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This article concerns the problem of dynamic modeling and parameter estimation for a seven degree 

of freedom hydraulic manipulator. The laboratory example is a dual–manipulator mobile robotic 

platform used for research into nuclear decommissioning. In contrast to earlier control model 

orientated research using the same machine, the article develops a nonlinear, mechanistic simulation 

model that can subsequently be used to investigate physically meaningful disturbances. The second 

contribution is to optimize the parameters of the new model, i.e. to determine reliable estimates of 

the physical parameters of a complex robotic arm which are not known in advance. To address the 

nonlinear and non-convex nature of the problem, the research relies on the multi-objectivization of 

an output error single performance index. The developed algorithm utilises a multi-objective Genetic 

Algorithm (GA) in order to find a proper solution. The performance of the model and the GA is 

evaluated using both simulated (i.e. with a known set of ‘true’ parameters) and experimental data. 

Both simulation and experimental results show that multi-objectivization has improved convergence 

of the estimated parameters compared to the single objective output error problem formulation. This 

is achieved by integrating the validation phase inside the algorithm implicitly and exploiting the 

inherent structure of the multi-objective GA for this specific system identification problem. 

Keywords: Parameter estimation, System identification, Nonlinear model, Multi-objective genetic 

algorithm, Mathematical modeling 
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1. INTRODUCTION 

Industrial robots have proven to be an invaluable asset to take the place of humans in many difficult and 

hazardous situations, such as manufacturing (Zhang et al., 2014) and nuclear decommissioning (Bogue, 

2011). Working in semi-structured, unstructured, dynamic and harsh environments necessitates the 

emergence of smarter, faster and cheaper industrial robots, sometimes with the capability of showing 

human traits such as sensing, dexterity, memory and trainability. As a result of progress in this area, 

industrial robots are now taking on more complicated jobs such as picking and packaging, testing or 

inspecting products, cutting and welding. These are all common problems with particular importance for 

automation in both manufacturing and nuclear decommissioning. Considering these facts, two Hydrolek 

hydraulically actuated manipulators, each with seven degrees of freedom (7-DOF, i.e. six rotary joints 

and one gripper: see Figure 1) have been attached to a Brokk-40 mobile platform and developed at 

Lancaster University for research into the decommissioning, repairs and maintenance of nuclear plants 

(see e.g. Bakari, Zied & Seward, 2007; Taylor & Seward, 2010; Taylor & Robertson, 2013). 

Designing high performance control algorithms to compensate the dynamics of this manipulator 

requires the development of techniques to capture the dynamic behaviour of the system accurately, and to 

estimate the parameters of the developed model under different operating conditions. The importance of 

this problem in a robotic context is investigated by, for example, Swevers, Ganseman, De Schutter & Van 

Brussel (1996). In this regard, previous research for the Brokk-Hydrolek and other hydraulic manipulators 

(e.g. Taylor, Shaban, Stables & Ako, 2007; Taylor & Robertson, 2013) has demonstrated the practical 

utility of a quasi-linear, State Dependent Parameter (SDP) model. The parameters of the SDP model are 

functionally dependent on the measured variables (Young, 2011), such as joint angles and velocities in 

the case of manipulators. The approach is ideal for capturing the essential nonlinear behaviour of the 

system when a relatively straightforward dynamic equation is required for model–based control. 

However, such SDP models are presently limited to individual manipulator joints, and they have not been 

designed to represent the complex mechanistic interactions between various mechanical, hydraulic and 

electrical components of the Brokk-Hydrolek system. 
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Instead of the SDP model structure, in this article we develop a nonlinear mechanistic model for 

the manipulators. In Section 2, this is accomplished by decomposing the system into several dynamical 

subsystems and subsequently integrating the different modules together. The model not only provides an 

accurate and detailed representation of such a complex mechatronic system, but also provides a grey-box 

model structure with physically meaningful parameters. In this manner, the research develops a reliable 

simulator by which the dynamic and kinematic characteristics of the manipulator can be analysed. This is 

essential for the design of joint-level and supervisory control algorithms to accomplish nuclear 

decommissioning or manufacturing tasks (such as remote pick and place, welding and pipe cutting). 

Some preliminary results in relation to modelling of the mechanical components are given by Montazeri 

& Udo (2016) but these authors do not consider the hydraulic model component or the parameter 

estimation problem. With regard to the latter, our approach in this article is to use a stochastic 

evolutionary technique based on a multi-objective Genetic Algorithm (GA). 

Parameter estimation for robotic systems is a challenging task, especially when the number of 

degrees of freedom and the number of parameters to be estimated are high. The main difficulty is that the 

underlying problem is nonlinear and non-convex in nature. The most common technique to solve the non-

convexity of such a problem is to use an equation error identification approach, which assumes that the 

dynamic model of the robot can be expressed in a linear form with respect to the unknown parameters, 

and hence the parameters can be estimated using Least Squares (LS) error minimisation criteria (Gautier 

& Poignet, 2001; Khalil & Dombre, 2002; Swevers, Verdonck & Schutter, 2007). The main problem with 

this technique relates to the presence of uncertainties due to modelling errors and measurement noise in 

the observation matrix, which results in bias and variance error in the estimated parameters. Various 

techniques are reported in the literature to help alleviate this problem. For example, band-pass filtering of 

joint positions provides one solution (Gautier, Janot & Vandanjon, 2013). Furthermore, Janot, Vandanjon 

& Gautier (2014) compare the performance of this technique with instrumental variables, total LS and 
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output error methods. More advanced robust estimation such as maximum likelihood and extended 

Kalman filter based techniques have also been proposed (e.g. Gautier & Poignet, 2001). 

An alternative approach is to formulate an output error system identification problem in nonlinear 

LS terms and to use nonlinear programming (Gautier, Jubien & Janot, 2012; Gautier et al., 2013). When 

the performance function is smooth, a local optimization technique may then converge to the global 

optimum. However, Janot, Vandanjon & Gautier (2014) show that application of a multi-start Gauss-

Newton algorithm for parameter estimation of a 6-DOF robot is not a proper strategy. The problem of 

multi-modality of the performance surface can be solved by the design of a suitable filter (Tohme et al., 

2007), and the technique is efficient when the first and second order derivatives of the performance 

surface are available analytically. Unfortunately, this assumption is not valid in the present case since, 

due the complexity of the model, no closed-form analytical equation exists. Furthermore, the performance 

indices assumed in the optimization process, such as the output error infinite norm, are not necessarily 

differentiable.  

Therefore, a more effective approach to search a large parameter space is to use evolutionary-

based algorithms. These include genetic algorithms (GA) (Affenzeller et al., 2009), related multi-

objective approaches (Coello, 2006; Zhou et al., 2011), particle swarm optimization (PSO: Parsopoulos & 

Vrahatis, 2010) and the recently proposed differential evolution approach (Das & Suganthan, 2011). 

Gotmare, Bhattacharjee, Patidar & George (2016) discuss the suitability of GAs for various optimisation 

problems in system identification and filter design. Yao & Sethares (1994) and Nyarko & Scitovski 

(2004) provide similar in the context of parameter estimation more specifically. Use of PSO as an 

alternative to GA optimisation is primarily motivated by the relative simplicity of implementation and the 

ability to memorize the good solutions by all particles. As a result, PSO has been used for various control 

and identification problems (e.g. Montazeri, Poshtan & Yousefi-Koma, 2008; Ye, 2006; Sun & Liu, 
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2013). However, in contrast to the present parameter estimation problem, PSO is usually considered for 

real-time and adaptive applications because of its computational simplicity (Krusienski & Jenkins, 2005). 

Vicente, Ayala & Coelho (2012) propose a multi-objective GA using the NSGA-II algorithm to 

tune the parameters of a PID controller for a 2-DOF robot arm. Simple GAs are also applied to tune PID 

parameters for more realistic applications, such as a 6-DOF Puma560 robot arm (Kwok & Sheng, 1994) 

and electro-hydraulic servo systems (Wu, Wang & Bai, 2012). In the specific case of hydraulic 

manipulators, Rouvinen & Handroos (1997) use GAs in conjunction with neural networks to compensate 

for the deflection of the links in a 3-DOF log crane. Jafari, Safavi & Fadaei (2007) use a GA to minimise 

manufacturing costs of 3-DOF serial manipulator at the design stage, rather than estimating the unknown 

physical parameters of an existing manipulator as in the present article. Al-Dabbagh et al. (2014) use GA 

optimisation to estimate the friction parameters of a single link 4-DOF surgery robot, while Bingül & 

Karahan (2011) use PSO to estimate the dynamical model parameters of the first three links of a Staubli 

RX-60 Robot. The latter two articles both make the assumption that the dynamic model of the robot is 

linear in the parameters. By contrast, the present research uses a multi-objective GA to estimate parameter 

values for the nonlinear simulation model of a 7-DOF hydraulic manipulator. 

The main problem in working with the robotic platform shown in Figure 1, is that the actual 

values of the parameters are either unknown or may have changed through time from when the 

manipulator was first developed, due to age and use. By combining measured experimental data and the 

mechanistic models obtained in this article, a multi-objective GA is developed and used to estimate these 

parameters. The aim is not only a close match between the measured output response of the model and 

that of the real arm but also to achieve a set of parameters which are close to their ‘true’ values. Hence, in 

addition to the development of the mechanistic model, the second main contribution of the article is to 

investigate the use of GAs in a hydraulic manipulator context, and to compare the performance of a 

simple GA with a more complex, multi-objective approach, using both simulated and experimental data. 
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Sections 2 and 3 describe the mechanistic model and associated parameter estimation problem 

respectively. The two GA methods are introduced in section 4, in which improved convergence of the 

estimated parameters is achieved by exploiting the inherent structure of a multi-objective GA for this 

specific output error system identification problem. The article also includes an empirical evaluation of 

different crossover types, fitness functions and other settings, and develops recommendations for their 

particular implementation in the estimation of the mechanical and hydraulic subsystems. In this regard, 

the GA performance is considered in section 5, followed by the parameter estimation results in section 6 

and the conclusions in section 7. 

2. DYNAMIC MODEL OF THE MANIPULATOR 

Each HydroLek manipulator has seven DOF, with a continuous (360 degree) jaw rotation 

mechanism and dual function gripper (Taylor & Robertson, 2013). In total, five sets of linear actuators 

and two rotary actuators are used (Figure 1). Each joint is fitted with potentiometer feedback sensors, 

allowing the position of the end-effector to be determined during operation. The end-effectors can also be 

equipped with a variety of tools, such as percussive breakers, hydraulic crushing jaws, excavating buckets 

and concrete milling heads. The joints are actuated via hydraulic pistons, which are powered via an 

auxiliary output from the hydraulic pump. 

It is known that the dynamic equations of a manipulator can be derived using standard Newton-

Euler theory as follows (Khalil & Dombre, 2002): ࢗ(ࢗ)ࡰሷ + ,ࢗ)࡯ ሶࢗ ሶࢗ( + (ࢗ)ࢍ + ሶࢗ)௖signࡲ ) + ሶࢗ௩ࡲ =  (1)                                                           ࣎

where ࣎ denotes the vector of forces/torques generated by the hydraulic actuators, ࡰ is the manipulator 

inertia matrix, ࡯ is the coriolis and centrifugal matrix, ࢍ is the gradient of the potential energy, ࡲ௖ is the 

coulomb friction and ࡲ௩ is the viscous friction. The vector ࢗ contains all joint angles for the revolute 

joints. However, it would be extremely complex to analyse the dynamics of the HydroLek manipulator 

with different types of joints (such as revolute, cylindrical and gears) analytically in this way. Therefore, 
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use of equation (1) would impose several limitations on the derivation of a dynamic model, including a 

serial link assumption, infinitely rigid links and joints, and backlash free joints (Mavroidis et al., 1998). 

Furthermore, for relatively high DOF, parametrisation of equation (1) becomes extremely complicated, 

even using symbolic software. To overcome these limitations, and to exploit existing Computer-Aided 

Design (CAD) models for the manipulator (see later), the present research instead relies on a numerical 

model to solve the equations of motion. This is achieved by modelling various components of the 

manipulator using numerical and experimental techniques, and subsequently integrating these into a 

unified simulation for the purpose of system identification, parameter estimation and the design of end-

effector trajectories, as well as the wider control objectives. This process is usually referred to as Robot 

Calibration in the robotic literature (Calafiore & Indri, 2000). 

The model comprises all elements of the system, as summarised in Figure 2, including the 

mechanical, electrical and hydraulic parameters of the manipulator. The command signal ܾܽܮ௢௨௧  is 

generated by a feedback controller or set directly by the operator, and is processed and calibrated before it 

can be sent to the National Instruments’ Compact Field Point (CFP) module. 

2.1. Compact Field Point Subsystem 

The role of the computer in Figure 2 is to convert the signal ܾܽܮ௢௨௧ to a calibrated voltage command for 

the proportional amplifiers i.e. either ௔ܸ௠௣ಲ೔  or  ௔ܸ௠௣ಳ೔  for joint i (depending on the sign of the ܾܽܮ௢௨௧ 
signal). Thus, for each joint i, the voltages ௔ܸ௠௣ಲ೔  and ௔ܸ௠௣ಳ೔  are expressed as follows: 

௔ܸ௠௣ಲ೔ = ൝ܣ௜ + ቀหܾܽܮ௢௨௧೔ห. ஻೔ି஺೔ଵ଴଴ ቁ ௢௨௧೔ܾܽܮ	݂݅								 > ௢௨௧೔ܾܽܮ	݂݅																																																00 ≤ 0                                                                   

(2)                  ௔ܸ௠௣ಳ೔ = ൝ܥ௜ + ቀหܾܽܮ௢௨௧೔ห. ஽೔ି஼೔ଵ଴଴ ቁ ௢௨௧೔ܾܽܮ	݂݅							 < ௢௨௧೔ܾܽܮ	݂݅																																																00 ≥ 0                                            

(3) 



 

 

8 
 

 

In equations (2) and (3), ௔ܸ௠௣ಲ೔  and  ௔ܸ௠௣ಳ೔  are the voltage input at the proportional amplifiers A and B 

respectively, while the parameters ܣ௜, ܤ௜, ܥ௜, ܦ௜ are the joint ݅ calibration coefficients and should be tuned 

(see section 3). The voltage inputs to the proportional amplifiers are shown in Figure 3. 

2.2. Hydraulic Actuator Subsystem 

The hydraulic actuating subsystem shown in Figure 3 consists of two further subsystems, namely the 

valves and the hydraulic cylinders. The valve system is decomposed into the proportional amplifier, 

solenoid valve and directional valve components. The four-way directional spool valve operates with the 

solenoid valve coil currents ܫ஼௢௜௟ಲ and  ܫ஼௢௜௟ಳ. The voltage commands ஺ܸ௠௣ಲ and ஺ܸ௠௣ಳ applied to the 

proportional valves A and B are converted to the current coil, and energize the solenoids A and B:            

௖௢௜௟ౄ೔ܫ = ۔ۖەۖ
ۓ 	if																																																																									௠௜௡೔ܫ ௔ܸ௠௣ౄ೔ = 	0	ܸ

௔ܸ௠௣ౄ೔ ூ೘ೌೣౄ೔ିூ೘೔೙ౄ೔ଵ଴ 		+ 0	if															௠௜௡ౄ೔ܫ	 < ௔ܸ௠௣ౄ೔ < 	if																																																																									௠௔௫೔ܫ		ܸ	10 ௔ܸ௠௣ౄ೔ ≥ 10	ܸ                                   (4) 

where ௔ܸ௠௣ౄ౟  is the joint ݅ voltage signal at the input of proportional amplifier H (in which H is either A 

or B), ܫ௖௢௜௟ౄ౟  is the output amplifier H current that will energize the solenoid H of the joint ݅ actuating 

system, and ܫ௠௔௫ౄ೔  and ܫ௠௜௡ౄ೔  are the saturation current parameters associated with the amplifiers H of 

the joint ݅ actuating system. The dynamics of the solenoid system A or B are represented using Newton’s 

law applied to the plunger A or B belonging to the solenoid device, as shown in Figure 4 (Hosseini, 

Arzanpour, Golnaraghi & Parameswaran, 2013), 

ୗౄ೔ܨ = − ஑୍ౙ౥౟ౢౄ೔మ൫ఉାఊ.௫೛൯మ = ݉௣ݔሷ௣ + ሶ௣ݔ௣ߣ +  ௣                     (5)ݔ௣ܭ

where ݉௣ is the mass of the plunger, while ߣ௣ and ܭ௣ are the stiffness and the damping of the plunger. 

The coefficients	ߚ ,ߙ and ߛ are constant and depend on the permeability coefficients, effective magnetic 

flux areas, magnetic field lengths, and turn numbers. These coefficients are parametrized by selecting two 

points in the (ܨୗౄ೔ , ௣ౄ೔) space for the joint i. The variable Iୡ୭୧୪ౄ೔ݔ  (again, H represents either A or B) is the 
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current passing through the solenoid and ݔ௣ౄ೔  is the displacement or stroke of the plunger. Finally, ܨୗౄ೔  is 
the solenoid force generated by the plunger. 

The hydraulic equation links spool displacement ݔ௜ and the pressure and flow rate inputs/outputs 

of the valve i.e. (ܳ஺, ஺ܲ), (ܳ஻, ஻ܲ),  (ܳ௉, ௉ܲ)	and	(்ܳ, ்ܲ) for joint i. Here, ݔ௜ depends on the 

displacement of plunger A and B, i.e. ݔ௣ಲ೔ and ݔ௣஻೔, is defined as follows: ݔ௜ = ௣ಲ೔ݔ −  ௣஻೔                         (6)ݔ

The volume flow between valve ports in the spool valve is calculated using Bernoulli’s law. In particular, 

for a positive deflection ݔ௜, flows from ports P to A and B to T are as follows (Watton, 2014): 

where	 ஺ܲ, ஻ܲ, ௌܲ, ்ܲ  are the pressure values at ports A, B, P and T respectively and sgn is the sign 

function. Here, ܥ௤ is the contraction flow coefficient of the valve, ݓ is the width dimension of the slot in 

the valve’s sleeve, (ݔ)ܣ is the restrictor area of the corresponding orifice and ܣ௠௔௫ is its maximum value. 

The parameter (ݔ)ܣ is linked to the valve geometry architecture, so it is not possible to derive (ݔ)ܣ as a 

function of ݔ when no information is available about it. Here, it is initially assumed that there is no 

leakage flow, no viscous forces, negligible gravity and fluid is flowing at low speed. However, these 

parameters can optionally be defined in the corresponding modelling elements for the hydraulic actuator. 

The final elements of the hydraulic model are the linear and rotary cylinders. Joints 1, 2, 3, 5 and 7 

on each manipulator are actuated with a linear double acting cylinder. Assuming zero mechanical friction 

and gravity effects, the force balance on axis ݔ௜ of the cylinder rod is: 

 ܳ஺ = ܳ௉→஺ = ۔ە
.௤ܥۓ .(ݔ)ܣ )݊݃ݏ ௌܲ − ஺ܲ). ට(ଶ|௉ೄି௉ಲ|)ఘ 																						݂݅	0 < ݔ < .௤ܥ	ݓ .௠௔௫ܣ )݊݃ݏ ௌܲ − ஺ܲ). ට(ଶ|௉ೄି௉ಲ|)ఘ ݔ	݂݅																													 ≥ ݓ 	           (7) 

 ܳ஻ = ܳ஻→் = ۔ە
.௤ܥۓ .(ݔ)ܣ )݊݃ݏ ஻ܲ − ்ܲ). ට(ଶ|௉ಳି௉೅|)ఘ 																						݂݅	0 < ݔ < .௤ܥ		ݓ .௠௔௫ܣ )݊݃ݏ ஻ܲ − ்ܲ). ට(ଶ|௉ಳି௉೅|)ఘ ݔ	݂݅																													 ≥ ݓ 	     (8) 
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ோܨ = ஺ܣ ஺ܲ − ஻ܣ ஻ܲ − ௖ܨ = ோܯ) పሷݔ(௅ܯ+ + పሶݔ஽ܤ +  ௜                   (9)ݔௌܭ

௖ܨ = ቊ(ݔ௜ − ܵ). .௣ܭ ݔ											ݒ ≥ ܵ, ݒ > .௜ݔ	0 .௣ܭ	 ݔ																				ݒ ≤ 0	, ݒ < 0 

where ܨோ is the rod force,	ܨ௖  is hard stop force, ܭ௣	is penetration coefficient, ݒ is Cylinder rod velocity,  

஺ܲ and ஻ܲ are the outlet pressure of the valve system, ܣ஺ and ܣ஻ are the rod areas in chambers A and B 

respectively, ܯோ is the mass of the rod, ܯ௅ is the mass of the load system, ݔ௜  is the rod displacement at 

joint i, ܭௌ is the load spring constant and ܤ஽ represents the viscous damping. For the present research, 

these hydraulic actuator equations are implemented using the MATLAB SimHydraulics library. 

2.3. Mechanical Model Subsystem 

The mechanical subsystem involves three elements, as illustrated in Figure 2. The input of the mechanical 

subsystem is the actuating torque applied to each joint and its output is the angular position of each joint. 

The kinematic equations of the manipulator are derived using the coordinate systems and simplified serial 

link conventions presented in Figure 5. Using Figure 6 (a), for each link i except the final one, the force 

and moment balance equations around the centre of gravity ܩ௜ are: 

۴௃iሬሬሬሬԦ/଴ − ۴௃i+1ሬሬሬሬሬሬሬሬԦ/଴ + ݉௟௜௡௞೔	܏ሬԦ − ݉௟௜௡௞೔ ௗௗ௧ (iሬሬሬሬሬԦ/଴ீ܄) = 0ሬԦ                  (10)  

ீ೔ۧ	଴|ۦሬሬሬԦ௝௢௜௡௧௦→௟௜௡௞೔ۻ∑ − ௗௗ௧ (۷̿௟i௡௞i(ீ೔|(௫iሬሬሬԦ,௬iሬሬሬԦ,௭iሬሬሬԦ)). ષሬሬԦ୧/଴) = 0ሬԦ             (11) 

with  ∑ۻሬሬሬԦ௝௢௜௡௧௦→௟௜௡௞೔ۦ଴|	ீ೔ۧ = ை೔ۧ	଴|ۦሬሬሬԦ௃೔ۻ + iܩ iܱሬሬሬሬሬሬሬԦ/଴ ∧ ۴௃iሬሬሬሬԦ/଴ − ை೔శభۧ	଴|ۦሬሬሬԦ௃೔శభۻ + iܩ iܱሬሬሬሬሬሬሬԦାଵ/଴ ∧ (−۴௃i+1ሬሬሬሬሬሬሬሬԦ/଴) 
where ∑ۻሬሬሬԦ௝௢௜௡௧௦→௟௜௡௞೔ۦ଴|	ீ೔ۧ is the sum of momentums at point ܩ௜ in terms of the base frame, using the 

Moments Transport Theorem (Tenenbaum, 2004) to transfer the momentum form point ௜ܱ to point ܩ௜. 
Furthermore, in equation (10), ۴௃iሬሬሬሬԦ/଴ and ۴௃i+1ሬሬሬሬሬሬሬሬԦ/଴ are the force vectors, ۻሬሬሬԦ௃೔ۦ଴|	ை೔ۧand ۻሬሬሬԦ௃೔శభۦ଴|	ை೔శభۧ	 are the 

momentum vectors applied at points ௜ܱ and ௜ܱାଵ respectively and represented in terms of the base frame, ݉௟௜௡௞೔ is the mass of the link ݅, ܏ሬԦ is the gravity field vector, ீ܄iሬሬሬሬሬԦ/଴ is the velocity and acceleration of the 



 

 

11 
 

 

centre of mass, represented in terms of the base frame. In equation (11), ۷̿௟i௡௞i(ீ೔|(௫iሬሬሬԦ,௬iሬሬሬԦ,௭iሬሬሬԦ)) is the inertia 

tensor for link ݅ in frame (ܩ௜|(ݔiሬሬሬԦ, ,iሬሬሬԦݕ  .iሬሬԦ)), represented around an arbitrary rotational axis vector ષሬሬԦ୧/଴ݖ

As indicated in Figure 6 (b), the force and momentum balance equations for the last link are: ۴௃iሬሬሬሬԦ/଴ + ݉௟௜௡௞೔	܏ሬԦ − ݉௟௜௡௞೔ ௗௗ௧ (iሬሬሬሬሬԦ/଴ீ܄) = 0ሬԦ                     (12) 

ீ೔ۧ	଴|ۦሬሬሬԦ௝௢௜௡௧௦→௟௜௡௞೔ۻ∑ − ௗௗ௧ (۷̿௟i௡௞i(ீ೔|(௫iሬሬሬԦ,௬iሬሬሬԦ,௭iሬሬሬԦ)). ષሬሬԦ୧/଴) = 0ሬԦ                                      (13)        

where, 

ை೔ۧ	଴|ۦሬሬሬԦ௃೔ۻ     + iܩ iܱሬሬሬሬሬሬሬԦ/଴ ∧ ۴௃iሬሬሬሬԦ/଴ − ௗௗ௧ (۷̿௟i௡௞i(ீ೔|(௫iሬሬሬԦ,௬iሬሬሬԦ,௭iሬሬሬԦ)). ષሬሬԦ୧/଴) = 0ሬԦ                                                  (14) 

This leads to a total of 36 equations (6 for each insulated link). Since the analytical solution would be 

extremely complex, a numerical approach using the MATLAB SimMechanic toolbox is adopted. The left 

and right manipulator mechanical subsystems have the same serial structure i.e. a succession of revolute 

joint blocks and link subsystems (Figure 7). Revolute joint blocks are actuated by torques supplied by the 

hydraulic actuator and the angle is sensed as the output variable. Figure 8 shows the geometrical 

information and properties of link ݅ imported from the available CAD model, transformation and rotation 

blocks to build a reference frame for link ݅, and the base frame for the revolute joints ݅ and ݅ + 1.  

To find the base parameters suitable for estimation, it is assumed that the inertia parameters for 

each link are calculated using the CAD file information. Therefore, it would be reasonable to consider the 

mass for each link, and friction and stiffness for each revolute joint, as the unknown parameters for 

subsequent optimisation. Finally, a 3D representation of the manipulator is shown in Figure 9 using 

MATLAB Mechanical Explorer. Incorporating the CAD model of the manipulator in this way allows for 

straightforward understanding of the manipulator behaviour. For example, problems such as collision 

detection and dual-manipulator coordination can be examined using this visualisation. 
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3. TWO–STAGE PARAMETER ESTIMATION 

Due to the age of the manipulators, data sheets containing values for many of the parameters alluded to 

above are unavailable, and certain parameters quoted by the manufacturer have undoubtedly changed 

over time through wear and tear, in addition to replacement parts and other practical matters arising. In 

part for these reasons, in this section we formulate the estimation problem to be solved using GAs.  

Putting all the parameters of the mechanical and hydraulic subsystems together would lead to a very large 

search space, making such a high-dimensional and nonlinear estimation problem a challenging task. 

Instead, by adopting a sequential identification procedure, the estimation is performed in two steps.  

The first step is to estimate the parameters of the mechanical subsystem, assuming that the 

hydraulic subsystem is represented by a scalar gain (K). This ensures that the unknown parameters of the 

hydraulic model do not affect the tuning of the mechanical system. To illustrate the approach, the focus 

here is on Joint 2 of the right hand side manipulator (Figure 1). To determine the base parameters of the 

mechanical subsystem, a sensitivity analysis is conducted (see section 3.1 for discussion of the results). 

For this purpose, the spring stiffness (S) and damping coefficient (D), as well as the mass of the six 

manipulator links (Mi, i=1,…,6, with link 6 connecting to the gripper) are assumed as the set of 

parameters for estimation. Note that the exact masses of the individual links are unavailable but their 

geometry is known via the previously developed CAD models. Hence, by adjusting the estimated mass, 

the inertia of each link can be tuned, which proves to have a significant impact on the performance.  

The parameters of the hydraulic subsystem are estimated as the second step. For this purpose, the 

parameters of the mechanical subsystem are set as fixed values. For the hydraulic subsystem, there are too 

many parameters to include in the GA optimisation without encountering significant identifiability and 

computation issues. Hence, a preliminary simulation study is first completed to identify the key 

parameters. These results show that the ten most significant parameters to be considered by the GA are: 
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• The piston area ܣ஺ in equation (9) opposite the rod. 

• The piston area ܣ஻ in equation (9) at the opposite side of the hydraulic actuator, namely the side 

with the rod hence with a smaller area. 

• The maximum (ܫ௠௔௫ౄ೔) and minimum (ܫ௠௜௡ౄ೔) current supplied to the hydraulic valve proportional 

amplifier in equation (4). These are used to adjust the gain provided by the amplifier, directly 

affecting solenoid movement which subsequently controls oil flow into the actuators. 

• Two constants (ܣ௜ and ܥ௜) in equations (2) and (3) used to scale the voltage input between 

physical limits. On the real device these are used to remove dead-zones from the input. For 

example, below a certain voltage there is no joint movement, and above a certain voltage the 

system becomes saturated, hence the input is scaled between these points. 

• The solenoid force (ܨୗఽ೔ , ,௣஺೔ݔ) ୗా೔) and strokeܨ  ௣஻೔) in equation (5) are both parameterised withݔ

two coefficients each. These parameters are used to generate a force stroke curve for the solenoid, 

so that given an input current a solenoid displacement is calculated. The movement of the solenoid 

controls oil flow to the actuator valves. 

3.1. Formulation of the Problem as a Single Objective Optimization   

To find a mathematical framework for the estimation problem, it is assumed that the parameters of the 

mechanical or hydraulic subsystems are considered together as a single vector ી. The input/output data 

used to solve this estimation problem are the voltage applied to the joint	݅, i.e. ݑ௜(݇), and the joint angle 

measured from the potentiometer of joint ݅, i.e. ݕ௜(݇). Both experimental and simulation data are sampled 

at 0.01s intervals. To find suitable parameters that relate ݕ௜(݇) and ݑ௜(݇), the search space Ω is defined to 

include all prior knowledge about the physical properties of these parameters. As a result, the search 

space of parameters for the mechanical subsystem Ωெ ⊂ ℝଽ is defined as: 
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Ω୑ = ൛ી|	ી = ,ଵߠ) ⋯,ଶߠ ,(ଽߠ ௠௜௡೔୑ߠ ≤ ௜ߠ ≤ ௠௔௫೔୑ߠ , ݅ = 1,2,⋯9ൟ               (15) 

and for the hydraulic subsystem it will be Ωୌ ⊂ ℝଵ଴
: Ωୌ = ൛ી|	ી = ,ଵߠ) ⋯,ଶߠ ,(ଵ଴ߠ ௠௜௡೔ୌߠ ≤ ௜ߠ ≤ ௠௔௫೔ୌߠ , ݅ = 1,2,⋯10ൟ                                          (16) 

Having specified the parametrization of the mechanical (15) and hydraulic (16) subsystems, the 

identification error for joint ݅ is defined as: ℰ௜(݇; ી) = (݇)௜ݕ	 − ;݇)ො௜ݕ ી)                                               (17) 

where ݕො௜(݇; ી) represents the output of joint ݅ in the model for a specific parameter vector ી. To judge the 

quality of a particular value of ી, it is necessary to define a suitable error signal measure. Here we choose 

two types of cost function. The first is defined as the ݌-norm of the absolute error signal for = 1, 2,∞ : 

ே(ી)ܬ = ቀଵே∑ ;݇)௜ߝ| ી)|௣ே௞ୀଵ ቁభ೛                         (18) 

and the second performance measure is defined as the ݌-norm of the relative error signal with respect to 

the ݌-norm of the measured data: 

ே̅(ી)ܬ = ൬ଵே ∑ ฬℰ೔(௞;ી)‖௬೔‖೛ ฬ௣ே௞ୀଵ ൰భ೛              ݌ = 1, 2,∞                                                                       (19) 

Optimality may, therefore, be expressed by selecting the parameter values that yield the minimal value of 

the performance measure. Hence, in relation to equation (18), the estimated parameter vector ી෡୒ is: ી෡୒ = argminી∈ஐಾ 	ଵே ∑ |ℰ௜(݇; ી)|௣ே௞ୀଵ ݌               = 1, 2,∞                      (20) 

A similar argument applies to the cost function (19). 

Before developing a numerical algorithm to solve the optimization problem, an identifiability 

analysis on the influence of the parameters selected for optimization on the model output ݕො௜(݇; ી) is 

carried out. For this purpose, and since the focus here is on joint 2, the sensitivity of ݕොଶ(݇; ી) for different 

values of the parameters in ી is evaluated and plotted numerically. To illustrate, Figure 10 shows the 

sensitivity of selected parameters for a segment of one experiment. For joint 2, the results show that the 
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output ݕොଶ(݇; ી) is highly sensitive to the damping and stiffness and hence these are identifiable. By 

contrast, the sensitivity with respect to the masses is not as high and, in fact, reduces by moving from the 

mass of link 6 to the mass of link 1. This problem is addressed by noting that the sensitivity of ݕොଶ(݇; ી) 
with respect to the parameters in the vector ી is a function of time. This means it is possible to find time 

segments in which the output ݕොଶ(݇; ી) is more sensitive to some specific parameters than other 

parameters. In fact, this property is used in the multi-objectivization of the output error performance index 

to improve the parameter estimation accuracy when using the proposed multi-objective GA algorithm. 

This will be explained in more detail below. 

Finally, the non-convexity of the problem is investigated by plotting the performance surface ܬே̅(ી) for the two and infinity norms as functions of the parameters. For example, Figure 11 shows the 

search landscape for an illustrative pair of hydraulic subsystem parameters. Figure 11 and similar plots 

for other parameters show that the search landscape is not smooth, a situation that is worse when 

considering the combined dynamics of the actuator and mechanical subsystems. 

3.2. Formulation of the Problem as a Multi-Objective Optimization 

In section 3.1, the problem of finding an estimate ી෡ of the parameter vector ી was formulated as 

minimization of the objective function ܬே(ી) in equation (18) or ܬே̅(ી) in equation (19). To improve the 

estimation accuracy of the parameters, our approach in determining the global optimum solution is to use 

the so called ‘multi-objectivization’ method (Jensen, 2004; Lochtefeld & Ciarallo, 2015). In this 

technique, a single-objective problem is first formulated as a multi-objective optimization problem and, 

by solving the reformulated problem, it is possible to provide a solution which minimizes the original 

single-objective cost function. It is proved that multi-objectivization outperforms single-objective 

methods on average (Lochtefeld & Ciarallo, 2015). In the present article, the concept is formulated and 

evaluated in the context of nonlinear parameter estimation for robotic manipulators. To explain the 

rationale, consider the following definition. 
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Definition 1 (Marler & Arora, 2004). Assume ۴(ી) ∈ ℝ࢔ is a multi-objective function with ۴ = ሾ	ܨଵ(ી) ௡(ી)ሿ. The point ۴૙ܨ⋯ଶ(ી)ܨ ∈ ℝ࢔ is called a utopia point if and only if  ܨ௜଴ = minሼܨ௜(ી)|ી ∈ Ωெሽ for ݅ = 1,2,3⋯݊.  

Here, by splitting the measured output into segments, the single objective optimization problem is 

converted to the minimization of a multi-objective cost function as follows: ܬ୫୳୪(ી) = ேభଵܬൣ (ી), ேమଶܬ (ી),⋯ , ே೙௡ܬ (ી)൧	                                          (21) 

where ܬேೞ௦ (ી) is the objective function for the segment s defined as: 

ேೞ௦ܬ (ી) = ቀ ଵேೞ ∑ ;݇)௦ߝ| ી)|௣ேೞ௞ୀଵ ቁభ೛				        ݌ = 1, 2,∞                                                                      (22) 

in which ߝ௦(݇; ી) = (݇)௦ݕ	 − ;݇)ොݕ ી) and ݕ௦(݇) is the measured output at segment s. For the present 

problem, ۴૙ corresponds to the value of the objective function ܬ୫୳୪(ી) at the desired ી૙ which is 

unattainable in general. However, using evolutionary algorithms, an approximation of ۴૙ which is as 

close as possible to ۴૙ will be achieved. Such a solution is called a compromised solution and is Pareto 

optimal. The challenge is how the word close is defined for the compromised solution. In the present 

work, two criteria are considered: 1- sum of the square error of the objective function at the solution point 

with respect to the utopia point; and 2- sum of the absolute value of the relative error of the estimated 

parameters. After the GA algorithm has completed a specific number of iterations, a Pareto set indicating 

the best parameters estimating the Pareto-optimal solution is achieved. The solution is achieved by 

finding the minimum of ܨ௜(ી) for all Pareto set solutions and ݅ = 1,2,3⋯݊. This leads to a best solution 

for each segment. Subsequently, the average of these n points is taken as the final solution. 

4.  PROPOSED GENETIC ALGORITHM 

The main challenge in dealing with the optimization problem (19) is that the error signal ߝ(݇; ી) cannot 

be formulated analytically as a function of the parameter vector ી. This is due to the fact that a closed 

form representation of the dynamic equations of the 7-DOF manipulator is not mathematically tractable. 
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Moreover, the performance index ܬே(ી) in equation (15) for ݌ = 1 and ݌ = ∞ is not differentiable. As a 

result, finding a mathematical expression showing the gradient of the performance surface with respect to 

the parameter vector ી is not practical. Hence, motivated by the issues raised in the introduction to the 

article, an initial straightforward GA and a more complex, multi-objective GA are described. 

4.1. Simple Genetic Algorithm 

The GA approach is a very well-known, evolutionary computation global optimisation method, based on 

the biological principle of natural selection, where the fittest individuals will survive and reproduce. In 

the GA the individual parameters are encoded as strings of numbers called chromosomes and so, for 

example, one chromosome will contain a value for each of the parameters being investigated. The process 

starts by creating a random population of potential solutions which are subsequently evaluated using a 

fitness function. The initial population is randomly selected from the search space Ωெ with a uniform 

probability distribution. Parent selection is based on the weighted roulette wheel with replacement i.e. the 

selection probability of each individual is proportional to its fitness. There are various methods for 

selection and reproduction (Affenzeller et al. 2009). In the present study, two crossover approaches are 

compared i.e. uniform crossover and pointwise crossover. Mutation is the final stage, where single 

elements may be randomly swapped to create a more diverse population. The process is repeated with a 

new population, until either a minimum fit is reached or a specific number of iterations are passed. Figure 

12 shows a flow chart of the GA approach used here (Montazeri & Poshtan 2003, 2009). 

In section 5, each component in Figure 12 is investigated to tailor the algorithm to the specific 

problem at hand. Two coding schemes are investigated, i.e. integer and multivariable binary string 

(MVBS) (Montazeri & Poshtan, 2003, 2009). The performance of both coding schemes in terms of 

finding a better approximation of the optimal solution for the estimation problem is investigated. Using 

either coding scheme, the chromosomes themselves look the same. For example, equation (23) shows the 

form of the chromosome for optimisation of the mechanical model, 
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 Chromosome = [K D S M1 M2 M3 M4 M5 M6]                                                                               (23) 

where K is the gain representing the actuator subsystem, D  is the joint damping coefficient, S  is the joint 

spring stiffness and M1  to M6  are the link masses. In the MVBS scheme, each element of the 

chromosome is represented by a 16 bit binary number, whereas in the integer coding scheme each 

element is represented by an integer. For each iteration of the algorithm, the simulation model utilises the 

parameters in that chromosome and the output is compared to experimental data. A fitness value is used 

to assess the strength of the chromosome, in which the closer the simulation output is to the experimental 

data, the smaller the fitness value. Selection of the fitness function plays an important role in the 

convergence behaviour of the proposed GA, hence a number of options are evaluated later in section 5.2, 

to determine the one which is most suitable for the present application. 

4.2. Multi-Objective Genetic Algorithm 

Key challenges associated with the initial single-objective optimisation problem are: 1- local optima; 2- 

keeping the diversity of the population at a reasonable level; and 3- ensuring the algorithm identifies good 

solutions that can later be assembled by crossover. To address these, a multi-objective GA is implemented 

using the concept of multi-objectivization (section 3.2). The single objective problem (19) is converted to 

a multi-objective optimization problem by splitting the measured data into a number of segments and 

defining a similar objective function for each segment. The developed algorithm utilises the well-known 

NSGA II i.e. based on non-dominant sorting and Pareto optimal solutions. As noted by Lochtefeld & 

Ciarallo (2015), the majority of multi-objective evolutionary algorithms, especially those used for multi-

objectivization, share a more or less similar algorithmic framework to that of the non-dominated sorting 

GA and, in engineering applications, no single approach is always superior (Zhou et al. 2011). The same 

argument is true for application of evolutionary algorithms in system identification and filter design 

(Gotmare et al. 2016). Selection of a specific method depends on the type of information provided in the 

problem, the solution requirement and user preference. Hence, formulating the problem based on 
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NSGA-II in this article facilitates use of existing results in this area but the applicability of other 

algorithms such as MODE/D and MOPSO will be investigated in future research. The main purpose of 

the multi-objective GA is to evaluate and order the offspring in a more effective way, with the aim to 

improve the performance in regard to the convergence of the estimated parameters to the true values. The 

new algorithm is evaluated in section 5 to determine if the additional complexity is worthwhile. 

5. PERFORMANCE OPTIMISATION 

Further to the fitness function and the coding scheme explained in section 4, the performance of the GA 

in finding the ‘best’ estimation result for parameters of the developed model is heavily influenced by 

several other factors, including the crossover rate, crossover type, mutation rate and population length. 

Hence, it is necessary to train the simple and multi-objective GA with the most appropriate settings for 

the present identification problem. For the analysis in this section, the estimated parameters are compared 

with a set of illustrative parameter values, i.e. numerical values that are physically realistic but are not yet 

optimised for the real device. These values are listed in the first few rows of Table 1, and are used in the 

model to generate simulation data for simple and multi-objective GA optimisation (i.e. as a surrogate for 

experimental data but with known parameter values). For this purpose, the mechanical subsystem is 

initially considered in isolation using a gain K to represent the hydraulics. 

This example allows us to evaluate how close the estimated values of the parameters are to the 

‘true’ values already set in the mechanistic model. It also makes clear under which circumstances the 

algorithm has the capability to converge to these real parameter values, rather than generating a solution 

based on a different local minimum within the global search space. The latter can happen when the fitness 

value is relatively low, indicating a close match between the simulated and experimental (here also 

simulated) output response, but for which the estimated parameters remain far from the true values. 

Sections 5.1 to 5.3 below initially focus on the simple GA with MVBS coding, before considering the 

integer coding scheme and the multi-objective GA. 
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5.1. Evaluation of Different Crossover Types 

Initially using MVBS, pointwise and uniform crossover are investigated. For the pointwise crossover 

scheme, chromosomes are broken into several segments and each two-parent chromosome swaps 

segments between the points. Uniform crossover works by swapping every other gene of one of the parent 

chromosomes with the other parent, so each child ends up with 50 percent of each parent chromosome. 

For brevity, full details of the simulation results are omitted but the conclusion is that, using the MVBS 

coding scheme for this particular application, the pointwise approach consistently yields significantly 

improved performance compared to uniform crossover.  

5.2.  Evaluation of Different Fitness Functions 

One of the most important issues in mathematical optimization is selection of the fitness function and the 

system identification problem dealt with in the present article is no exception. Selection of a suitable 

fitness function enables proper discrimination of the individuals using the proposed GA-based method. Of 

the six possible fitness functions introduced in section 3.1, two are immediately found to yield rather 

erratic performance. Hence, only four options are considered in more detail. These are based on equation 

(18) for ݌ = 1, 2,∞, and equation (19) for ݌ = ∞. Figure 13 illustrates the simple GA performance for 

the MVBS coding scheme using each of these fitness functions. Table 1 shows the relative errors of the 

optimised parameter values and Table 2 the lowest fitness values and error indices. 

These results demonstrate that the convergence of the estimated parameters to their true values 

requires particular attention in the present context. For this example, Figure 13 shows that norm two (the 

Euclidian norm) reaches the final fitness value with the least number of iterations searched, while the 

infinity norm takes the longest. Although norm two has the fastest convergence rate, it is evident from 

Table 2 that it has a relatively high fitness value, whereas the two infinity norm fitness functions yield 

very low fitness values. The infinity norm (18) results in both the lowest output identification error and 

lowest parameter estimation error, and so is the most obvious choice for further evaluation below.  
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5.3. Evaluation of Different Population Size, Crossover and Mutation Rates 

For the present application, population size, crossover and mutation rates are found to have a significant 

effect on the speed of convergence and final achievable value for the fitness function. Comparing various 

population sizes, the simulation study suggests that a population size of ~70 should be utilised since it 

generates a diverse population and has the capability to reach a lower value for the performance index. 

With regard to crossover, a value of 1 means that, at every iteration, the parent chromosomes will create 

new child chromosomes, hence every iteration will contain different chromosomes to the one before. In 

Figure 14, for example, crossover values of 0.6 and 0.8 take almost the same time to converge while, 

despite 0.8 having a higher initial value of fitness, it converges to the lowest value. These results suggest 

that a crossover value of 0.8 tends to yield the most promising performance. This crossover value 

represents an empirically derived balance between the requirement for a diversity of population and the 

need to force the output to determine the fittest individuals. Similar exercises are used to determine the 

mutation rate and the study shows that the value 0.05 yields the best result in terms of a compromise 

between the diversity of the population and the pressure on the selection of the highest fitness values. 

Hence, the best tune for the binary coding scheme is listed in the middle column of Table 5. 

5.4. Evaluation of Different Coding Schemes 

A similar study (i.e. changing one parameter at a time and comparing the learning curves) is carried out 

for the simple GA with integer coding. In this case only a uniform crossover is considered. The latter 

results suggest that the best tune for the parameters of the simple GA with integer coding is population 

size 70, crossover rate 0.8, and mutation rate 0.5. Finally, the performance of the algorithm for the integer 

and MVBS coding schemes are compared. With the MVBS scheme, the present analysis uses grey code 

to prevent sudden erratic jumps in the parameters when crossover occurs, allowing the algorithm to 

explore the whole search space more effectively. Running the simple GA for both coding schemes and 

with the attained best tune of the parameters, shows that the MVBS scheme consistently performs better 
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for this robotic manipulator identification problem. The learning curves of the simple GA with the best 

tune for both MVBS and integer coding schemes are compared in Figure 15. In all cases, the learning 

curves are plotted after taking the average over 10 runs. 

5.5.  Evaluating the Parameters of the Multi-Objective GA 

Although the simple GA developed in the previous section forms the reproduction engine for the multi-

objective optimization algorithm, the best parameters for this algorithm, nonetheless, require further 

study. This is a direct application of the “No Free Lunch Theorem” in machine learning. Selected results 

from the authors’ systematic study into this issue are presented in Tables 3 and 4, while the final column 

in Table 5 summarises the conclusions. For this purpose, the crossover, mutation, and population size of 

the multi-objective GA are all varied and the sum of relative parameter estimation error, as well as the 

sum of square errors, are calculated for each parameter. For brevity, the accuracy of the estimated 

parameters shown in Table 3 is listed only for selected crossover values. By contrast, the sum of square 

error and output error index are listed in Table 4 for selected crossover, mutation, and population values. 

The results in Table 3 show that the crossover values 0.8 and 0.4 both give acceptable results in terms of 

the estimation accuracy. However, from Table 4 it can be inferred that the crossover values 0.6 and 0.4 

yield the best results in terms of the mean square error. This necessitates reaching a compromise for the 

parameters of the multi-objective GA in terms of the parameter estimation accuracy and reaching the 

minimum value for the sum of square error. Comparing the index values listed in Tables 3 and 4 suggests 

that the crossover value of 0.4 is the right choice for further study in the present context. Following a 

similar analysis, a mutation rate 0.2 and population size 20 is found to yield the best performance for the 

proposed multi-objective GA in order to achieve better estimation accuracy for the parameters. 

Finally, to evaluate how the number of segments in the multi-objectivization process affects the 

performance of the multi-objective GA, the parameter estimation problem is solved for different numbers 

of segments. In particular, Tables 4 and 6 (see later section 6.1) compare use of two and eight segments, 
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and show that both the mean square error of the output and the parameter estimation accuracy are 

significantly improved by having eight objective functions. In fact, use of eight segments is a pragmatic 

choice based on a visual examination of the experimental time series, as discussed in section 6.1. 

6.  PARAMETER ESTIMATION RESULTS 

Section 6 extends the analysis to the hydraulic model, applies the approach to experimental data, and 

compares the simple and multi-objective GA approaches. 

6.1. Mechanical Subsystem Estimation 

Starting with the mechanical model and using the values in Table 5 as the parameters for the simple and 

multi-objective GA, Figure 16 compares the dynamic response of the simple GA and multi-objective GA 

optimised model with the simulated data for Joint 2 (see Figure 1, the shoulder joint). Although the 

present article focuses on Joint 2 as an example, preliminary analysis of the other manipulator joints 

yields similar results. For example, GA optimisation for Joint 3 (elbow pitch) yields a dynamic response 

and parameter estimates that lead to outputs similar to those shown in Figure 16. The voltage input used 

for this simulation experiment, illustrated in Figure 17, is based on the laboratory experiments considered 

later in the article and represents a practically realisable signal. The input is scaled to lie in the range 

100�  representing the maximum power in a negative direction through to 100+  representing the 

maximum power in a positive direction. 

As Figure 16 shows, both the simple GA and multi-objective GA estimated simulation model 

output tracks the original simulation output rather well, albeit with a small over shoot at the peaks. 

However, Table 6 shows that some of the simple GA parameter estimates are significantly distant from 

their true (simulated) values, motivating the use of the multi-objective GA approach. To implement the 

latter, the output is split into eight segments, hence eight objectives to minimise, as illustrated in Figure 

18. The use of eight segments was found to work well in practice. It matches the number of peaks and 
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troughs in the time series (when the joint angle was at the greatest deviation from the initial reference 

point) and is compatible with the sensitivity analysis reported in section 3.1 (e.g. Figure 10). 

In the case of the multi-objective GA, after completion of a specific number of iterations, a Pareto 

set indicating the best parameters estimating the Pareto-optimal solution is achieved. This helps to restrict 

our attention to the limited set of choices rather than considering the full range of every parameter. The 

final value of the estimated parameters ી෡ is achieved by finding an estimation of the Pareto-optimal 

solution that minimizes each of the eight objective functions, and subsequently determining the average. 

The parameter vector is utilised to generate a new output response, as illustrated in Figure 19 i.e. the eight 

thin traces show the best output for each segment, while the thick solid trace shows the average of these. 

The average optimised response follows the simulation data very well for most of the experiment. Table 6 

compares the simple and multi-objective GA optimisation results. For this example, it can be seen that the 

multi-objective GA with eight segments generally yields more accurate parameter estimates. In fact, the 

sum of the relative error for the simple and multi-objective GA approaches with two and eight segments 

are 13.46, 12.75, and 5.46 respectively. This demonstrates significant improvement in the estimation 

accuracy of the parameters for the multi-objective GA with eight segments compared to the others. 

6.2. Hydraulic Subsystem Estimation 

The optimisation problem for the hydraulic system is investigated using the same GA settings (Table 5) 

and voltage input (Figure 17) as for the mechanical system. In this case, however, the hydraulic model is 

used to generate the model response, with the mechanical model parameters fixed at their optimised 

values from above. Hence, new simulation data are created to allow the performance of the GAs for the 

hydraulic system parameters to be analysed. In this case, the simple GA yields an optimised response that 

actually lies closer to the simulation output response than the multi-objective GA case, with a mean 

square error of 9.2 compared to 27.1 respectively. However, Table 7 shows that the parameters from the 
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multi-objective GA are closer to the true values than the simple GA case, yielding a lower sum of relative 

errors between the true and estimated parameter values, i.e. 3.1 and 3.9 respectively. 

6.3. Laboratory Data Parameter Estimation and Model Validation 

The simple and multi-objective GAs are applied to experimental data collected from the manipulator, as 

illustrated in Figure 17 and Figure 20. For direct comparison with the simulation benchmark examples 

above, the shoulder joint is again chosen to demonstrate the feasibility of the GA approach. More 

information about the robotic platform is provided by Taylor & Robertson (2013), while the following 

web page has images of the device: http://www.lancaster.ac.uk/staff/taylorcj/projects/autonomous. A 

semi-automated system for calibrating and initializing the robot for open-loop data collection has 

previously been developed (Taylor & Robertson, 2013). Here, the robot is first manipulated into a 

suitable configuration using standard proportional controllers. The operator selects from classical step 

experiments or pseudo-random signals, with an example of the latter illustrated in Figure 17. 

Table 8 shows the mechanical model parameter estimates returned by both the simple GA and 

multi-objective GA. Figure 20 shows that the optimised simulation output for both algorithms generally 

follows the dynamic behaviour of the device, although there are some significant underestimates of the 

joint angle in the case of the multi-objective GA. Note that the focus of earlier sections of the article was 

to train the multi-objective GA for estimating the true parameter values rather than to minimise such 

output errors. Nonetheless, an accurate output response is also desirable, of course, and the authors are 

presently investigating such modelling errors with the aim of improving the response. 

In regard to the parameter estimates, the results for the mechanical subsystem can be partially 

validated by consideration of the known total mass of the manipulator i.e. 45kg. In this regard, the sum of 

the six estimated link masses in Table 8 is 43.9kg and 79.7kg for the multi-objective and simple GA 

respectively. This result supports the earlier conclusions of the simulation study, i.e. the multi-objective 

GA provides closer estimates to the true parameter values than the simple GA. Note that the total link 

mass was not included as a constraint in the optimisation, since the aim of this example is to investigate 

GA performance for completely unknown parameters. 



 

 

26 
 

 

Finally, Table 9 shows that the parameters optimised using the laboratory data in Figure 20 also 

yield a satisfactory output response when they are applied to new experimental data in a simple validation 

exercise. Here, two different input signals are utilised to generate simulation data (with the same set of 

parameters as optimised above) and the joint angle responses in each case are compared with the 

equivalent experimental data collected from the real machine. 

7.  CONCLUSIONS 

The problem of dynamic modelling and parameter estimation for a 7-DOF robot manipulator has been 

investigated. This manipulator has hydraulic actuators and is suitable for decommissioning and 

manufacturing applications. A mechanistic model of the system was developed and subsequently 

implemented using MATLAB software. The parameters of this model are subject to change because of 

device aging and the characteristics of different operating conditions. To overcome this problem for 

future simulation and control system design work, the article has exploited and refined a GA to estimate 

the parameters of the model using an output identification framework. This is accomplished in two steps. 

In the first step, the parameters of the GA, i.e. coding scheme, crossover type, crossover rate, mutation 

rate and fitness function, are all tuned on the basis of simulation data. 

The results show that the developed GA has the capability to estimate the parameters of the 

dynamic model with a reasonable accuracy and the output of the model follows the simulated output. In 

the second step, the proposed GA is utilized to estimate the parameters of the model based on measured 

experimental data. Simple and multi-objective GAs have been compared, with the latter achieving 

improved accuracy of the estimated parameters by integrating the validation phase inside the algorithm 

implicitly. The model is presently being extended to address the other joints of the dual-manipulator 

system. It will be used for simulation and model-based control design, with current research by the 

authors focusing on high-level control tasks such as automated remote cutting and welding. 
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Table 1 – Initial versus ‘true’ (simulation) parameters values for the mechanical model, and relative error 

of the estimated parameters (i.e. difference between the true and estimated values, divided by true value) 

for selected fitness functions using the simple GA. The parameters are described in section 3.  
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 Mass of link (kg) 

1 2 3 4 5 6  

Parameter Value 

Initial 0.1 100 20 0.6 1.3 2.8 1.2 2.2 1.7 

True 0.2 231.8 53.4 4.6 5.1 22.5 1.6 4.1 4.7 

Fitness Function Relative Error 

Equation (16) with ݌ = ∞   0.5 0.26 0.42 0.19 0.05 0.43 0.12 0.22 1.06 

Equation (16) with ݌ = 1 1.0 0.82 0.43 0.84 0.94 0.96 2.50 1.46 0.72 

Equation (16) with ݌ = 2 0.5 0.57 0.29 0.23 0.09 0.84 0.93 0.19 0.21 

Equation (17) with ݌ = ∞ 0.5 0.32 0.47 0.23 0.80 0.78 3.93 0.24 0.12 
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Table 2 – Comparison of each fitness function associated with the simple GA optimisation shown in 

Table 1. The output error indices are based on the infinity-norm of the difference between the simulated 

and optimised dynamic response. The parameter error indices are calculated as the sum of absolute 

relative estimation errors for the set of nine mechanical model parameters. 

Fitness Function 
Lowest 

fitness value 

Output 

error index 

Parameter 

error index 

Equation (19) with ݌ = ∞   -0.1275 0.651 743 

Equation (18) with ݌ = ∞  -0.6458 0.645 327 

Equation (18) with ݌ = 1 -836.54 0.85 969 

Equation (18) with ݌ = 2 -14.5172 0.82 389 

 

 

 

 

Table 3 – Evaluating the effect of crossover on the performance of the multi-objective GA. 
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Mass of link (kg)  

1 2 3 4 5 6   
Crossover Relative Error Sum 

1.0 0.8 0.36 0.27 0.35 0.02 0.28 2.6 0.78 0.48 5.94 

0.8 0.05 0.08 0.15 0.22 0.77 0.02 4.05 2.81 0.31 8.46 

0.6 0.35 0.26 0.12 0.28 1.03 0.10 4.7 3.05 1.83 11.72 

0.4 0.05 0.08 0.15 0.21 0.77 0.03 4.05 2.81 0.31 8.46 
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Table 4 – Comparison of the mean square error and output error indices for 

various multi-objective GA settings (selected illustrative results). 

Population Crossover Mutation Mean squared error Output error index 

8 segments   

70 0.8 0.05 0.3133 1.322 

50 0.8 0.05 11.2987 7.862 

20 0.8 0.05 0.2283 1.2141 

70 1.0 0.05 0.2217 0.9240 

70 0.6 0.05 0.0580 1.2141 

70 0.4 0.05 0.0836 1.2157 

70 0.8 0.1 0.0693 1.2148 

70 0.8 0.2 0.0945 1.2151 

2 segments   

70 0.8 0.05 0.1297 1.214 

 

 

 

Table 5 – GA settings used to generate the parameter estimation 

results in section 6 of the article. 

Setting Simple GA Value Multi-objective GA Value 

Coding scheme Multivariable binary coding Multivariable binary coding 

Crossover rate (Pc) 0.8 0.4 

Mutation rate (Pm) 0.05 0.2 

Parent selection proportional proportional 

Crossover type pointwise pointwise 

Population size 70 20 

Fitness function infinity norm infinity norm 
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Table 6 – Comparison of true and estimated parameter values for the simple and multi-objective GA 

optimisation, for the mechanical model. The relative error is the difference between the true and estimated 

values, divided by the true value. 
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 Mass of link (kg)  

1 2 3 4 5 6  

True value 0.2 231.8 53.4 4.6 5.1 22.5 1.6 4.0 4.7  

Simple GA 
estimates 

0.4 343.2 89.4 4.6 10.60 0.80 10.0 19.5 5.9 
 

Multi-objective 
8 segments   

average 
0.1 112.4 37.5 2.3 2.3 13.3 5.1 2.2 4.5 

 

Relative error Sum 

Simple GA 
relative error 

1 0.48 0.67 0 1.08 0.96 5.25 3.76 0.26 13.46 

Multi-objective 
2 segments 

relative error 
0.9 0.86 0.48 0.28 0.77 0.01 4.97 2.66 1.82 12.75 

Multi-objective 
8 segments 

relative error 
0.5 0.52 0.29 0.5 0.55 0.41 2.19 0.46 0.04 5.46 

 

Table 7 – Comparison of true and estimated parameter values for the simple and multi-objective GA 

optimisation, for the hydraulic model. The parameters in the top row are described in section 3 The 

relative error is the difference between the true and estimated values, divided by the true value. 

Parameter 
Piston 
Area 

A 

Piston 
area 

B 

࢏۶࢞ࢇ࢓ࡵ ࢏۶࢔࢏࢓ࡵ  ࢏ۯ܁ࡲ ࢏࡯ ࢏࡭  ࢏۰܁ࡲ  ࢏࡭࢖࢞    ࢏࡮࢖࢞ 

True value 1000 750 0.9 0.3 1.4 1.2 8 0.7 0.8 12 
 

Simple GA 

estimates 
1339 596 0.52 0.27 0.90 1.90 4.23 1.89 0.99 6.19 

 

Multi-objective 

8 segments 

average 

1251 1319 1.1 0.3 0.6 1.1 2.6 0.9 0.7 9.9 

 

Relative error Sum 

Simple GA 

relative error 
0.339 0.205 0.426 0.114 0.359 0.581 0.471 0.698 0.235 0.484 3.9 

Multi-objective 

8 segments 

relative error 

0.252 0.759 0.222 0 0.571 0.083 0.675 0.286 0.125 0.175 3.1 
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Table 8 – Estimated parameters returned by the simple and multi-objective GA for the experimental data, 

for the mechanical model subsystem. 
 

 

 

 
 
 
 
 
 

Table 9 – Output error indices associated with the optimised model applied to three different laboratory 

experiments, i.e. based on different input sequences. The first data set is illustrated by Figure 17 (input) 

and Figure 20 (output). Only the first data set is used for GA optimisation hence the other two 

experiments represent test validation experiments. The output error indices are based on the 

mean absolute error between the simulated and optimised dynamic response. 
 

 
 
 
 
 
  

 

G
ai

n
 

D
am

pi
ng

 

S
ti

ff
ne

ss
 

 Mass of link (kg) 

1 2 3 4 5 6 

Simple GA 
estimates 

0.1441 90.52 26.34 1.11 7.80 27.73 10.37 21.86 10.82 

Multi-objective  
8 segments 

average 
0.3581 314.27 39.06 2.97 4.99 16.08 5.78 7.12 6.99 

Data set Multi-objective Simple GA 

1 1.7528 1.4301 

2 2.5661 2.5414 

3 1.3659 1.7591 
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FIGURES 

 

 

Figure 1  Diagram of 7-DOF (including gripper) manipulator. 
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Figure 2  Block diagram of one manipulator adapted for dynamic modelling. 
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Figure 3 Components of the hydraulic actuating system installed on each joint. 
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Figure 4  Illustrative model element showing the components of the solenoid device. 
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Figure 5  Schematic of the simplified model of HydroLek manipulator. 

 

 

       

Figure 6 (a) Free diagram body of link ݅, (b) Free diagram body of the last link. 
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Figure 7  Structure of numerical model of one HydroLek manipulator. 
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Figure 8  Internal structure of Link i subsystem. 

  

Figure 9  Mechanical Explorer 3D view of the developed manipulator model. 
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Figure 10  Sensitivity analysis showing the output of Joint 2 around segment 6 (i.e. 43.5s to 52.6s) of an 

illustrative simulation experiment, for four of the parameters. For each parameter, 20 values within the 

defined range are plotted.  
 

 

Figure 11 Performance surface showing the infinity norm of the output error as a function of flow 

discharge coefficient and cylinder piston area of the hydraulic actuator. 
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Figure 12  Flowchart showing GA optimisation. 

 

Figure 13  Comparison of four different fitness functions (normalized between 0 and 1) 

for the simple GA using the MVBS coding scheme. 
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Figure 14  Fitness comparison for three different crossover rates for MVBS coding scheme. 

 

 

Figure 15  Fitness comparison for binary and integer coding schemes. 
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Figure 16  Simulation response of the mechanical subsystem model using the true (dashed trace), 

simple GA estimated (dot), and multi-objective GA estimated parameters. 

 

Figure 17  Input voltage used to generate both simulated and experimental data. 
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Figure 18  Segmentation of simulation model response. 

 

Figure 19  Simulation response of the mechanical subsystem model using true parameters (dashed trace), 

GA optimisation fits for each of eight segments (thin), and average multi objective GA response (thick). 
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Figure 20  Experimental data from the manipulator (dashed trace), compared with the simulation 

response for the model optimised using the simple (thin) and multi-objective (thick) GA. 

 
 

 

 




