x+y)/2

x+ y

(y2

4
+ a2 +

y2

(x+ y)2
+ ay +

y2

x+ y
+

2ay

x+ y
− a− y +

y2

(x+ y)2
− 2y

x+ y

)
f(y) dy. (89)
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After a little reduction, one shows that this coincides with(
−x2 d

2

dx2
− 2x

d

dx
+ (x/2− a)2

)∫ ∞
0

(y/x)ae−(x+y)/2

x+ y
f(y) dy. (90)

Likewise, we have L(a)R(−a) = R(−a)L(−a); so L(−a) commutes with R(a)R(−a).

(ii) Erdélyi16 in equations 14.3 (53) quotes the following formula for the Stieltjes transform∫ ∞
0

y−1−ae−y/2

x+ y
W−a,im(y)dy = Γ((1/2)− a+ im)Γ((1/2)− a− im)x−a−1ex/2Wa,im(x), (91)

for a < 1/2 so f−a,m(x) = x−1W−a,im(x) satisfies

R(a)f−a,m(x) = Γ((1/2)− a+ im)Γ((1/2)− a− im)fa,m(x). (92)

It follows that f−a,m is an eigenvector for R(−a)R(a). Wimp40 considered a Fourier–Plancherel formula which decom-

poses L2((0,∞); C) as a direct integral with respect to fa,m(x), where fa,m(x) are eigenfunctions of L(−a), so there

is a transform pair h↔ f

h(m) = Γ(1/2− κ− im)Γ(1/2− κ+ im)

∫ ∞
0

f(t)fκ,m(t) dt,

f(x) =
1

π2

∫ ∞
0

m sinh(2πm)fκ,m(x)h(m) dm. (93)

Hence we can take (fa,m)m≥0 to be a basis of L2((0,∞); C), and (f−a,m)m≥0 to be a basis of another copy of

L2((0,∞); C) and diagonalize R(a) with respect to the combined basis (f±a,m)m≥0 of L2((0,∞); C2).

6.2 Corollary For −1/2 < a < 1/2, the kernel

K
.
=

Γ(1− 2a) cos2 πa

π2

Wa+1/2,a(x)Wa−1/2,a(y)−Wa−1/2,a(x)Wa+1/2,a(y)
√
xy(x− y)

(94)

gives a determinantal point process on [0,∞) such that random points λj , ordered by 0 ≤ λ1 ≤ λ2 ≤ . . ., satisfy

Pr[λ1 ≥ s] = det(I −KI[0,s]). (95)

Proof. Note that

Γ(a+ 1/2 + im)Γ(a+ 1/2− im)Γ(−a+ 1/2 + im)Γ(−a+ 1/2− im) = 2π2/(cos 2πa+ cosh 2πm)

so

‖R(a)R(−a)‖L(L2(0,∞)) = π2 sec2 πa. (96)

This cancels with π−2 cos2 πa; hence we have 0 ≤ K ≤ I as operators on L2(0,∞), and K(x, y) has a continuous

kernel. Hence by Mercer’s theorem, K restricts to a trace class operator on L2(0, b) for all 0 < b <∞ with

trace (K) =

∫ b

0

K(x, x) dx. (97)

Note that the right-hand side is finite for all b > 0, but diverges to∞ as b→∞, hence det(I−KI[0,b])→ 0 as b→∞.

By Soshnikov’s theorem32, there is a point process on [0, b] with K as the generating kernel. The point process

distributes random x in [0, b] such that only finitely many x can lie in each Borel subset of [0, b], and the joint

distribution of the points is specified as follows. Let Bj (j = 1, . . . ,m) be disjoint Borel subsets of [0, b] and nj =
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]{x ∈ Bj} the number of random points that lie in Bj . Then the joint probability generating function of the random

variables nj is

E

m∏
j=1

z
nj
j = det

(
I + I[0,b]

m∑
j=1

(zj − 1)KIBj

)
(zj ∈ C). (98)

Equivalently, as in Ref 9, p. 597 we compress K to I[0,b]KI[0,b] on L2([0, b]) and introduce

T[0,b] = I[0,b]KI[0,b](I − I[0,b]KI[0,b])
−1 so that

det(I + T[0,b]) =
(
det(I − I[0,b]KI[0,b])

)−1
. (99)

For each integer ` ≥ 0, the `-point correlation function is defined to be the positive symmetric function

ρ`(x1, . . . , x`) = det(I + T[0,b])
−1 det

[
TB(xj , xk)

]`
j,k=1

(xj ∈ [0, b]), (100)

such that

Pr(there are exactly ` particles in B) =
1

`!

∫
B`
ρ`(x1, . . . , x`)dx1 . . . dx` (101)

for all Borel subsets B of (0, b).

Remarks 6.3 (i) In particular as in Ref 31, (7.4.25) we can write

f0,m(x) =
1√
πx
Kim(x/2) =

1√
2

∫ ∞
1

P−1/2+im(s)e−sx/2ds (102)

in terms of the MacDonald and associated Legendre functions. The function W0,im also occurs in the spectral

decomposition of the Laplace operator over the fundamental domain that arises from the action of SL(2,Z) on the

upper half plane; see Ref 23, page 318 for a discussion of Maass cusp forms. In Ref 4, we considered the Hankel

operators that commute with second order differential operators, and found the case L0 and R0 as Q(vii).

(ii) Another case of Q(vii) from Ref 4 is L(−κ) commuting with the Hankel operator with scattering function

x−1Wκ,1/2(x) on C∞c (0,∞). If a 6= 0, then R(a) is not a Hankel operator but an operator of Howland’s type19, and

L(a) does not commute with R(−a).
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