
ON COMPUTING HOMOLOGY GRADIENTS OVER FINITE FIELDS

 LUKASZ GRABOWSKI, THOMAS SCHICK

Abstract. Recently the so-called Atiyah conjecture about l2-Betti numbers has been

disproved. The counterexamples were found using a specific method of computing the

spectral measure of a matrix over a complex group ring. We show that in many situations

the same method allows to compute homology gradients, i.e. generalizations of l2-Betti

numbers to fields of arbitrary characteristic. As an application we point out that (i) the

homology gradient over any field of characteristic different than 2 can be an irrational

number, and (ii) there exists a finite CW-complex with the property that the homology

gradients of its universal cover taken over different fields have infinitely many different

values.
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1. Introduction

Since their introduction by Atiyah [Ati76], l2-Betti numbers have been studied and used

in many different contexts. We refer the reader to the very readable introductory article

[Eck00] and to the comprehensive book [Lüc02] for more information.

For the current paper, the motivating question goes back to [Ati76]: are the l2-Betti

numbers rational? This was popularized under the name Atiyah conjecture (e.g. [Lüc02,

Chapter 10]), although in [Ati76] it is stated as a problem. Only recently, motivated in

part by the approach of [GŻ01] and [DS02], Austin [Aus13] showed that there exists a nor-

mal covering of a finite CW-complex with at least one irrational l2-Betti number. Several

improvements followed shortly afterwards ([Gra14] and [PSŻ15], [LW13], [Gra10]).
1
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Let us note in passing that the Atiyah conjecture remains open and very interesting in

the case when the deck transformation group is torsion-free (see e.g. [Lin93], [DLM+03]).

The l2-Betti numbers are invariants associated to a normal covering σ : S̃ → S of CW-

complexes. Let us recall their definition in the case when S is a finite CW-complex and

the deck transformation group Λ of σ is residually finite. Let Λ1 ⊃ Λ2 ⊃ . . . be a

descending sequence of finite-index normal subgroups of Λ such that
⋂∞
i=1 Λi is the trivial

subgroup, and let S1, S2, . . . be the corresponding sequence of normal covers of S. By a

classical result of Lück [Lüc94], the i-th l2-Betti number of σ can be defined as the limit

(1) lim
k→∞

dimQHi(Sk;Q)

[Λ : Λk]
.

This definition leads to an interesting generalization of l2-Betti numbers: instead of the

rational homology, one can try to use homology with coefficients in an arbitrary field k.

This was first suggested by Farber [Far98], and later studied extensively by Lackenby

[Lac09] and others (e.g. [AN12], [LLS11]).

If k is a field of positive characteristic, it is not known in general whether the limit in (1)

exists when Q is replaced by k. However, by results of Elek and Szabó [ES11], this is the

case when Λ is an amenable group. Following Lackenby, we call the resulting limits the

k-homology gradients. Throughout the article we will only consider the situation when

Λ is amenable.

It is interesting to study the analogs of the Atiyah problem for k-homology gradients.

For example, a fundamental result of Linnell [Lin93] implies that if Λ is amenable and the

group ring Q[Λ] has no zero-divisors, then the l2-Betti numbers are integers. In [LLS11],

the same result is obtained for k-homology gradients, for an arbitrary field k.

The motivation for the work presented here was to generalize the examples of Austin

and others of “exotic” l2-Betti numbers to the setting of k-homology gradients. At

the heart of that work lies a method which translates the computation of the spectral

measure of a matrix over C[Λ] (an a priori functional analytic task), to the computation

of countably many spectra of finite matrices over C. Section 2 is devoted to presenting

this computational tool and motivating why it is worthwhile to develop a similar tool for

matrices over k[Λ] for arbitrary fields k.

Our main technical result is such a computational tool for matrices over k[Λ]. It is

contained in Theorem 4.1. Most of Section 3 is devoted to definitions and preliminary

results needed in the proof of Theorem 4.1.

Our remaining results are applications of Theorem 4.1. They will be proved in Section 5.

Theorem 1.1. If char(k) 6= 2 then every non-negative real number is equal to the third

k-homology gradient of some normal covering of a finite CW-complex.

Remarks 1.2. (i) The deck transformation groups of the coverings which appear in

Theorem 1.1 are amenable but not, in general, residually finite. However, the k-homology
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gradients can be defined whenever the deck transformation group is amenable (see [CG86]

and [Ele06]). We will state the general definition of k-homology gradients in Section 3.

(ii) In [Gra14] and [PSŻ15] it is shown that if k = Q, the expression ”some normal

covering” in Theorem 1.1 can be replaced by ”the universal covering”. The reason why

we cannot translate these results to an arbitrary field k is that their proofs employ

the Higmann embedding theorem. As such, the examples in [Gra14] and [PSŻ15] have

deck transformation groups which are not amenable in general, and consequently their

k-homology gradients are not known to be well-defined.

Theorem 1.3. If char(k) 6= 2 then there exists a finite CW-complex whose fundamental

group is residually finite 2-step solvable, and such that the third k-homology gradient of

its universal covering is equal to

(2)
1

64
− 1

8

∞∑
k=1

1

2k2+4k+6
.

It is easy to see that the number (2) is irrational.

The final result is an example of a finite CW-complex whose k-homology gradients

have infinitely many different values, depending on the characteristic of k. For a field

k of characteristic char(k) larger than 2 let ok(2) be the multiplicative order of 2 in

k∗, let L(k) ⊂ {2, 3, . . . , char(k)+1} be the finite set of minimal representatives in

{2, 3, . . . , char(k)+1} of the powers 20, 21, 22, . . . taken modulo char(k), and for x∈L(k)

let rk(x) > 0 be the smallest natural number such that 2rk(x) = x mod char(k).

Theorem 1.4. There exists a finite CW-complex X whose fundamental group is residu-

ally finite 2-step solvable, such that for all fields k with char(k) > 2 the third k-homology

gradient of the universal covering of X is equal to

(3) 1344 ·

47

64
+

1

128
· 1

2ok(2) − 1
+

1

64
· 2char(k)

2char(k) − 1
· 2ok(2)

2ok(2) − 1
·
∑
x∈L(k)

2−(x+rk(x))

 ,

Since L(k) is a finite set, we see that (3) is a rational number. In [Gra10] it is computed

that the third Q-homology gradient of X is equal to the irrational number 1344 · (47
64

+
1
64

∑∞
k=1 2−(k+2k)). It is not difficult to see that the numbers (3) converge to that number

when char(k)→∞. In particular, the expression (3) represents infinitely many different

numbers when k varies over different fields.

Remarks 1.5. (i) In analogy with the homology of a finite CW-complex, it has been

conjectured by Andreas Thom that the k-homology gradients stabilize as char(k)→∞.

Theorem 1.4 disproves that conjecture.

(ii) Corresponding results for the case char(k) = 2 are shown in the Göttingen doctoral

thesis [Neu16] of Johannes Neumann.

(iii) The results similar to the three theorems above hold also for fourth and higher

k-homology gradient. Furthermore, it is likely that with a bit more work one could
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find a finite CW-complex whose universal covering has an irrational second k-homology

gradient, for any field k such that char(k) 6= 2. However, passing to the first k-homology

gradient is impossible with the methods used in this article. In particular, it is an open

question whether there exist a field k and a finite CW-complex X such that the first

k-homology gradient of the universal cover of X is an irrational number. In other words,

it is not known whether the k-homology gradient of a finitely presented group can be

irrational (see [Pap13] for results on k-homology gradients of groups which are not finitely

presented).

2. Motivation - characteristic 0

The computational tool which we will state in Theorem 4.1 works over an arbitrary field

k whose characteristic is not equal to 2. To motivate it, we start by presenting a basic

version in characteristic 0. Various variants of it were used for spectral computations for

example in [BVZ97], [DS02], [LNW08], [Aus13], and [PSŻ15]. A very general version is

presented in [Gra14, Section 2].

Recall that when Λ is a countable group and T is an element of the group ring C[Λ], then

T induces a bounded operator on the Hilbert space l2(Λ) of square-summable functions

on Λ. Let ζe ∈ l2(Λ) be the indicator function of the neutral element e∈Λ. The von

Neumann dimension of the kernel of T is defined as

dimvN kerT := 〈Pζe, ζe〉,

where P : l2(Λ)→ l2(Λ) is the orthogonal projection onto the kernel of T .

Let A be a countable abelian group, and let X be its Pontryagin dual, i.e. the set

of group homomorphisms A → U(1), where U(1) is the multiplicative group of the

complex numbers on the unit circle. Let µ be the Haar measure on X, normalized so

that µ(X) = 1. The Pontryagin duality induces an embedding

(4) ̂ : C[A] ↪→ L∞(X).

We refer to [Fol95] for more information on the Pontryagin duality.

Let Γ be a group and let Γ y A be an action by group automorphisms. The outcome of

the action of γ ∈Γ on a∈A is denoted by γ.a. The central dot · is reserved for the group

multiplication. The dual action Γ y X is the unique continuous action which makes

the embedding (4) equivariant. It is also denoted with the lower dot. To simplify the

discussion, in this motivational section we assume that the dual action Γ y X is free on

a subset of full measure.

Let γ1, . . . , γm be distinct elements of Γ, and let χ1, . . . , χm ∈C[A] be such that the

functions χ̂1, . . . , χ̂m are indicator functions of some sets X1, . . . , Xm ⊂ X. Let T ∈
C[Γ n A] be equal to the sum

∑m
i=1 γiχi.

Consider the oriented graph G defined as follows. The set of vertices of G is X, and there

is an edge from x to y if for some i we have x ∈ Xi and γi.x = y.
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Let G(x) be the connected component of x in G. Let l2(G(x)) be the Hilbert space spanned

by the vertices of G(x). Let M(x) : l2(G(x)) → l2(G(x)) be the adjacency operator on

G(x), i.e. the entry of the matrix of M(x) corresponding to a pair of vertices (v, w) is

equal to 1 if there is an edge from v to w, and 0 otherwise.

Proposition 2.1. Let us assume that the set {x∈X : G(x) is a finite graph} is of mea-

sure 1. Then

dimvN ker(T ) =

∫
X

dim kerM(x)

|G(x)|
dµ(x).

�

The utility of this proposition comes from the fact that among the finite graphs G(x),

x∈X, there are only countably many different ones, and they can be often computed

explicitly. In such cases the above integral decomposes as an explicit countable sum of

kernel dimensions of finite-dimensional matrices.

Let us give an example studied in [GŻ01] (by different methods) and in [DS02]. Let

C = 〈t〉 be the infinite cyclic group and let C2 = 〈u〉 be the cyclic group of order 2. The

wreath product of C2 and C is denoted by C2 oC, thus in particular C2 oC is a group

of the form Γ n A, where Γ := C and A := ⊕ZC2. Let T ∈ Z[C2 o C] be defined as

T := t + t−1 + tu + ut−1. The whole procedure of applying Proposition 2.1 to compute

dimvN ker(T ) is worked out in [Gra14, Section 3]. The outcome is as follows.

Let G(k) be the oriented graph

•� •� · · ·� •� • (k vertices),

and let M(k) be the adjacency operator on G(k).

The set of those points x∈X for which G(x) is isomorphic to G(k) has measure k
2k+1 . It

is not difficult to check that M(k) has 1-dimensional kernel for odd k and 0-dimensional

kernel otherwise. As such, Proposition 2.1 allows us to compute dimvN ker(T ):

(5) dimvN ker(T ) =
∞∑
k=1

k

2k+1

dim kerM(k)

k
=
∞∑
k=0

1

22k+1
=

1

3
.

Let k be a field and let ρ(T )∈k[Γ n A] be the group ring element which arises from T

by reducing the coefficients modulo char(k). In the next section we will explain how to

define the number dimk[ΓnA] ker ρ(T ), in such a way that dimQ[ΓnA] kerT = dimvN kerT .

As such, it is reasonable to expect that dimk[ΓnA] ker ρ(T ) should be equal to

(6)
∞∑
k=1

k

2k+1

dimk kerM(k; k)

k
,

where M(k; k) is the adjacency operator on G(k) over the field k.

The main aim of the next two sections is to state and prove Theorem 4.1 which is an “ar-

bitrary characteristic” version of Proposition 2.1. A particular corollary of Theorem 4.1
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is that, at least when char(k) 6= 2, we have that dimk[ΓnA] ker ρ(T ) is indeed equal to the

expression (6).

3. Definitions and preliminaries

The set {0, 1, 2, . . .} of natural numbers is denoted by N. Given n∈N, the set {1, 2, . . . , n}
is denoted by [n], and the set {1, 2, . . .} is denoted by N+. Given an action Λ y S of a

group Λ on a set S, we denote the result of the action of λ∈Λ on s∈S by λ.s. Similarly,

for Φ ⊂ Λ and F ⊂ S we denote Φ.F := {ϕ.s : ϕ∈Φ, s∈F} ⊂ S.

Given a set S and a ring R we let R[S] be the abelian group of formal R-linear com-

binations of elements of S. If Λ is a group then the group ring of Λ over R is the ring

whose additive group is R[Λ] and whose multiplication is the linear extension of the

multiplication in Λ. It will be also denoted by R[Λ].

For Φ⊂Λ we let πΦ be the projection R[Λ]→ R[Φ] along the space R[ΛrΦ]. We use the

same symbol πΦ also for the projection R[Λ]n → R[Φ]n.

Given T ∈ Mat(a×b, R[Λ]) and Φ ⊂ Λ, let

TΦ := πΦ ◦ T : R[Φ]b → R[Φ]a

be the compression of T to R[Φ]b.

For Φ,Σ ⊂ Λ we define Φ·Σ := {ϕ·σ : ϕ∈Φ, σ ∈Σ} and ∂ΣΦ := Σ·Φ r Φ. A sequence

Φ1,Φ2, . . . ⊂ Λ of finite sets is called a Følner sequence if for every finite subset Σ ⊂ Λ

we have that
|∂ΣΦi|
|Φi|

i→∞−−−→ 0.

Recall that Λ is amenable if there exists a Følner sequence in Λ.

Definition 3.1. If Λ is an amenable group and k is a field then the kernel gradient of

T ∈ Mat(a×b,k[Λ]) is defined as

(7) dimk[Λ] kerT := lim
i→∞

dimk kerTΦi

|Φi|
.

where Φ1,Φ2, . . . is a Følner sequence in Λ.

The existence of this limit and its independence of the choice of a Følner sequence follows

from the Ornstein-Weiss lemma [OW87] (see [Kri07] for a detailed discussion of that

lemma).

Remark 3.2. In this article the symbol dimk[Λ] ker should be understood as a single

operator, not a composition of ”dimk[Λ]” and ”ker”. However, as shown in [Neu16], it is

possible to develop a satisfactory dimension theory for very general modules over k[Λ].

Let σ : S̃ → S be a normal covering of CW-complexes such that S is finite, and let Λ

be the deck transformation group of σ. If Λ is amenable then for i∈N we define the

i-th k-homology gradient HGi(σ; k) of σ as follows. Let Φ1,Φ2, . . . be a Følner sequence
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in Λ. Let S0 ⊂ S̃ be a CW-subcomplex which is a fundamental domain for the action

Λy S̃. We let

HGi(σ; k) := lim
k→∞

dimkHi(Φk.S0; k)

|Φi|
.

The independence from the choice of the fundamental domain S0 and the Følner sequence

Φ1,Φ2, . . . follows again from the Ornstein-Weiss lemma. Let us recall two well-known

facts.

Proposition 3.3. (i) Let σ : S̃ → S be a normal covering of CW-complexes such that

S is finite, and let Λ be the deck transformation group of σ. Let us suppose that Λ is

amenable and residually finite and let Λ1 ⊃ Λ2 ⊃ . . . be a descending sequence of finite-

index normal subgroups of Λ such that
⋂∞
i=1 Λi = {1}. Finally, let S1 := Λ1\S̃, S2 :=

Λ2\S̃, . . . be the corresponding sequence of normal covers of S. Then we have

(8) HGi(σ; k) = lim
k→∞

dimkHi(Sk; k)

[Λ : Λk]
.

(ii) Let Λ be a countable amenable group, and let T ∈Z[Λ]. There exists a connected

finite CW-complex S and a covering σ : S̃ → S whose deck transformation group is equal

to Λ, and such that for any field k we have

HG3(σ; k) = dimk[Λ] ker ρ(T ),

where ρ(T )∈k[Λ] arises from T by reducing the coefficient modulo char(k). Furthermore,

if Λ is finitely presented then σ can be taken to be the universal covering of S.

Proof. The first item follows from [ES11]. The second item follows from [Eck00, Section

3.10]. �

Let us also recall a standard lemma on Følner sequences in semi-direct products of

amenable groups.

Lemma 3.4. Let Γ and A be countable amenable groups, and let Γ y A be an action

by group automorphisms. Let Φ1,Φ2, . . . be a Følner sequence in Γ and let F1, F2, . . .

be a Følner sequence in A. Then there exists a subsequence Fi(1), Fi(2), . . . such that the

sequence Φj·Fi(j) ⊂ Γ n A is a Følner sequence in Γ n A.

Proof. After passing to a subsequence of Fi we may assume that for every finite set S ⊂ A

we have

(9)
|∂Φ−1

j .S Fj|
|Fj|

j→∞−−−→ 0.

We will show that with this assumption the sequence Φj·Fj is a Følner sequence.

First, it is easy to see that it suffices to check that for all finite subsets Σ of Γ and all

finite subsets Σ of A the sequence

(10)
|∂Σ Φj·Fj|
|Φj·Fj|
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converges to 0.

For Σ ⊂ Γ, the convergence to 0 of the sequence (10) follows directly from the fact that

Φj is a Følner sequence in Γ.

For Σ ⊂ A, let us fix ε∈ (0, 1), and let j ∈ N be such that |(Φ−1
j .Σ)·Fj r Fj| 6 ε·|Fj|.

For s∈Σ, ϕ ∈ Φj and a ∈ Fj we have

s·ϕ·a = ϕ·(ϕ−1.s)·a,

and so the number of elements in Σ·Φj·Fj which are outside of Φj·Fj is at most |Φj|·ε·|Fj|.
This easily implies the convergence of (10) to zero and finishes the proof. �

3.a. Basic properties of kernel gradients.

The following basic properties of kernel gradients will be used in Section 5, in the proofs

of Theorems 1.1, 1.3, and 1.4. All of them are standard and we only give sketches of the

proofs.

Lemma 3.5. Let Γ be an amenable group, let Λ ⊂ Γ be a subgroup, and let T ∈ Mat(m×
n,k[Λ]). Then dimk[Λ] kerT = dimk[Γ] kerT .

Sketch of Proof. Let Φ1,Φ2, . . . be a Følner sequence in Γ and let γ1, γ2, . . . be right coset

representatives of Λ in Γ. We start by showing how to obtain a new Følner sequence

Ψ1,Ψ2, . . . in Γ with the property that for any choice of indices i(1), i(2), i(3), . . . such

that the sets Ψ1 ∩ Λ·γi(1),Ψ2 ∩ Λ·γi(2), . . . are all non-empty, we have that the sequence

Ψ1·γ−1
i(1) ∩ Λ, Ψ2·γ−1

i(2) ∩ Λ , . . . is a Følner sequence in Λ.

Let Σ(1) ⊂ Σ(2) ⊂ . . . be an ascending sequence of finite subsets of Λ such that⋃∞
j=1 Σ(j) = Λ. Note that since Σ(j) ⊂ Λ, we see that ∂Σ(k)Φj is a disjoint union of

the sets ∂Σ(k)

(
Φj ∩ Λ·γi

)
.

For j ∈N+ let k(j)∈N be such that

|∂Σ(j)Φk(j)| <
1

j2
·|Φk(j)|.

Furthermore, for j ∈N+ let

I(j) := {i∈N+ : |∂Σ(j)(Φk(j) ∩Λ·γi)| >
1

j
·|Φk(j) ∩Λ·γi|},

and let Bj := Φk(j) ∩
⋃

i∈ I(j)
Λ·γi.

Then we have |∂Σ(j)Bj| > 1
j
|Bj|. Since |∂Σ(j)Φk(j)| < 1

j2
·|Φk(j)|, it follows that |Bj| 6

1
j
|Φk(j)|. Therefore, the sequence Ψ1 := Φk(1) r B1,Ψ2 := Φk(2) r B2, . . . is also a Følner

sequence in Γ. Furthermore, for all i∈N+ and all finite sets Σ ⊂ Λ there exists J ∈N+

such that for j > J we have

(11)
|∂Σ(Ψj·γ−1

i ∩ Λ)|
|Ψj·γ−1

i ∩ Λ|
<

1

j
.
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Let us denote

Ψ(j, i) := Ψj·γ−1
i ∩ Λ.

Now the inequality (11) implies that for any choice of indices i(1), i(2), . . . such that the

sets Ψ(1, i(1)),Ψ(2, i(2)), . . . are non-empty we have that the sequence Ψ(1, i(1)),Ψ(2, i(2)), . . .

is a Følner sequence in Λ. This, together with the fact that the limit (7) exists and is

independent of the choice of a Følner sequence, implies that for every ε > 0 there exists

N ∈N such that for j > N and all i∈N+ such that Ψ(j, i) is non-empty we have

(12)

∣∣∣∣ dimk kerTΨ(j,i)

|Ψ(j, i)|
− dimk[Λ] kerT

∣∣∣∣ < ε.

On the other hand, for any j we have

TΨj
∼=

⊕
i : Ψ(j,i) 6=∅

TΨ(j,i).

Thus, by the definition of kernel gradient, for every ε > 0 and sufficiently large j we have

(13)

∣∣∣∣∣∣∣ dimk[Γ] kerT −

∑
i : Ψ(j,i)6=∅

dimk kerTΨ(j,i)∑
i : Ψ(j,i)6=∅

|Ψ(j, i)|

∣∣∣∣∣∣∣ < ε

Now the lemma follows from the inequalities (12) and (13), the triangle inequality, and

the fact that if a1, . . . , am are non-negative real numbers and b1, . . . , bm are positive

real numbers then the fraction a1+...+am
b1+...+bm

lies between the smallest and the largest of the

fractions ai
bi

. �

The proof of the following lemma is straightforward using suitable block matrices.

Lemma 3.6. Let k be a field and let Λ be an amenable group. Then the set

{r ∈ R : for some matrix T over k[Λ] we have dimk[Λ] kerT = r}

of real numbers is closed under addition. �

Given a finite group Λ and an enumeration λ1, λ2, . . . , λ|Λ| of the elements of Λ, we denote

by LΛ : Λ ↪→ Mat(|Λ|×|Λ|,k) the map induced by the left regular representation. In other

words, for i, j, k ∈{1, . . . , |Λ|} we have that LΛ(λi) is a permutation matrix whose (j, k)

entry is equal to 1 if and only if λi·λj = λk.

For m,n∈N+ we denote with the same symbol the induced map LΛ : Mat(m×n, k[Λ]) ↪→
Mat(m·|Λ|×n·|Λ|, k). Furthermore, when Γ is another group, we use the same symbol

also for the induced map

LΛ : Mat(m×n, k[Λ×Γ]) ↪→ Mat(m·|Λ|×n·|Λ|, k[Γ]).

Lemma 3.7. Let Γ be an amenable group and let Λ be a finite group. For any T ∈
Mat(m× n,k[Λ× Γ]) we have

dimk[Λ×Γ] kerT =
1

|Λ|
dimk[Γ] kerLΛ(T ).
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Sketch of Proof. For simplicity we assume m = n = 1. Let Φ ⊂ Γ and let λ1, λ2, . . . , λ|Λ|
be the enumeration of the elements of Λ used to define LΛ. Let

J : k[Φ×Λ]→ k[Φ]|Λ|

be defined by demanding that J(ϕ, λj) is the vector whose j-th coordinate is ϕ and all the

other coordinates are 0. It is straightforward to check that J is a k-linear isomorphism

which intertwines TΦ×Λ and the compression of LΛ(T ) to k[Φ]|Λ|. The lemma follows by

noting that if Φ1,Φ2, . . . is a Følner sequence for Γ then Φ1×Λ,Φ2×Λ, . . . is a Følner

sequence for Γ×Λ. �

Let us recall that C2 = 〈u〉 is the cyclic group of order 2.

Lemma 3.8. Let k be a field such that char(k) 6= 2, let Γ be an amenable group, let

m,n∈N be such that m > n, let T ∈ Mat(m×n,k[Γ]), and let I ∈ Mat(m×n,k) be such

that ker(I) = {0}. Let S ∈ Mat(m×n,k[Γ×C2]) be defined as

S := I ·Diagn(
1− u

2
) + T ·Diagn(

1 + u

2
).

Then

dimk[Γ×C2] kerS =
1

2
dimk[Γ] kerT.

Sketch of Proof. Let Φ1,Φ2, . . . be a Følner sequence for Γ. Clearly Φ1×C2, Φ2×C2, . . . is

a Følner sequence for Γ×C2. Let us fix i and set Φ := Φi. Let V− := span(1−u
2
·ϕ : ϕ∈Φ)

and V+ := span(1+u
2
·ϕ : ϕ∈Φ).

It is straightforward to check that k[Φ × C2]m = V m
− ⊕ V m

+ and that both V m
− and V m

+

are SΦ×C2-invariant. Furthermore, the restriction of SΦ×C2 to V m
− is isomorphic to IΦ

and the restriction to V m
+ is isomorphic to TΦ. Since we also have dimV+ = dimV−, the

lemma follows. �

3.b. Graphs.

Let us state our graph-theoretic conventions. A directed graph is a pair (V,E), where

V is a set and E is a subset of V×V . In particular, each vertex of a directed graph is

allowed to have a single self-loop and there are no multiple edges.

Let L be a set. A directed graph with edges labeled by L is a pair (V,E), where V is a

set and E is a subset of V×V×L, such that for any (v, w)∈V×V there is at most one

s∈L such that (v, w, s)∈E.

A directed multigraph with edges labeled by L is a pair (V,E), where V is a set and E is

a subset of V×V×L.

If G = (V,E) is a directed graph with edges labeled by L, and L is a subset of a ring

R, then the adjacency operator on G is the unique map R-linear map M : R[V ]→ R[V ]

such that if (v, w, s)∈E then the coefficient of M(v) at w is equal to s.
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3.c. Pontryagin duality and ring homomorphisms.

Let A be a group isomorphic to the direct sum of infinitely many copies of C2, let X := Â

be the Pontryagin dual of A , and let µ be the Haar measure on X normalized so that

µ(X) = 1. The key property of A is that all the homomorphisms A → U(1) factor

through {−1, 1}. From now on we will always assume that k is a field with char(k) 6= 2.

As such, we obtain an embedding k[A] ↪→ Fun(X,k), where Fun(X,k) denotes the set of

(set theoretic) maps from X to k. The image of p ∈ k[A] in Fun(X,k) is denoted by p̂.

This embedding commutes with base field changes in the sense that we will now explain.

Following the notation of [AM69, Example 3 after Corollary 3.2], we let Z2 be the ring

of rational numbers which can be written with denominator which is a power of 2. Let

ρ : Z2 → k be the natural homomorphism. We use the same letter ρ for the induced

homomorphisms Fun(X,Z2)→ Fun(X,k) and Z2[F ]→ k[F ] for any set F .

We say that p∈Q[A] is a projection if the range of p̂∈ Fun(X,Q) is a subset of {0, 1}.
If p, r∈Q[A] are projections then we will write p ≺ r if and only if supp(p̂) ⊂ supp(r̂).

We will say that p and r are orthogonal, denoted by p ⊥ r, if supp(p̂) ∩ supp(r̂) = ∅.

Lemma 3.9. (1) The following diagram commutes:

Z2[A]
̂−−−→ Fun(X,Z2)

ρ

y ρ

y
k[A]

̂−−−→ Fun(X,k)

(2) Let p ∈ Z2[A] r {0} be a non-zero projection. Then supp(ρ(p̂)) = supp(p̂) and

ρ(p) 6= 0.

Proof. The first item is a straightforward exercise in Pontryagin duality.

Since the Pontryagin duality is a ring homomorphism, we have p̂ 2 = p̂, and hence for every

x∈X we have p̂(x)∈{0, 1}. Since ρ(0) = 0 and ρ(1) = 1 we deduce that supp(ρ(p̂)) =

supp(p̂). Noting that the Pontryagin duality map Z2[A]→ Fun(X,Z2) is an embedding,

we conclude that supp(p̂) 6= ∅ and hence also supp(ρ(p̂)) 6= ∅. By the first item, this

shows ρ(p) 6= 0 and finishes the proof. �

Lemma 3.10. Let F be a finite subgroup of A and let p ∈ Z2[F ] be a projection. Then

(14) dimk span (ρ(p)a : a∈F ) = |F |·µ(supp(p̂)).

Proof. Let XF be the Pontryagin dual of F , let ν be the Haar measure on XF normalized

so that ν(XF ) = 1 and let p̂F : XF → {0, 1} be the Pontryagin dual of p as an element of

the group ring Z2[F ]. A simple exercise in Pontryagin duality shows that ν(supp(p̂F )) =

µ(supp(p̂)). Thus it is enough to show that

(15) dimk span (ρ(p)a : a∈F ) = |F |·ν(supp(p̂F )).
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Let M : k[F ] → k[F ] and N : Fun(XF ,k) → Fun(XF ,k) be the multiplications by ρ(p)

and ρ(p̂F ), respectively. The left-hand side of (15) is equal to dimk im(M) and the right-

hand side is equal to dimk im(N). They are equal because the Pontryagin duality map

k[F ]→ Fun(XF ,k) is a k-algebra isomorphism which intertwines M and N . �

3.d. T -graphs.

Let A, X and µ be as in the previous section, and let Γ y A be an action of a countable

group Γ on A by group automorphisms. We recall that the outcome of the action of γ ∈Γ

on a∈A is denoted by γ.a. The central dot · is reserved for group and ring multiplications,

and “the implied dot is the central one”; for example, if γ ∈Γ and a∈A then γa should

be read as γ·a.

The dual action ΓyX is the unique continuous action for which the diagram in Lemma 3.9

is Γ-equivariant. It is easy to check that the action Γ y X is measure-preserving.

Let

T :=
m∑
i=1

γifi ∈ Z2[Γ n A] γi ∈ Γ, fi ∈ Z2[A].

A T -graph is a finite set G ⊂ Z2[A] with the following properties.

(1) The elements of G are pairwise orthogonal non-zero projections.

(2) For all p∈G and k ∈ [m] we have either supp(p̂)⊂ supp(f̂k) or

supp(p̂)∩ supp(f̂k) = ∅.

(3) If for some p∈G and k ∈ [m] we have supp(p̂)⊂ supp(f̂k) then γk.p ∈ G and f̂k is

constant on supp(p̂).

Remarks 3.11. (i) A careful reader will note a slight ambiguity in the above definition:

whether or not a set G ⊂ Z2[A] is a T -graph might depend on the choice of a decompo-

sition of T as a sum T =
∑m

i=1 γifi. Thus the expression ”T -graph” should be replaced

by “T -graph with respect to the decomposition T =
∑m

i=1 γifi.”

However, this this will never be an issue for us, because we always work with exactly one

representation of T as a sum
∑m

i=1 γifi.

(ii) Let S, T ∈ Z2[Γ n A]. We note that it can easily happen that a finite set G ⊂ Z2[A]

is both an S-graph and a T -graph.

Given a T -graph G, let us define a directed multigraph R(G, T ) with edges labeled by

the set {γ1, . . . , γm}. We let the vertex set of R(G, T ) be equal to the set G, and we let

(p, q, γ) ∈ G×G×{γ1, . . . , γm} be an edge if and only if for some k ∈ [m] we have γ = γk,

supp(p̂) ⊂ supp(f̂k) and γk.p = q.

We note in particular that at each vertex of R(G, T ) the out-edges are uniquely labeled,

and so the set of edges of R(G, T ) can be naturally identified with a subset of G ×
{γ1, . . . , γm}, by sending an edge (p, q, γ) to (p, γ).



ON COMPUTING HOMOLOGY GRADIENTS OVER FINITE FIELDS 13

A path in R(G, T ) is, speaking informally, a finite sequence of edges in R(G, T ) such

that any two consecutive edges are adjacent. More precisely, a path from p1 to λw.pw is

a sequence of elements (p1, λ1), . . . , (pw, λw) of G×Γ such that for all i = 1, . . . , w−1 we

have λi.pi = pi+1 and for all i = 1, . . . , w we have that either (pi, λi) or (λi.pi, λ
−1
i ) is an

edge.

We say that G is connected if for any two vertices in R(G, T ) there exists a path which

connects them.

We define the label of such a path to be the product λw· . . . ·λ1 ∈ Γ. It is clear that if

p, q ∈ G and γ is a label of a path from p to q then γ.p = q.

A loop is a path whose starting and final vertices are equal. For p∈G we define

Γ(p) := {γ ∈ Γ: γ is a label of a path in R(G, T ) starting at p} ∪ {e},

where e is the neutral element of Γ.

We say that G is simply-connected if it is connected and the label of any loop in R(G, T )

is equal to the neutral element of Γ. If G is simply-connected then in R(G, T ) the label

of any self-loop is equal to the identity and there are no multiple edges. Furthermore,

simply connected T -graphs have the following basic properties which we will implicitly

use.

Lemma 3.12. Let G be a simply-connected T -graph, let p ∈ G, and let λ∈Γ(p).

(i) The map α : Γ(p)→ G which sends γ ∈Γ(p) to γ.p is a bijection.

(ii) We have Γ(λ.p) = Γ(p) · λ−1 := {γ · λ−1 : γ ∈ Γ(p)}.

Sketch of Proof. (i) By definition of “connected”, the map α is surjective. If γ1.p =

γ2.p = q for γ1, γ2 ∈ Γ(p), then the concatenation of a path from p to q with label γ1

and the inverse of a path from p to q with label γ2 is a loop with label γ−1
2 γ1. Therefore

γ2 = γ1 and we see that α is injective.

(ii) Every path starting at λ.p with a label γ ∈ Γ(λ.p) can be pre-concatenated with a

path from p to λ.p, with label λ, resulting in a path starting at p, and with label γ · λ.

Therefore, Γ(λ.p) ·λ ⊂ Γ(p). As both sets are finite and of the same cardinality, they are

equal. �

If G is simply-connected and p, q ∈ G then we define γ(p, q) to be the unique element of

Γ which appears as the label of a path from p to q. In particular we have γ(p, q).p = q.

Let G be a T -graph, let p, q ∈ G, and let k be a field with char(k) 6= 2. We define

M(p, q; k)∈k by setting

M(p, q; k) :=
∑

i : γi.p=q

ρ(〈fi, p〉)

where 〈fi, p〉 ∈ Z2 is defined to be the unique value of fi on supp(p̂). We use the

convention that the empty sum is equal to 0, so if there is no edge between p and q in
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R(G, T ) then M(p, q; k) = 0. We let M(G, T ; k) : k[G]→ k[G] be the k-linear map such

that for p ∈ G we have

M(G, T ; k)(p) :=
∑
q∈G

M(p, q; k)q.

For the applications in Section 5 it is convenient to define a directed graph S(G, T ; k)

with edges labeled by the elements of k. We let the vertex set of S(G, T ; k) be equal

to G and we let (p, q, s) be an edge of S(G, T ; k) if for some γ ∈{γ1, . . . , γk} the triple

(p, q, γ) is an edge in R(G, T ) and s = M(p, q; k). Let us note that for any field k the

adjacency operator on S(G, T ; k) is equal to M(G, T ; k).

We let M(p, q) := M(p, q;Q), M(T,G) := M(T,G;Q) and S(G, T ) := S(G, T ;Q).

Clearly we have M(p, q; k) = ρ(M(p, q)).

The following is the key observation about simply-connected T -graphs.

Lemma 3.13. Let G be a simply-connected T -graph, let q ∈G, let a∈A, and let q′ ∈Z2[A]

be a projection such that q′ ≺ q. Let W be the k-linear subspace of k[Γ n A] spanned by

the elements γ(q, r)·ρ(q′)·a, where r ∈ G. Then W is ρ(T )-invariant and isomorphic to

k[G] via an isomorphism which intertwines ρ(T ) and M(G, T ; k).

Proof. Let us first check that the elements γ(q, r)·ρ(q′)·a ∈ k[Γ n A], where r∈G, are

linearly independent. For this let us suppose that for some scalars s(r)∈k, where r∈G,

we have ∑
r∈G

s(r)γ(q, r)·ρ(q′)·a = 0,

and hence also ∑
r∈G

s(r)γ(p, q)·ρ(q′) = 0.

Since the elements γ(q, r) of the group Γ, where r∈G, are pairwise distinct and ρ(q′)∈k[A],

we see that in order to deduce that s(r) = 0 for all q ∈G, it is enough to check that

ρ(q′) 6= 0, which is part of Lemma 3.9.

Thus we can define a k-linear isomorphism J : W → k[G] by setting

J(γ(q, r)·ρ(q′)·a) := r.

It remains to check that J intertwines the restriction of ρ(T ) to W and M(G, T ; k). Let

us fix r∈G and let

r′ := γ(q, r)·q′·γ(q, r)−1.

Note that r′ ∈Z2[A] is a projection such that r′ ≺ r. Now we have

ρ(T )(γ(q, r)·ρ(q′)·a) = ρ(T )(ρ(r′)·γ(q, r)·a) =
m∑
i=1

γiρ(fi) · ρ(r′)·γ(q, r)·a.
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Note that ρ(fi)·ρ(r′) is equal to the reduction mod char(k) of the unique value of f̂i on

supp(r̂). It follows that the right hand side above is equal to(∑
s∈G

γ(r, s)·M(r, s; k)·ρ(r′)

)
· γ(q, r)·a =

∑
s∈G

M(r, s; k)·γ(q, s)·ρ(q′)·a.

On the other hand, from the definition of the map M(G, T ; k) : k[G]→ k[G] we have

M(G, T ; k)(q) =
∑
s∈G

M(q, s; k)·s.

This establishes that J intertwines ρ(T ) and M(G, T ; k) and finishes the proof. �

Lemma 3.14. Let G ⊂ Z2[A] be a finite set of pairwise orthogonal projections, and let

Φ be a finite subset of Γ. There exists a finite set K ⊂ Z2[A] of pairwise orthogonal

projections with sum equal to 1, i.e. such that
⋃
p∈K supp(p̂) = X and for all p∈K,

ϕ∈Φ and q ∈G we have either ϕ.p ≺ q or ϕ.p ⊥ q.

Proof. We prove the lemma by induction on the cardinality of the set Φ. If Φ is empty

then the desired statement is true since we can take K := {1}. Thus let us assume

that Φ = Φ0 ∪ {ψ} where |Φ0| < |Φ|, and let K0 ⊂ Z2[A] be a finite set guaranteed by

the inductive assumption, i.e for all p∈K0, ϕ∈Φ0 and q ∈G we have either ϕ.p ≺ q or

ϕ.p ⊥ q.

Let G+ := G ∪ {1−
∑

q ∈G q}. We define K to be the set

K :=
⋃

q ∈G+

⋃
p∈K0

{p · ϕ−1.q : ϕ∈Φ}.

It is straightforward to check that K has the desired properties. �

4. Computational tool

Let T1, . . . , Tl ∈ Z2[Γ n A]. If a set G ⊂ Z2[A] has the property that for all i∈ [l] we

have that G is a Ti-graph, then we say that G is a (T1, . . . , Tl)-graph. Two (T1, . . . , Tl)-

graphs G1 and G2 are orthogonal if for all p∈G1, q ∈G2 we have p ⊥ q. We say that

a sequence G1, G2, . . . of (T1, . . . , Tl)-graphs is exhausting if Gi’s are pairwise orthogonal

and
∑∞

i=1 µ(supp(Gi)) = 1.

We are ready to state and prove the analog of Proposition 2.1 for kernel gradients.

Theorem 4.1. Let k be a field with char(k) 6= 2, let Γ be a countable amenable group,

let A be a countable group isomorphic to a direct sum of copies of C2, and let Γ y A be

an action by group automorphisms.
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Let T1, . . . , Tl ∈ Z2[Γ n A] and let G1, G2, . . . be an exhausting sequence of simply-

connected (T1, . . . , Tl)-graphs. Then we have

(16) dimk[ΓnA] ker


 ρ(T1)

...

ρ(Tl)


 =

∞∑
i=1

µ(supp(Gi))

|Gi|
dimk ker


 M(Gi, T1; k)

...

M(Gi, Tl; k)


 .

Before we start the proof, let us make two remarks.

Remarks 4.2. (i) The way Theorem 4.1 will be applied in Section 5 to prove Theorems

1.1, 1.3 and 1.4 is essentially as follows. For each of the theorems we will take a spe-

cific element T (or several such elements) together with an explicit exhausting sequence

G1, G2, . . . of simply-connected T -graphs from [Gra14] or [Gra10].

The measures µ(supp(Gi)) can be copied from either [Gra14] or [Gra10], and so in or-

der to compute the right hand side of (16), it is enough to compute the dimensions

dimk kerM(Gi, T ; k) of the adjacency operators on the labeled graphs S(Gi, T ; k). This

is an exercise in linear algebra, because the graphs S(Gi, T ;Q) are explicitely described

in [Gra14] and [Gra10], their edge labels are all elements of Z, and the graphs S(Gi, T ; k)

arise from the graphs S(Gi, T ;Q) by reducing the labels modulo char(k).

Thus Theorem 4.1 allows us to compute the left hand side of (16), and then Proposi-

tion 3.3 allows us to deduce the existence of the CW-complexes with suitable homology

gradients.

(ii) Let Λ be a residually finite group. Then for any p∈N+ the group Cp
2 o Λ also is

residually finite, and thus we can take a sequence ∆1 ⊃ ∆2 ⊃ . . . of finite-index normal

subgroups of Cp
2 o Λ such that

⋂∞
i=1 ∆i = {e}.

Let T ∈k[Cp
2 oΛ] and let Ti be the image of T in k[(Cp

2 oΛ) /∆i]. By the results of [ES11],

if Λ is amenable then

(17) dimk[Cp
2oΛ] kerT = lim

i→∞

dimk ker ρ(Ti)

[∆ : ∆i]
.

In particular, the limit on the right hand side exists. On the other hand, if Λ is not

amenable then in general it is not known if the limit on the right hand side of (17) exists.

Let us see how Theorem 4.1 provides a class of “test cases” for the question whether the

limit on the right hand side of (17) always exists. Let γ1, . . . , γn ∈Λ, let U ∈Z[Cp
2] be

the sum of all the elements of Cp
2, and let

T :=
n∑
i=1

γi
U

2p
+
U

2p
γ−1
i ∈ Z2[Cp

2 o Λ].

If p is large enough then either [LNW08] or [Gra14, Subsection 3.2] shows that there

exists an exhausting sequence of simply-connected T -graphs. As such, we can compute

the right hand side of (16), and in view of the equalities (16) and (17) which are valid

when Λ is amenable, it would be interesting to determine whether the right hand side
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of (17) exists and is equal to the right hand side of (16), for all choices of the sequence

∆i.

Proof of Therem 4.1. We give the proof just for one operator T := T1 =
∑m

i=1 γifi, where

γi ∈Γ and fi ∈Z2[A]. The general version does not present any additional difficulties,

except for requiring more involved notation.

Let ε∈ (0, 1) and let N be such that
∑N

i=1 µ(supp(Gi)) > 1− ε. Let G :=
⋃N
i=1Gi and

let Σ :=
⋃
q∈G Γ(q).

Let Φ ⊂ Γ be any finite subset such that |∂Σ(Φ)| < ε|Φ| and let Φ := Φ ∪ ∂ΣΦ. By

Lemma 3.14 there exists a finite set K ⊂ Z2[A] of pairwise orthogonal projections such

that we have the following two properties:

(i)
⋃
p∈K supp(p̂) = X, and

(ii) for all p∈K, ϕ∈Φ and q ∈G we have either ϕ.p ≺ q or ϕ.p ⊥ q.

Let F ⊂ A be a finite subgroup of A such that p∈Z2[F ] for all p∈K. Let TΦ·F be the

compression of ρ(T ) to the subspace k[Φ·F ] of k[ΓnA]. Since finite subgroups of A can

be arranged into a Følner sequence for A, by Lemma 3.4 it is enough to show that

(18)

∣∣∣∣∣dimk kerTΦ·F −
N∑
i=1

µ(supp(Gi))

|Gi|
|Φ||F | · dimk kerM(Gi, T ; k)

∣∣∣∣∣ 6 3ε·|Φ||F |.

This will occupy the rest of the proof.

Let us fix for each p∈K a set F (p) ⊂ F such that the elements ρ(p)a, a ∈ F (p), form a

basis of the subspace of k[A] spanned by the elements ρ(p)a, a ∈ F . Lemma 3.10 shows

that

(19) |F (p)| = µ(supp(p̂)) · |F |.

Let (ϕ, p)∈Φ×K. We say that the pair (ϕ, p) is lovely if there is q ∈G such that ϕ.p ≺ q.

We say that a triple (ϕ, p, a)∈Φ×K×F is lovely if (ϕ, p) is lovely and a∈F (p).

If p∈Z2[A] is a projection such that for some q ∈G we have p≺ q then we define Q(p) := q

and G(p) = Gi, where i is such that Q(p)∈Gi. In particular if (ϕ, p) is lovely then Q(ϕ.p)

and G(ϕ.p) are well-defined.

If (ϕ, p, a) is a lovely triple, we define

Y (ϕ, p, a) := span
(
γ · ϕ · ρ(p) · a : γ ∈Γ(Q(ϕ.p))

)
⊂ k[Φ·F ].

The following lemma follows directly from Lemma 3.13.

Lemma 4.3. Let (ϕ, p, a) be a lovely triple. Then the space Y (ϕ, p, a) is ρ(T )-invariant

and there exists a k-linear isomorphism Y (ϕ, p, a) → k[G(ϕ.p)] which intertwines ρ(T )

and M(G(ϕ.p), T ; k). �

The next lemma lists two important properties of lovely triples.
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Lemma 4.4. (1) Let (ϕ1, p1, a1) and (ϕ2, p2, a2) be two lovely triples. Then Y (ϕ1, p1, a1) =

Y (ϕ2, p2, a2) if and only if a1 = a2, p1 = p2 and for some γ ∈Γ(Q(ϕ1.p1)) we have γϕ1 =

ϕ2.

(2) Let V be the subspace of k[Φ·F ] generated by the spaces Y (ϕ, p, a), where (ϕ, p, a) runs

through all lovely triples. Then V is a direct sum of all the different spaces Y (ϕ, p, a).

Proof. The ”⇐” direction of (1) is easy to check. Let us now prove (2) and the other

direction of (1). Let I ∈N+ and let (ϕ1, p1, a1), (ϕ2, p2, a2), . . . , (ϕI , pI , aI) be a sequence

of lovely triples with the following property: for all distinct i, j ∈ I and all γ ∈Γ(Q(ϕi.pi))

we have (γ·ϕi, pi, ai) 6= (ϕj, pj, aj).

For i∈ [I] let vi ∈Y (ϕi, pi, ai) be such that
∑I

i=1 vi = 0. In order to finish the proof we

need to show that for all i∈ [I] we have vi = 0.

Let us start by writing each vi in the standard basis:

(20) vi =
∑

γ ∈Γ(Q(ϕi.pi))

s(i, γ)·γ · ϕi · ρ(pi) · ai,

where s(i, γ)∈k. Thus we have

(21)
I∑
i=1

∑
γ ∈Γ(Q(ϕi.pi))

s(i, γ) · γ · ϕi · ρ(pi) · ai = 0.

Let us fix ψ ∈Φ, p∈G and a∈F (p). Let A ⊂ [I] be the set of those i for which pi = p,

ai = a and for some γ ∈Γ(Q(ϕi.pi)) we have γ·ϕi = ψ. Clearly such γ is unique and we

denote it by γi. Let us argue that

(22)
∑
i∈A

s(i, γi) · γi · ϕi · ρ(pi) · ai = 0.

Indeed, it is clear that in the sum (21) we may take all those summands for which

γ·ϕi = ψ and still obtain 0. In the resulting sum we may take only those summand for

which pi = p and still obtain 0, since for r∈G distinct from p we have p ⊥ r. And in

that sum we may take only those summands for which ai = a and still obtain 0 by the

definition of F (p). Thus we see that (22) holds.

Since ψ, p and a are arbitrary, it is enough to show that for all i∈A we have that

s(i, γi) = 0.

Since for all i∈A we have γi·ϕi = ψ, we also have γi·ϕi.p = ψ.p. It follows that for all

i∈A we have γi.Q(ϕi.p) = Q(ψ.p). Hence, for all i∈A we have G(ϕi.p) = G(ψ.p) and

γ−1
i ∈Γ(Q(ψ.p)). Thus for all i, j ∈A we have γ−1

i ·γj ∈Γ(Q(ϕj.pj)).

But clearly γ−1
i ·γj·ϕj = ϕi so by our initial assumption on the sequence (ϕ1, p1, a1),

(ϕ2, p2, a2), . . . , (ϕI , pI , aI), we see that in fact |A| = 1 and hence s(i, γi) = 0 for all

i∈A, as needed. This concludes the proof. �
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We proceed to show that the dimension of the space V defined in the previous lemma is

large.

Lemma 4.5. For every i∈ [N ] the set of lovely triples (ϕ, p, a)∈Φ×K×F with the prop-

erty G(ϕ.p) = Gi has cardinality

µ(supp(Gi))·|F ||Φ|.

Proof. Indeed, let us fix i∈ = N and ϕ∈Φ. Let L ⊂ K be the set of those p for

which ϕ.p ≺ q for some q ∈Gi. Since the action ΓyX is measure-preserving, we have∑
p∈L µ(supp(p̂)) = µ(supp(Gi), and now the claim follows from (19). �

For each i∈ [N ] let Vi be a maximal set of lovely triples with the following two properties:

(i) for all (ϕ, p, a)∈Vi we have G(ϕ.p) = Gi, and

(ii) for distinct lovely triples (ϕ1, p1, a1) and (ϕ2, p2, a2) in Vi we have that the spaces

Y (ϕ1, p1, a1) and Y (ϕ2, p2, a2) intersect trivially.

Now Lemmas 4.4 and 4.5 show that

|Vi| > µ(supp(Gi))·
|F ||Φ|
|Gi|

.

Let us choose for each i a subset Wi ⊂ Vi such that |Wi| = µ(supp(Gi))· |F ||Φ||Gi| , and let W

be the span of those spaces Y (ϕ, p, a) such that (ϕ, p, a) belongs to Wi for some i.

Let TW be the restriction of ρ(T ) to the ρ(T )-invariant space W . By Lemmas 4.3 and 4.4

we have

(23) dimk kerTW =
N∑
i=1

|Wi|· dimk kerM(Gi, T ; k) =

=
N∑
i=1

µ(supp(Gi))·
|F ||Φ|
|Gi|

dimk kerM(Gi, T ; k).

Note that if (ϕ, p, a)∈Vi then in particular dimk Y (ϕ, p, a) = |Gi|. It follows that the

dimension of the space W is at least

(24)
N∑
i=1

|Wi|·|Gi| =
N∑
i=1

µ(supp(Gi))·|Φ||F | > (1−ε)·|Φ||F |.

Hence W is a subspace of k[Φ·F ] of codimension at most 2ε·|Φ||F |. It follows that the

codimension of W ∩ k[Φ·F ] in k[Φ·F ] is at most 2ε·|Φ||F | as well. On the other hand

the codimension of W ∩ k[Φ·F ] in W ⊂ k[Φ·F ] is at most ε·|Φ||F |. It follows that

| dimk kerTW − dimk kerTΦ·F | 6 3ε,

which together with (23) establishes (18), which finishes the proof. �
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5. Applications

Now that the computational tool, Theorem 4.1, is available, we can prove Theorems 1.1,

1.3 and 1.4 along the lines described in Remark 4.2(i). For the sake of streamlining the

discussion in this section, all the linear algebra computations are gathered in Section 6.

In order to prove Theorem 1.1, we chose to use the group ring elements from [Gra14],

but the approach from [PSŻ15] could be used just as well.

The group ring element used in the proof of Theorem 1.3 is also taken from [Gra14]. It is

unclear whether [PSŻ15] could be used to construct a universal cover with an irrational

k-homology gradient, for the reason explained in Remark 1.2. The group ring element

from [Gra14] can be used because the group C2 o C can be explicitly embedded into a

finitely presented 2-step solvable group (see [GLSŻ00]).

The group ring element used in the proof of Theorem 1.4 is taken from [Gra10].

5.a. Proof of Theorem 1.1.

Let a∈N and b ∈ {0, 1}. A loop-tree graph of type (a, b) is an oriented rooted graph

which arises from a tree by adding self-loops at some vertices, such that

(1) all edges which are not self-loops are directed towards the root,

(2) if a vertex is internal, i.e. it has both incoming and outgoing edges in the under-

lying tree, then it has a self-loop,

(3) the root has a self-loop if and only if b = 1, and

(4) if there are l leaves, i.e. vertices with no incoming edges in the underlying tree,

then exactly l−a of them have self-loops.

The loops at leaves will be called external loops, the loops at internal vertices will be

called internal loops, and the loop at the root will be called the root loop.

If G is a loop-tree graph of type (a, b) and k is a field then we define two graphs α(G; k)

and β(G; k) with edges labeled by k, as follows. The sets of vertices of both α(G; k) and

β(G; k) are equal to the set V (G) of vertices of G. We let (v, w, s) be an edge of α(G; k)

if (v, w) is an edge of G and s = 1.

The edges of β(G; k) are defined depending on the value of b, as follows. If b = 0 then

we let (v, w, s) be an edge of β(G; k) if (v, w) is an edge of G and s = 0. If b = 1 then

we let (v, w, s) be an edge of β(G; k) if (v, w) is an edge of G and either (i) (v, w) is not

the root self loop and a = 0, or (ii) (v, w) = (v, v) is the root loop and a = 1.

Let M(α; k) and M(β; k) be the adjacency operators on, respectively, α(G; k) and

β(G; k). Thus both M(α; k) and M(β; k) are k-linear operators on k[V (G)].

The proof of the following lemma is deferred to Section 6.

Lemma 5.1. Let G be a loop-tree graph of type (a, b). Then

dimk(kerM(α; k) ∩ kerM(β; k)) = a− b.
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Figure 1. The graph Gα corresponding to a loop-tree graph of type (2, 1)

In particular the left-hand side is independent of k. �

Theorem 5.2. Let A := ⊕ZC2. There exists an amenable group Γ such that for every

Σ⊂N there exists an action ΓyA, elements S, T ∈ Z2[ΓnA] and an exhausting sequence

G1, G2, . . . of simply-connected (S, T )-graphs such that∑
i

µ(supp(Gi))

|Gi|
dimQ

(
kerM(Gi, S;Q) ∩ kerM(Gi, T ;Q)

)
=

1

64
− 2

83

∑
i∈Σ

1

2i
.

Furthermore, for each i there is a loop-tree graph G of some type such that for all fields

k we have S(Gi, S; k) = α(G; k) and S(Gi, T ; k) = β(G; k).

Proof. This result can be deduced from the proof of [Gra14, Theorem 4.3] and the example

in [Gra14, Section 5.1].

The only difficulty in the derivation of the above theorem is that the group Γ from [Gra14,

Section 5.1] is defined as

Γ := [(Aut(M1) oC) ∗C2]× Aut(M2),

where ∗ denotes the free product, and M1 and M2 are some finite groups. As such Γ is

not amenable. However, in fact only the subgroup

Γ1 := [(〈β′〉 oC) ∗C2]× Aut(M2),

is used in [Gra14, Section 5.1], where β′ is certain element of Aut(M1) defined in [Gra14,

Section 5.1]. Furthermore, a direct check shows that the action Γ1 y A factors through

the action of the amenable group

Γ2 := [〈β′〉 ×C2) oC]× Aut(M2),

and so in all of [Gra14, Section 5.1] the amenable group Γ2 can be used instead of Γ. �

To stress that we take an action ΓyA guaranteed by the previous theorem for a set

Σ ⊂ N, we will denote the corresponding semidirect product by Γ nΣ A.
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Corollary 5.3. Let k be a field such that char(k) 6= 2, let Σ ⊂ N and let S and T be as

in the previous theorem. Then

(25) dimk[ΓnΣA] ker

([
ρ(S)

ρ(T )

])
=

1

64
− 2

83

∑
i∈Σ

1

2i
.

Proof. Theorem 4.1 shows that the left hand side of (25) is equal to∑
i

µ(supp(Gi))

|Gi|
dimk(kerM(Gi, S; k) ∩ kerM(Gi, T ; k)).

This, by Lemma 5.1, is equal to∑
i

µ(supp(Gi))

|Gi|
dimQ(kerM(Gi, S;Q) ∩ kerM(Gi, T ;Q)),

which by Theorem 5.2 is equal to the right hand side of (25). This finishes the proof. �

The following theorem and Proposition 3.3 establish Theorem 1.1.

Theorem 5.4. Let k be a field such that char(k) 6= 2. For every non-negative real number

r there exists an amenable group Λ and a matrix T over Z2[Λ] such that

dimk[Λ] kerT = r.

Proof. The previous corollary establishes the theorem for r in the interval [ 1
64
− 2

83 ,
1
64

].

By Lemma 3.6, we see that there exists a natural number N such that the theorem is

true for all r > N .

Thus for every positive real number there exists a natural number k such that the theorem

is true for 2k · r. Now Lemma 3.8 shows that the theorem is true for r as well. This

finishes the proof. �

5.b. Proof of Theorem 1.3.

Let A := (⊕ZC2)3 × C3
2, let Γ := C3 × Aut(C3

2), and let ΓyA be the obvious action:

Aut(C3
2) acts on C3

2 and each copy of C acts by shifting the coordinates of the corre-

sponding copy of ⊕ZC2. The following can be deduced from the proof of [Gra14, Theorem

4.3] and the example in [Gra14, Section 5.3].

Theorem 5.5. There exist S, T ∈ Z2[Γ n A] and a sequence G1, G2, . . . of exhausting

simply-connected (S, T )-graphs such that∑
i

µ(supp(Gi))

|Gi|
dimQ(kerM(Gi, S;Q) ∩ kerM(Gi, T ;Q)) =

1

64
− 1

8

∞∑
k=1

1

2k2+4k+6
.

Furthermore, for each i there is a loop-tree graph G of some type such that for all fields

k we have S(Gi, S; k) = α(G; k) and S(Gi, T ; k) = β(G; k). �

The following theorem and Proposition 3.3 establish Theorem 1.3.



ON COMPUTING HOMOLOGY GRADIENTS OVER FINITE FIELDS 23

Theorem 5.6. Let k be a field such that char(k) 6= 2. There is matrix U over Z2[(C2oC)3]

such that

(26) dimk[(C2oC)3] kerU =
1

64
− 1

8

∞∑
k=1

1

2k2+4k+6
.

Proof. Note that Γ n A is isomorphic to the product of (C2 o C)3 and the finite group

C3
2 oAut(C3

2). Therefore, by Lemmas 3.6 and 3.7, it suffices to show that the right hand

side of (26) is equal to the kernel gradient of a matrix over k[Γ n A].

Let S and T be from the previous theorem. We claim that

(27) dimk[ΓnA] ker

(
ρ(S)

ρ(T )

)
=

1

64
− 1

8

∞∑
k=1

1

2k2+4k+6
.

Theorem 4.1 show that the left-hand side of (27) is equal to∑
i

µ(supp(Gi))

|Gi|
dimk(kerM(Gi, S; k) ∩ kerM(Gi, T ; k)).

This, by Lemma 5.1, is equal to∑
i

µ(supp(Gi))

|Gi|
dimQ(kerM(Gi, S;Q) ∩ kerM(Gi, T ;Q)).

which by the previous theorem is equal to the right-hand side of (27). This finishes the

proof. �

5.c. Proof of Theorem 1.4.

Let k be a field. For k, l∈N+ we introduce three graphs, G1(k; k), G2(l; k) and G3(k, l; k),

with edges labeled by k.

Let G1(k; k) be the graph with 2k vertices which arises from the graph in Figure 2 by

adding a self-loop with label 1 at each vertex.

Let G2(l; k) be the graph with 2l + 1 vertices which arises from the graph in Figure 3

by adding a self-loop with label 1 at each vertex except for the unique vertex with no

outgoing edges.

Finally, let G3(k, l; k) be the graph with 2k+ 2l+ 2 vertices which arises from the graph

in Figure 4 by adding a self-loop with label 1 at each vertex, except for the two unique

vertices with either no outgoing edges or no incoming edges.

−2 −2 −2 −2

−1
−1

−1

−1
−1

−1 −1 −1

−1

Figure 2.
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Figure 4.

Let M1(k; k), M2(l; k) and M3(k, l; k) be the adjacency operators on, respectively, the

graphs G1(k; k), G2(l; k) and G3(k, l; k). The proof of the following lemma is deferred to

Section 6.

Lemma 5.7. We have

dimk kerM1(k; k) =

{
1 if k > 1 and 1 = 2k−1 in k,

0 otherwise,

dimk kerM2(l; k) = 1,

dimk kerM3(k, l; k) =

{
2 if l = 2k−1 − 1 modulo char(k),

1 otherwise.

�

Let A := (⊕ZC2)×C3
2, let Γ := C×Aut(C3

2), and let ΓyA be the obvious action. The

following can be deduced from [Gra10, Section 5].

Theorem 5.8. There is T ∈ Z2[Γ n A] and T -graphs U , G1(k) for k ∈N+, G2(l) for

l∈N+, and G3(k, l) for k, l∈N+, with the following properties.

(1) There exists an exhausting sequence of simply-connected T -graphs which enumer-

ates the set {U} ∪ {G1(k) : k ∈N+} ∪ {G2(l) : l∈N+} ∪ {G3(k, l) : k, l∈N+}.
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(2) For every field k we have that S(U, T ; k) is a graph with one vertex and no edges,

and there exist isomorphisms of labeled graphs

S(G1(k), T ; k) ∼= G1(k; k), S(G2(l), T ; k) ∼= G2(l; k), S(G3(k, l), T ; k) ∼= G3(k, l; k).

(3) We have

µ(supp(U)) =
45

64
µ(supp(G1(k))) =

2k

64 · 2k

µ(supp(G2(l))) =
2l + 1

64 · 2l
µ(supp(G3(k, l))) =

2k + 2l + 2

2k+l
.

�

Let q := char(k) > 2, let r be the multiplicative order of 2 in k∗, let L ⊂ {2, 3, . . .} be

the finite set of minimal representatives in {2, 3, . . .} of the powers 2i mod q, i > 0, and

for x ∈ L let r(x) > 0 be the smallest natural number such that 2r(x) = x mod q.

Theorem 5.9. Let k be a field such that char(k) 6= 2 and let T be as in the previous

theorem. We have

dimk[ΓnA] ker ρ(T ) =
47

64
+

1

128
· 1

2r − 1
+

1

64
· 2q

2q − 1
· 2r

2r − 1
·
∑
x∈L

1

2x+r(x)
.

Remark 5.10. The additional factor 1344 in the statement of Theorem 1.4 in the intro-

duction arises from the fact that Γ n A is isomorphic to C2 oC × (C3
2 o Aut(C3

2)), and

the order of C3
2 o Aut(C3

2) is 1344 (see Lemma 3.7).

On the other hand, in [GLSŻ00] the group C2 oC is explicitly embedded into a finitely

presented 2-step solvable group Λ, and by Lemma 3.5 we have dimk[ΓnA] ker ρ(T ) =

dimk[Λ] ker ρ(T ). As such Theorem 5.9 and Proposition 3.3 establish Theorem 1.4.

Proof of Theorem 5.9. By Theorem 4.1, dimk[ΓnA] ker ρ(T ) is equal to the sum of the

terms

∑
k>1

µ(supp(G1(k)))

2k
· dimk kerM(G1(k), T ; k),

∑
l>1

µ(supp(G2(l)))

2l + 1
· dimk kerM(G2(l), T ; k),

∑
k,l>1

µ(supp(G3(k, l)))

2k + 2l + 2
· dimk kerM(G3(k, l), T ; k),
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and the number 45
64

, corresponding to the T -graph U in Theorem 5.8. By Lemma 5.7 the

sums above are equal to, respectively,

∑
k>1,

2k−1=1(k)

1

64
· 1

2k
=

1

64

∞∑
n=1

1

2rn+1
=

1

128

(
1

1− 2−r
− 1

)
=

1

128
· 1

2r − 1
,

∑
l>1

1

64
· 1
2l

=
1

64
,

and

1

64

∑
k,l>1

1

2k+l
+

1

64

∑
k,l>1,

l=2k−1−1 (k)

1

2l+k
=

1

64
+

1

64

∑
x∈L

∑
n,m>0

1

2(x+qn−1)+(r(x)+rm+1)
=

=
1

64
+

1

64
· 2q

2q − 1
· 2r

2r − 1
·
∑
x∈L

1

2x+r(x)
,

and so the theorem follows. �

6. Linear algebra computations

The notation in the following lemma is as in Subsection 5.a.

Lemma 6.1. Let G be a loop-tree graph of type (a, b). Then

dimk(kerM(α; k) ∩ kerM(β; k)) = a− b.

In particular the left-hand side is independent of k.

Proof. Let r∈V (G) be the root. For v ∈ V (G) let n(v) := v if v = r, and otherwise let

n(v) be the unique vertex different from v such that there is a directed edge from v to

n(v).

For v ∈V (G) let us define ξ(v)∈k[V (G)] to be equal to v − n(v) + n2(v) − . . . ± r. A

direct check shows that

kerM(α; k) = spank(ξ(v) : v is a leaf vertex without external loop),

and so we deduce that dim kerM(α; k) = a. On the other hand clearly if b = 0 then

M(β; k) is the zero operator and so the claim holds. If b = 1 then kerM(β; k) is a

codimension 1 subspace which is not contained in kerM(α; k), and so in this case the

claim also holds. �

The notation in the following lemma is as in Subsection 5.c.
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Lemma 6.2. We have

dimk kerM1(k,k) =

{
1 if k > 1 and 1 = 2k−1 in k,

0 otherwise,

dimk kerM2(l,k) = 1,

dimk kerM3(k, l; k) =

{
2 if l = 2k−1 − 1 modulo char(k),

1 otherwise.

Sketch of Proof. All the equalities are elementary and we show only the third one, which

needs the longest argument. We will assume that k > 1. The arguments in the case

k = 1 are very similar and are left to the reader.

Let us denote G := G3(k, l; k) and let us give the vertices of G names as in Figure 5.

A1

I

F

−1 −1

−1−1−1−2−2−2

−1 −1−1

−1
−1

−1

1

1 1 11
−1

A2A3Ak−1Ak

B1 B2

C1 C2 Cl−1 Cl

D1 D2 Dl−1

Dl

Bk−2 Bk−1 Bk

Figure 5.

Let us denote M := M3(k, l; k). First, let us assume that l = 2k−1 − 1 modulo char(k).

The first generator of ker(M) is the indicator function of the vertex F . The coefficients

of the second generator of ker(M) are depicted in Figure 6.

12k−22k−1

2k−1 2k−1 2k−1 0

1 1 1 1

0

1

−1 −1

−1−1−1−2−2−2

−1 −1

−1
−1

−1

1

1 1 11

24

2k−1

−1

2k−1−1 2k−1−2 2k−1−3

−1

2k−1

Figure 6. Coefficients of the second generator of ker(M) when l = 2k−1−1

modulo char(k).

To see that these two vectors generate all of ker(M) let us prove the following.

Lemma 6.3. Let f ∈ ker(M) be such that f(F ) = f(A1) = 0. Then f = 0.
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Proof. Since f ∈ ker(M), for every vertex v we have

(28)
∑

w,a : (w,v,a)∈E(G)

a·f(w) = 0,

The equation (28) at v = A2 shows that if f(A1) = 0 then also f(A2) = 0. Similarly, we

see that f(Ai) = f(Bi) = 0 for all i = 1, . . . , k. Now the equation (28) at v = A1 together

with the equalities f(A1) = f(Bk) = 0 imply that f(I) = 0. Similarly, the equation (28)

at v = C1 and the fact that f(A1) = 0 imply that f(C1) = 0. Now, the equation (28) at

v = D1 together with the equalities f(I) = f(C1) = 0 imply that f(D1) = 0.

Now we note that the equation (28) at v = Ci+1 and the equality f(Ci) = 0 imply that

f(Ci+1) = 0. Thus we get f(Ci) = 0 for all i = 1, . . . , l. Finally, the equation (28) at

v = Di+1 and the equalities f(Di) = f(Ci+1) = 0 imply that f(Di+1) = 0, and so we

deduce that f(Di) = 0 for all i = 1, . . . , l. Since f(F ) = 0 by assumption, the lemma

follows. �

Note that the indicator function of the vertex F is in ker(M) for arbitrary (k, l). Thus

to finish the proof it is enough to show that if f ∈ ker(M) is such that f(A1) = 1 and

f(F ) = 0 then l = 2k−1 − 1 modulo char(k).

Thus, let f ∈ ker(M) be such that f(A1) = 1 and f(F ) = 0. The equation (28) at v = A2

implies that f(A2) = 2. Similarly we obtain f(Ai) = 2i−1 for all i = 1, . . . , k, and so

in particular we have that f(Ak) = 2k−1. Now the equation (28) at v = B1 shows that

f(B1) = 2k−1. Similarly we obtain f(Bi) = 2k−1 for all i = 1, . . . , k, and so in particular

f(Bk) = 2k−1.

Since f(A1) = 1 and f(Bk) = 2k−1 the equation (28) at v = A1 implies that f(I) = 2k−1.

Now the equation (28) at v = C1 together with the equality f(A1) = 1 imply that

f(C1) = 1. Similarly we see that f(Ci) = 1 for all i = 1, . . . , l. As such, the equation (28)

at v = D1 implies that f(D1) = 2k−1 − 2 and similarly we see that f(Di) = 2k−1 − i− 1

modulo char(k), for all i = 1, . . . , l. In particular, we see that f(Dl) = 0 only if l = 2k−1−1

modulo char(k). Since the equation (28) at v = F implies that f(Dl) = 0, this finishes

the proof. �
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